
Constant-Round Privacy Preserving Multiset Union

Jeongdae Hong1, Jung Woo Kim1, Jihye Kim2, Kunsoo Park1, and Jung Hee Cheon2

1 School of Computer Science and Engineering, Seoul National University
{jdhong,jkim,kpark}@theory.snu.ac.kr

2 ISaC and Department of Mathematical Sciences, Seoul National University
{jihyek,jhcheon}@snu.ac.kr

Abstract. Privacy preserving multiset union (PPMU) protocol allows a set of parties, each with
a multiset, to collaboratively compute a multiset union secretly, meaning that any information
other than union is not revealed. We propose efficient PPMU protocols, using multiplicative
homomorphic cryptosystem. The novelty of our protocol is to directly encrypt a polynomial by
representing it by an element of an extension field. The resulting protocols consist of constant
rounds and improve communication cost. We also prove the security of our protocol against
malicious adversaries, in the random oracle model.

Key words: Privacy Preserving Multiset Union, ElGamal on Polynomials, Homomorphic En-
cryption

1 Introduction

Privacy Preserving Multiset Union (PPMU) is a set operation that a set of parties, each with
a multiset, to collaboratively compute a multiset union but no party learns more information
about other parties’ private inputs than what can be deduced from the result of union.

PPMU is useful in various applications such as data collection for statistics and major-
ity voting, where each element is related with privacy or interests of the data owner. For
example, a research group wants to collect information about patients with sparse disease,
while hospitals or patients want to protect their privacy. In the Rawlings Gold Glove Award,
managers and coaches select the player judged to have the most superior individual fielding
performance at each position by voting. A company wants to collect clients’ claims to pro-
vide better services for its clients, who are reluctant to directly publish their claims for their
privacy.

In 1982, Yao proposed a method for a millionaire’s problem [23], which is the first privacy
preserving multiparty computation and can be used for other problems like secret voting, pri-
vate querying of database, oblivious negotiation, playing mental poker, etc. Various solutions
for millionaire’s or private equality test problem have been proposed [1, 18, 14]. In addition,
other types of multiparty computations have followed such as set intersection [6, 16, 5, 10,
20], set element reduction [12], and set union [12, 11, 2, 7]. However, PPMU itself has been
paid comparatively less attention though electronic voting and shuffling algorithms solve the
similar problem.

PPMU is firstly addressed by Kissner and Song (KS) in [12]. In fact, KS proposed a more
general version of PPMU, i.e., threshold set union protocol which computes the elements
which appear at least a threshold number of times in the parties private inputs.

By setting the threshold to be one in KS threshold set union, we can obtain a PPMU
protocol based on a shuffling protocol on their private inputs. For shuffling, KS consider
either a mix-net [8, 15] or their shuffling protocol. If a mix-net is used, all parties should
perform shuffling in turn. Thus, the number of rounds increases linearly in the number of
parties. KS also proposed their own shuffling protocol, which is more efficient than using a

2 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

mix-net. Still, since the shuffling protocol by KS also relays an intermediate shuffling result
to the other party in turn, their solution does not improve the round complexity itself. The
shuffling protocol by KS relies on an additively homomorphic cryptosystem over an unknown
order group with an efficient factoring algorithm. However, such a group has not been known
yet. Even if such a cryptosystem exists, their protocols have linear round complexity. It is an
interesting problem whether we can construct a constant-round PPMU protocol, for example,
by allowing each party to parallel their protocol execution.

Assuming a broadcast medium, we propose constant-round privacy-preserving multiset
union (PPMU) protocols based on multiplicatively homomorphic cryptosystem. Given a poly-
nomial with roots of inputs, the novelty of our protocol is to directly encrypt the polynomial
by embedding it into the base field element, instead of encrypting each coefficient of the
polynomial. Given encryptions on multiplicatively homomorphic cryptosystem, each party
can multiply all encryptions in parallel, resulting into an encryption of the set union. In other
words, it produces a constant-round protocol. As a final step, we need to factorize the poly-
nomial associated to the set union. It is supported by ElGamal cryptosystem on an extension
field which defines a message over a field with known order.

Another interesting aspect is that our broadcast-based protocol can be adapted into a
unicast-based protocol, without increasing its message size. The unicast-based protocol relays
its message, accumulating party’s input elements sequentially. If the encryption of a polyno-
mial is represented as the encryption of related coefficients then it seems to be avoidable that
each relay expands the size of the encrypted message as in the KS protocol. Since our protocol
represents the encryption of a polynomial as an element of the finite field, accumulation does
not incur any additional message overhead. In fact, whether to use the broadcast medium or
the unicast medium, the size of the encrypted message is the same in our scheme. Thus, our
scheme can be efficiently implemented in both broadcast and unicast environments.

Contributions of our work are summarized as follows:

1. We propose constant-round privacy-preserving multiset union (PPMU) protocols. To the
best of our knowledge, our PPMU protocol is the first result with a constant-round com-
plexity. (Previous works [12, 7] have linear round complexity.)

2. We improve the communication size. The total number of bits transmitted in our protocol
is n2k log q, while that in KS’s protocol is n2k logN , where n is the number of parties,
k the number of elements and q the size of the element domain. Therefore, our protocol
has the log q

logN times smaller communication size than KS’s. (For the details, refer to the
section 5.)

3. To obtain computational efficiency gains, we revise ElGamal encryption so that it has
short-size exponents. The revised ElGamal is semantically secure in the short interval
decisional Diffie-Hellman assumption of which security is proved in the generic model.

4. Finally, we prove security of proposed protocols, in presence of malicious adversaries in
random oracle model. In particular, we efficiently add commitment and standard zero-
knowledge proofs to construct a protocol secure against malicious adversaries, without
increasing asymptotic complexities in comparison to the protocol secure against honest-
but-curious adversaries.

Organization. The rest of the paper is organized as follows. Section 2 gives some preliminary
information. We propose ElGamal on polynomials in Section 3. We present PPMU protocols
using ElGamal on polynomials in Section 4 and compare the performance of our PPMU
protocol with that of the KS scheme in Section 5. In Section 6, we conclude the paper.

Constant-Round Privacy Preserving Multiset Union 3

2 Preliminaries

2.1 Adversary Models

We consider two standard adversary models: honest-but-curious adversaries and malicious
adversaries. The security definition is limited to the case where at least one of the parties is
honest. We describe informal definitions of these models; formal definitions of these models
can be found in [9].

Honest-But-Curious Adversary. In this model, all parties act according to their pre-
scribed actions in the protocol. Security in this model is as follows: no party or coalition of
cheating parties who share their private information gains information about players’ private
input sets other than what can be deduced from the result of the protocol. This is formal-
ized by considering an ideal implementation where a trusted third party (TTP) receives the
inputs of the parties and outputs the result of the defined function. We require that in the
real implementation of the protocol (that is one without a TTP) each party does not learn
any information other than that in the ideal implementation.

Malicious Adversary. In this model, an adversary may behave arbitrarily. The standard
security definition in this model captures correctness and privacy issues of the protocol.
The security of a protocol is analyzed by comparing what an adversary can do in a real
protocol execution to what it can do in an ideal scenario (that is secure by definition). This is
formalized by considering an ideal computation involving a trusted third party to whom the
parties send their inputs. The TTP computes the functionality on the inputs and returns to
each party its respective output. Informally, a protocol is secure if no adversary interacting
in the real protocol (where no TTP exists) can do more harm in a real execution than in an
execution that takes place in the ideal world. In other words, for any adversary carrying out
a successful attack on a real protocol, there exists a simulator that successfully carries out
the same attack in the ideal world.

2.2 Techniques and Tools

Polynomial Representation of Sets. We represent a set of elements by a polynomial. For
example, given a set of k elements S = {m1,m2, · · · ,mk} where each mi is an element of Fq,
we construct its polynomial representation as

M(t) =

k
∏

i=1

(t−mi)

Multiset Union using Polynomial Representations. We follow Kissner and Song’s
representation [12] to compute multiset union. Let p1 and p2 be polynomial representations
of multisets S and T , respectively. They defined the union S ∪ T as a multiset, where each
element mi that appears nS ≥ 0 times in S and nT ≥ 0 times in T appears in the resulting
multiset nS + nT times. Then, one can compute the polynomial representation of S ∪ T as

p1 ∗ p2.

Note that p1 ∗ p2 is a polynomial representation of S ∪ T because all elements that appear
in either set S or T are preserved and duplicate elements from each multiset are preserved.
In addition, given the polynomial representation of S ∪ T , one cannot learn any information
about S and T other than what can be deduced from S ∪ T .

4 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

Multiplicative Homomorphic Cryptosystem. In this paper we utilize a semantically
secure, multiplicative homomorphic public-key cryptosystem. Namely, given the encryption
of m1 and m2, Epk(m1) and Epk(m2), one can efficiently compute the encryption of m1 ·m2

denoted by Epk(m1 · m2). We also require that the homomorphic public-key cryptosystem
support secure (n, n)-threshold decryption, i.e., the corresponding private key is shared by a
group of n players, and decryption must be performed by all players acting together.

In the protocols for the malicious case, we require the decryption protocol be secure against
malicious players (typically, this is done by requiring each party to prove by zero-knowledge
that he has followed the threshold decryption protocol correctly) and efficient construction
of zero-knowledge proofs of plaintext knowledge.

Note that the semantically secure version of ElGamal cryptosystem satisfies each of our
requirements: it is multiplicative homomorphic, supports threshold decryption (secure in the
malicious case) [4], and allows the zero knowledge proof of plaintext knowledge. (Refer to the
next section for the details.)

3 ElGamal on Polynomials

3.1 Overview

We revisit the ElGamal cryptosystem and modify it in the following three steps:

– First, we modify the ElGamal cryptosystem so that it can directly encrypt a polynomial
element, particularly in (Fq[t]/f(t))

∗ for some irreducible polynomial f(t). Note that the
general approach to encrypt a polynomial is to encrypt its coefficients (rather than encrypt
the polynomial itself). This new encryption method supports efficient computation for
multiset union encryption through its multiplicative homomorphic property.

– Second, we convert the basic ElGamal scheme to be semantically secure under the De-
cisional Diffie-Hellman (DDH) assumption. We limit all group operations to a subgroup
where the DDH assumption holds. The semantic security of the ElGamal system is clear
if the underlying cryptographic assumption, i.e., DDH assumption, holds.

– Third, we modify the semantically secure ElGamal scheme such that the exponent size is
limited to a short interval, for example, of 160 bits. This modification is made for perfor-
mance improvement. For security of our modified ElGamal cryptosystem, we propose a
new variant of the DDH assumption called the Short Interval DDH (SI-DDH) assumption
and prove the security of SI-DDH in the generic model.

In the following sections, we describe the cryptographic assumptions and our schemes.

3.2 Cryptographic Setting

Let G be a cyclic group of prime order q and g be its generator.

Decisional Diffie-Hellman (DDH) Problem. The DDH problem in G is as follows: Given
g, gx, gy, gz ∈ G, where x, y, z are randomly chosen from Zq, determine whether gz = gxy or
not.

DDH Assumption. The DDH problem is (ǫ, t)-hard in G if for every algorithm A running
in time t we have:

| Pr[x, y ← Zq : A(g, g
x, gy, gxy) = 1] −

Pr[x, y, z ← Zq : A(g, g
x, gy, gz) = 1] | ≤ ǫ

Constant-Round Privacy Preserving Multiset Union 5

Informally, we say that DDH holds in G if ǫ is negligible for all efficient algorithms A.

We introduce a new variant of DDH. For clarity of our description, we describe the
corresponding discrete log and computational Diffie-Hellman problems as well.

Denote by T the subset of G generated by gx with x ∈ [1, 2ℓ] where ℓ is defined by the
security parameter.

Short Interval Discrete Log (SI-DL) Problem. The SI-DL problem in T is as follows:
Given g, gx ∈ T, where x is randomly chosen from [1, 2ℓ], compute x.

Short Interval Computational Diffie-Hellman (SI-CDH) Problem. The SI-CDH
problem in T is as follows: Given g, gx, gy ∈ T, where x, y are randomly chosen from [1, 2ℓ],
compute gxy.

Short Interval Decisional Diffie-Hellman (SI-DDH) Problem. The SI-DDH problem
in T is as follows: Given g, gx, gy , gz ∈ T, where x, y, z are randomly chosen from [1, 2ℓ],
determine whether gz = gxy or not.

SI-DDH Assumption. The SI-DDH problem is (ǫ, t)-hard in T ⊂ G if for every algorithm
A running in time t we have:

|Pr[x, y ← [1, 2ℓ] : A(g, gx, gy, gxy) = 1]−
Pr[x, y ← [1, 2ℓ], z ← [1, 22ℓ] : A(g, gx, gy, gz) = 1]| ≤ ǫ

Informally, we say that SI-DDH holds in T if ǫ is negligible for all efficient A.

Hardness of SI-DDH. The best known attack for SI-DDH is Pollard’s lambda algo-
rithm [19]. Given g, gx in a cyclic group G of order q, the Pollard’s lambda algorithm allows
us to search for x in some subset {a, · · · , b} of Zq. Note that we may search the entire range
of possible logarithms by setting a = 0 and b = q−1, although in this case Pollard’s rho algo-
rithm is more efficient. To disprove SI-DDH we can use a generic DDH algorithm. The best
known generic DDH algorithm is a generic discrete log algorithm [3, 21]. When we apply this
algorithm to a group of prime order q, the algorithm runs in time Ω(

√
q). When we apply the

generic discrete log algorithm to a group subset T of size 2ℓ, the algorithm performs Ω(
√
2ℓ)

group operations. The proof of the following theorem is slightly modified from the one in [3].

Theorem 1. Ω(
√
2ℓ) is a lower bound on the complexity of any generic algorithm for the

discrete logarithm problem in a subset T of size 2ℓ.

Proof. An encoding of Zq on X is an injective mapping σ from Zq into X, where X is a
set of bit strings of cardinality at least q. A generic Las Vegas algorithm, say GenLog, for
(Zq,+) on X is a probabilistic algorithm whose input consists of σ1 = σ(1) for a generator
and σ2 = σ(x) for a value x, where x ∈ [1, 2ℓ]. GenLog will be successful if and only if it
outputs the value x. GenLog will use the oracle to generate a sequence of w which is the
encoding of linear combinations of 1 and x. Note that the only difference from [3] is that x
is an integer in [1, 2ℓ], not in [0, q − 1]. We follow the definition of GOOD(C) in [3], and the
probability that x ∈ GOOD(C) is at most

(w
2

)

/2ℓ. If x /∈ GOOD(C), then the best strategy
for GenLog is to guess the value of x by choosing a random value in [1, 2ℓ] \GOOD(C). Let
g = |GOOD(C)|. Then, we can compute a bound on the success probability of the algorithm.
Suppose we define A to be the event x ∈ GOOD(C) and we let B denote the event “the

6 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

algorithm returns the correct value of x”. Then we have

Pr[B] = Pr[B|A]× Pr[A] + Pr[B|A]× Pr[A]

= 1× g

2ℓ
+

1

2ℓ − g
× 2ℓ − g

2ℓ

≤
(w
2

)

+ 1

2ℓ
.

If the algorithm always gives the correct answer, then Pr[B] = 1. In this case, it is easy to
see that w is Ω(

√
2ℓ). ⊓⊔

3.3 Basic ElGamal on Polynomials

We employ ElGamal cryptosystem whose elements are in (Fq[t]/f(t))
∗, where f(t) is an

irreducible polynomial of degree d. We call this cryptosystem ElGamal on Polynomials. Thus
we consider M(t) =

∏k
i=1(t−mi), where mi ∈ Fq and k < d, as an element of multiplicative

cyclic group (Fq[t]/f(t))
∗ of order qd−1, and we can encrypt M(t) as in the original ElGamal

encryption.

Let g(t) be a generator of the group (Fq[t]/f(t))
∗, and y(t) = g(t)x mod f(t), where x is

a secret key randomly selected from [0, qd−2]; the polynomials f(t), g(t), and y(t) are public
keys. Then we can encrypt M(t) with a random r ∈R [0, qd − 2] as

C(t) = (u(t), v(t)) = (g(t)r , y(t)r ·M(t)) mod f(t).

Note that, in our scheme, we can encrypt input set {m1, · · · ,mk} at a time, since the set is
represented as a polynomial, i.e., an element in (Fq[t]/f(t))

∗ which is the unit of encryption.
Decryption can also be done as follows:

v(t)

u(t)x
mod f(t) =

k
∏

i=1

(t−mi).

The correctness of the scheme is obvious because we restrict the number of elements in
S to be less than d which is the degree of f(t). However, ElGamal on polynomials is not
semantically secure since the DDH assumption does not hold in the group F

∗

qd
. Using the

Euler’s criterion3, it is easy to test elements of F∗

qd
whether they are quadratic residues or

not. Thus, it can be detected whether M(t) is a quadratic residue or not by checking the
quadratic residuosity of v(t) and y(t)r.

Adding Semantic Security. For semantic security we limit all group operations to a
subgroup, i.e., quadratic residues, where the DDH assumption holds. Let qd − 1 = ap for
some prime p and an even number a. To make ElGamal on polynomials semantically secure,
we consider a subgroup of (Fq[t]/f(t))

∗ which satisfies DDH assumption:

Gp = {x(t)(q
d
−1)/p : x(t) ∈ (Fq[t]/f(t))

∗} = {x(t)a : x(t) ∈ (Fq[t]/f(t))
∗}

Gp = {(g(t)0)a, (g(t)1)a, · · · , (g(t)p−1)a}

3 For ∀a(x) ∈ F
∗

qd , a(x) is a quadratic residue mod f(x) if and only if a(x)(q
d
−1)/2 ≡ 1 mod f(x)

Constant-Round Privacy Preserving Multiset Union 7

Since (g(t)p)a = g(t)q
d
−1 = 1 = g(t)0, this group is closed and it has an order of p. The

generator of this group is g(t)′ = g(t)
qd−1

p , where g(t) is the generator of (Fq[t]/f(t))
∗.

ElGamal on polynomials in Gp is defined by rearranging u(t) and y(t) as follows: u(t) =
g(t)′r and y(t) = g(t)′x mod f(t), that is, u(t) and y(t) are generated from the generator
of Gp. Finally, M(t) needs to be in Gp. We convert M(t) =

∏k
i=1(t − mi) into an element

M ′(t) of Gp by combining proper random number Ri such that M ′(t) =
∏k

i=1(t−m′

i) where
m′

i = mi||Ri.
Then we can encrypt M ′(t) with random r ∈R [0, p − 1]

C(t) = (u(t), v(t)) = (g(t)′r, y(t)r ·M ′(t)) mod f(t)

where y(t) = g(t)′x. Decryption can also be done as follows:

v(t)

u(t)x
mod f(t) =

k
∏

i=1

(t−m′

i).

we obtain the multiset {m1, · · · ,mk} by factoring f(t) and removing Ri’s.

Remark. The step in encryption converting the polynomial into an element of the group
Gp is expected to finish quickly. Since we select a subgroup Gp of size p and qd − 1 = ap, the
group (Fq[t]/f(t))

∗ is divided into a subgroups. Therefore, the step is expected to finish in
a repetitions. Also, there exists a sufficiently small even number a for almost all q; and we
confirmed it for a prime 3 ≤ q < 100 through experiments. For example,

31091−1 = 2 · 17308478920290520561214081551955057184506477986582966242130879304040855943078281750655654
65877316796954389481170318472442241905892654388323782720732502237578480086224100629849484070049079760101

44446727825839493126338747635054243392729455736743049576570977803426383945195972613488488758512339944888

43015578069982923778120456915440994423370412559032927349367947178856907461526675259289295907986943204438

70675144426955467776443389120197038417789600161987266227110204849862069798191865497069657127372102640237

5168960030732173.

Knowledge of Plaintext. Note that given ElGamal encryption C(t) = (u(t), v(t)) =
(g(t)′r , y(t)r ·M ′(t)) with public key y(t) the knowledge of M ′

i(t) corresponds to the knowledge
of r: the knowledge of r extracts M ′(t) = v(t)/y(t)r.

Definition 1 (IND-CPA). An encryption scheme is semantically-secure in terms of indis-
tinguishability if no adversary, given an encryption of a message randomly chosen from a
two-element message space determined by the adversary, can identify the message choice with
probability significantly better than that of random guessing (1/2).

Theorem 2. The ElGamal scheme above is semantically secure against chosen plaintext
attack (IND-CPA) under the DDH assumption.

Proof. Assuming the DDH problem is (ǫ, t)-hard in Gp, for any algorithm A′ running in time
t with x, y, z ← Zq we have

|Pr[A′(g, gx, gy, gxy · m1) = 1]− Pr[A′(g, gx, gy , gz · m1) = 1]| ≤ ǫ (3.1)

by a reduction from the DDH problem. Note that we obtain the problem 3.1 by reducing DDH
problem. Similarly again, assuming the DDH problem is (ǫ, t)-hard in Gp, for any algorithm
A′ running in time t with x, y, z ← Zq we have

|Pr[A′(g, gx, gy , gxy · m2) = 1]− Pr[A′(g, gx, gy, gz · m2) = 1]| ≤ ǫ. (3.2)

8 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

Since multiplying a random element by a fixed element yields a random element, for
x, y, z ← Zq we have

Pr[A′(g, gx, gy, gz · m1) = 1] = Pr[A′(g, gx, gy, gz · m2) = 1]. (3.3)

¿From equations 3.1, 3.2, and 3.3, for x, y ← Zq we have

|Pr[A′(g, gx, gy , gxy · m1) = 1]− Pr[A′(g, gx, gy , gxy · m2) = 1]| ≤ 2ǫ.

Thus, the ElGamal scheme in the group Gp is indistinguishable under chosen plaintext
attack (IND-CPA). ⊓⊔

3.4 ElGamal on Polynomials with short exponents

When the ElGamal encryption is implemented in the group Gp, one normally uses a log p-
bit exponent. Depending on applications, however, the time for modular exponentiation by a
log p-bit exponent can be burdensome. Since the discrete logarithm problem in Gp is infeasible
by the Index Calculus Algorithm, one may consider the use of a subgroup of order p much
smaller than qd − 1 to speed up the encryption. For example, one may select the order p of
only 160 bits long, while qd − 1 is 1024 bits long. In this case, the ElGamal encryption is
secure. However, since the size of subgroup Gp is extremely small compared to that of group
(Fq[t]/f(t))

∗, the trial to convert a polynomial in (Fq[t]/f(t))
∗ to an element of group Gp by

adding randomness will succeed with a very small probability (≈ 1/2864).
Therefore, we take a different approach and propose a semantically secure ElGamal on

polynomials with a short exponent in the subgroup Gp of order p, where p ≈ qd − 1 and the
exponent size is 160 bits (assuming the 80-bit security level). This scheme is semantically
secure under the SI-DDH assumption. Its full description is in Figure 1. Note that the ex-
ponents, x and r, are selected from a 160-bit short interval: other elements (i.e., g(t),M ′(t))
are selected in Gp.

Theorem 3. The ElGamal scheme in Figure 1 is semantically secure against chosen plain-
text attack (IND-CPA) under the SI-DDH assumption.

Proof. The proof is the similar to that of Theorem 2. The difference is that the SI-DDH
assumption is used and the domains for x, y, z are accordingly adjusted as: x, y ∈R [1, 2ℓ] and
z ∈R [1, 22ℓ].

4 Privacy Preserving Multiset Union (PPMU) Protocol Using ElGamal
on Polynomials

First, we propose a protocol for the honest-but-curious model. Then, we consider a possible
attack and its counter-measure, and extend our honest-but-curious protocol to the malicious
model.

4.1 Protocol for the Honest-But-Curious (HBC) Model

Let Si be the input set of party Pi (1 ≤ i ≤ n) and (Si)j be the j-th element of set Si.
Assume that |Si| for all i is k and d > nk. Our protocol allows all the parties to learn the
union S1 ∪ S2 ∪ · · · ∪ Sn with multiplicity, but the parties do not know which set an element
comes from. The secret key x corresponding to the public key is shared to all the parties.

Constant-Round Privacy Preserving Multiset Union 9

Let ℓ be defined by a security parameter and k be the number of elements. Let S
be a multiset {m1, · · · ,mk} where mi ∈ Zq and k < d.

KeyGeneration (ℓ, d)
1. Select q and d such that k < d and p|(qd − 1), where q and p are primes

and qd − 1 = ap.
2. Select an irreducible polynomial f(t) ∈ Fq[t] with degree d and a generator

g(t) from Gp.
3. Randomly choose a secret key x ∈R [0, 2ℓ] and compute y(t) =

g(t)x mod f(t).

Then K = {(f(t), g(t), x, y(t)) : y(t) ≡ g(t)x mod f(t)}. The polynomial f(t), g(t),
and y(t) are public keys (pk), and an integer x is a secret key.

Encryption (S, pk)
Randomly select Ri until M

′(t) =
∏k

i=1(t−m′

i) is in Gp, where m′

i ← mi||Ri.

Epk(M
′(t)) = (u(t), v(t)) = (g(t)r, y(t)r ·M ′(t)) mod f(t)

where r ∈R [0, 2ℓ].

Decryption (u(t), v(t), x)

v(t)/u(t)x mod f(t) =
k
∏

i=1

(t−m′

i)

Obtain the multiset {m1, · · · , mk} by factoring f(t) and removing Ri’s.

Fig. 1. Semantically secure ElGamal under the SI-DDH assumption

Define a key set

K = {(f(t), g(t), x, y(t)) : y(t) ≡ g(t)x mod f(t)} (4.1)

where g(t), y(t) are public keys and x is a private key.

In encryption phase, each party Pi calculates a polynomialM ′

i(t) = (t−(Si)
′

1) · · · (t−(Si)
′

k)
where (Si)

′

j ← (Si)j ||Rij for random Rij until M ′

i(t) belongs to Gp. Each party encrypts it

with a random ri ∈R [0, 2ℓ] as

Ci(t) = (g(t)ri , y(t)ri ·M ′

i(t)) mod f(t) (4.2)

and broadcasts it to all other parties. Then, every party simultaneously can compute the
encryption of multiplication of polynomials using the multiplicative homomorphic property
of ElGamal cryptosystem.

C(t) = (g(t)r1+···+rn , y(t)r1+···+rn ·
n
∏

i=1

M ′

i(t)) (4.3)

Note that total degree nk of product of polynomials should be less than the degree d of
polynomial f(t).

In decryption phase, for a given ciphertext C(t) all the parties perform a group decryption
(i.e., (n, n)-threshold decryption) [4] to obtain product of polynomials. Then, all the parties
learn all of the elements in the polynomial by using polynomial factoring. Using a square-free

10 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

decomposition and the Cantor-Zassenhaus algorithm [22], it is possible to factor polynomials
over finite fields. Also, it runs in expected polynomial time.

Note that this scheme can be easily combined with a threshold ElGamal cryptosystem to
provide a PPMU scheme without TTP [17].

Security Analysis The only information that an honest-but-curious adversary can obtain
is the encryptions of the sets of other parties or PPMU. Therefore, the adversary cannot
obtain any element of other parties since the ElGamal on polynomials is semantically secure.

4.2 Protocol for the Malicious (MAL) Model

Protocol Malicious Protocol for PPMU

Input: There are n > 2 parties Pi with a private input set Si, such that |Si| = k,
where d > nk is the degree of an irreducible polynomial f(t). Let H be a hash
function from {0, 1}∗ to {0, 1}ℓ where ℓ is defined by a security parameter.

Output: PPMU of S1, · · · , Sn

[Set up]
Each party Pi for 1 ≤ i ≤ n:

1. computesM ′

i(t) =
(

t−(Si)
′

1

)

· · ·
(

t−(Si)
′

k

)

where (Si)
′

j ← (Si)j ||Rij for random
Rij of which length is ℓ. If M ′

i(t) belongs to Gp then go to the next step;
otherwise repeat step 1.

2. encrypts M ′

i(t) with random ri ∈R [0, 2ℓ] as

Ci(t) = (ui(t), vi(t)) = (g(t)ri , y(t)ri ·M ′

i(t)) mod f(t).

[Step 1] Commitment
Each party Pi broadcasts hi to all the parties where hi = H(Ci(t)||POPKi) for
POPKi = ZK{ri|ui(t) = g(t)ri}. (Note that we use non-interactive version for
the proof of knowledge of the discrete logarithm.)

[Step 2] Broadcast Ciphertexts
Each party Pi collects all hj ’s from other parties, and then broadcasts the
ciphertext Ci(t) to all other parties with POPKi = ZK{ri|ui(t) = g(t)ri}.

[Step 3] Union
Each party Pi receives all Cj(t)’s and POPKj ’s from other parties and verifies if
hj = H(Cj(t)||POPKj) for all j’s. If verification fails then ‘reject’ the protocol.
Otherwise, each party Pi multiplies all Cj(t)’s.

[Step 4] Decryption
All the parties perform (n, n)-threshold decryption to obtain the polynomial
∏n

i=1 M
′

i(t). If the form of the polynomial
∏n

i=1 M
′

i(t) is a product of nk linear
factors, they ‘accept’ the result. Otherwise, ‘reject’.

All the parties learn PPMU of S1, · · · , Sn by performing polynomial factoring.

Fig. 2. Malicious Protocol for PPMU

In the malicious adversary model, an adversary can deviate from the protocol in an
arbitrary fashion. Our honest-but-curious protocol does not prevent a malicious party from
encrypting a fake polynomial after seeing other parties’ polynomials. For example, consider

Constant-Round Privacy Preserving Multiset Union 11

the following situation. Let us assume that P1 and P2 broadcast their encryptions C1(t)
and C2(t), respectively, and a malicious party P3 prepares an arbitrary polynomial C ′

3(t).
If the malicious P3 broadcasts C3(t) := C ′

3(t) ·
∏2

i=1Ci(t)
−1 mod f(t) as its encryption,

after seeing C1(t) and C2(t), then P1 and P2 will get C ′

3(t) as the result of multiplication of
∏3

i=1Ci(t). Thus P1 and P2 receive a wrong result from the protocol. However, this guessing
and removing attack can be blocked by randomizing the set input. In particular, we can
avoid the attack by attaching an input element with a large random number of which length
is in the security parameter. Thus, random padding in our protocol has two goals: making
ElGamal semantically secure and avoiding the guessing and removing attack.

To extend our results to provide security against malicious adversaries, we also employ
commitments and zero-knowledge proofs. The full decryption of the protocol is in Fig. 2.

Security Analysis We show that we can make a simulator S which translates any behavior
of a malicious party A∗ in the real model into the behavior of the party in the ideal model.
Hence A∗ in the real model gains no information other than what can be deduced in the ideal
model. The following theorem is a formal statement of this property.

Theorem 4. For any malicious party A∗, a simulator S in the ideal model exists in the
random oracle model, such that the views of malicious party A∗ and the honest parties in
the real model is computationally indistinguishable from the views of the parties in the ideal
model.

Proof. Simulator S in the ideal model attempts to respond to malicious party’s messages on
behalf of honest parties, except that it never tell the inputs with which protocols are executed.
For the simplicity of description we assume one malicious party A∗ in this proof. Extension to
multiple malicious parties is straightforward. The following sketch of how S operates suffices
to show that the theorem holds.

1. For each simulated honest party Pi, S chooses a random commitment value hi ←
{0, 1}ℓ and performs step 1 of the protocol: S sends hi to A∗ and receives h∗ from A∗. (The
distribution of hi is uniform in the range of H.)

2. If there is no H query that outputs h∗, S stops. (In the random oracle model, the
success probability of protocol is negligible without H query that outputs h∗.)

3. S extracts polynomial M∗(t) from the hash inputs corresponding to h∗. Note that
inputs contain the proof of plaintext knowledge. If inputs are not extractable, S stops. (In
real world, if all the proofs of plaintext knowledge are not verified, the protocol fails.)

4. S obtains the roots of polynomial M∗(t). If the number of roots is not k, S stops.
(The malicious party tries to generate an encryption message on forged polynomials, for
example, hoping to eliminate any linear factor in multiplication of linear factors in the real
protocol. However, since the probability of the correct guessing of any linear factor is negligible
and every party verifies the total number of elements after (n, n)-threshold decryption, the
adversary is forced to generate encryption on a polynomial with k roots.)

5. S submits the set represented by these roots to the trusted third party. The honest
party submits their private input sets to the trusted third party. The trusted third party
returns the multiset union U to S and the honest players.

6. S chooses a set of polynomials M ′

i(t) such that
∏n

i=1 M
′

i(t) = U(t)/M∗(t) where U(t)
is the polynomial representation of U . S sets hi as the hash query on inputs (C ′

i(t)||POPKi),
where C ′

i(t) is the encryption of M ′

i(t). (In this way, the second round message for each honest
party is correctly formed so that the output of the protocol matches that of the trusted third
party.)

12 Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon

7. S follows the rest of the protocol with A∗ from step 2 and A∗ learns the multiset union.

Note that the malicious party A∗ cannot distinguish whether it interacts to S (in the ideal
model) or it interacts to other honest parties (in the real world), and all parties learn the
correct answer, in both the real and ideal models.

Extension to multiple malicious parties is simple: in the above step 4, S multiplies all
polynomials and computes the roots of the polynomial. If the number of roots is not ck
where c is the number of malicious parties, S stops.

5 Performance Analysis

In this section, we compare the performance of our PPMU protocol with that of Kissner and
Song (KS)’s Multiset Union which uses their own ‘Shuffling Protocol’ in [13]. In KS’s, to
make an encryption of multiset union, the first party P1 encrypts the k number of coefficients
of his polynomial on ZN2 and relays k ciphertexts to P2. The other party Pi(2 ≤ i ≤ n)
performs simple exponentiations in turn to compute the product of an encrypted polynomial
and his own unencrypted polynomial and relays ik ciphertexts.

Communication Round Regardless of whether the base network is a broadcast medium
or a unicast medium, in the KS protocol, each party relays ciphertexts to the next party
in turn. Thus, the n number of communication rounds are required. On the other hand, on
the broadcast medium our protocol consists of constant-rounds because parties multiply all
ciphertexts in parallel, without any relay.

Communication Cost In the KS protocol, since Pi relays the ik number of ciphertexts to
Pi+1, the total number of bits needing to be transferred is (k+2k+3k+ · · ·+nk) · logN2 ≈
n2k logN . (Note that in Paillier cryptosystem ciphertexts are computed in mod N2.) On the
other hand, each party transmits only one ciphertext of size log qnk in our protocol, and the
total number of communication bits of our protocol is n2k log q. Therefore, our protocol has
the log q

logN times smaller communication size than KS’s. Recall that log q = log |S| + ℓ where
S is the domain of sets and ℓ is defined by the security parameter. For example, logN is
1024 and ℓ is 160 in the 80-bit security level. If |S| = 230, then log q = 30 + 160 = 190 and
log q
logN ≈ 0.19. That is, the communication size of our protocol is at least 5 times less than
that in the KS’s protocol, regardless of the communication medium, i.e., either broadcast or
unicast.

Computation Cost The encryption time is similar for ours and KS’s, but KS’s is slightly
better for large n and ours is better for large k. In KS’s protocol, P1 encrypts his own
polynomial in 2k exponentiation on ZN2 , and Pi(2 ≤ i ≤ n) performs ((i − 1)k + 1)(k + 1)
exponentiation to compute the encryption of the product of polynomials. Therefore, the
protocol totally requires O(n2k2) exponentiations. In our protocol, each party encrypts his
own polynomial in two exponentiations in Fqd . It totally involves only O(n) exponentiations.
However, our protocol performs operations over Fqd , hence two exponentiations involve a

constant number of multiplications over Fqd, which take O(dlog2 3) using Karatsuba method
or O(d log d log log d) by fast Fourier transform (FFT) [22]. Therefore, our protocol totally
requires O(n1+log2 3klog2 3) using Karatsuba method.

Polynomial Factoring A polynomial factoring algorithm is required in both KS’s and our
PPMU protocol at the last step. KS utilize an additively homomorphic cryptosystem which

Constant-Round Privacy Preserving Multiset Union 13

supports an efficient polynomial factoring algorithm. However, such a polynomial factoring
algorithm is not known yet. On the other hand, in our protocol, the set union, i.e., the result
of the PPMU protocol, is represented by an element in a finite field of known order, and there
exist efficient factoring algorithms running in the field. Using a square-free decomposition and
the Cantor-Zassenhaus algorithm [22], a polynomial of degree nk is factored in O((nk)2+o(1) ·
log q) operations in Fq.

6 Conclusion

In this paper, we propose constant-round protocols for privacy preserving multiset union using
ElGamal on polynomials. Our protocol improves communication overhead in comparison to
the previous protocol. We prove the security of our protocols in the random oracle model.

References

1. F. Boudot, B. Schoenmakers, and J. Traoré. A fair and efficient solution to the socialist millionaires’
problem. Discrete Applied Mathematics, 111(1-2):23–36, 2001.

2. J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In ASI-

ACRYPT, pages 236–252, 2005.
3. M. Chateauneuf, A. C. H. Ling, and D. R. Stinson. Slope packings and coverings, and generic algorithms

for the discrete logarithm problem. Journal of Combinatorial Designs, 11(1):36–50, 2003.
4. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, pages 307–315, 1989.
5. A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining.

In PODS, pages 211–222, 2003.
6. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In EURO-

CRYPT, pages 1–19, 2004.
7. K. B. Frikken. Privacy-preserving set union. In ACNS, pages 237–252, 2007.
8. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In CRYPTO, pages 368–387, 2001.
9. O. Goldreich. Foundations of Cryptography, volume 2. Cambridge University Press, 2004.

10. B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in electronic communities.
In ACM Conference on Electronic Commerce, pages 78–86, 1999.

11. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules on horizontally
partitioned data. IEEE Trans. Knowl. Data Eng., 16(9):1026–1037, 2004.

12. L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 241–257. Springer-Verlag, 2005.

13. L. Kissner and D. Song. Private and threshold set-intersection. Technical Report CMU-CS-05-113,
Carnegie Mellon University, February 2005.

14. H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In ASIACRYPT, pages
416–433, 2003.

15. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM Conference on Computer

and Communications Security, pages 116–125, 2001.
16. C. M. O’Keefe, M. Yung, L. Gu, and R. A. Baxter. Privacy-preserving data linkage protocols. In WPES,

pages 94–102, 2004.
17. T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract). In EUROCRYPT,

pages 522–526, 1991.
18. K. Peng, C. Boyd, E. Dawson, and B. Lee. An efficient and verifiable solution to the millionaire problem.

In ICISC, pages 51–66, 2004.
19. J. M. Pollard. Monte carlo methods for index computation mod p. Mathematics of Computation, 32.
20. Y. Sang and H. Shen. Privacy preserving set intersection based on bilinear groups. In ACSC, pages 47–54,

2008.
21. V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, pages 256–266,

1997.
22. V. Shoup. A computational introduction to Number Theory and Algebra. Cambridge University Press,

2005.
23. A. C. Yao. Protocols for secure computations. In Foundations of Computer Science, 1982. SFCS ’08.

23rd Annual Symposium on, pages 160–164, 1982.

