Towards a Game Theoretic View of
Secure Computation

Gilad Asharov* Ran Canetti' Carmit Hazay*

February 6, 2012

Abstract

We demonstrate how Game Theoretic concepts and formalism can be used to capture cryp-
tographic notions of security. In the restricted but indicative case of two-party protocols in
the face of malicious fail-stop faults, we first show how the traditional notions of secrecy and
correctness of protocols can be captured as properties of Nash equilibria in games for rational
players. Next, we concentrate on fairness. Here we demonstrate a Game Theoretic notion and
two different cryptographic notions that turn out to all be equivalent. In addition, we provide
a simulation based notion that implies the previous three. All four notions are weaker than
existing cryptographic notions of fairness. In particular, we show that they can be met in some
natural setting where existing notions of fairness are provably impossible to achieve.

*Department of Computer Science, Bar-Ilan University, Israel. Supported by the European Research Council as
part of the ERC project LAST. asharog@cs.biu.ac.il

TDepartment of Computer Science, Tel-Aviv University, Israel. Supported by the Check Point Institute for Infor-
mation Security, BSF, ISF, and Marie Curie grants. canetti@tau.ac.il

#Department of Computer Science, Aarhus University, Denmark. carmit@cs.au.dk

Contents
1 Introduction

2 The Model and Solution Concepts
2.1 Cryptographic Definitions
2.1.1 Cryptographic Security
2.2 Game Theoretic Definitions L L

3 Privacy and Correctness in Game Theoretic View
3.1 Privacy in Game Theoretic view
3.2 Correctness in Game Theoretic view 0oL

4 Exploring Fairness in the Two-Party Setting
4.1 Fairness in Game Theoretic View oo
4.2 A New Indistinguishability-Based Definition of Fairness
4.3 The Gradual Release Property L.
4.4 A New Notion of Simulation Based Security
4.4.1 Simulation Based Security with Fairness
4.4.2 Simulation-Based Definition Implies Game-Based Fairness
4.5 The Feasibility of Our Definition o L.
4.5.1 An Impossibility Result o
4.5.2 A Positive Result L

A Dealing with Expected Round Complexity

11
12
15

17
18
19
22
26
29
32
34
34
37

42

1 Introduction

Both Game Theory and the discipline of cryptographic protocols are dedicated to understanding
the intricacies of collaborative interactions among parties with conflicting interests. Furthermore,
the focal point of both disciplines is the same, and is algorithmic at nature: designing and analyzing
algorithms for parties in such collaborative situations. However, the two disciplines developed very
different sets of goals and formalisms. Cryptography focuses on designing algorithms that allow
those who follow them to interact in a way that guarantees some basic concrete properties, such
as secrecy, correctness or fairness, in face of adversarial, malicious behavior. Game Theory is more
open-ended, concerning itself with understanding algorithmic behaviors of “rational” parties with
well-defined goals in a given situation, and on designing rules of interaction that will “naturally”
lead to behaviors with desirable properties.

Still, in spite of these differences, some very fruitful cross fertilization between the two disciplines
has taken place (see e.g. [25, 6]). One very natural direction is to use cryptographic techniques to
solve traditional Game Theoretic problems. In particular, the works of Dodis et al. [5], Ismalkov
et al. [24, 23], Abraham et al. [1] and Halpern and Pass [22] take this path and demonstrate how
a mutli-party protocol using cryptographic techniques can be used to replace a trusted correlation
device or a mediator in mechanism design.

Another line of research is to extend the traditional Game Theoretic formalisms to capture,
within the context of Game Theory, cryptographic concerns and ideas that take into account the
fact that protocol participants are computationally bounded, and that computational resources are
costly [5, 22, 19].

Yet another line of work is aimed at using Game Theoretic concepts and approach to amend
traditional cryptographic goals such as secure and fair computation. A focal point in this direction
has been the concept of rational fair exchange of secrets (also known as rational secret sharing)
[21, 17, 28, 26, 27, 29, 7, 2]. Here the goal is to design a protocol for exchanging secrets in a
way that “rational players” will be “interested” in following the protocol, where it is assumed that
players are interested in learning the secret inputs of the other players while preventing others from
learning their own secrets. In fact, it is assumed that the participants have specific preferences and
some quantitative prior knowledge on these preferences of the participants is known to the protocol
designer. Furthermore, such prior knowledge turns out to be essential in order to get around basic
impossibility results [2, 4].

These ingenious works demonstrate the benefit in having a joint theory of protocols for collab-
orative but competing parties; but at the same time they underline the basic incompatibility in
the two formalisms. For instance, the (primarily Game Theoretic) formalisms used in the works
on rational secret sharing do not seem to naturally capture basic cryptographic concepts, such
as semantic security of the secrets. Instead, these works opt for more simplistic notions that are
not always compatible with traditional cryptographic formalisms. In particular, existing modeling
(that is used both by constructions and by impossibility results) treats the secret as an atomic
unit and consider only the case where the parties either learnt or did not learn the secret entirely.
Unlike traditional cryptographic modeling, the option where partial information about the secret
is leaked through the execution is disregarded.

This work. We relate the two formalisms. In particular we show how Game Theoretic formalism
and concepts can be used to capture traditional cryptographic security properties of protocols. We

concentrate on the setting of two-party protocols and fail-stop adversaries. While this setting is
admittedly limited, it does incorporate the core aspects of secrecy, correctness and fairness in face
of malicious (i.e., not necessarily “rational”) aborts.

In this setting, we first show Game Theoretic notions of secrecy and correctness that are equiv-
alent, respectively, to the standard cryptographic notions of secret and correct evaluation of deter-
ministic functions in the fail-stop setting (see e.g [10]). We then turn to capturing fairness. Here
the situation turns out to be more intricate. We formulate a natural Game Theoretic notion of
fairness, and observe that it is strictly weaker than existing cryptographic notions of fair two-party
function evaluation. We then formulate new cryptographic notions of fairness that are equivalent
to this Game Theoretic notion, and a simulation-based notion of fairness that implies the above
three. Furthermore, we show that these new notions can indeed be realized in some potentially
meaningful settings where traditional cryptographic notions are provably unrealizable.

The results in more detail. The basic idea proceeds as follows. We translate a given protocol
into a set of games, in such a way that the protocol satisfies the cryptographic property in question
if and only if a certain pair of strategies (derived from the protocol) are in a (computational)
Nash equilibrium in each one of the games. This allows the cryptographic question to be posed
(and answered) in Game Theoretic language. More precisely, given a protocol, we consider the
(extensive form with incomplete information) game where in each step the relevant party can
decide to either continue running the protocol as prescribed, or alteratively abort the execution.
We then ask whether the pair of strategies that instruct the players to continue the protocol to
completion is in a (computational) Nash equilibrium. Each cryptographic property is then captured
by an appropriate set of utilities and input distributions (namely, distributions over the types). In
particular:

Secrecy. A given protocol is secret (as in, e.g. [10]) if and only if the strategy that never aborts
the protocol is in a computational Nash equilibrium with respect to the following set of utilities
and distributions over the types. For each pair of values in the domain, we define a distribution
that chooses an input for one party at random from the pair. The party gets low payoff if the two
values lead to the same output value and yet the other party managed to guess which of the two
inputs was used. It is stressed that this is the first time where a traditional cryptographic notion
of secrecy (in the style of [14]) is captured in Game Theoretic terms. In particular, the works on
rational secret sharing do not provide this level of secrecy for the secret. (Indeed, the solution
approaches taken there need the secret to be taken from a large domain.)

Correctness. A protocol correctly computes a deterministic function if and only if the strategy
that never aborts the protocol is in a computational Nash equilibrium with respect to the set of
utilities where the parties get high payoff only if they output the correct function value on the
given inputs (types), or abort before the protocol starts; in addition, the players get no payoff for
incorrect output.

Fairness. Here we make the bulk of our contributions. We first recall the basic setting: Two
parties interact by exchanging messages in order to valuate a function f on their inputs. The only
allowed deviation from the protocol is abortion, in which event both parties learn that the protocol
was aborted. Consequently, a protocol in this model should specify, in addition to the next message

to be sent, also a prediction of the output value in case the execution is aborted. (Although the
setting makes sense for any function, it may be helpful to keep in mind the fair ezchange function,
where the output of each party is the input of the other.)

Current notions of fairness for two party protocols in this model (e.g., [18, 16]) require there
to be a point in the computation where both parties move from a state of no knowledge of the
output to a full knowledge of it. This is a strong notion, which is impossible to realize in many
situations. Instead, we would like to investigate more relaxed notions of fairness, which allow
parties to gradually learn partial information on their desired outputs - but do so in a way that is
“fair”. Indeed, such an approach seems reasonable both from a game theoretic point of view (as a
zero-sum game) and from a cryptographic point of view via the paradigm of gradual release (see
e.g. [3, 13, 9, 18, 2] and the references within).

A first thing to note about such a notion of fairness is that it is sensitive to the potential prior
knowledge that the parties may have on each other’s inputs. Indeed, a “gradual release” protocol
that is “fair” without prior knowledge may become “unfair” in a situation where one of the parties
has far more knowledge about the possible values of the inputs of the second party than vice versa.

We thus explicitly model in our security notions the knowledge that each party has on the input
of the other party. That is, we let each party has, in addition to its own input, some additional
information on the input of the other party. Furthermore, to simplify matters and put the two
parties on equal footing, we assume that the information that the parties have on the input of the
other consists of two possible values for that input. That is, each party receives three values: its own
input, and two possible values for the input of the other party. Indeed, such information naturally
captures situations where the domain of possible inputs is small (say, binary). The formalism can
also be naturally extended to deal with domains of small size which is larger than two.

We first sketch our Game Theoretic notion. We consider the following set of distributions over
inputs (types): Say that a quadruple of elements (ag, a1, bo, b1) in the domain of function f is valid
if for all i € {0,1}, f(ao,b;) # f(a1,b;) and f(a;,bo) # f(as, b1). For each valid quadruple of values
in the domain, we define a distribution that chooses an input for one party at random from the
first two values, and an input for other party at random from the other two values. The utility
function for a party is the following: When the party aborts the protocol, each party predicts its
output. If the party predicts correctly and the other one does not, then it gets payoff +1. If it
predicts incorrectly and the other party predicts correctly then it gets payoff -1. Else, it gets payoff
0. We say that a protocol is Game Theoretically Fair if the strategy that never aborts the protocol
is in a computational Nash equilibrium with respect to the above utility, applied to both parties,
and any distribution from the above family.

We then consider three different cryptographic notions of fairness and investigate their relation-
ships with the above Game Theoretic notion; see Figure 1 for an illustration.

e First, we formulate a simple “game based” notion of fairness that limits the gain of an
arbitrary (i.e., not necessarily “rational”) fail-stop adversary in a game that closely mimics
the above Game Theoretic interaction. The main difference between the notions is that in
the cryptographic setting the adversary is arbitrary, rather than rational. Still, we show that
the notions are equivalent.

e Next, we show that this notion in fact corresponds to the natural concept of gradual release.
That is, say that a protocol satisfies the gradual release property if at any round the probability
of any party to predict its output increases only by a negligible amount. We show that a

protocol is fair (as in the above notions) if and only if it satisfies the gradual release property.
We note that the notion of gradual release is in essence the basis of the classic protocols of
Beaver, Goldwasser and Levin [3, 13]. It has also been a key tool in the work of Asharov and
Lindell [2].

e Then, we formulate an ideal-model based notion of fairness that allows for gradual release
of secrets. In this notion the ideal functionality accepts a “sampling algorithm” M from the
ideal-model adversary. The functionality then obtains the inputs from the parties and runs
M on these inputs, and obtains from M the outputs that should be given to the two parties.
The functionality then makes the respective outputs available to the two parties. (Ie, once the
outputs are available, the parties can access them at any time.) The correctness and fairness
guarantees of this interaction clearly depend on the properties of M. We thus require that M
be both “fair” and “correct”, in the sense that both parties get correct output with roughly
equal (and substantial) probability. We then show that the new simulation based definition
implies the gradual release notion. (We note that the converse does not necessarily hold with
respect to secure computation in the fail-stop model, even disregarding fairness).

Game—Based

A

Game—Theoretic Gradual Release

New Ideal Model

Figure 1: Our four notions of fairness and their relationships

A positive result. Finally, we consider the realizability of this notion. Here, we first assert that
the impossibility results of Cleve and Asharov and Lindell [4, 2] hold even with respect to the new
notions, as long as both parties are required to receive an output. We then observe that our notion
is meaningful even in the case where the parties are not guaranteed to always learn the correct
output when played honestly. Surprisingly, in cases where the parties learn the correct output
with probability one half or smaller (i.e., correctness holds with probability between 0 and 1/2),
our simulation-based notion of fairness is in fact achievable with no set-up or trusted third parties.
We demonstrate a family of two-party protocols, parameterized by this correctness probability,
that realize the new notion of fairness. For instance, for the case that correctness is guaranteed
with probability one half, we design a fair protocol where with probability one half both parties
obtain the correct output, and with probability one half both parties obtain an incorrect value. An
alternative protocol makes sure that each party obtains a correct output with probability one half,
and at each execution exactly one party obtains the correct output value. These scenarios were not
known to be achievable before (not even by [16]), and may prove to be useful.

On the definitional choices. One question that comes to mind when considering our modeling
is why use plain Nash equilibria to exhibit correspondence between cryptographic notions and
Game Theoretic ones. Why not use, for instance, stronger notions such as Dominant Strategy,
Survival Under Iterated Deletions, or Subgame Perfect equilibria. It turns out that in our setting
of two party computation with fail-stop faults, Nash equilibria do seem to be the concept that
most naturally corresponds to cryptographic secure protocols. In particular, in the fail-stop case
any Nash equilibrium is sub-game perfect, or in other words empty threats do not hold (see more
discussion on this point in the next section).

Recent related work. Our impossibility result can be interpreted as an extension of Cleve’s
impossibility result. We show that fairness is impossible to achieve even if correctness holds with
probability less than 1 (and non-negligibly greater than 1/2). Interestingly, we overcome this
impossibility result by relaxing the requirements and show that fairness can be achieved for protocols
with correctness 1/2. We also demonstrate that such level of correctness is still meaningful in some
cases.

In a recent work, Groce and Katz [20] overcome the impossibility result from a different approach
where instead of relaxing the correctness they relax the utility functions of the parties. They
showed that once the parties have a strict incentive to compute the function in an ideal world,
a (computational) Nash protocol can be designed. The number of rounds in their construction
depends on the amount of relaxation in the utilities, i.e., it is a function of the gap between the
utility when playing honestly, and the best utility possible upon aborting and guessing the outputs
with no information.

Future work. Although considered in [20], it is still an interesting challenge to extend the mod-
eling of this work to the Byzantine case. For one, in the Byzantine case there are multiple crypto-
graphic notions of security, including various variants of simulation based notions. Capturing these
notions using Game Theoretic tools might shed light on the differences between these cryptographic
notions. In particular, it seems that here the Game Theoretic formalism will have to be extended
to capture arbitrary polynomial time strategies at each decision point.In particular, it seems likely
that more sophisticated Game Theoretic solution concepts such as sub-game perfect equilibria and
computational relaxations thereof [19, 30] will be needed.

Another challenge is to extend the notions of fairness presented here to address also situations
where the parties have more general, asymmetric a priori knowledge on each other’s inputs, and
to find solutions that use minimal trust assumptions on the system. Dealing with the multi-party
case is another interesting challenge.

Organization. Section 2 presents the basic model, as well as both the cryptographic and the
Game Theoretic “solution concepts”. In the cryptographic setting we present both ideal-model
based definitions and indistinguishability-based ones. Section 3 presents our results for secrecy and
correctness for deterministic functions. Section 4 presents the results regarding fairness, i.e., (i)
the game theoretic notion, (ii) the equivalent cryptographic definition, (iii) a new simulation based
definition, (iv) the gradual release property and its relation to fairness and, (v) the study of the
fairness definition.

2 The Model and Solution Concepts

We review some basic definitions that capture the way we model protocols as well as the solution
concepts from Game-Theory.

2.1 Cryptographic Definitions

We review some standard cryptographic definitions of security for protocols. The definitions address
secrecy and correctness using the indistinguishability approach.

Negligible functions and indistinguishability. A function u(-) is negligible if for every poly-
nomial p(-) there exists a value N such that for all n > N it holds that u(n) < ﬁ. Let

X ={X(a,n)},enacqoay @nd Y = {Y(a,n)},cnaeqo1)+ Pe distribution ensembles. Then, we

say that X and Y are computationally indistinguishable, denoted X = Y, if for every non-uniform
probabilistic polynomial time (PPT) distinguisher D there exists a negligible function pu(-) such that
for all sufficiently long a € {0, 1}*,

| Pr[D(X(a,n)) = 1] - Pr[D(Y(a,n)) = 1]] < u(n).

Protocols. Our basic object of study is a two-party protocol, modeled as a pair of interacting
Turing machines as in [15]. We formulate both the cryptographic and the Game Theoretic concepts
in terms of two-party protocols. We restrict attention to PPT machines. (To simplify the analysis,
we consider machines that are polynomial in a globally known security parameter, rather than in
the length of their inputs.)

Two-Party functions. In general, a two-party function is a probability distribution over func-
tions f: {0,1}*x{0,1}* xN — {0,1}*x{0,1}*. Here the first (second) input and output represent
the input and output of the first (second) party, and the third input is taken to be the security
parameter. In this work we consider the restricted model of deterministic functions. We say that
a function is efficiently invertible if, for ¢ = 0,1, given 1", an input value x; and an output value y,
it is possible to compute in PPT a value x;_; such that f(xg,x1,n) = y.

The Fail-Stop setting. The setting that we consider in this paper is that of two-party interaction
in the presence of fail-stop faults. In this setting both parties follow the protocol specification
exactly, with the exception that any one of the parties may, at any time during the computation,
decide to stop, or abort the computation. Specifically, it means that fail-stop adversaries do not
change their initial input for the execution, yet, they may arbitrarily decide on their output. As seen
momentarily, the Game Theoretic and the cryptographic approaches differ in the specifics of the
abortion step. However, in both cases we assume that the abortion operation is explicit and public:
As soon as one party decides to abort, the other party receives an explicit notification of this fact
and can act accordingly. (This is in contrast to the setting where one party decides to abort while
the other party keeps waiting indefinitely to the next incoming message.) This modeling of abortion
as a public operation is easily justified in a communication setting with reasonable timeouts on the
communication delays. Protocols in this model should specify the output of a party in case of early
abortion of the protocol. We assume that this output has a format that distinguishes this output
from output that does not result from early abortion.

2.1.1 Cryptographic Security

We present game based definitions that capture the notions of privacy and correctness. We restrict
attention to deterministic functions. By definition [10], the View of the ith party (i € {0,1})
during an execution of m on (zg, 1) is denoted View, ;(zo,z1,n) and equals (z;, 7", m¢, ..., m}),
where 7 equals the contents of the ith party’s internal random tape, and m; represents the jth
message that it received.

Privacy. We begin by introducing a definition of private computation [10]. Intuitively, it means
that no party (that follows the protocol) should be able to distinguish any two executions when
using the same inputs and seeing the same outputs. This holds even for the case that the other
party uses different inputs. More formally:

Definition 2.1 (privacy) Let f and m be as above. We say that 7 privately computes f if the
following holds:
1. For every non-uniform PPT adversary A that controls party Py
C

. =~ . /
(VieWr 4@)0(20, 70 0) oot ceqo) men = LVIOWra0(20: 2110}, e et 1y men

where |xo| = |x1| = |2}| and f(xo, 1) = f(x0,2)).

2. For every non-uniform PPT adversary A that controls party Py

C

. . /
{Viewr)1 (20, 21,m) }xo,xa,m,ze{o,l}*,neN {Views a()a (20, 21,7) }xo,xg,xl,ze{o,l}*,neN

where |zo| = |zg| = |x1| and f(xo,21) = f(z(, 21).

Correctness. Recall that we distinguish between output that corresponds to successful termina-
tion of the protocol, and output generated as a result of an abort message. We assume that the
two types have distinct formats (e.g., the second output starts with a L sign). The correctness
requirement only applies to the first type of output. More precisely:

Definition 2.2 (correctness) Let f and m be as above. We say that m correctly computes f if
for all sufficiently large inputs xog and x1 such that |zo| = |z1| = n, we have:

PrOutput, ; € {1 0 {0,1}", f(xo, z1)}] = 1 — pu(n)

where Output, ; # L denotes the outpul returned by P; upon the completion of m whenever the
strategy of the parties is continue, and p is a negligible function.

Note that, for the fail-stop setting, it holds that privacy and correctness imply simulation based
security with abort. This follows by a simple extension of the proof from [10] that states the same
for semi-honest adversaries.

2.2 Game Theoretic Definitions

We review the relevant concepts from Game Theory, and the extensions needed to put these concepts
on equal footing as the cryptographic concepts. (Specifically, these extensions include introducing
asymptotic, computationally bounded players, and negligible error probabilities.) For simplicity,
we restrict attention to the case of two-player games. Traditionally, a 2-player (normal form, full
information) game I' = ({Ao, A1}, {uo,u1}) is determined by specifying, for each player P;, a set

A; of possible actions and a utility function u; : Ag x A; — R. Letting A def Ay x Ay, we refer to a
tuple of actions a = (agp,a1) € A as an outcome. The utility function w; of party P; expresses this
player’s preferences over outcomes: P; prefers outcome a to outcome o’ if and only if u;(a) > u;(a’).
A strategy o; for P; is a distribution on actions in A;. Given a strategy vector ¢ = og, 01, we let
u; (o) be the expected utility of P; given that all the parties play according to o. We continue with
a definition of Nash equilibria:

Definition 2.3 (Nash equilibria for normal form, complete information games) Let I' =

({Ao, A1}, {uo,u1}) be as above, and let o = 0¢, 01 be a pair of strategies as above. Then o is in a

Nash equilibrium if for all i and any strategy o it holds that u;(o(,0y) < u;(o), where o = o} and
"

01_; = 01—4-

The above formalism is also naturally extended to the case of extensive form games, where the
parties take turns when taking actions. Here the strategy is a probabilistic function of a sequence
of actions taken so far by the players. The execution of a game is thus represented naturally via the
history which contains the sequence of actions taken. Similarly, the utility function of each player
is applied to the history.

Another natural extension is to games with incomplete information. Here each player has an
additional piece of information, called type, that is known only to itself. That is, the strategy o;
now takes as input an additional value x;. We also let the utility function depend on the types, in
addition to the history. In fact, we let the utility of each player depend on the types of both players.
This choice seems natural and standard, and greatly increases the expressibility of the model. We
note however that as a result, a party cannot necessarily compute its own utility. To extend the
notion of Nash equilibria to deal with this case, it is assumed that an a priori distribution on the
inputs (types) is known and fixed. The expected utility of players is computed with respect to this
distribution.

Definition 2.4 (Nash equilibria for extensive form, incomplete information games) Let
I' = ({Ao, A1}, {ug, ur}) be as above, and let D be a distribution over ({0,1}*)2. Also, let o = 09, 01
be a pair of extensive-form strategies as described above. Then o is in a Nash equilibrium for D if for
all i and any strategy o) it holds that w;(xo, z1,0((x0), 07 (x1)) < wi(zo,z1,00(x0),01(21)), where
(x0,x1) is taken from distribution D, o;(x) denotes the strategy of P; with type z, o = o} and
O'&l_l- = 01—4-

Extensions for the cryptographic model. We review the (by now standard) extensions of the
above notions to the case of computationally bounded players. See e.g. [5, 25] for more details. The
first step is to model a strategy as an (interactive) probabilistic Turing machine that algorithmically
generates the next move given the type and a sequence of moves so far. Next, in order to capture
computationally bounded behavior (both by the acting party and, more importantly, by the other

party), we move to an asymptotic treatment. That is, we consider an infinite sequence of games.
That is, instead of considering a single game, we consider an infinite sequence of games, one for each
value of a security parameter n € N. (Formally, we give the security parameter as an additional
input to each set of possible actions, to each utility function, and to the distribution over types.)
The only strategies we consider are those whose runtime is polynomial in n.! The third and last
step is to relax the notion of “greater or equal to” to “not significantly less than”. This is intended
to compensate for the small inevitable imperfections of cryptographic constructs. That is, we have:

Definition 2.5 (Computational Nash equilibria for extensive form, incomplete inf. games)
Let T' = ({Ao, A1}, {uo,u1}) be as above, and let D = {Dy}nen be a family of distributions over
({0,1}*)2. Let o = 00,01 be a pair of PPT extensive-form strategies as described above. Then o is
in a Nash equilibrium for D if for all sufficiently large n’s, all i and any PPT strategy o it holds that
wi(n, xo, 1,00 (n,x0), 07 (n,21)) < u;i(n, o, 1,00(n, o), 01(n, 1)) + u(n), where (xg,x1) is taken
from distribution D,,, o;(x,n) denotes the strategy of P; with type x, o = o), and o]_; = 01_;, and

u 1s a negligible function.

We remark that an alternative and viable definitional approach would use a parametric, non
asymptotic definition of cryptographic security. Another viable alternative is to use the [22] no-
tion of costly computation. We do not take these paths since our goal is to relate to standard
cryptographic notions, as much as possible.

Our setting We consider the following setting: Underlying the interaction there is a two-party
protocol m = (mp,m). At each step, the relevant party can make a binary decision: Either abort
the computation, in which case the other party is notified that an abort action has been taken, or
else continue running the protocol m scrupulously. That is, follow all instructions of the protocol
leading to the generation of the next message, including making all random choices as instructed.
Namely, the strategic part of the action is very simple (a mere binary choice), in spite of the fact
that complex computational operations may be involved. One may envision a situation in which a
human has access to a physical device that runs the protocol, and can only decide whether or not
to put the device into action in each round.

The traditional Game Theoretic modeling of games involving such “exogenous” random choices
that are not controllable by the players involves, introduces additional players (e.g., “Nature”) to
the game. In our case, however, the situation is somewhat different, since the random choices may
be secret, and in addition each player also has access to local state that is preserved throughout
the interaction and may affect the choices. We thus opt to capture these choices in a direct way:
We first let each player have local history. (Initially, this local history consists only of the type of
the player and its internal randomness.) The notion of an “action” is then extended to include
also potentially complex algorithmic operations. Specifically, an action may specify a (potentially
randomized) algorithm and a configuration. The outcome of taking this action is that an output of
running the said algorithm from the said configuration, is appended to the history of the execution,
and the new configuration of the algorithm is added to the local history of the player. More
formally:

! An alternative and more general formalism might measure the runtime of a strategy as a function of the length
of its inputs. However, the present formalism is considerably simpler.

10

Definition 2.6 Let m = (Py, P1) be a two-party protocol (i.e., a pair of Interactive Turing Ma-
chines). Then, the local history of P; (for i € {0,1}), during an execution of m on input (xo,x1) and
internal random tape r*, is denoted by History, ;(wo,r1,n) and equals (z;, 7", m3,...,my), where
m; represents its jth message. The history of ™ during this ezecution is captured by (mY,ml), ..., (m?,m})
and is denoted by History_. The configuration of m at some point during the interaction consists

of the local configurations of Py, P.

Fail-stop games. We consider games of the form I'r ,, = ({Ao, A1}, {vo, u1}), where Ag = Ay =
{continue,abort}. The decision is taken before the sending of each message. That is, first the
program 7; is run from its current configuration, generating an outgoing message. Next, the party
makes a strategic decision whether to continue or to abort. A continue action by player ¢ means
that the outgoing message generated by m; is added to the history, and the new configuration is
added to the local history. An abort action means that a special abort symbol is added to the
configurations of both parties and then both 7wy and 7 are run to completion, generating local
outputs, and the game ends. We call such games fail-stop games.

The utility functions in fail-stop games may depend on all the histories: the joint one, as well
as the local histories of both players. In the following sections, it will be convenient to define utility
functions that consider a special field of the local history, called the local output of a player P;. We
denote this field by Output, ;. Denote by geontinue the strategy that always returns continue.
The basic Game Theoretic property of protocols that we will be investigating is whether the pair
of strategies (gcontinue gcontinue) g in a5 (computational) Nash equilibrium in fail-stop games, with
respect to a given set of utilities and input distributions. That is:

g

Definition 2.7 (Nash protocols) Let D be a set of distribution ensembles over pairs of strings,
and letU be a set of extensive-form binary utility functions. A two-party protocol 7 is called Nash Pro-
tocol with respect to U, D if, for any u € U and D € D, the pair of strategies o = (gcortinue geontinue)
is in a computational Nash equilibrium for the fail-stop game I'z,, and distribution ensemble D.

On subgame perfect equilibria and related solution concepts. An attractive solution
concept for extensive form games (namely, interactive protocols) is subgame perfect equilibria,
which allow for analytical treatment which is not encumbered by “empty threats”. Furthermore,
some variants of this notion that are better suited to our computational setting have been recently
proposed (see [19, 30]). However, we note that in our limited case of fail-stop games any Nash
equilibrium is subgame perfect. Indeed, once one of the parties aborts the computation there is no
chance for the other party to “retaliate”, hence empty threats are meaningless. (Recall that the
output generation algorithms are not strategic, only the decision whether to abort is.)

3 Privacy and Correctness in Game Theoretic View

In this section we capture the traditional cryptographic privacy and correctness properties of proto-
cols using Game Theoretic notions. We restrict attention to the fail-stop setting and deterministic
functions with a single output. (Fairness aside, private computation of functions with two distinct
outputs can be reduced to this simpler case; see [10] for more details.)

11

3.1 Privacy in Game Theoretic view

Our starting point is the notion of private computation. A protocol is private if no (fail-stop) PPT
adversary is able to distinguish any two executions where the adversary’s inputs and outputs are
the same, even when the honest party uses different inputs in the two executions. Our goal, then,
is to define a set of utility functions that preserve this property for Nash protocols. We therefore
restrict ourselves to input distributions over triples of inputs, where the input given to one of the
parties is fixed, whereas the input of the other party is uniformly chosen from the remaining pair.
This restriction captures the strength of cryptographic (semantic) security: even if a party knows
that the input of the other party can only be one out of two possible values, the game does not
give it the ability to tell which is the case. We then have a distribution for each such triple.

We turn to defining the utility functions. At first glance it may seem that one should define
privacy by having each party gain whenever it learns something meaningful on the other party’s
private input. Nevertheless, it seems that it is better to make a partylose if the other party learns
anything about its secret information. Intuitively, the reason is that it must be worthwhile for the
party who holds the data to maintain it a secret. In other words, having the other party gain any
profit when breaking secrecy is irrelevant, since it does not introduce any incentive for the former
party to prevent this leakage. (Note however that here the utility of a party depends on events
that are not visible to it during the execution.) The following definition formalizes the above.

Definition 3.1 (Distribution ensembles for privacy) The distribution ensemble for privacy for
Py for a two-party function f is the ensemble D? = {D?n}nEN where

R
DY . = {Dag,ar,b}ap,ar be{0,1}7, f(ao,p)=f(a1.b)s A Dagay b outputs (x,b), where x < (ag,ar).

Distribution ensembles for privacy for P; are defined analogously.

Let m be a two-party protocol computing a function f. Then, for every n,a,b, ¢ as above and
for every PPT algorithm B, let the augmented protocol for privacy for w, with guess algorithm B, be
the protocol that first runs m, and then runs B on the local state of m and two additional auxiliary
values. We assume that B outputs a binary value. This value is interpreted as a guess for which of
the two auxiliary values is the input value of the other party.

Definition 3.2 (Utility function for privacy) Let m be a two-party protocol and f be a two
party function. Then, for every ag,ai,b such that f(agp,b) = f(a1,b), and for every guessing
algorithm B, the utility function for privacy for party Py, on input x € {ag, a1}, is defined by:

-1 if P = n =

ug(Historyﬂzug‘B’l(x, b,n),ag,a1,b) — { 0 otﬁ::\jiz:g‘g’l g and @ =a

The utility function for party P; is defined analogously. Note that if the history of the execution
is empty, ie, no message has been exchanged between the parties, and the inputs of the parties are
taken from a distribution ensemble for privacy, then ug equals at least —1/2. This is due to the fact
that P; can only guess x with probability at most 1/2. Therefore, intuitively, it will be rational
for Py to participate in the protocol (rather than to abort at the beginning) only if (and only if)
the other party cannot guess the input of Py with probability significantly greater than 1/2. The
definition of Game-Theoretic privately is as follows:

12

Definition 3.3 (Game-Theoretic private protocols) Let f and w be as above. Then, we say
that 7 is Game-Theoretic private for party Py if qug g 18 a Nash protocol with respect to ug,u’f

and D? and all valid PPT B.

Game-Theoretic private protocol for P; is defined analogously. A protocol is Game-Theoretic
private if it is Game-Theoretic private both for Py and for P;.

Theorem 3.4 Let f be a deterministic two-party function, and let ™ be a two-party protocol that
computes f correctly (cf. Definition 2.2). Then, 7 is Game-Theoretic private if and only if w
privately computes [in the presence of fail-stop adversaries.

Proof: We begin with the proof that a Game-Theoretic private protocol implies privacy by
indistinguishability. Assume by contradiction that m does not compute f privately (in the sense of
Definition 3.1) with respect to party Py (w.l.o.g.). This implies that there exists a PPT adversary
A that corrupts party Py, a PPT distinguisher D, a non-negligible function € and infinitely many
tuples (zg, 2, z},n) where |zo| = |29] = || = n and f(zo,2?) = f(z0, 1) such that,

Pr[D(VieWW,A(z) (1'07 x(l)v TL)) = 1] - Pr[D(VieWW,A(z) (3301 x%a n)) = 1] > e(n)

We assume, without loss of generality, that A never aborts prematurely, or in fact, it plays honestly.
This is because we can construct an equivalent distinguisher that ignores all the messages sent after
the round in which A would have originally aborted, and then applies D on the remaining view.

Recall that (ogentinue, ggontinue) is o computational Nash Equilibrium in the game Lop for
ug, B’

any Valid PPT B, we therefore show that there exist a Valid PPT B in which I';e up 15 1Ot 2
ug,B’

fail-stop game. That is, there exist an alternative strategy o} for P;, a non-negligible function €(-)

and infinitely many distributions D 0 .1 € D; such that

Uy (o_Sontinue’o_/l) > uy (O_(c)ontinue7 O_i:ontinue) + e/(n)

ontinue continue)
3

contradicting the assumption that (o§ of is Nash Equilibrium in the game I" »

Aug,B’up‘
Let o2*°T* be the strategy where P; aborts the protocol before it starts (the initial abort

strategy). Then, for any D, .o s D?, and any PPT valid algorithm B it holds that:

Z0,T],T

continue
)

u1 (o o17T) = —1/2

Consider the following B algorithm: On input History, ;(,c,n), xo, 2V, 21, B invokes the distin-
guisher D and outputs x(l) if D outputs 1, and outputs x% otherwise.

We now consider the expected utility of P; in the game wa\ when both parties run
ug

,B7up7

according to the prescribed strategy:

continue continue
u (oG 01)

b
= —1-Pr|guess =z
[T g, 5°0 1]

- (Pr[D(ViewmA(z) (w0,2%,n)) = 1 Ab = 0] — Pr[D(View, 4 (z0,2%,1n)) = 0Ab = 1])
= —1/2. (Pr[D(ViewmA(z)(xo, 2b,n)) = 1] b=0] + (1 — Pr[D(View, 4. (z0,2},n)) =1 b= 1}))
< —=1/2—-1/2-¢€(n)

13

Then it holds that,
Uy (Jsontinue’ o_?bort) —uy (Uaontinue’ o_fontinue) > _1/2 + 1/2 + 1/2 . e(n) > 1/2 . e(n)

contradicting the assumption that (o§omtinue gfortinue) ig in Nash Equilibrium. The above implies
that 7 is not a Nash protocol.

We now turn to the proof in which privacy implies Nash with respect to uf), u} and D? and all
valid B. Assume by contradiction that there exists a PPT B, such that the augmented protocol
qug,B is not a Nash protocol with respect to these parameters and party P; (w.l.o.g.). This means

that there exist an alternative strategy of, infinitely many distributions D € D? and a

xo,x?,x%,n
non-negligible function € such that

Uy (O_B:ontinue70_/1> 2 u (O,gontinue7 O,i:ontinue) 4 e(n)

without loss of generality, we can assume that of is the initial abort strategy; this is because in
any other strategy, some information regarding P;’s input may be leaked (since it participates in
the protocol), and lowers the utility. Moreover, for any valid PPT algorithm B it holds that

continue abort)

ui(o§ O =-1/2

From the contradiction assumption, it holds that

Uy (O_Sontinue7 O_Tbort) 2 uy (O_Sontinue7 O_continue) 4 G(TZ)
b
-1/2 > - Pr[guesswiugﬁ,o = 27| + €(n)
Prlguess » o =a4] > 1/2+€(n)

ﬂAug,B’

Next we now show that this implies that there exists a PPT adversary A, a PPT distinguisher
D, a non-negligible function ¢ and infinitely many tuples of equal length inputs (xo,z?,z1) with
f(zo,2Y) = f(z0,7]) such that,

Pr[D(View, a(;)(z0,21,n)) = 1] = Pr[D(View, 4. (20, 21,1)) = 1]| > ¢(n)

Fix (zo, 2y, 71,n) and consider an adversary A that simply runs as an honest party. Then, define
a distinguisher D that invokes the algorithm B and outputs 1 if and only if B outputs 2?. Then
formally,

Pr[D(View, () (@0,28,n)) = 1] = Pr[D(View,_i.)(z0,21,n)) = 1]
= Pr[guess,rgugﬁ’0 =20 | b=0]— Pr[guess,rﬁug’s’0 =l | b= 1]‘

= Pr[guesswzug,mo =2{Ab=0]/Pr[b=0] — (1 — Pr[guesswﬁug,mo =i Ab=1]/Pr[b = 1])‘

0 1
= 2Pr[guessﬂzug7870 =x; ANb=0]+ 2Pr[guess7r£ug78y0 =x;Ab=1]— 1‘

= 2Pr[guess7rAp 0= 28] =1 >2-(1/2 + e(n)) — 1 = 2¢(n)
ug,B’

which is a non-negligible probability. This concludes the proof. [|

14

3.2 Correctness in Game Theoretic view

We continue with a formulation of a utility function that captures the notion of correctness as
formalized in Definition 3.5. That is, we show that a protocol correctly computes a deterministic
function if and only if the strategy that never aborts the protocol is in a computational Nash
equilibrium with respect to the set of utilities specified as follows. The parties get high payoff only
if they output the correct function value on the given inputs (types), or abort before the protocol
starts; in addition, the players get no payoff for incorrect output. More formally, we introduce
the set of distributions for which we will prove the Nash theorem. The distribution ensemble for
correctness is simply the collection of all point distributions on pairs of inputs:

Definition 3.5 (Distribution ensemble for correctness) Let f be a deterministic two-party
function. Then, the distribution ensemble for correctness is the ensemble D} = {Dy}nen where
D5, = {Dap}apefoiyn, and Dqy outputs (a,b) w.p. 1.

Note that a fail-stop adversary cannot affect the correctness of the protocol as it plays honestly
with the exception that it may abort. Then, upon receiving an abort message we have the following:
(i) either the honest party already learnt its output and so, correctness should be guaranteed, or,
(ii) the honest party did not learn the output yet, for which it outputs L together with its guess for
the output (which corresponds to a legal output by Definition 2.2). Note that this guess is different
than the guess appended in Definition 3.2 of utility definition for privacy, as here, we assume that
the protocol instructs the honest party how to behave in case of an abort. Furthermore, an incorrect
protocol in the presence of fail-stop adversary implies that the protocol is incorrect regardless of
the parties’ actions (where the actions are continue or abort).

This suggests the following natural way of modeling a utility function for correctness: The
parties gain a higher utility if they output the correct output, and lose if they output an incorrect
output. Therefore, the continue strategy would not induce a Nash Equilibrium in case of an
incorrect protocol, as the parties gain a higher utility by not participating in the execution. More
formally:

Definition 3.6 (Utility function for correctness) Let 7 be a two-party fail-stop game as above.
Then, for every a,b as above the utility function for correctness for party Py, denoted ug, is defined

by:
o uB(History?O) =1.

1 if Output, ;= f(a,b)

C
. uO(OutputmO,a, b) »—>{ 0 otherwise

where His‘coryf’O denotes the case that the local history of Py is empty. (Namely, Py does not
participate in the protocol).

Intuitively, this implies that the protocol is a fail-stop game if it is correct and vice versa. A formal
statement follows below. u§ is defined analogously, with respect to P;.

Theorem 3.7 Let f be a deterministic two-party function, and let © a two-party protocol. Then,
m 15 a Nash protocol with respect to ug,u§ and D} if and only if m correctly computes f in the
presence of fail-stop adversaries.

15

Proof: We begin with the proof that a Nash protocol with respect to ug,u] and D} implies
correctness. Assume by contradiction that m does not compute f correctly. Meaning, there exist
infinitely many pairs of inputs (xo,z1), ¢ € {0,1} and a non-negligible function e such that

Pr[Output, ; ¢ {1 0{0,1}", f(zo,21)}] > €(n)

We assume that the output of the protocol in case of prematurely abort starts with L. Thus,
our contradiction assumption holds only for the case where the protocol terminates successfully,
however, P; outputs a value different than f(zg,z1). Without loss of generality, assume that i = 0.
We now show that (o§ortirue geontinue) qoes not induce a computational Nash Equilibrium in the
game I'z . Namely, the expected utility for Py when both parties play according to the prescribed
strategy is,

continue Ucontinue)
3

up(oG = Pr[Output, o = {f(20,21), L o {0,1}"}]

= 1- Pr[OUtPUtw,O € {f(x05$1)> Lo {07 1}*}] <1- e(n)

Let o8°™* be the strategy for which Py initially aborts (i.e., does not participate in the protocol).
Then, we have that

abort continuey __
(0§ 01)=1

Thus, it holds that

abort continue)

UO(UO o (Sontinuejo_continue) 4 e(n)

> uglo
contradicting the assumption that (g§ortinue, gontinue)
in game L'z yc.

We now turn to the proof in which correctness implies Nash with respect to ug,uf and D;.
Assume by contradiction that 7 is not a Nash protocol with respect to u§ (w.lo.g.) and D5.
This means that there exist an alternative strategy for Py (w.l.0.g), infinitely many distributions
Dyozin € D} and a non-negligible function € in which

induces a computational Nash Equilibrium

0(0_0’ Ucontlnue) Z uO(O_Sontinue7 O_Tontinue) 4 e(n)

When both parties follow the prescribed strategy, the format of the output does not start with L,
and thus we have

ug(§o e, 0P e) = Pr[Output,.; € {L o {0,1}, f(zo,21)}]
Under the assumption that P; plays according to o$°®*2%¢ once Py starts the protocol - its utility
can only reduces unless it outputs f(xo,z1) exactly. This can happen only when the protocol
terminates successfully, i.e., it plays according to o§°**"*®. Therefore, the only alternative strategy
that yields a higher utlhty is o8P°** (i.e, the 1n1t1a1 abort). The expected utility for Py when it
plays according to o§*°** and oy plays according to o§°"**™¢ is 1. Thus, we have that

abort continue
Uuo (UO y 01)

uO(contlnue fontinue)_{_e()
PrOutput, , € {Lo {0.1)", f(a0.21)}] + e(n)

(n)

1
Pr[Output, ; & {1 0{0,1}", f(zo,21)}]

AVARAVARIY]

M

16

Yielding that 7 does not compute f correctly on these inputs. [|

We conclude with the following theorem that combines the definitions for privacy and correct-
ness, and states that they imply simulation based security with respect to fail-stop adversaries.
For technical reasons arise in the proof, we assume that f is also invertible, i.e., f operates over a
(polynomially) bounded domain so that for every value in the range it is easy to find an element
in the domain mapped to this value.

Theorem 3.8 Let f be a deterministic, invertible two-party function, and let ™ be a two-party
protocol. Then, 7 is Nash with respect to u§, u§,uf), u] and D;i U D? if and only if m computes f
privately and correctly in the presence of fail-stop adversaries.

Informally, the proof follows from the fact that privacy and correctness against of fail-stop adver-
saries are equivalent to simulation based security. On the other hand, private and correct protocols
are equivalent to games that are Nash with respect to utility functions for correctness and privacy,
thus, the theorem follows.

4 Exploring Fairness in the Two-Party Setting

Having established the notions of privacy and correctness using Game Theoretic formalism, our
next goal is to capture fairness in this view. However, this turns out to be tricky, mainly due to the
highly “reciprocal” and thus delicate nature of this notion. To illustrate, consider the simplistic
definition for fairness that requires that one party learns its output if and only if the second party
does. However, as natural as it seems, this definition is lacking since it captures each party’s output
as an atomic unit. As a result, it only considers the cases where the parties either learnt or did
not learn their output entirely, and disregards the option in which partial information about the
output may be gathered through the execution. So, instead, we would like to have a definition
that calls a protocol fair if at any point in the execution both parties gather, essentially, the same
partial information about their respective outputs.

Motivated by this discussion, we turn to the Game Theoretic setting with the aim to design a
meaningful definition for fairness, as we did for privacy and correctness. This would, for instance,
allow investigating known impossibility results under a new light. Our starting point is a definition
that examines the information the parties gain about their outputs during the game, where each
party loses nominatively to the success probability of the other party guessing its output. (This is
motivated by the same reasoning as in privacy). In order to obtain this, we first define a new set
of utility functions for fairness for which we require that the game would be Nash; see Section 4.1
for the complete details.

Having defined fairness for rational parties, we wish to examine its strength against crypto-
graphic attacks. We therefore introduce a new game-based definition formalizes fairness for two-
party protocols and is, in fact, equivalent to the Game Theoretic definition. Then, we provide a new
definition of the gradual release property, that is equivalent to the game-theoretic and game-based
definitions. Afterward, we present a simulation based definition, and explore the realizability of
our notions. We further include a new definition of the gradual release property (cf. Section 4.3)
and demonstrate a correlation between protocols with this property and protocols that are fair
according to our notion of fairness. In particular, it shows that at any given round, the parties
cannot improve their chances for guessing correctly “too much”. Otherwise, the protocol would not

17

be fair. We then introduce in Section 4.4 a new notion of simulation based definition for captur-
ing security of protocols that follow our game-based notion of fairness, specified above. This new
notion is necessary as (gamed-based) fair protocols most likely cannot be simulatable according to
the traditional simulation based definition [10]. We consider the notion of “partial information”
in the ideal world alongside preserving some notion of privacy. We then prove that protocols that
satisfy this new definition are also fair with respect to game-based definition.

Finally, we consider the realizability of our notion of fairness. We then observe that our notion
is meaningful even in the case where parties are not guaranteed to always learn the output when
both parties never abort. Somewhat surprisingly, in cases where the parties learn the output with
probability one half or smaller, our notion of fairness is in fact achievable with no set-up or trusted
third parties. We demonstrate two-party protocols that realize the new notion in this settings. We
also show that whenever this probability raises above one half, our notion of fairness cannot be
realized at all.

4.1 Fairness in Game Theoretic View

In this section we present our first definition for fairness that captures this notion from a Game
Theoretic view. As for privacy and correctness, this involves definitions for utility functions, input
distributions and a concrete fail-stop game (or the sequence of games). We begin with the descrip-
tion of the input distributions. As specified above, the input of each party is picked from a domain
of size two, where all the outputs are made up of distinct outputs. More formally,

Definition 4.1 (Collection of distribution ensembles for fairness) Let f be a two-party func-
tion. Let (2], 8,29, 2}, n) be an input tuple such that: |29| = |x}| = |29| = |=1| = n, and for every
b e {0,1} it holds that:

o fo(z3,2%) # fo(zd, %) (in each run there are two possible outputs for Py).
o f1 (xg,x(l)) # f1 (mg,x%), (in each run there are two possible outputs for P).

Then, a collection of distribution ensembles for fairness D} 1s a collection of distributions D} =

{D 0 41 Such that for every (x9, 2, 29, 21, n) as above, Do 41 40 41, s defined by

0,1 .0 .1 }0 1
4,725,257 ,27,nJ 2g,75,27 27,0 Zg,T(,T],T],N

(xo,x1) D:Bg’xé,x?,xhn(ln), where zg & (23, 28) and pia (29, z1).

Next, let 3 be the protocol, where B = (By,B1). By this notation, we artificially separate
between the protocol and the predicting algorithms in case of prematurely abort. More precisely, in
the case that Py prematurely aborts, P; invokes algorithm B; on its input, its auxiliary information
and the history of the execution, and outputs whatever B; does. By is defined in a similar manner. In
fact, we can refer to these two algorithms by the instructions of the parties regarding the values they
need to output after each round, capturing the event of an early abort. We stress these algorithms
are embedded within the protocol. However, this presentation enables us to capture scenarios where
one of the parties follow the guessing algorithm as specified by the protocol, whereas the other party
follows an arbitrary algorithm. That is, we can consider protocols 7 (with B’ = (By, By)) that
are equivalent to the original protocol g except for the fact that Py guesses its output according
to By instead of By. We now describe the fairness game [yt for some B = (Bo, B1). The inputs
of the parties, xg,x1, are selected according to some distribution ensemble D o .1 .0 .1 as defined

Ly, L7

18

in Definition 4.1. Then, the parties run the fail-stop game, where their strategies instruct them in
each step whether to abort or continue. In case that a party P; aborts, the outputs of both parties
are determined by the algorithms (By, B1). Let Outputwb,“i denote the output of P; in game 7p,
then a utility function for fairness is defined by:

Definition 4.2 (Utility function for fairness) Let f be a deterministic two-party function, and
let T be a two-party protocol. Then, for every xg, x(l], 20,21, n as above (cf. Definition 4.1), for every

pair of strategies (0o, 01) and for every PPT By, the utility function for fairness for party Py, denoted
by ug, 1s defined by:

1 if Output ¢ OZf()(x(), x1)A Output ¢ | # fi(zo,x1)
B B’
uf(oo,01) ¢ —1 if Outputﬂ]fsnoyéfo(xo,xl)/\ Outputﬂ;”1 = fi(zo, 1)

0 otherwise
where xg, 1 are as in Definition 4.1 and B' = (go,Bl). Moreover, the utility for Py, u'i =0.

Since the utility function of P; is fixed, only P; has no incentive to change its strategy. Moreover,
we consider here the sequence of games where P always guesses its output according to Bi, the
“original” protocol. This actually means that P; always plays honestly, from the cryptographic
point of view. We are now ready to define a protocol that is Game-Theoretic fair for P, as:

Definition 4.3 (Game-Theoretic fairness for Py) Let f and wg be as above. Then, we say
that mp is Game-Theoretic fair for party Py if T’ £) 18 a Nash protocol with respect to (ug, ui)

and DY and all PPT By, where B' = (By, By).

T (U

Namely, if 75 is not Game-Theoretic fair for P;, then Py (and only Py) can come up with
a better strategy, and some other guessing algorithm go (where both define an adversary in the
cryptographic world). This is due to the fact that the utility for P; is fixed, and so it cannot find
an alternative strategy that yields a higher utility. In other words, P, has no reason to invoke
a different guess algorithm, and so this definition formalizes the case where P; is honest in the
protocol mp. This, in particular, implies that a somewhat natural zero-sum game, where the total
balance of utilities is zero, does not work here.

Similarly, we define Game-Theoretic fair for party Py, where here we consider all the protocols
npr, for all PPT By and B = (Bo, gl), and the utilities functions are opposite (that is, the utility
for Py is fixed into zero, whereas the utility of P; is modified according to its guess). We conclude
with the definition for Game-Theoretic protocol:

Definition 4.4 (Game-Theoretic fair protocol) Let f and 7 be as above. Them. we say that
7 is Game-Theoretic fair protocol if it is Game-Theoretic fair for both Py and P;.

4.2 A New Indistinguishability-Based Definition of Fairness

Towards introducing our cryptographic notion for fairness, we first consider a basic, one-sided
definition that guarantees fairness only for one of the two parties. A protocol is considered fair
if the one sided definition is satisfied with respect to both parties. We refer to this game as a

19

test for the protocol in a “fair” environment, where each party has two possible inputs and its
effective input is chosen uniformly at random from this set. Moreover, both parties know the input
tuple and the distribution over the inputs. This is due to the fact that we, untraditionally, assume
that the protocol instructs the honest party to guess the output of the function based on its view
and the information it recorded so far. By doing so, we are able to capture scenarios for which
both parties learn the same incomplete information (in a computationally indistinguishable sense)
regarding their output. In particular, as long as both parties hold the same partial information,
with the same probability, then the protocol is fair.

We note that these scenarios are not fair under the traditional simulation based definition [10],
since they do not follow the all or nothing method, in which the parties can only learn the entire
output at once. In order to illustrate this, consider a protocol that enables both parties to learn the
correct output with probability about 3/4. Then, this protocol is fair according to our definition
below although it is not simulatable by the [18] definition. Before introducing the game-based
definition, we first introduce non-trivial functionalities, to avoid functionalities that one of the
parties may know the correct output without participating.

Definition 4.5 (Non-trivial functionalities.) Let f be a two-party function. Then, f is non
trivial if for all sufficiently large n’s, there exists an input tuple (xo,xo,az(l),x%,n) such that |z =

‘53(1)’ ‘551’ = ‘551’ =n and {fO(UCOa%) fO(anxl)}be{O 1}s {f1(3«"0>$1) fl(x0>331)}be{0 1} are distinct
values.

We are now ready to introduce our formal definition for fairness:

Definition 4.6 (Game-based definition for fairness.) Let f be a non-trivial two-party func-
tion, and let w be a two-party protocol. Then, for every input tuple (cf. Definition 4.5) and any
PPT fail-stop adversary A, we define the following game:

Game Fairy 4(29, 2§, 29,71, n):

1. T'wo bits by, b1 are picked at random.
2. Protocol 7 is run on inputs xo for Py and x11 for P;, where A sees the view of Pj«.

3. Whenever A outputs a value y, P;_;+ is given an abort message. (At this point, P;_;» would

write its guess for f1_;« (:cgo,xlil,n) on its output tape.)

4. The output of the game is:

o 1lif(i)y= fo(xo ,xll’l, n) and (i) P_;+ does not output fi (:Bgo,xll’l,n).
o —1if (i) y# fo(:):O ,xl ,n) and (ii) Pj_; outputs fl(acg ,xlil,n)

e 0 otherwise (i.e., either both parties output correct outputs or both output incorrect
outputs).

We say that 7 fairly computes f if for every PPT adversary A, there exists a negligible function pu(-)
such that for all sufficiently large inputs it holds that,

E(Fair,r,A(xg,x(l],x(l],a:%,n)) < u(n)

20

At first sight it may seem that Definition 4.6 is tailored for the fair exchange function, i.e., when
the parties trade their inputs. This is due to the fact that the parties’ output completely reveal
their inputs. Nevertheless, we note that the definition does not put any restriction on f in this
sense and is aimed to capture fairness with respect any nontrivial function. We continue with the
following theorem:

Theorem 4.7 Let f be a two-party function and let w be a protocol that computes f correctly.
Then, m is Game-Theoretic fair (in the sense of Definition 4.4), if and only if w fairly computes f
in the presence of fail-stop adversaries, (in the sense of Definition 4.6).

Proof: We first write explicitly the guessing algorithm B = (By, B1) and denote the protocol 7
as . Assume that mg is Game-Theoretic fair for Py and P;; we thus prove that 7p is fair in the
sense of Definition 4.6.

Assume by contradiction that 7 is not fair with respect to this latter definition. Thus, there
exist infinitely many input tuples a:8, a:(l), 37(1), a:%, n which yield distinct outputs, a PPT adversary A

controlling Py (w.l.o.g.) and a non-negligible function e for which
E(Fairy a0(2), 25, 23, x1,m)) > e(n)
This implies that,
’Pr [Fairr a(x0, 29, 27, 21,n) = 1] — Pr [Fairy a(z), 2, 27, 21, n) = —1] ‘ > ¢(n)

Namely, when P; runs according to the protocol specifications and Py runs according to A’s strategy,
the expected advantage of Py over P in guessing successfully is non-negligibly higher.

We now show that there exists B = (Bg',B;) for which the game Iy uf is not a Nash game.
That is, consider an alternative strategy 064 for Py: This strategy invokes the adversary A, such
that for each message that the strategy receives from the other party, it forwards this message to
A. Furthermore, whenever it receives the message and guess for the following round from the game
(together with the random coins that were used to generate these values), the strategy invokes the
adversary A with the appropriate random coins. If the adversary chooses to output this message,

0()4 outputs the action continue. If the adversary A chooses to abort, 064 outputs abort.

Moreover, let 864 be the following guess algorithm: On input (Historymo (xgo, :c?l ,n),zd, xd, 29, a:%) ,
864 invokes the adversary A on the above history. Upon completion, 5’64 outputs whatever A does.
Let @ = (2, 2%). Then, in a run of (o, of°"*im) in the game L, ur Where B’ = (Bg', By), we
have that:

Pr[Output, o = fo(Z) A Output, , # fi(Z)] — Pr[Output, , o # f1(Z) A Output, , = f1(Z)] > €(n)

yielding that the expected utility of Py when it follows 0()4 (and assuming that P; runs according

to the prescribed strategy), is non-negligible. That is,
’U,()(0'64,O'f°ntinue) > 6(%)

When both parties play according to the prescribed strategy o£°"*"¢ hoth parties learn the correct
output at the end of the protocol except to some negligible function pu(-), and thus:

uo (Ucont:.nue cont:.nue) <

y 01 < p(n)

21

which is implied by the correctness of the protocol, and thus:

UO(0'64, O_i:ontinue) o UO(Gsontinue’o_tlzontinue) > 6(71) - M(n) > E(Tl)/2

for infinitely many n’s, implying that there exists a non-negligible difference between the alternative
strategy and the prescribed strategy, and thus, 73 is not Game-Theoretic fair for Fp.

Next, assume that 7z meets Definition 4.6 and prove that mg is Game-Theoretic fair for Py and
Py. Assume by contradiction that g is not Game-Theoretic fair for P; (w.l.o.g.), implying that

there exists an alternative strategy oy, infinitely many distributions ngvl"(l) A0aln € D}, a PPT By

and a non-negligible function € such that 7 is not a Nash protocol, where B’ = (EO, B1). Namely,
UO(O'(,), O_clzontinue) 2 uo(o_sontinue’ O_fontinue) 4 E(?’L)

Based on the same assumption as above, when both parties follows o¢°?*i%%¢ then both learn the
correct output except to some negligible function p(-), and thus:

continue
)

uo (00 continue) >

91 > —p(n)
implying that,

UO(U{/J?O_i:ontinue) Z uO(Usontinue,o_i:ontinue) + 6(71) 2 e(n) _ N(n) > 6(71)/2

Now, consider the following adversary A which controls the party Py: A invokes the strategy oy,
with the random coins of A. Then, whenever o{, outputs continue, A computes the next message
(using the same random coins) and output it. Whenever A receives a message from P, it passes the
message to o(. When o, outputs abort, A aborts, invokes the guess algorithm go, and outputs the
corresponding output to go’s guess. We have that an execution of the protocol mp with an honest
party P; and the adversary A, is equivalent to an execution of the game I ¢ with B = (gg, By)

Tl U

where the parties follow the (of), o§o"*™¢) strategies. Therefore, we have that

Pr[Output,, = fo(#) A Output,, , # f1(7)] — PrlOutput,, , £ fi(7) A Output,, , = f(7)]
= uo(ah, oE™) > (1) /2

and so,
E(FairmA(xg,;ré,:U(l),x%,n)) > 6(71)/2

contradicting the assumption that mp is fair. [|

4.3 The Gradual Release Property

In this section, we show that the guesses of the parties at any given round, and that every two
consecutive guesses of each party, must be statistically close. Namely, we show that once there is
a non-negligible difference between these, the protocol cannot be fair. Intuitively, this follows from
the fact that any such difference is immediately translated into an attack where the corresponding
party aborts before completing this round, while gaining advantage over the other party in learning
the output. The significance of gradual release is in providing a new tool to study fairness in the
two-party setting. Specifically, by proving that it implies fairness (in the sense of Definition 4.6;
see Theorem 4.11), it enables to gain more insights regarding the characterization of fairness. On

22

the other hand, the fact that gradual release is implied by fairness (cf. Theorem 4.10), may shed
light on the reason it is impossible to achieve gradual release under certain constraints.

We show a tight correlation between Definition 4.6 for fairness and the gradual release property.
Namely, we show that each notion is implied by the other. Without loss of generality, assume that
Py is the first to send a message in the protocol. A round in the protocol consist of a message from
Py to P1, and a message from P; to FPy. Recall that in Definition 4.6, we assume that the protocol
instructs the parties how to guess the output in the case of an abort message. In a broader sense,
the protocol can instruct each party to maintain a tape where it updates its guess after each round.
This corresponds to having each party computing its guess, conditioned on the event that the other
party aborts in the following round. More formally, denote by a;11 the guess of party Py when P;
aborts after sending its message in round i; likewise, b;11 denotes the guess of P; when Py quits
after sending its message at round i. We call these values the “default outputs”; see figure 2 for an
illustration. We further note, that if the execution is terminated in some round i, (either due to an
early abort or to a successful completion), the parties define by a; = a; and b; = b; for all j > i.

P Py
ar)
b1
as
bo

a;

b;

Qi1

Figure 2: Default output notations (non-simultaneous)

We generalize the default output notations to deal with arbitrary guess algorithm. Namely, a
fail stop adversary A may prematurely abort and guess its output, according to a guess algorithm
different than the one specified by the protocol. Formally, for every adversary A, denoted by
guess 4 ;, the adversary’s guess in round ¢. We note that an adversary may not write its guess in
every round, however, without loss of generality, we can assume that it does so. Note that guess 4 ;
is a random variable that is well defined even if the protocol has been terminated before round 3.
Then, we define the gradual release to deal with every adversary. We continue with a formalization
of gradual release:

Definition 4.8 (m-gradual release) Let f be a non-trivial two-party function, and let © be a
protocol. We say that m maintains m-gradual release, if for every PPT fail-stop adversary A, there
exists a negligible function u(-), such that for every i < m and every :cg,x(l),a:(l),a:%,n as above (cf.
Definition 4.5) it holds that:

1. In case A controls party Py:

Pr [guess 4 ;11 = fo(zo,21)] < Prb; = fi(zo,x1)] + p(n)

23

2. In case A controls party P;:

Pr [guess 4 ; = fi(wo, 21)] < Prla; = fo(zo, z1)] + p(n),

where zo & {2, 28} and, z, i {29, 21},

Having defined m-gradual release, we say that a protocol maintains gradual release if it is poly-
gradual release for some polynomial poly which indicates an upper bound its number of rounds.
This captures the fact that the protocol must be terminated within a strict polynomial number of
rounds.

Definition 4.9 (Gradual release) Let f and 7 be as above. Then, we say that m maintains
gradual release if it m-gradual release for m = poly(n) for some polynomial poly that bounds the
number of rounds of .

Fairness implies gradual release. We complete this section by establishing a correlation be-
tween the two notions of fairness and gradual release. In particular, we prove that each is implied
by the other, beginning with the proof that fairness implies gradual release:

Theorem 4.10 Let f and 7 be as above. Let poly be a polynomial that bounds the number of rounds
of the protocol m and assume that 7 is fair (in the sense of Definition 4.6). Then, m maintains
gradual release (cf. Definition 4.9).

Proof: The proof follows by contradiction. Namely, assume that m does not maintain the gradual
release property. Then, there exists an adversary A that controls (w.l.0.g) party Py, a non-negligible
function €(+), a round poly(n) > i > 0 and infinitely many tuples z{, z}, 29, 1, n, such that,

Pr [guessAﬂ-H = fo(:vo,:nl)} > Pr b = fi(zo,x1)] + €(n)
Then observe that,

Pr [guessAﬂ»H = fo(.%’(], .21?1)] = Pr [guessAﬂ-H = fo(l‘o, :El) Ab; = fl(iL‘o, xl)]
+ Prguessy ;1 = fo(zo,z1) Abi # fi(wo, 1))

and that,

Pr[b; = fi(xo,x1)] = Pr [b; = fi(zo, 1) A guess 4 ;41 = fo(zo,z1)]
+ Prlb = fi(wo,x1) A guess ;1 # fo(zo, 1))

Combing these and based on the contradiction assumption we conclude that,
Pr [guess 4 ;11 = fo(zo,21) Ab; # fi(wo,1)] > Pr [b; = fi(wo,x1) A guess 4 ;1 = fo(zo,x1)] +€(n) (1)

Next, we describe a PPT adversary A; for which the expected output game Fair, 4, (ﬂvg, l’(l), :B(l), xi,n)
is non-negligibly greater than zero. Consider the adversary A; that controls Py and does the fol-
lowing: it invokes the adversary A, plays according to its strategy until round ¢, aborts in round
i+1 (right before sending its message in this round), and outputs A’s default output in this round.

24

Note first, that .4; runs in polynomial time since i < poly(n), and the honest party’s instructions
can be followed in polynomial time as well. Moreover, it holds that,

Pr [Fairy 4, (20, 25,29, 21,n) = 1] = Pr [guess 4 ;11 = fo(zo, 1) A by # fi(wo,21)] (2)
where g, 1 are chosen according to game Fairy 4, (a:8, x(l), x(l), x%, n), (which is exactly as they were
chosen according to Definition 4.9). Then, Eq. (2) holds since the output of game Fairy 4, is 1
only when A; outputs the correct output fo(zo,x1), whereas P; outputs an incorrect output, i.e.,
different than fi(zg,z1). We stress that the probability above already embeds the event that the
parties do not reach round i + 1 (namely, when 7 is terminated before round ¢ + 1). This is due to
the fact that in case 7 is terminated in round j, it holds that guess 4;,, = guess 4 ;, and b; = b; for
all 7 < 4.

Similarly, we have that,

Pr [FairmAi(q:g,x(l),x(l),x%,n) = —1] = Pr [guess 4 ;41 # fo(wo, 1) Abi = f1(zo,71)]
Finally, combining the above we get that,

E(Fairy 4, (x8, x(l), ﬂU(l)a x%, n))

= Pr [Fairy 4, (20, 20, 29, 21,n) = 1] — Pr [Fairy 4, (2, 2§, 23, 21, n) = —1]
= Pr [guess 4 ;41 = fo(wo,x1) Abi # fi(zo,x1)] — Pr [guess g ;11 # fo(wo, x1) A by = fi(zo,21)]
> €(n)

In contradiction to the assumption that 7 is fair with respect to Definition 4.6. [|

Gradual release implies fairness. Next, we prove that fairness is implied by gradual release:

Theorem 4.11 Let f and m be as above and assume that m maintains the gradual release property
(cf. Definition 4.9). Then, 7 is a fair protocol (in the sense of Definition 4.6).

Proof: Let A be any adversary. We show that for there exists a negligible function p(-), such that
for all sufficiently large inputs (2, x3, 29, #1,n) it holds that:

E(Fairr a0, 79, 21, 21,1)) < p(n)

Fix (29, 23,29, 21,n) to be the input tuple and assume without loss of generality that i* = 0.

Moreover, denote by abort;4 the even that A aborts in round 7. We compute the expected value
of the game Fair; 4, conditioned on the event that A aborts in round i. Recall that whenever A
aborts in round ¢ it outputs guess 4 ;, whereas Py outputs b;—1. Then, for every r(n) > i >0 (where
r(n) denotes a polynomial bound on the number of rounds of 7), we have that,

E(Fairy (20, x5, 29, 21, n) | abortt)
= Pr[Fairy a(2), 23,29, 21, n) = 1| abort] — Pr[Fairy 4(x, 2}, 2%, x},n) = —1 | abort?]
= Prlguess,; = fo(wo, 1) Abi—1 # fi(zo,21)] — Prguess 4 ; # fo(xo, 1) Abi1 = fi(zo, 71)]
= Prlguesss; = fo(zo,71) Abi—1 # fi(zo, 71)] + Prlguess 4 ; = fo(zo, 21) A bi—1 = fi(wo,z1)]
— Prlguess 4 ; = fo(zo,21) Abi—1 = fi(zo,71)] — Pr(guess 4 ; # fo(zo, 21) Abi—1 = fi(wo,z1)]
= Prlguessy; = fo(wo,71)] — Pr[b; = fi(wo,z1)] < p(n)

25

for some negligible function u(-), where the last inequality holds due to the fact that 7 maintians
the gradual release property. Moreover, when ¢ = 0, there is no communication and thus both
parties guess the correct output with probability 1/2. We therefore conclude that,

E(Fair; 4 | abortg') = 0 < p(n)

This implies that,

r(n)
E(Fairg (), 25, 2%, x1,n)) = ZPr [abortﬂ -E(Fairy a(x9, 28, 29, 21, n) | abort?)
=0

r(n)

< pn)- ZPr [abort] < yu(n)
i=0

the above is true for any adversary, and thus the protocol is fair. [|

For concluding, we note that the above theorems also hold for the setting of simultaneous
channel, where the parties send their messages at the same time.

4.4 A New Notion of Simulation Based Security

In this section, we modify the classical definition of secure computation with fairness [10] following
the ideal /real model paradigm. Our goal is to present an alternative definition that captures the
idea of “gradual release”. Let us elaborate. Loosely speaking, a protocol meets security with fairness
in the classic sense if both parties learn their output concurrently. Although very desirable, this
notion of fairness cannot be realized in general in the two-party setting (not even when malicious
behavior is restricted to early abortion). A potential reason for this failure may be due to the
fact that realizing this notion requires a point in the computation where both parties move from
a state of no knowledge of the output to a full knowledge of it. Instead, our definition allows the
parties to gradually learn partial information on their desired outputs - but do so in a way that is
“fair”. More specifically, our definition for fairness captures the scenario where both parties gain
an equivalent partial information in each step of the protocol.

Two challenges with formulating such a definition are: (1) How to capture the notion of guess-
ing in the ideal setting (recall that the parties are instructed to guess their output in case of a
prematurely abort). Due to this guessing, the parties may return incorrect values, implying that
the trusted party should output incorrect values with the same probability as well. (2) How to
define fairness with respect to partial information.

The new definition. Our new definition supports the following change with respect to [10].
In the ideal model, in addition to having the parties send their inputs to the trusted party, the
ideal adversary (i.e., the simulator), sends a sampling PPT machine M for which the trusted party
invokes on the parties’ inputs, and sends back this outcome. Namely, the trusted party uses M
to determine the parties’ outputs. Finally, the honest party returns the output received from the
trusted party, whereas the simulator outputs an arbitrary value (w.l.o.g., it outputs the adversary’s
view). In order for our definition to make sense in the fair setting, we require that M should be
“fair” in the sense that both parties learn the same amount of information about their outputs, so
that the guessing algorithms of both parties could be simulated. Note that the notion of fairness

26

that M keeps may differ and depends on the fairness notion obtained by the overall definition.
Below, we introduce an instantiation for M that matches our specific needs.

We assume that the simulator in the ideal setting always sends the trusted party machines that
support the specified properties. Alternatively, we could have asked the trusted party to run M
super polynomially many times in order to verify that these properties indeed hold. In case they
are not, the trusted party could have output a special symbol indicating that and thus, forcing
the simulator to always send such a machine. The disadvantage with this approach is that the
trusted party runs in super polynomial time implying that composition theorems fail to apply.
We therefore choose to parameterize our definition with simulators that always send machines as
specified. Therefore, proving that a given protocol satisfies this definition should be followed by a
proof that the simulator indeed outputs machines as required. See section 4.5.2 for a proof of a
protocol that meets this definition.

The input distribution. In the traditional setting, the input is taken to be arbitrary, and se-
curity is expected to hold with respect to any input. In contrast, here we only require security to
hold with respect to some collection of distribution ensembles, denoted by D; ={D.}. (see Defini-
tion 4.1 for one example). Therefore, we parameterize the random variable for the adversary view
with such a collection as well. This is done in order to make the intuitive concept of “comparable
information gain” rigorously meaningful.

The auxiliary information. In the traditional setting, only the adversary is allowed to hold
auxiliary information. In contrast, in our setting we consider the case where both parties may hold
such information. It is stressed that the function value does not depend on the auxiliary input. Still,
the protocol may depend on the auxiliary information the parties hold (see for instance a protocol
in Section 4.5.2). This approach allows capturing the auxiliary information that the parties hold on
each other’s input. The security of the protocol is measured with respect to the certain type of the
auxiliary information. More formally, let D, be as above and let z = (X, X1) where the input z;
of the ith party is chosen from the set X; for all ¢ € {0, 1}. Then, additionally, we consider families
of auxiliary functions aux; = {f2(%0, 1)} 2eq0,1y» Where f. (7o, 71) = (20,21) and Py is given 2o,
whereas Pj is given 2z; for auxiliary inputs.

Execution in the ideal model. An ideal execution for the computation of f, involving parties
Py and P; and ideal adversary S, proceeds as follows:

INpUTS. Py, P are given xg, x1, sampled according to input distribution D,. Moreover, each party
holds auxiliary information z;, computed according to some auxiliary input function f,(zg,z1) =

(20, 21)-

SEND INPUTS TO THE TRUSTED PARTY. Both parties send their inputs and auxiliary inputs to
the trusted party.

THE SIMULATOR SENDS A SAMPLING MACHINE. In addition to the adversary’s input, the simulator
S sends the trusted party a description of a PPT machine M that takes for input (zf, 2, 2(, 21, 77),
for z(),) the inputs of the parties that were sent to the trusted party, z(,, 2] the auxiliary information

27

of the parties that were sent to the trusted party, and 7’ the random string chosen by the trusted
party. Denote by (y(,v]) the machine’s outputs.

TRUSTED PARTIES SEND OUTPUTS. The trusted party picks r € {0,1}" uniformly at random,
computes M (xg,x1, 20, 21,7) and gets back two values (yo,y1). It then sends the simulator S the
value y;+ and the value y;_;= to Pj_;~=.

OutpruTs. The honest party outputs whatever the trusted party sent it, whereas S outputs the
view of the corrupted party. We note that the simulator may output any value and it is not
restricted to generate an execution that yields y;=.

Let NIdeal S5, aux3 (Z) denote the random variable consisting of the output of the simulator and

the honest party following an execution in the ideal model as described above, were the inputs
were chosen according to some input distribution from D}, and the auxiliary inputs were chosen
according the appropriate auxiliary input function from auxj.

Execution in the real model. We next consider the real model in which a two-party protocol
7 is executed by parties Py, P; (and there is no trusted party). The inputs and auxiliary inputs
of the parties in the real execution are determined exactly the same as the inputs and auxiliary
inputs in the ideal model. In the real execution, the adversary A controls party P;+ and thus
sees the input and the auxiliary information of that party. The adversary sends all messages on
behalf of this party, following an arbitrary polynomial-time strategy. The honest party follows
the instructions of w. Let f be as above and let @ be a two-party protocol computing f. Let
A be a non-uniform probabilistic polynomial-time machine. We let Real A, D, aux (Z) denote the

random variable consisting of the view of the adversary (corrupted party) and the honest party
when following an execution of .

Comparing executions of both models. As usual for the ideal/real paradigm [10], security is
obtained by comparing the execution in the ideal world to the execution in the real world.

Definition 4.12 Protocol 7 is said to securely compute f if for every PPT adversary A in the real
model, there exists a PPT simulator S in the ideal model, such that:
{NIdealﬁ 5.4 auxs (7)

= 1 Az }
}5726{0,1}* {Rea 7T7A,D;,auxf (iL')

’a“X?(7,2€{0,1}"
where the ideal execution uses any (adversatively chosen) sampling machine M that satisfies Defi-
nitions 4.18, 4.14.

Partial fairness. We finally note that Definition 4.12 can be generalized to capture the notion
of “partial fairness”. In this case, both parties learn some partial information about the correct
output, such that the adversary is allowed to learn some limited additional information. In this
case, there is a (restricted) imbalance between the parties. One way to extend Definition 4.12 to
capture this scenario is by relaxing the fairness requirement from the sampling algorithm M. More

28

precisely, we say that M is e-partial fair if there exists a negligible function p(-) such that for all
sufficiently large n’s it holds that:

Prlyie = fi(r0,m)] = 3| < Prlyiic = fie(z0,m)] = 3 + () + a(n)

Then, we say that a protocol is secure and e-fair if it satisfies Definition 4.12, when § is restricted
to send machines that are e-partial fair.

4.4.1 Simulation Based Security with Fairness

In of itself, Definition 4.12 does not ensure any level of security, unless the restrictions on M are
explicitly specified. In this section, we now restrict attention to the input distribution described in
Definition 4.1 and auxiliary input that contains the set of two possible inputs of the other party,
and specify the properties M should maintain for this case. In particular, given z = (29, z3, 29, z1),
the input of Py is uniformly chosen from z§, x}, whereas the input of P; is uniformly chosen out of
2y, 21, Therefore, the auxiliary information is the function Ja0 21 20 21 (T0, T1) = (29, 21), (2§, 7).
We note that it is possible to write the conditions on M in terms of general auxiliary input, but
we prefer not to do that since we wish to avoid the additional complexity (and since our solution
below works only with respect to this specific auxiliary input anyhow). Moreover, for the specific
case discussed here, we obtain simulation based security with fairness, where security is derived by
the properties we require below from M. We begin with a definition for correct sampling machine,

followed with a definition of fair sampling machine.

Definition 4.13 (Correct Sampling Machine) Let P+ be the corrupted party, let x), z§, 29, x}

be the input tuple, let x1_;« be the input of Pi_;«, and let (yo,y1) be the outputs of M. We say that
M is a correct sampling machine if y1_x € {fi—i=(z1_i, 2%), fii (w1-4%, 1) }.

This property is required to ensure the correctness of the examined protocol.

Definition 4.14 (Fair Sampling Machine) Let x8,xé,x?,x% be the input tuple, let xg, x1 be the
inputs of the parties, and let (yo,y1) be the outputs of M. We say that M is fair sampling machine
if there exists a negligible function u(-) such that for all sufficiently large n’s it holds that:

Prlyy = fix(x0,21)] — % <Priyii- = fici=(wo,21)] — % + p(n) (3)

where (yo,y1) = M(zg, 1, 20, 21,7), the adversary controls party i* and the probability is taken over
the random coins of M.

Naturally, fairness can be defined by restricting M to give the adversary the correct output with
the same probability as giving it to the honest party. However, since the adversary may output an
arbitrary value after receiving the output of the corrupted party this requirement is insufficient.
In fact, the sampling machine M may be designed such that it would always return an incorrect
output for both parties, enabling the adversary to view this value as an “advice” and modify it
into the correct outcome (based on its auxiliary information). In this case, the honest party always
outputs an incorrect output, whereas the adversary always outputs the correct output and so, the
fairness property is breached.

29

We avoid these scenarios by always letting the honest party learn the correct output with
probability greater than 1/2. In particular, if M gives the adversary the correct output with
probability p > 1/2, then the honest party receives the correct output with the same probability.
In contrast, if the adversary learns the correct output with probability p < 1/2, then the honest
party learns the correct value with probability 1 — p. That is, the absolute value applied on the
left term is only meaningful in case the adversary M returns the correct output of the adversary
with probability p that is smaller than 1/2. In this case, it holds that the probability in which the
honest party learns its correct output is at least 1 — p. Therefore, any manipulation on M’s output
will not gain the adversary any advantage.

In Claim 4.15 we formalize this intuition and show that for any strategy that the adversary
may follow, the probability that it outputs the correct value is bounded by the probability that
the honest party outputs the correct value, implying that fairness is guaranteed. More formally,
we show that any (computationally unbounded) machine G cannot guess the adversary’s correct
output with probability, that is greater than the probability the honest party learns its correct
output. Namely, let G denotes a machine that gets the input of the corrupted party; ;. , the tuple
(378, x(l), x(l), xl) and the output of the corrupted party y;+, as received from M, and outputs a guess
for the output f;= (CL’O ,) denoted by Outputg, then

Claim 4.15 For any PPT machine M satisfying Eq. (3) and any machine G it holds that

Pr |Outputg = fi*(xg , l{l)} < Pr [yl i = f1_ix (.CUO ,.751 Y1+ w(n)
where by, by are chosen uniformly at random from {0,1}, and (yo,y1) are the output of M.

Proof: Without loss of generality, assume that i* = 0 and fix the adversary’s input to :):bo

Moreover, recall that y;+ is the value that G receives from M. Then, define by:

def
e a=Pr [Outputg = fo(z2,29) | yo = fo(al ,x?)}

def
o f3 = Pr [Outputg = fo(asgo,x%) | yo = fo(:vgo,x%)}.

That is, in case that the machine G always outputs the value that was given as an output from M
(y0), then o + 8 equals to 1. This implies that,

el—a="Pr [Outputg = folalo,z}) [yo = fo(fﬂgoﬁﬁ(f)},
o1 -3=Pr [Outputg = fg(:cgo,x(l)) | yo = fo(argo,x%)}
Finally, let p = Pr[yo = fg(azo ,:1:1)] denotes the probability that the machine M gave G the correct
output. Then, we compute the probability that the adversary outputs the correct output. We have
that
r |Outputg = fo(ay,a})| = Pr|Outputg = fo(a?,al!) | b1 = 0] - Prlby = 0]

+Pr [Outputg = fo(xl,2%) | by = 1} - Prlby = 1]

30

Consider the probability Pr {Outputg = fo(acgo,:):l{l) | by = O]. In this case the correct output is
fg(mo ,2Y). Then,

Pr |Outputg = fo(azgo,af(f)} = Pr [Outputg = fo(z2,29) | yo = fo(al ,aﬁl)} Pr [yo fo(xgo,x(f)]

+ Pr [Outputg = fo(:vo ,ﬂ:l) | yo = fo(xo ,xl)} -Pr {yo = fo(xo ,x%)]
=a-p+(1-5)-(1-p)

On the other hand, when by = 1, the correct output is fo(xgo, x1) and so, the probability that the
adversary succeeds in this case is

Pr [Outputg = fo(zly,21)] = Pr[Outputg = fo(af?,#}) | w0 = folely, 21)] - Pr [yo = fo(aly, a})]
+Pr [Outputg = fo(:no ,xl) | yo = fo(:ro ,1’1)} -Pr [yo = fo(xo ,:1:(1))]
=p-p+(1—-a)-(1-p)

Therefore, the probability that the adversary outputs the correct output is computed by

Pr Outputg:fo(acg, l{l)} = %‘(a~p—|—(1—5)‘(1—p)+ﬁ‘P+(1—a)‘(1—p))
= %-(ap+1—5—p+p5+ﬂp+1—a—p+pa)
= é-(1+2ap—|—26p—2p+1—04—ﬁ)
= Sty @ @tF-DH(—a-B) = +p-5) (ath-1)

Relying on the fact that 0 < a <1, 0 < 8 < 1 we get that —1 < a+8—1 < 1 and so, [a+8—1| < 1.
Using the fact that |A- B| = |A| - |B|, we get that:

Pr [Outputg = fo(al?, 2] ~1/2] = 1(p=1/2) (a+ 5~ 1)
= Ip—1/2]-la+ B -1
< |p-1/2

Using the fact that M satisfies Eq. (3), we have that:
Pr [Outputg = fo(al,a})| = 1/2| < Pr [y = falaly,al)] = 1/2+ u(n)
and so, in case that Pr [Outputg = fg(ﬂ;g‘), xlil)] > 1/2, it holds that:
Pr {Outputg = fo(xgo,xlfl)} —1/2 Pr [yl fr(abe, ab)} —1/2+ p(n)

Pr [Outputg = fo(on axlfl)] < Pr [3/1 fl(%))} + p(n).

IN

In case that Pr {Outputg = f()((L‘gO, x?l)] <1/2, we can use the fact that:

Y

Pr [Outputg = folal,x)] —1/2 —Pr[= fi(al,x)} +1/2 — u(n)

Pr [fl(gjo ,)] +pu(n) > 1-Pr {Outputg = fo(xo , bl)}

31

However, since Pr {Outputg = fo(aco , T)} < 1/2 we have that 1—Pr [Outputg = fo(:no , bl)] >
Pr {Outputg = fo(xoo,mll’l)}, and so:

Pr [fl(xo ,)} +pu(n) >1—"Pr [Outputg = fo(:co , bl)} > Pr [Outputg = fo(xo , bl)]

4.4.2 Simulation-Based Definition Implies Game-Based Fairness

In this section we show that Definition 4.12, when instantiated with Definitions 4.13-4.14, implies
Definition 4.6. Formally,

Theorem 4.16 Let f, m be as above. Then, if m is simulatable (in the sense of Definition 4.12,
instantiated with Definitions 4.13-4.14), then m is fair with respect to the Game-Based (in the sense
of Definition 4.6).

Proof: Generally, we show that if there exists an adversary A that succeeds in the game-based
definition, then there does not exists a simulator for .A. That is, assume by contradiction that there
exists an adversary 4, controlling party Py (w.l.o.g.), for which Definition 4.6 is not met. Namely,
it holds that

Pr [Fairy (20, 20, 29, 21,n) = 1] — Pr [Fair, a(20, 25, 27, 21,n) = —1] > €(n).

Let 7 = (z), xo, 29, xl,n xg ,xl 1), and denote by Output, ;(Z) output of P; in an execution where

Py has input ZL‘O , and P is invoked with input xl . Then, by the contradiction assumption it holds
that,

Pr [OUtPUtﬂ' 0(_‘) = fO(f) A OUtPUtﬂ' 1 7é fl()]
— Pr[Output, ,(7) = i(7) A Output, (%) £ fo(7)] > e(n)

Adding and subtracting Pr[Output, ((7) = fo(Z) A Output, | (¥) = f1(Z)] to the left, we get that

Pr [Output, o(7) = fo(#)] — Pr [Output, ,(#) = £1(7)] > e(n) (4)

In other words, Py (when controlled by A), learns the correct output with a non-negligible advantage
over party P;. In order to conclude the proof, we present two distinguishers, Do and Dy. Namely,
D¢ checks weather the output of party Py is correct (i.e., checks the corrupted party’s output),
whereas Dy checks whether the output of P; is correct (i.e., checks the honest party’s output).
Now, since there is a non-negligible difference between the probabilities that the parties return
the correct output in the real world, whereas for any simulator in the ideal model, both parties
learn the correct output with almost the same probability, it must hold that one of the following
distinguishers distinguishes the executions with a non-negligible difference. More formally:

The distinguisher D¢. e Input: The index for the ensemble:

acgo,xl , the view of the corrupted party

32

r;maq, ..., my, the output of the corrupted e Input: The index for the ensemble:

party yo, the output of the honest party . azgo,xlil, the view of the corrupted party

r;mi,..., my, the output of the corrupted

e The distinguisher: party yo, the output of the honest party .

— Ity = fo(ﬂ?go,:vl{l), output 1. Other-

e The distinguisher:
wise, output 0.

— Ify; = fi(a2,24"), output 1. Other-
The distinguisher Dpg. wise, output 0.

The real world. We compute the probability that Do and Dy output 1 in the real world. That
is,

Pr[Dc(Real; 4(Z)) = 1] = Pr[yo = fo()] = Pr[Output, o = fo(7)]

Similarly,
Pr[Dy(Real; 4(7)) = 1] = Pr[y1 = f1(¥)] = Pr[Output, ; = f1(7)]

Using Eq. (4), we conclude that:

Pr[Dc(Realy 4(7)) = 1] > Pr[Dp (Realy () = 1] + ¢(n) (5)

The ideal world. By Definition 4.12, § always sends the trusted party a fair sampling machine
M. Therefore, using Claim 4.15 there exists a negligible function p(-) such that for all sufficiently
large n’s it holds that:

Prlyo = fo(zo,z1)] < Pryr = fi(xo, x1)] + p(n)

(note that here (yo,y1) denote the outputs of the parties in the ideal executions and not the output
of the sampling machine M). Using the descriptions of D¢, Dy, we have that

Pr[Dc(NIdealy (%)) = 1] < Pr[Dy(NIdealy (%)) = 1] 4 u(n)
Concluding the proof. We showed above the following statements:

e There exists a negligible function p(-) for which:
Pr[D¢(NIdealy (%)) = 1] < Pr[Dy(NIdealy (%)) = 1] + p(n) (6)
e From Eq. (5), there exists a non-negligible function €(-) such that:
Pr[Dc(Real; 4(Z)) = 1] > Pr[Dy(Real; 4(Z)) = 1] + €(n) (7)

We therefore have two cases:

1. The distinguisher Dy distinguishes successfully. That is, there exists a non-negligible function
€(+) such that for infinitely many n’s it holds that:

IPr[Dy(Real, 4(Z)) = 1] — Pr[Dy(NIdeal, 4(%)) = 1]| > € (n)

33

2. The distinguisher Dy does not distinguish successfully, implying that there exists a negligible
function p/(-) such that for all sufficiently large n’s it holds that:

[Pr[Dy(Realy 4(7)) = 1] — Pr[Dy (NTdeal, 4(#)) = 1]| < 4 (n)
Thus, we have that:

Pr[Dy(Real; 4(%)) = 1] > Pr[Dy(NIdealy 4(Z)) = 1] — 4/ (n)
Combining it with Eq. (7), we have that:

Pr[Dc(Real; 4(Z)) = 1] > Pr[Dy(NIdeal, 4(%)) = 1] + €(n) — i'(n)
Finally, using Eq. (6), we have:
Pr[De(Realy 4(7)) = 1] > Pr(De(NIdeals 4(#)) = 1] + e(n) — u(n) — () > e(n)/2

for all sufficiently large n’s, implying that D¢ distinguishes successfully.

We showed that for any simulator, there exists a distinguisher that distinguishes successfully be-
tween the real and the ideal executions with a non-negligible probability, contradicting the assump-
tion that the protocol is simulatable. [|

4.5 The Feasibility of Our Definition

In this section, we study our new game-based cryptographic definition of fairness in a cryptographic
context. Our starting point is any correct protocol, where both parties learn their output if playing
honestly. We then show, that by relaxing the (negligibly close to) perfect completeness requirement,
which implies that the parties should (almost) always learn their output if playing honestly, we can
fully characterize the set of two-party protocols according partial correctness. Informally,

1. In case correctness holds with probability that is non-negligibly greater than 1/2, we present
an impossibility result, saying that there does not exists a fair protocol with this probability of
correctness. This implies that the difficulties in designing fair protocols are already embedded
within the fail-stop setting. Stating differently, these difficulties already emerge whenever
early abort is permitted.

2. On the positive side, in case correctness holds with probability that is smaller equals to 1/2,
we show how to design a fair protocol that meets our notion of fairness. Specifically, we
present a family of such protocols, parameterized by this probability of correctness. The
implications of this is that there may be still hope for the fail-stop setting with respect to
designing fair protocols.

4.5.1 An Impossibility Result

In this section we demonstrate that our game-based definition for fairness cannot be achieved for
protocols that guarantee correctness with probability greater than 1/2. Before turning to our main
theorem we present a definition of an a-correct protocol.

34

Definition 4.17 Let f be a non-trivial two-party function, and let m be a two-party protocol. We
say that the protocol m is a a-correct for f if there exists a negligible function u(-) such that for all
sufficiently large xo, x1,n such that |xg| = |z1| = n,

‘Pr[Outputﬁ,O(xo,ml) = fo(zo,71) A Output, (w0, 1) = fi(wo,x1,n)] — oz‘ < pu(n)

where Output, ;(xo, 1) denote the output of party P; when invoked on input x;, while Pi_; is
mwvoked on x1_;, and both parties are honest.

Note that, for the impossibility result below, it is sufficient to restrict ourselves to fail-stop
adversaries that guess their output according to the instructions of the protocol. That is, their
default output are the same default outputs as the honest parties, and thus we use the notation of
a;, bj. Our theorem of impossibility:

Theorem 4.18 Let f be a non-trivial two-party function. Then, for every non-negligible function
€(-) and every o > 1/2 + €(n), there does not exist an a-correct protocol which is also fair (in the
sense of Definition 4.6), with a polynomial round complezity.

Proof: Let f be a function as above, let €(-) be a non-negligible function and let 7 be a fair
a-correct protocol for some o > 1/2 4 ¢(n). Furthermore, let 7(n) be a polynomial upper bound
on the number of rounds of the protocol. Then, there exists a negligible function p/(-) such that
for all sufficiently large xg, x1,n it holds that,

Pr[Output, o(xo,z1) = fo(wo, 1) A Output, (o, z1) = f1(w0,21,n)] > @ — w'(n)

We next show that m must have an exponential number of rounds on the average. We consider

an execution of 7 within game Fair(x), 2}, 29, 21,n). Then, from the facts that the function is

non-trivial and the output values are distinct, it must hold that

Prlap = fo(zo,21)] = % and Pr[by = fi(zo,71)] = % (8)

From Theorem 4.10, it is implied that m maintains the gradual release property which means

that there exists a negligible function u(-), such that for all i < r(n) and every 9, z}, 29,21, n as

above, it holds that
e Prla; = fo(zo,z1)] < Prlbi—1 = fi(xo,21)] + p(n), and
o Pr(b; = fi(zo,x1)] < Pria; = fo(zo,z1)] + p(n).

where g, z1 are as in Definition 4.1.
In other words, for every ¢ < r(n) it holds that,

Prla; = fo(wo,z1)] < Prlbi—1 = fi(xo,71)] + pu(n) < Pria;—1 = fo(zo,21)] + 2u(n)
Repeating inductively this argument, and relying Eq. (8) we have that,

Pria; = folwo, 1)) < & + 20 p(n) and Pr(biy = fi(wo,21)] < & +2i - p(n)

[\]
[\)

35

Let both denote the event that both parties learn their output (when both play honestly). Then,
based on the fact that 7 is a-correct protocol, we know that,

Pr{-both] = 1~ Prfboth] < 1 - () < 5 —c(n) + () < & — 22

DN |

where the latter is true since o > 1/2 + €(n) and for all sufficiently large n’s, y/(n) < e(n)/2.
Next, we consider the probability that the number of rounds is less than k-r(n) for some k& > 1,
where 7(n) is some polynomial that upper bounds the number of rounds in the protocol. We have

Pr[Rounds, (zo,x1) < k - r(n)]
= Pr[Rounds(zg,z1) < k- r(n) | both] - Pr[both] + Pr[Rounds, (xo,z1) < k - 7(n) | —both] Pr[—both]
€(n)

1
< Pr[Rounds,(zg,z1) < k- 7(n) | both] + 3" o

where Rounds,(xg,x1) denote the number of rounds of # when invoked on (zg,z1). In case that
the number of rounds is less than k - r(n) and both occurs, then both Apr(n) and bpp(n)—1 equal to
the correct output. Therefore, we have that

Pr [Rounds,(zg,z1) < k - r(n) | both]
Prlag, () = fo(zo, 1) A bgpny—1 = f1(20, 21)] < Prlag,n) = fo(zo, z1)]

% +2k-r(n) - puln)

IN

N

We conclude that,

Pr[Rounds(zg,z1) < k-r(n)] < % +2k-r(n)-puln) + % —e(n) + p'(n)

< 142k-r(n)u(n) — 6(;)

On the other hand, there exists a negligible function p”(n) such that for any & > 1
e(n)
4

where the latter is true for all sufficiently large n’s. This is due to the fact that the protocol is
completed after r(n) rounds. Therefore,

e(n)

Pr[Rounds,(zg,z1) < k-r(n)] >1—pu"(n) >1—

€(n)

1-— 4 < Pr[Rounds;(zg,x1) < k-7(n)] <14 2k-r(n)u(n) — 5
and thus,
1+2k-r(n),u(n)—@ > 1—6—n)
2 4
€(n)
r(n) > Shop(n)
in contradiction to the fact that r(n) is a polynomial. [|

We note that the above can be generalized easily for the simultaneous setting, and for expected
polynomial time protocols; see Appendix A for the specific modifications of the proof for the later.

36

4.5.2 A Positive Result

Recall that the gradual release property implies that the probabilities of guessing the correct output
at any given round, for polynomial-time protocols, cannot be increased “too much” during the
execution when compared to the initial probability (that is computed based on an empty view).
This implies that the probability of guessing the correct output at any given round is negligibly
close to 1/2, for any fair protocol (in the sense of Definition 4.6). Specifically, this protocol does not
leak any information about the correct output during its execution (or otherwise, it would not be
fair). Therefore, it may seem that this definition cannot be met by protocols that generate correct
output, and indeed, we followed that intuition when proved the impossibility result in Section 4.5.1.
Interestingly, we show that for relaxed correctness (i.e., lower equal than 1/2), there do exist non-
trivial functionalities that can be computed fairly in this setting. In the following, we present a
fair protocol in which either both parties learn the correct output together, or alternatively neither
party obtains a correct result. The case where in each execution exactly one party learns its correct
output can also be achieved with fairness. More generally, denote by a the probability in which
both parties should learn their outputs. Then, we show that for every a < 1/2, there exists an
a-correct protocol that is also fair, even in the non-simultaneous channel model. This relaxation
is necessary to obtain fairness, as higher « values set a threshold for achieving this property (as
shown in Section 4.5.1). Intuitively, the fact that each party does not know whether it has the
correct output implies that a corrupted party would not have any incentive to abort after learning
its output, since it does not give the honest party any new information anyway.

The protocol. The protocol is invoked over tuples of inputs with the distribution of choosing each
input randomly out of a known pair. Let :c8, :c(l), 29, 21 denote such an input tuple and denote by
xBrue déf fo(xg(),xl{l), :CBaIse déf fo(xgo,w%—ln)’ wtlrue déf fi (5680,1'?1), and x\ialse déf fl(x(l)_bo,l'?l)'

Then function f¢; formally defined below, sets the output of the parties such that both learn
the correct output with probability «, as required from an a-correct protocol. Moreover, the parties
realize function f via protocol 75, Which is secure-with-abort.

For the special case where @ = 0 we get that in each execution, either Py or P; learn their
correct output (but never both). This implies that correctness never holds since both parties never
learn their correct output together. As for the other extreme case where a = 1/2, the functionality
ensures that either both parties learn their correct output at the same time (which occurs with
probability 1/2), or both learn an incorrect output (with the same probability). For the general
case, see the figure below.

Protocol 1 7*: an a-correct and fair protocol for f in the f&.ro-hybrid model
e INPUTS: Py holds input xgo, Py holds xlil.

e AUXILIARY INPUT: Both parties are given a:g,x(l),x?,a:%.

e THE PROTOCOL:

— Engage in an execution of f{.re ON inputs bo,wg,x(l),x?,a:% for Py, and 51,1‘8,33‘(1),33‘?,1‘%

for Py.
— If P; receives L from the f& ..+ -ideal function, it chooses its output uniformly at random
from {ztve zfalsey (Note that P; knows these values yet it still cannot distinguish a true
from a false output).

37

The Ideal Functionality f¢
e Input: P, inputs by, 29, 28,29, x}. Pp inserts by, xJ, 2§, 29, 2.
e The function:

— Toss a coin o that equals 0 with probability 2, and equals 1 with probability 1 — 2a.
— If 0 = 0 (parties learn same output) do:

* Toss another coin 7y uniformly at random from {0, 1}.

x If 79 = 0: set the output of Py, Py to be (af'e, zi™e), respectively.

x If 79 = 1: set the output of Py, P; to be (Jc{)a'se, a:flalse), respectively.
— If 0 =1 (parties learn true and false outputs) do:

« Toss another coin 71 uniformly at random from {0, 1}.

* Set the output of P, to be x!®.

* Set the output of P_,, to be xfalse

1—71°

— Otherwise, it outputs the value returned by f5.pe, and halts.

Theorem 4.19 Let f be a non-trivial two-party function. Then, for every1/2 > « > 0, protocol @
is an a-correct protocol in the f*-hybrid model, and is simulatable (in the sense of Definition 4.12).

Proof: We first show that for every « in this range, 7 is an a-correct protocol. Specifically, in
case both parties play honestly, then both receive an output from f¢, which gives to both parties
the correct output with probability .

We now show that 7@ satisfies definition 4.12. We first define the machine M that the simulator
sends to the trusted party. This machine is hard-wired with the real adversary, together with
its random coins. This makes the adversary deterministic within M and moreover, enables the
simulator to extract the randomness of the adversary after receiving the output from the trusted
party. We therefore describe M with an additional parameter r4 - denote the randomness of the
adversary. Specifically, the simulator first selects the random coins for A, and only then creates
the machine M to send the trusted party.

The machine M (A, r4).
e Input: x), 2} and the tuple (zQ, 2,29, z1).

e The machine:

— M extracts from xjy, x', the bits (bo,by) such that z3° = zl), 2 = z).

. bx
— M “invokes” the hardwired adversary A with random bits r 4 and input (x', :L‘8, z}, 2y, xl).

The machine A outputs (b, z8, 2}, 29, x1).
— M invokes function f* on input (by, x, x5, 2%, 21) for Py and (b1, x), 2§, 2%, x1) for P;.

Let (yo,y1) be the outputs of this function.
— M gives to the hardwired adversary A the output y;.
x If A does not abort, M outputs (yo,y1)-

38

x If A aborts, M tosses a coin b uniformly at random, and gives the honest party the
evaluation of f on :Ul{:-i* and 332-’* and y;+ to the ideal adversary.
(This step emulates the guess of the honest party when it does not receive an output

from f).

We now proceed with the simulator S. Recall that S needs to create the view of the corrupted
party. In the real execution, the view of the corrupted party is the value that it gets from f¢. This
is exactly the output of M. Therefore, the simulator is straightforward. More formally, let A be a
pPPT adversary and let 7(n) be a polynomial that bounds the number of random coins that A uses.
Then, simulator S is defined as follows.

The simulator S.

e S chooses uniformly at random r € {0,1}7().

S designs M (A,r) with adversary A hardwired in it together with the random bits .

S receives from the trusted party a value y.

. s by .) .
S invokes A with input x;2" , auziliary input :L‘8, l‘é, 29,21, and random coins r.

The adversary outputs (bi*,xg,x(l),x?,x%) as an input to the ideal function f*. S returns to

A the value y, emulating the output given by the trusted party for f<.

A outputs continue or abort, and outputs a value y'.
e S outputs the view of the adversary: (r,y,y').

Clearly, the simulator’s output a distributes identically to the distribution in the hybrid model.
All is left to show is that M is a valid sampling machine. Namely, that M is fair and correct. The
correctness requirement is trivially achieved. We show that M is also fair, satisfying Eq. (3).

Formally, the output of M for the corrupted party is always the output of function f®. The
function f¢ gives the corrupted party the correct output in the following cases:

e Case 1: When o =0, and 79 = 0. (in this case, both parties receive the correct output).

e Case 2: When o = 1 and 7, = ¢*. (in this case, only the corrupted party receives the correct
output).

Therefore, we have that:

Pr [yz* = fi*(xgo,mlf) = Prjo=0AT1=0]+Prjc=1A1 =i
= Pr[o =0]-Pr[rg = 0] + Pr[o = 1] - Pr[r; =i"]
1 1 1
— 2a--4+(1-2a) - ==
a 2+(@) 5= 5

On the other hand, the honest party receives the correct output in the following cases:

e In case that the adversary does not abort, the output of the honest party is the output that
it receives from function f¢. As the output of the corrupted party, the honest party receives
the correct output from the function f® with probability 1/2.

39

e In case that the adversary aborts, the machine M guesses the correct output for it with
probability 1/2.

We note that the hardwired adversary is deterministic, and so the probability for the output of
the honest party is taken over the random coins of f and the coins of M (for guessing the correct
output in case that A aborts). In any case, let y;_;+ be the output of the machine M for the honest
party. We have that:

Pr|yi—#+ = fi—i ($80,93lfl)} =1/2

The above shows that M is fair. This completes the proof. [|
References
[1] I. Abraham, D. Dolev, R. Gonen and J Y. Halpern. Distributed Computing Meets Game

[10]

[11]

[12]

Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty Computation. In
PODC, pages 53-62, 2006.

G. Asharov and Y. Lindell. Utility Dependence in Correct and Fair Rational Secret Sharing
In Journal of Cryptology, Volume 24, Issue 1 (2011), pages: 157-202.

D. Beaver and S. Goldwasser, Multiparty computation with faulty majority. In 80th FOCS,
pages 468-473, 1989.

R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18th
STOC, pages 364-369, 1986.

Y. Dodis, S. Halevi and Tal Rabin. A Cryptographic Solution to a Game Theoretic Problem.
In CRYPTO’00, Springer-Verlag (LNCS 1880), pages 112-130, 2000.

Y. Dodis and T. Rabin. Cryptography and Game Theory. In Algorithmic Game Theory,
Cambridge University Press, 2007.

G. Fuchsbauer, J. Katz and D. Naccache. FEfficient Rational Secret Sharing in Standard
Communication Networks. In the 7th TCC, Springer-Verlag (LNCS 5978), pages 419436,
2010.

D. Fudenberg and J. Tirole. Game Theory. The MIT Press, 1991.

J. A. Garay, P. D. MacKenzie, M. Prabhakaran and K. Yang. Resource fairness and com-
posability of cryptographic protocols. In 3rd Theory of Cryptography Conference TCC 2006,
volume 3876 of LNCS, pages 404-428. Springer, 2006.

O. Goldreich. Foundations of Cryptography: Volume 2 — Basic Applications. Cambridge
University Press, 2004.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218-229, 1987.

O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 9(3):167-190, 1996.

40

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

S. Goldwasser and L. A. Levin. Fair computation of general functions in presence of immoral
majority. In CRYPTO 1990, Springer-Verlag (LCNS), 537, pages 77-93, 1991.

S. Goldwasser and S. Micali. Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In J. Comput. Syst. Sci., 28(2): 270-299, 1984.

S. Goldwasser, S. Micali and C. Rachoff. The Knowledge Complexity of Interactive Proof
Systems. In STAM J. Computing 18(1): 186-208 1989.

S. D. Gordon, C. Hazay, J. Katz and Y. Lindell. Complete fairness in secure two-party
computation In STOC, Springer-Verlag (LNCS 4116), pages 413-422, 2008.

S. D. Gordon and J. Katz. Rational Secret Sharing, Revisited. In Security and Cryptography
for Networks (SCN), Springer-Verlag (LNCS 4116), pages 229-241, 2006.

S. D. Gordon and J. Katz. Partial Fairness in Secure Two-Party Computation. In FURO-
CRYPT, pages 157-176, 2010.

R. Gradwohl, N. Livne and A. Rosen. Sequential Rationality in Cryptographic Protocols.
In FOCS, pages: 623-632, 2010.

A. Groce and J. Katz. Fair Computation with Rational Players. In
http://eprint.iacr.org/2011/396.pdf.

J. Halpern and V. Teague. Efficient Rational Secret Sharing in Standard Communication
Networks. In 36th STOC, pages 623-632, 2004.

J. Halpern and R. Pass. Game Theory with Costly Computation. In ICS, pages 120-142,
2010.

S. Izmalkov, M. Lepinski and S. Micali. Verifiably Secure Devices. In 5th TCC, Springer-
Verlag (LNCS 4948), pages 273-301, 2008.

S. Izmalkov, S. Micali and M. Lepinski. Rational Secure Computation and Ideal Mechanism
Design. In 46th FOCS, pages 585-595, 2005.

J. Katz. Bridging Game Theory and Cryptography: Recent Results and Future Directions.
In 5th TCC, Springer-Verlag (LNCS 4948), pages 251-272, 2008.

G. Kol and M. Naor. Games for exchanging information. In 40th STOC, pages 423-432,
2008.

G. Kol and M. Naor. Cryptography and Game Theory: Designing Protocols for Exchanging
Information. In 5th TCC, Springer-Verlag (LNCS 4948), pages 320-339, 2008.

A. Lysyanskaya and N. Triandopoulos. Rationality and Adversarial Behavior in Multi-party
Computation. In CRYPTO’06, Springer-Verlag (LNCS 4117), pages 180-197, 2006.

S. J. Ong, D. C. Parkes, A. Rosen and S. P. Vadhan. Fairness with an Honest Minority and
a Rational Majority. In 6th TCC, Springer-Verlag (LNCS 5444), pages 36-53, 2009.

Rafael Pass and abhi shelat. Renegotiation-Safe Protocols. In Innovations in Computer
Science ICS 2011.

41

A Dealing with Expected Round Complexity

In Theorem 4.18 we required that the round complexity of the considered protocols to be strict.
In this section we show how to extend these results for dealing with expected (polynomial) round
complexity. Namely, we assume that there exists a polynomial poly such that for any input, the
expected number of rounds of the protocol execution on this input is bounded by poly(n). Moreover,
we assume that both the honest party and the adversary are allowed to run in expected polynomial
time. We restate and sketch the proof of the impossibility result of Theorem 4.18.

Theorem A.1 Let f be a non-trivial two-party function. Then, for every non-negligible function
€(+) and every o > 1/2 4 €(n), there does not exist an a-correct protocol which is also fair (in the
sense of Definition 4.4), with expected polynomial number of rounds. Not even in the simultaneous
channel model.

Proof Sketch: In this proof, we denote by r(n) = E(Rounds,(xo,x1)) the expected number of
rounds of m when invoked on (zg,z1). Then, in case that the number of rounds is less than k- r(n)
and both occurs, then both ag,(,) and by,(,) equal to the correct output. However, there may be
cases where a,(,) and bg,(,) equal to the correct output, but the execution has not terminated
yet. In particular, the probability that the number of rounds is less than k - r(n) given that both
occurs, is smaller than the probability that both parties know the correct output by round k- r(n).
Therefore, we have that,
e(n)

Pr[Rounds;(zg,z1) < k-r(n)] <14 2k-r(n)u(n) — 5

From the Markov inequality, we know that,

E(Roundsy(xo,21)) 1
> < =7
Pr[Rounds, (xo, z1) > kr(n)] < kr(n) k

and so,

1
Pr[Rounds,(zg, 1) < kr(n)] > 1 — Z

If we choose k such that k > 4/e(n), we have that
e(n)

1
Pr[Rounds (zg,z1) < kr(n)] > 1 — 7> 1- e

as in the original proof. From this point, we continue with the calculations as in the original proof
and conclude that

e(n) ¢ (n)
") >) B2u(n)
in contradiction to the fact that r(n) is a polynomial. [|

42

