
Some Instant- and Practical-Time Related-Key
Attacks on KTANTAN32/48/64

Martin Ågren

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

martin.agren@eit.lth.se

Abstract. The hardware-attractive block cipher family KTANTAN was
studied by Bogdanov and Rechberger who identified flaws in the key
schedule and gave a meet-in-the-middle attack. We revisit their result
before investigating how to exploit the weakest key bits. We then de-
velop several related-key attacks, e.g., one on KTANTAN32 which finds
28 key bits in time equivalent to 23.0 calls to the full KTANTAN32 en-
cryption. The main result is a related-key attack requiring 228.44 time
(half a minute on a current CPU) to recover the full 80-bit key. For
KTANTAN48, we find three key bits in the time of one encryption, and
give several other attacks, including full key recovery. For KTANTAN64,
the attacks are only slightly more expensive, requiring 210.71 time to find
38 key bits, and 232.28 for the entire key. For all attacks, the requirements
on related-key material are modest as in the forward and backward di-
rections, we only need to flip a single key bit. All attacks succeed with
probability one. Our attacks directly contradict the designers’ claims.
We discuss why this is, and what can be learnt from this.

Keywords: cryptanalysis, related key, block cipher, key schedule, lightweight
cipher, key-recovery

1 Introduction

KTANTAN is a hardware-oriented block cipher designed by De Cannière, Dunkel-
man and Knežević. It is part of the KATAN family [4] of six block ciphers. There
are three variants KTANTANn where n ∈ {32, 48, 64}. All ciphers consist of 254
very simple, hardware-efficient rounds.

The only difference between KATAN and KTANTAN is the key schedule.
The goal with KTANTAN is to allow an implementation to use a burnt-in key,
which rules out loading the key into a register and applying some state updates
to it in order to produce subkeys. Instead, subkeys are chosen as original key
bits, selected according to a fixed schedule. This schedule is the same for all
three variants.

Aiming for a lightweight cipher, the designers of KTANTAN did not pro-
vide the key schedule as a large table of how to select the key bits. Rather,

a small state machine generates numbers between 0 and 79. In this way, key
bits can hopefully be picked in an irregular fashion. As shown by Bogdanov and
Rechberger [3], the sequence in which the key bits are used has some unwanted
properties.

We will revisit the result of Bogdanov and Rechberger. We adjust the pre-
sentation slightly, before using their observation to launch a related-key attack.
Bogdanov and Rechberger noted this as a possible direction of research, but did
not look into it further.

Related-key attacks have been known for almost twenty years [5, 1]. Like most
other related-key attacks, the ones presented in this paper are quite academic
in their nature. They are still a good measurement of the security of the cipher,
which should appear as an ideal permutation, and several notable properties
make the attacks in this paper very interesting:

1. They are minimal: they only require flipping one bit in the key and in several
cases, it is enough for the attacker to use only one triplet: one plaintext and
two ciphertexts.

2. They are extreme: we find a large number of key bits in time equivalent to
just a few encryptions. For KTANTAN32, the entire key can be found in
half a minute on a current CPU.

3. They never fail: All the properties exploited in this paper have probability
one, meaning the correct (partial) key always shows the property we look
for.

4. They directly contradict the designers’ claims. We will discuss why this is,
and what can be learnt from this.

The remainder of this paper is organized as follows: In Section 2 we describe
the cipher KTANTAN, and Section 3 introduces (truncated) differentials. Sec-
tion 4 discusses the result by Bogdanov and Rechberger [3]. Section 5 develops
our attacks on KTANTAN32, while we summarize our results on KTANTAN48
and KTANTAN64 in Section 6. In Section 7 we compare our results to the de-
signers’ original claims on related-key security before concluding the paper in
Section 8.

2 KTANTAN

The n-bit plaintext P = pn−1 . . . p0 is loaded into the state of the cipher, which
consists of two shift registers, L1 and L2, see Fig. 1. For KTANTAN32, these
are of lengths |L1| = 13 and |L2| = 19. The other variants use longer registers.

The 254 rounds are denoted as round 0, 1, . . . , 253. Each round uses two key
bits, kra and krb , which are picked straight from the 80-bit master key. The key
schedule is provided in Appendix A.

The contents of the registers are shifted, and the new bit in each register
(L1/L2) is created from five or six bits from the other register (L2/L1), through

L2

L1

fa

fb

IRr

krb

kra

018

19 31

Fig. 1. An overview of KTANTAN32. In each clocking, one shift is made and two
key bits, kra and krb , are added to the state. IRr is a round constant which decides
whether or not L1[3] is used in the state update or not. Indices denote how bits in the
plaintext/ciphertext are identified. L1 is shifted to the right and L2 to the left.

Table 1. The parameters defining KTANTANn, where n ∈ {32, 48, 64}.

n |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
32 13 19 12 7 8 5 3 18 7 12 10 8 3
48 19 29 18 12 15 7 6 28 19 21 13 15 6
64 25 39 24 15 20 11 9 38 25 33 21 14 9

some simple functions of degree two. For all versions of KTANTAN, the update
is specified by

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IRr)⊕ kra
fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ krb .

The indices are given by Table 1.
There is a round constant IRr, 0 or 1, which decides whether a certain bit

from L1 is included in the feedback to L2 or not, and is taken from a sequence
with long period in order to rule out sliding attacks and similar.

For KTANTAN32, one state update is performed per round. In KTANTAN48
and KTANTAN64, there are two resp. three updates per round using the same
key bits and round constant. This larger amount of state updates means the
state mixing is faster, making our attacks slightly more expensive on the larger
versions of KTANTAN. We use KTANTAN32 to describe our attacks but also
give the characteristics for the attacks on KTANTAN48/64.

Note how the key bits are added linearly to the state. Only after three clock-
ings will they start to propagate nonlinearly. This gives a very slow diffusion,
which we will be able to use in our attacks.

We adopt and refine the notation from [3]: define φr1,r2(S,K) as the partial
encryption that applies rounds r1, r1 + 1, . . . , r2 − 1 to the state S using key K.
Similarly, φ−1r1,r2(S,K) applies the decryption rounds r2 − 1, . . . , r1 + 1, r1 to the

state S using key K. This allows us to decompose the full KTANTAN as e.g.,
C = φ127,254(φ0,127(P,K),K).

The final encryption is denoted C = cn−1 . . . c0.

2.1 On Bit Ordering and Test Vectors

We denote the key K = k79 . . . k0 as in [3]. Test vectors for KTANTAN can
be produced by the reference code. As an example, the all-ones key and the
all-zeros plaintext produce the ciphertext 0x22ea3988. Unfortunately, this does
not highlight the bit order in the plaintext and, more importantly, the key. For
completeness and using the reference code given by the designers, we thus pro-
vide the key 0xfffffffffffffffffffe, plaintext 0x00000001, and ciphertext
0x8b4f0824 to indicate the bit orders involved.

3 (Truncated) Differentials

Differential cryptanalysis was publicly introduced by Biham and Shamir [2] in
1990. The idea is to study how a difference in the plaintext propagates through
the state of the encryption. If a partial key is correctly guessed, this property
should show up with some probability — ideally one but often very close to one
half — while a bad guess should lead to a more random behaviour.

Knudsen [6] extended the technique to truncated differentials, where similar
properties are studied only in some part of the state.

In [3], a differential is denoted by (∆P,∆K) → ∆S, where a difference in
the plaintext and key gives a difference in the state some number of rounds
into the encryption. We adopt and extend this notation. To denote truncated
differentials, i.e., differentials where we only know the differences in certain bit
positions, we will use a mask and a value denoted [mask : value]. As an example,
[00010a00:00010800] denotes a known difference in bits 16, 11, and 9. In bits
16 and 11, there is a difference, while there is a bit-equality in bit 9. For the
other bits, we do not know or care about the difference. In pseudo-C code, such
a mask-value pair could be used to identify a match by

if (((s1^s2)&mask) == value) { ... }.
In this paper, ∆K always involves only a single bit, so we will name this bit

specifically, e.g., as in (0, k32)→ [08075080 : 00000080].
With each (truncated) differential, there is also a probability that it holds. In

this paper, we only use differentials with probability one, which means there are
only false positives, which can be ruled out by repeated filtering, and no false
negatives. As a result, all attacks given in this paper have probability one of
succeeding. When we give data complexities, these will be the expected number
of samples needed to obtain a unique solution. Similarly, time complexities will
account for the work needed to rule out false alarms. We assume that an alarm
is raised with probability 2−b for a differential that involves b bits.

Due to the unicity distance, we will always need some extra material in order
to find a unique key. This is a fundamental property of KTANTAN as we can

Table 2. The nine most extreme key bits in both directions during encryption. Six
bits do not appear before round 111, while six others are not used after round 131.

Key bit Used first in round Key bit Used last in round

k13 109 k38 164
k27 110 k46 158
k59 110 k15 157
k39 111 k20 131
k66 123 k74 130
k75 127 k41 122
k44 136 k3 106
k61 140 k47 80
k32 218 k63 79

only access plaintexts and ciphertexts of 32 to 64 bits, but want to find a key
consisting of 80 bits.

4 A Previous Result on KTANTAN

Bogdanov and Rechberger [3] note that some key bits are not used until very
late in the cipher, while some others are never used after some surprisingly small
number of rounds, see Table 2. Given a plaintext–ciphertext pair, this results
in a guess-and-determine attack, where the “determine” part is a meet-in-the-
middle: Guess 68 key bits. Of the twelve remaining key bits, six are not used in
the first part of the cipher, meaning there are only 212−6 = 26 different states
after calculating φ0,111 from the plaintext. Similarly, there are 26 possible states
after calculating φ−1132,254 from the ciphertext. By checking the 212 combinations
for matches, one can find the key. In KTANTAN32, one can use eight bits in the
mid-cipher state to judge equality, so false positives should appear with rate 2−8.
Some additional plaintext–ciphertext pairs will help rule out the false positives,
but they are needed anyway due to the unicity distance.

Bogdanov and Rechberger dub this a 3-subset meet-in-the-middle attack and
give similar attacks for KTANTAN48 and KTANTAN64.

4.1 Reformulating the Attack

We note that the last step is not trivial, as the computations that need to be
carried out in order to check for matches are similar to calculating the round
functions themselves. Further, while the original authors choose to only use eight
bits for matching, we have found that one can even use twelve bits, given by the
mask 2a03cd44. This slightly lowers the complexity of the attack as one can
expect fewer false positives.

Summing up, we prefer to view the attack as follows:

1. Define Af = {k63, k47, k3, k41, k74, k20} and Ab = {k32, k61, k44, k75, k66, k39}.
2. Guess key bits K\(Af ∪Ab).

Table 3. Probabilistic truncated differentials on the full KTANTAN32.

Differential Probability

(0, k32)→ [00020000 : 00020000] .687 = .5 + .187
(0, k32)→ [40000000 : 00000000] .640 = .5 + .140
(0, k32)→ [40020000 : 00020000] .453 = .25 + .203

3. Compute 26 partial encryptions m0, . . . ,m63 using φ0,127 for each choice of
bit assignments for Af .

4. Compute 26 partial decryptions m′0, . . . ,m
′
63 using φ−1127,254 for each choice

of bit assignments for Ab.
5. For the 212 combinations, check twelve specific bits for equality:

if (((mi^m’j)&0x2a03cd44) == 0) { ... }.
Alarms will be raised with probability 2−12, so we expect one alarm.

6. Use some additional plaintext–ciphertext pairs to rule out false alarms.

An implementation improvement is to only calculate those 12 bits that we ac-
tually need. We have then reached something similar to the original formulation
of the attack, with the notable difference that we only perform the computations
involved in matching (φ111,127, φ−1127,132) once, during the 26-parts. (We can split
at any round between and including 123 and 127, and still get twelve known
(but different) bit positions to look at, but opted for 127 as it makes both halves
equally expensive to calculate.)

5 Related-Key Attacks on KTANTAN32

We first study further how k32 enters the key schedule very late. We then for-
mulate our attack idea and derive various attacks that find some parts of the
key.

5.1 On the Bad Mixing of k32

Key bit 32 is especially weak as it appears for the first time in round 218 of
254. We have thus studied this bit closer. It is worth noting that if the cipher
had used 253 rounds rather than 254, there would have been one ciphertext
bit that is linear in k32. That is, there is a 253-round differential (0, k32) →
[00040000 : 00040000] with probability one. The single bit involved is state bit
18 in Figure 1, i.e., the leftmost bit in L2. This bit is shifted out of the state in the
very last round, so such a probability-one differential is not available on the full
KTANTAN. However, there are some high-probability truncated differentials on
the full KTANTAN as given in Table 3. We do not exploit these differentials in
this paper, but note that they give a very non-random behaviour to the cipher.

5.2 The General Attack Idea

We will present several related-key attacks that recover some or all key bits. The
general outline of our attacks can be formulated as follows: We group key bits

into disjoint subsets A0, . . . , Al−1 of sizes si = |Ai|, i = 0, . . . , l−1. These subsets
do not necessarily need to collectively contain all 80 key bits. Define s =

∑
i si.

We attack these subsets one after another, i.e., when attempting to find the
correct bit assignments for Aj , we assume that we already know the correct bit
assignments for Ai, i = 0, . . . , j − 1. We then follow this simple outline:

1. Guess the bit assignments for Aj .
2. If the (truncated) differential matches, we have a candidate subkey.
3. If the (truncated) differential does not match, we discard the candidate sub-

key.

In the first step, we can make 2sj guesses for the subkey. Note that the last step
can be performed without risk, since all our differentials have probability one.
Due to this, we can immediately discard large numbers of guesses.

The second step of the attack can however give false positives. As already
noted, we assume that an alarm is raised with probability 2−b for a differential
that involves b bits. To discard the false alarms, we can recheck the differential
on more material.

After finding the key bits specified by ∪iAi, we can conclude by a brute force
for the remaining 80−s key bits. The total complexity would be 2s0 +. . .+2sl−1 +
280−s. However, the different operations in these terms have different costs. All
time complexities in this paper will be normalized to KTANTAN calls, and also
incorporate the expected increase of calculations due to false positives. We will
denote this time measurement t and it will, depending on context, refer to the
time required to recover either the full key or only some part of it.

5.3 A First Approach: Finding 28 Bits of the Key

Assume that we have a known plaintext P , and two ciphertexts C0, C1, where
the difference is that k32 has been flipped in the unknown key between the calcu-
lations of the two ciphertexts. During the calculations of these two ciphertexts,
the first 218 states followed the same development. Only after k32 entered could
the calculations diverge to produce different ciphertexts.

Bogdanov and Rechberger give the probability-1 differential (0, k32)→ 0 for
218 rounds. We note that this differential can be easily extended into 222 rounds,
still with probability 1: (0, k32)→ 00000008. The flipped bit in ∆S is the linear
appearance of k32.

We will use “triplets” consisting of one plaintext and two ciphertexts to
exploit these differentials. A first attempt to use such a plaintext–ciphertexts
triplet in an attack could look like this: We note that there are 42 key bits
used when decrypting into round 222, see Appendix B. We guess these bits and
denote them by K. Denote by K ′ the same partial key but with k32 flipped.
Calculate S0 = φ−1222,254(C0,K) and S1 = φ−1222,254(C1,K

′). For a correct guess,
both ciphertexts will decrypt into the same state S0 = S1.

However, we will have problems with false positives. The first key bits to
enter the decryptions, k71 and k7, will enter into a lot of nonlinearity meaning

Table 4. Key bits recovered in Sections 5.3 and 5.5. In the second set, the 11 reap-
pearing key bits have been underlined.

The 28 key bits guessed and found in Section 5.3, exploiting k32.
{k0, k1, k2, k4, k5, k7, k8, k11, k12, k14, k16, k17, k22, k27, k29,
k32, k34, k55, k56, k60, k62, k64, k66, k68, k69, k71, k73, k75}
The 40 key bits guessed and found in Section 5.5, exploiting k63.
{k7, k10, k11, k14, k15, k17, k19, k21, k22, k25, k26, k28, k30, k31,
k34, k35, k37, k38, k40, k41, k43, k45, k47, k49, k52, k53, k54,
k58, k60, k62, k63, k67, k68, k69, k70, k71, k74, k76, k77, k79}

that a wrong guess here should give different partial encryptions S0, S1 with high
probability. However, the very last bit we guess, k37, will only enter linearly, and
if the other 41 key bits are correct, we will have S0 = S1 no matter how we guess
k37.

Generalizing, we realize that the bits which enter the partial decryption “late”
will not affect the comparison of S0 and S1 at all as they enter only linearly. We
have found that there are only 28 key bits that affect the equality between S0

and S1. These bits are listed in Table 4.

We thus need to guess 28 bits and for each guess perform two partial de-
cryptions of 32 out of 254 rounds. The total number of round function calls is
expected to be 228 · 2 · 32 = 234, which corresponds to 234/254 ≈ 226.01 full
KTANTAN evaluations. Thus the total time complexity of finding 28 bits is
t ≈ 226. All time complexities in the remainder of the paper will be calculated
in this way.

By using brute-force for the remaining key bits, the entire key can be found
in time t ≈ 226 + 262 ≈ 262.

5.4 Making it Faster

Rather than guessing 28 bits at once, we note that we can apply a divide-and-
conquer approach to these bits, determining a few bits at a time. This will
significantly improve the complexity of the attack. Due to the slow diffusion, we
cannot find any truncated differential on 247 rounds or more for our purposes,
but for 246 rounds, there is (0, k32) → [80050800 : 00000800]. This differential
can be used to find three bits, A0 = {k11, k66, k71}, in time t ≈ 2−0.9. (That this
work is performed in time less than one unit results from the fact that we only
perform a small number of round calculations, compared to the full 254 rounds
that are calculated in one time unit.)

We now know these three bits specified by A0 and attempt to find more bits.
There is no useful 245-round differential, but the 244-round truncated differential
(0, k32) → [20054200 : 00000200] can be used to obtain one additional key bit,
specified by A1 = {k2}, with t ≈ 2−0.5.

Continuing with such small chunks, we can find the 28 bits with t ≈ 2−0.9 +
2−0.5 + . . . ≈ 23.0. All differentials involved are listed in Table 5.

5.5 Using One Ciphertext and Two Plaintexts

k32 appeared very late in the encryption, and we exploited this above. Similarly,
k63 is only used in the first 80 rounds, meaning that during decryption it shows
similar properties. With one ciphertext and two plaintexts, corresponding to a
secret key with a flipped k63, we can launch an attack similar to that above, with
a truncated differential involving a single bit. With A0 and using φ0,43, we guess
and obtain 40 bits, listed in Table 4, using 40 data and t ≈ 239.44. We can then
exploit k63 for more subsets A1, . . . , A15 and partial encryptions φ0,45, . . . , φ0,71,
finding in total 65 bits of the key still with t ≈ 239.44. Concluding with a brute
force for the remaining bits, we can find the entire key in t ≈ 239.44+215 ≈ 239.44.
All subsets, truncated differentials, etc. can be found in Table 6.

5.6 Going in Both Directions for a Practical-Time Key-Recovery

We first go backwards in time t ≈ 23.0 to find 28 bits as outlines above. We then
go forwards using k63. However, of the 40 bits we needed to guess above, we have
learnt 11 while using k32, so we only need to guess 29 bits. We have t ≈ 228.44.
Finally, we brute force the remaining 80− 28− 29 = 23 bits. The total cost for
finding the entire 80-bit key is t ≈ 23.0 + 228.44 + 223 ≈ 228.47.

A similar attack has been implemented, and requires less than five minutes
to recover the complete key using a single processor of a 2 Xeon E5520 (2.26
Ghz, quadcore). Utilizing all eight processors in parallel, the attack runs in 35
seconds. The implementation uses the more naive approaches for finding the first
28 bits, as this is easier to implement and leads to a total time complexity of
about t ≈ 228.71, which represents a negligible change from the attack described
in this section.

We can use k63 for finding more key bits, and also exploit several different
key bits. This attack does not require a concluding brute force, and recovers the
entire key in t ≈ 228.44. The truncated differentials involved can be found in
Table 5.

In Table 5, note especially the differential on a single state bit involving 29
unknown key bits. This gives a large data requirement in order to rule out false
positives, and gives a time complexity which dominates all other parts of the
full key recovery attack. Any time improvements we make in other partial key
recoveries will only be minor compared to this dominating term.

This leads to the interesting observation that if k32 had been stronger, i.e.,
appeared earlier in the key schedule, we might have been able to find more key
bits at a higher cost (> 23) using it. This would then have lowered the data and
time requirements for utilizing k63 which would have made the entire cipher less
secure. Of course, had both key bits been stronger, the attack would again have
become more expensive.

Table 5. The differentials used on KTANTAN32 in this paper. PCC means that the
differential is of type (∆P,∆K) → ∆S, where S is the state some rounds into the
encryption. Similarly, CPP means a differential (∆C,∆K) → ∆S, extending some
rounds into the decryption. (The ’Rounds’ column then denote the round into which
we decrypt, not the number of decryption rounds.) The ’#Key bits’ column counts
how many key bits need to be guessed. We also give the reduced number of guessed
key bits in Aj when we have already acquired a part of the key, ∪i<jAi, by using the
differentials found earlier in the table.

Type Rounds #Key bits Aj Differential

PCC 246 3 {k11, k66, k71} (0, k32)→ [80050800 : 00000800]
PCC 244 4/1 {k2} (0, k32)→ [20054200 : 00000200]
PCC 243 7/3 {k5, k7, k73} (0, k32)→ [1006a100 : 00000100]
PCC 242 8/1 {k4} (0, k32)→ [08075080 : 00000080]
PCC 241 11/3 {k32, k68, k75} (0, k32)→ [8407a840 : 00000040]
PCC 239 14/3 {k1, k34, k69} (0, k32)→ [a107ea10 : 80000010]
PCC 238 15/1 {k0} (0, k32)→ [d087f508 : 40000008]
PCC 237 17/2 {k8, k16} (0, k32)→ [e847fa84 : 20040004]
PCC 236 19/2 {k12, k17} (0, k32)→ [f427fd42 : 10020002]
PCC 234 20/1 {k64} (0, k32)→ [bd0fff50 : 04008000]
PCC 233 21/1 {k27} (0, k32)→ [de87ffa8 : 02004000]
PCC 232 22/1 {k29} (0, k32)→ [ef47ffd4 : 01002000]
PCC 231 24/2 {k14, k62} (0, k32)→ [f7a7ffea : 00801000]
PCC 230 25/1 {k60} (0, k32)→ [fbd7fff5 : 00400800]
PCC 229 27/2 {k22, k56} (0, k32)→ [fdeffffa : 00200400]
PCC 222 28/1 {k55} (0, k32)→ [ffffffff : 00000008]

CPP 43 40/29 A16 (see below) (0, k63)→ [00000001 : 00000001]
CPP 45 45/4 {k3, k9, k18, k33} (0, k63)→ [00000005 : 00000004]
CPP 46 49/2 {k20, k24} (0, k63)→ [0000000b : 00000008]
CPP 51 52/1 {k6} (0, k63)→ [0000017f : 00000108]
CPP 55 54/1 {k51} (0, k63)→ [000017ff : 00001080]
CPP 57 57/1 {k72} (0, k63)→ [00085fff : 00084200]
CPP 58 58/1 {k46} (0, k63)→ [0010bfff : 00108400]
CPP 60 59/1 {k23} (0, k63)→ [0042ffff : 00421000]
CPP 61 60/1 {k48} (0, k63)→ [008dffff : 00842000]
CPP 67 62/1 {k65} (0, k63)→ [237fffff : 21080000]
CPP 68 64/1 {k50} (0, k63)→ [46ffffff : 42100000]
CPP 71 65/1 {k36} (0, k63)→ [37ffffff : 10800000]

CPP 83 68/1 {k78} (0, k3)→ [00000155 : 00000040]

CPP 98 70/1 {k42} (0, k41)→ [000017ff : 00001080]
CPP 102 71/1 {k57} (0, k41)→ [00217fff : 00210800]

CPP 115 72/1 {k59} (0, k74)→ [046955ff : 04214008]
CPP 116 73/1 {k13} (0, k74)→ [08daabff : 08428010]
CPP 118 75/1 {k39} (0, k74)→ [237aafff : 210a0040]

PCC 172 70/2 {k44, k61} (0, k61)→ [00050000 : 00040000]

A16 = {k10, k15, k19, k21, k25, k26, k28, k30, k31, k35, k37, k38, k40, k41,
k43, k45, k47, k49, k52, k53, k54, k58, k63, k67, k70, k74, k76, k77, k79}

Table 6. The attack parameters for finding 65 key bits with t ≈ 239.44, exploiting k63.

Type Rounds #Key bits Aj Differential

CPP 43 40 A0 (see below) (0, k63)→ [00000001 : 00000001]
CPP 45 45/5 {k3, k5, k9, k18, k33} (0, k63)→ [00000005 : 00000004]
CPP 46 49/4 {k2, k20, k24, k73} (0, k63)→ [0000000b : 00000008]
CPP 47 51/2 {k1, k56} (0, k63)→ [00000017 : 00000010]
CPP 51 52/1 {k6} (0, k63)→ [0000017f : 00000108]
CPP 53 53/1 {k8} (0, k63)→ [000005ff : 00000420]
CPP 55 54/1 {k51} (0, k63)→ [000017ff : 00001080]
CPP 56 55/1 {k55} (0, k63)→ [00002fff : 00002100]
CPP 57 57/2 {k12, k72} (0, k63)→ [00085fff : 00084200]
CPP 58 58/1 {k46} (0, k63)→ [0010bfff : 00108400]
CPP 60 59/1 {k23} (0, k63)→ [0042ffff : 00421000]
CPP 61 60/1 {k48} (0, k63)→ [008dffff : 00842000]
CPP 65 61/1 {k16} (0, k63)→ [08dfffff : 08420000]
CPP 67 62/1 {k65} (0, k63)→ [237fffff : 21080000]
CPP 68 64/2 {k4, k50} (0, k63)→ [46ffffff : 42100000]
CPP 71 65/1 {k36} (0, k63)→ [37ffffff : 10800000]

A0 = {k7, k10, k11, k14, k15, k17, k19, k21, k22, k25, k26, k28, k30, k31,
k34, k35, k37, k38, k40, k41, k43, k45, k47, k49, k52, k53, k54,
k58, k60, k62, k63, k67, k68, k69, k70, k71, k74, k76, k77, k79}

5.7 Minimizing the Data Complexities

When using truncated differentials involving only a few bits, the probabilities of
getting false positives are high, which leads to large data requirements. For the
forward direction, we can use the 62-round differential (0, k63) → [011bffff :
01084000]. It requires guessing 41 bits and the false-alarm probability is 2−21.
The total time complexity for obtaining the full key then becomes t ≈ 239.97.
The data requirement is one and two triplets, respectively, in the backward and
forward directions.

6 Attacking KTANTAN48 and KTANTAN64

We summarize our results on KTANTAN32 in Table 7. Similar attacks can be
realized on the two other members of the KTANTAN family, i.e., KTANTAN48
and KTANTAN64. The corresponding complexities are found in Table 8 and
Table 9, respectively, and the differentials in Appendices C and D.

Complexities have been optimized in both dimensions: using a small amount
of related-key data, and using low time complexities.

We give full key-recovery attacks, but also some partial-key recoveries with
extremely low time complexities, similar to the 23.0 attack on KTANTAN32 for
28 bits. We also give costs on finding the smallest possible set of key bits.

Generally, the first step is done in the backwards direction, exploiting k32.
Following this, we switch to the forward direction and k63. For more advanced

Table 7. Characteristics for some attacks on KTANTAN32. We typically first go back-
wards, exploiting k32, then forwards using k63, then perhaps forwards exploiting several
other key bits before reverting to backwards, using k61. Slashes indicate shift of direc-
tion, commas separate needed triplets for different flipped key bits. Differentials and
other details are found in Tables 5 and 6.

KTANTAN32 80 bits 80 bits 28 bits 3 bits

Low time
Time 228.44 228.47 23.02 2−0.90

Data 1/29, 1, 1, 1/1 1/29 1 1

Low data
Time 239.44 239.97 as above as above

Data −/1 1/2 as above as above

Table 8. Characteristics for some attacks on KTANTAN48.

KTANTAN48 80 bits 36 bits 3 bits

Low time
Time 231.77 24.73 20.01

Data 3/32 3 3

Low data
Time 237.34 231.66 as above

Data 1/1 1 as above

attacks, we can use more key bits in the forward direction: k3, k41, k74. We may
then end using more backward calculations on k61. Attacks that require less data
are completed through a brute force.

Note that the benefit of using more data quickly becomes very marginal.
Thus, the implementation overhead may consume any theoretic advantage of
the extremely data-consuming attacks.

6.1 Possible Improvements

We have used a greedy approach for finding the differentials used in this paper. As
an example, on φ0,248, there is the truncated differential (0, k32)→ [00021000 :
00001000], but due to the slow diffusion we cannot find any key bits using it
with probability one. This forces us to use the differential (0, k32)→ [80050800 :
00000800] on φ0,247, where three key bits affect the differential so all three bits
need to be guessed. We could truncate this truncated differential further to only
involve a single bit, possibly allowing us to only guess a single key bit. In this

Table 9. Characteristics for some attacks on KTANTAN64.

KTANTAN64 80 bits 38 bits 13 bits

Low time
Time 232.28 210.75 210.71

Data 13/17 13 13

Low data
Time 236.54 230.53 as above

Data 1/1 1 as above

way, we could perhaps partition the 28 bits that can be recovered using k32 into
28 subsets A0, . . . , A27, and reach a very small time complexity for the attack.
We have not investigated this optimization as the time complexities are already
impressive enough.

Note that for the key recovery attack on KTANTAN32 the time complexity
is dominated by exploiting k63 to find the 29-bit subkey defined by A16 (see
Table 5). For this, we already use a one-bit truncated differential so this cannot
be improved by the technique outlined above.

7 Comparison to Specification Claims

In the specification of KTANTAN, the authors state the design goal that “no
related-key key-recovery or slide attack with time complexity smaller than 280

exists on the entire cipher” [4]. They also claim to have searched for related-key
differentials on KTANTAN. However, it appears the approach has been ran-
domized over the huge space of differences in plaintext and key. With hindsight,
the authors should have made sure to try differentials where we flip only some
small number of plaintext or key bits. This strategy would have been a good
choice due to the bitwise and irregular nature of the key schedule coupled with
the slow diffusion of the state. If all key bits had been investigated individu-
ally, it would have become apparent e.g., that k32 could not affect encryptions
before round 218, that one state bit in KTANTAN32 only contained this key
bit linearly until the very last round, and that there are some high-probability
truncated differentials on the full KTANTAN32.

Note that the first reference implementation of KTANTAN provided by the
designers used an incorrect key schedule. The pre-proceedings version of [3] only
improved the exhaustive search slightly, while with the correct key schedule, i.e.,
the one described in the design document, the attack eventually published in [3]
gave a more significant speedup. As the incorrect key schedule was in a sense
better than the intended one, the original search for related-key differentials
might have indicated a better behaviour of the cipher than one carried out with
the correct key schedule. Still, even on the incorrect key schedule, using low-
weight differentials would have alerted the designers to the unwanted behaviour
of some key bits.

8 Conclusion

We have presented several weaknesses related to the key schedule of KTANTAN.
We first noted how the exceptionally weak key bit k32 allowed for a nonrandom-
ness result on KTANTAN32.

As the main result, we then derived several related-key attacks allowing for
(partial-)key recovery: With a single triplet, 3 bits can be found in time 2−0.90

and 28 bits can be obtained in time 23.0. Using one triplet in the backward
and 29 in the forward direction, the full 80-bit key is recovered in time 228.47.
Requiring only three triplets, the full key is instead recovered in time 239.97. Our

implementation of one of the attacks verifies the general attack idea and the
specific results.

Finally, note that none of these attacks are directly applicable to KATAN.
The slow diffusion, which allowed for e.g., the 23.0-attack on 28 bits, is present
also in KATAN, but one needs a weak key bit in order to exploit this.

For the design of future primitives with a bitwise key schedule such as the
one in KTANTAN, we encourage designers to carefully study how individual key
bits are used, either by specifically ensuring that they are used both early and
late in the key schedule, or by investigating all differentials of modest weight.

Acknowledgment

This work was supported by the Swedish Foundation for Strategic Research
(SSF) through its Strategic Center for High Speed Wireless Communication at
Lund. The author wishes to thank Andrey Bogdanov and Christian Rechberger
for their valuable comments, and the anonymous reviewers for their insightful
remarks.

References

1. E. Biham. New types of cryptanalytic attacks using related keys. Journal of Cryp-
tology, 7(4):229–246, 1994.

2. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, 1993.

3. A. Bogdanov and C. Rechberger. A 3-subset meet-in-the-middle attack: cryptanaly-
sis of the lightweight block cipher KTANTAN. In Selected Areas in Cryptography—
SAC 2010, volume 6544 of Lecture Notes in Computer Science, pages 229–240.
Springer-Verlag, 2010.

4. C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In Cryptographic Hard-
ware and Embedded Systems—CHES 2009, volume 5747, pages 272–288. Springer-
Verlag, 2009.

5. L. R. Knudsen. Cryptanalysis of LOKI 91. In J. Seberry and Zheng Y, editors,
Advances in Cryptology—AUSCRYPT’92, volume 718 of Lecture Notes in Computer
Science, pages 196–208. Springer-Verlag, 1993.

6. L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast
Software Encryption’94, volume 1008 of Lecture Notes in Computer Science, pages
196–211. Springer-Verlag, 1995.

A The Key Schedule of KTANTAN

r kra k
r
b r kra k

r
b r kra k

r
b r kra k

r
b r kra k

r
b r kra k

r
b r kra k

r
b r kra k

r
b

0 63 31 1 31 63 2 31 63 3 15 47 4 14 14 5 60 76 6 40 40 7 49 17
8 35 67 9 54 22 10 45 77 11 58 26 12 37 69 13 74 10 14 69 69 15 74 10
16 53 21 17 43 43 18 71 7 19 63 79 20 30 62 21 45 45 22 11 11 23 54 70
24 28 60 25 41 41 26 3 19 27 38 70 28 60 28 29 25 73 30 34 34 31 5 21
32 26 74 33 20 52 34 9 41 35 2 18 36 20 68 37 24 56 38 1 33 39 2 2
40 52 68 41 24 56 42 17 49 43 3 35 44 6 6 45 76 76 46 72 8 47 49 17
48 19 51 49 23 55 50 15 63 51 14 46 52 12 28 53 24 72 54 16 48 55 1 49
56 2 34 57 4 20 58 40 72 59 48 16 60 17 65 61 18 50 62 5 53 63 10 58
64 4 36 65 8 8 66 64 64 67 64 0 68 65 1 69 51 19 70 23 55 71 47 47
72 15 15 73 78 78 74 76 12 75 73 9 76 67 3 77 55 23 78 47 47 79 63 31
80 47 79 81 62 30 82 29 77 83 26 58 84 5 37 85 10 26 86 36 68 87 56 24
88 33 65 89 50 18 90 21 69 91 42 42 92 5 5 93 58 74 94 20 52 95 25 57
96 3 51 97 6 38 98 12 12 99 56 72 100 16 48 101 33 33 102 3 3 103 70 70
104 60 28 105 41 41 106 67 3 107 71 71 108 78 14 109 77 13 110 59 27 111 39 39
112 79 15 113 79 79 114 62 30 115 45 45 116 59 27 117 23 71 118 46 46 119 13 29
120 42 74 121 52 20 122 41 73 123 66 2 124 53 69 125 42 42 126 53 21 127 27 75
128 38 38 129 13 13 130 74 74 131 52 20 132 25 57 133 35 35 134 7 7 135 62 78
136 44 44 137 73 9 138 51 67 139 22 54 140 29 61 141 11 43 142 6 22 143 44 76
144 72 8 145 65 65 146 50 18 147 37 37 148 75 11 149 55 71 150 46 46 151 77 13
152 75 75 153 70 6 154 61 29 155 27 59 156 39 39 157 15 31 158 46 78 159 76 12
160 57 73 161 34 34 162 69 5 163 59 75 164 38 38 165 61 29 166 43 75 167 70 6
168 77 77 169 58 26 170 21 53 171 43 43 172 7 23 173 30 78 174 44 44 175 9 25
176 18 66 177 36 36 178 9 9 179 50 66 180 36 36 181 57 25 182 19 67 183 22 54
184 13 45 185 10 10 186 68 68 187 56 24 188 17 49 189 19 51 190 7 39 191 14 30
192 28 76 193 40 40 194 1 1 195 66 66 196 68 4 197 57 25 198 35 35 199 55 23
200 31 79 201 30 62 202 13 61 203 10 42 204 4 4 205 72 72 206 48 16 207 33 33
208 51 19 209 39 71 210 78 14 211 61 77 212 26 58 213 21 53 214 11 59 215 6 54
216 12 44 217 8 24 218 32 64 219 64 0 220 49 65 221 18 50 222 37 37 223 11 27
224 22 70 225 28 60 226 9 57 227 2 50 228 4 52 229 8 40 230 0 0 231 48 64
232 32 32 233 65 1 234 67 67 235 54 22 236 29 61 237 27 59 238 7 55 239 14 62
240 12 60 241 8 56 242 0 32 243 0 16 244 16 64 245 32 32 246 1 17 247 34 66
248 68 4 249 73 73 250 66 2 251 69 5 252 75 11 253 71 7

B Key Bits Used in Round 222 and Forward

0 1 2 4 5 7 8 9 11 12 14 16 17 22 27 28 29 32 34 37 40
48 50 52 54 55 56 57 59 60 61 62 64 65 66 67 68 69 70 71 73 75

C Differentials for KTANTAN48

The differentials used on KTANTAN48 are given in Table 10.

Table 10. Similar to Table 5, this table gives the truncated differentials used on
KTANTAN48.

Type Rounds #Key bits Aj Differential

PCC 246 3/3 {k7, k11, k73} (0, k32)→ [000000010000 : 000000000000]
PCC 242 7/4 {k2, k4k32, k71} (0, k32)→ [000000010100 : 000000000000]
PCC 241 11/4 {k5, k64, k66, k75} (0, k32)→ [00000001c040 : 000000000000]
PCC 240 18/7 A3 (see below) (0, k32)→ [000c00007010 : 000000000000]
PCC 239 19/1 {k17} (0, k32)→ [700011c04000 : 000000000000]
PCC 238 20/1 {k56} (0, k32)→ [1c001c701000 : 000000000000]
PCC 237 23/3 {k12, k14, k60} (0, k32)→ [0c7001f1c400 : 000400000000]
PCC 236 24/1 {k62} (0, k32)→ [071c01fc7100 : 000100000000]
PCC 235 25/1 {k55} (0, k32)→ [1c701ff1c040 : 000040000000]
PCC 234 26/1 {k27} (0, k32)→ [871c1ffc7010 : 000010000000]
PCC 233 30/4 {k29, k54, k61, k67} (0, k32)→ [e1c71fff1c04 : 000004010000]
PCC 232 32/2 {k22, k65} (0, k32)→ [f871dfffc701 : 00000100c000]
PCC 230 33/1 {k48} (0, k32)→ [cf871ffffc70 : 000000100c00]
PCC 229 34/1 {k59} (0, k32)→ [f3e1dfffff1c : 000000040300]
PCC 225 36/2 {k40, k52} (0, k32)→ [fff3ffffffff : 000000003000]

CPP 54 53/32 A15 (see below) (0, k63)→ [000000000002 : 000000000000]
CPP 55 54/1 {k6} (0, k63)→ [000000000009 : 000000000000]
CPP 57 57/3 {k23, k46, k51} (0, k63)→ [00000000009f : 00000000000c]

A3 = {k0, k1, k8, k16, k34, k68, k69}
A15 = {k3, k9, k10, k15, k18, k19, k20, k21, k24, k25, k26, k28, k30, k31, k33, k35,
k37, k38, k41, k43, k45, k47, k49, k53, k58, k63, k70, k72, k74, k76, k77, k79}

D Differentials for KTANTAN64

The differentials used on KTANTAN64 are given in Table 11.

Table 11. Similar to Table 5, this table gives the truncated differentials used on
KTANTAN64.

Type Rounds #Key bits Aj Differential

PCC 241 13/13 A0 (see below) (0, k32)→ [0000000000000400 : 0000000000000000]
PCC 237 21/8 A1 (see below) (0, k32)→ [0000000704000000 : 0000000000000000]
PCC 236 27/6 A2 (see below) (0, k32)→ [00c000007e800000 : 0000000000000000]
PCC 235 29/2 {k29, k61} (0, k32)→ [f800007fc0100000 : 0000000e00000000]
PCC 234 30/1 {k22} (0, k32)→ [3f00007ff8020000 : 00000001c0000000]
PCC 233 32/2 {k54, k67} (0, k32)→ [c7e0007fff004000 : 0000000038000000]
PCC 232 33/1 {k65} (0, k32)→ [78fc007fffe00800 : 0000000007000000]
PCC 228 34/1 {k48} (0, k32)→ [f8c78ffffffffe00 : 0000070038000000]
PCC 226 36/2 {k40, k50} (0, k32)→ [ffe31e7ffffffff8 : 0000000000e00000]
PCC 225 38/2 {k9, k52} (0, k32)→ [fffc63ffffffffff : 00000000001c0000]

CPP 58 55/33 A10 (see below) (0, k63)→ [0000000000000003 : 0000000000000001]
CPP 59 59/2 {k46, k51} (0, k63)→ [000000000000001f : 000000000000000e]
CPP 69 65/1 {k36} (0, k63)→ [00000407ffffffff : 0000040380000000]

A0 = {k2, k4, k5, k7, k11, k17, k32, k64, k66, k69, k71, k73, k75}
A1 = {k1, k16, k34, k55, k56, k60, k62, k68}

A2 = {k0, k8, k12, k14, k27, k59}
A10 = {k3, k6, k10, k15, k18, k19, k20, k21, k23, k24, k25, k26, k28, k30, k31, k33,
k35, k37, k38, k41, k43, k45, k47, k49, k53, k58, k63, k70, k72, k74, k76, k77, k79}

