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Abstract

In many everyday scenarios, sensitive information must be shared between parties without com-
plete mutual trust. Private set operations are particularly useful to enable sharing information with
privacy, as they allow two or more parties to jointly compute operations on their sets (e.g., intersec-
tion, union, etc.), such that only the minimum required amount of information is disclosed. In the
last few years, the research community has proposed a number of secure and efficient techniques
for Private Set Intersection (PSI), however, somewhat less explored is the problem of computing the
magnitude, rather than the contents, of the intersection – we denote this problem as Private Set In-
tersection Cardinality (PSI-CA). This paper explores a few PSI-CA variations and constructs several
protocols that are more efficient than the state-of-the-art.

1 Introduction

Proliferation of, and growing reliance on, electronic information generate an increasing amount of
sensitive data stored and processed in the cyberspace. Consequently, there is a compelling need for
efficient cryptographic techniques that allow sharing information while protecting privacy. Among these,
Private Set Intersection (PSI) [15, 29, 18, 26, 19, 27, 12, 11, 22], and Private Set Union (PSU) [29,
19, 21, 16, 36] have recently attracted a lot of attention from the research community. In particular,
PSI allows one party (client) to compute the intersection of its set with that of another party (server),
such that: (i) server does not learn client input, and (ii) client learns no information about server input,
beyond the intersection. Efficient PSI protocols have been used as building blocks for many privacy-
oriented applications, e.g., collaborative botnet detection [32], denial-of-service identification [2], on-
line gaming [7], intelligence-community systems [24], location sharing [33], just to cite a few.

Nonetheless, in certain information-sharing settings, PSI and PSU functionalities offer very limited
privacy to server. Consider the following scenario where, after running PSI, the set intersection learned
by client corresponds to entire server input: server privacy is actually non-existent, while client’s is
fully preserved. This illustrates the need for server to enforce a policy, based on the cardinality of set
intersection/union, that governs whether it is willing to take part in PSI or PSU protocols. (We explore
this intuition in Section 6.)

*This is the extended version of the paper that appears in the 11th International Conference on Cryptology and Network
Security (CANS 2012) [9]
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This paper investigates Private Set Intersection Cardinality (PSI-CA) and Private Set Union Cardi-
nality (PSU-CA). These functionalities are appealing in scenarios where client is only allowed to learn
the magnitude – rather than the content – of set intersection/union. For instance, PSI-CA is useful in
social networking, e.g., when two parties want to privately determine the number of common connec-
tions (or interests) in order to decide whether or not to become friends. Moreover, PSI-CA is useful
to privately compare equal-size low-entropy vectors, e.g., to realize private computation of Hamming
Distance between two strings on an arbitrarily large alphabet: two parties may use PSI-CA, by treating
each symbol, together with its position in the string, as a unique set element, such that client privately
learns the number of elements (symbols) in common (thereby also obtaining the Hamming Distance).
Other relevant applications of PSI-CA include role-based association rule mining [28], affiliation-hiding
authentication [3], as well as to estimating the similarity of sample sets [6]. Finally, efficient PSI-CA
protocols are becoming instrumental to privacy-preserving genomic tests, as recently showed in [4].

1.1 Contributions

This paper focuses on PSI-CA – a cryptographic primitive, involving server (on input of a private
set S) and client (on input of a private set C), that results in client outputting |S ∩ C|. Computation of
PSI-CA naturally implies that of PSU-CA, since |S|, |C| are always mutually disclosed and |S ∪ C| =
|S|+ |C| − |S ∩ C|.

Although prior work has yielded some PSI-CA techniques (see Section 2), a number of open prob-
lems still remain to be addressed. This paper presents the following contributions:

1. We present a very efficient PSI-CA protocol that incurs computational and communication com-
plexities linear in the set sizes. Our protocol is secure under the DDH assumption in the Random
Oracle Model (ROM) against semi-honest adversaries. This protocol is a very close variant of the
protocol of Agrawal, Evfimievski, and Srikant [1], and our merit is really a security analysis of
this modification rather than the protocol itself.

2. We introduce the concept of Authorized PSI-CA (APSI-CA), whereby client input must be pre-
authorized by an off-line mutually-trusted authority, and present an appropriate protocol extension
with linear complexities (as opposed to quadratic in related prior techniques).

3. We show how to combine PSI-CA with PSI such that server can decide whether to allow client
to obtain the set intersection according to its policy, based on the size of the intersection itself
(privately obtained using PSI-CA). This first-of-a-kind approach is very efficient, as it requires
only one additional message on top of PSI-CA protocol.

Paper organization. Next section reviews related work. After preliminaries in Section 3, Section 4
presents our PSI-CA protocol. Then, Section 5 constructs a variant for APSI-CA, and finally, Section 6
sketches a three-round policy-based PSI variant. The paper concludes in Section 7.
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2 Related Work

2.1 (Authorized) Private Set Intersection and Union

Agrawal, Evfiviemski, and Srikant [1] introduce a Private Set Intersection (PSI) construction based
on commutative encryption.1 The protocol has linear complexity – that is, assuming that server and
client sets contain w and v items, respectively, computation and communication complexity amounts to
O(w + v). [1] also presents a variant that only discloses the size of the intersection – we review it in
Section 2.2 below.

The work in [15] propose a few protocols for Private Set Intersection (PSI) based on Oblivious Poly-
nomial Evaluations (OPE-s) and additively homomorphic encryption (e.g., Paillier [34]). The intuition is
to represent a set as a polynomial and its elements – as the polynomial’s roots. Client encrypts the coef-
ficients, that are then evaluated homomorphically by server. As a result, client learns the intersection and
nothing else. Client’s computation complexity amounts to O(w + v), and server’s to O(wv) exponen-
tiations. [15] proposes techniques to asymptotically reduce server workload to O(w log log v), by using
Horner’s rule and balanced bucket allocation. [19] obtains similar complexities while also offering PSU
techniques. Whereas, [29] extends OPE-s to more than two players, all learning the intersection/union,
with quadratic computational and linear communication complexities. Additional PSU constructs appear
in [21, 16, 36].

Other PSI constructs, such as [18, 26], rely on Oblivious Pseudo-Random Functions (OPRF-s) and
reduce computation overhead to a linear number of exponentiations. Recent results in the Random Oracle
Model (ROM) have led to very efficient PSI protocols, also with linear complexities, while using much
more efficient cryptographic tools. They replace OPRFs with unpredictable functions [27] and blind
signatures [12], with security under One-More-DH and One-More-RSA assumptions [5], respectively.
Finally, [11] achieves linear communication and computational complexities, using short exponents,
with security in the malicious model, while [22] shows a construction in the semi-honest model based
on garbled circuits [39] which, leveraging so-called Oblivious Transfer Extension [25], scales relatively
gracefully for very large security parameters.

Authorization of client input in PSI has been first investigated in [8] and [10]. Authorized Private
Set Intersection (APSI) is later formalized in [12] and [11] that construct efficient techniques with linear
complexity in the presence of, respectively, semi-honest and malicious adversaries. Finally, [37] pro-
poses Policy-Enhanced PSI, allowing two parties to privately share information while enforcing complex
policies. In this model, both parties’ sets must be authorized, and both parties obtain the intersection.

2.2 Private Set Intersection Cardinality

Prior work yielded several PSI-CA protocols:

• Agrawal, Evfimievski, and Srikant [1] present an adaptation of their PSI protocol to PSI-CA, also
secure under the DDH assumption in the presence of semi-honest adversaries. Their construction
is actually similar to ours (presented in Figure 1), although we also present two extensions.

• The PSI protocol by Freedman, Nissim, and Pinkas [15] can be extended to PSI-CA with the same
complexity, i.e., O(w log log v) computation and O(w + v) communication.

1It is quite interesting to observe that several PSI papers (e.g., [15, 27]) erroneously cite the work by Evfiviemski, Gerke,
and Srikant [13] as the work introducing commutative-encryption based PSI, which is, in fact, [1]. Also, observe that protocols
in [1] are essentially the same as those sketched earlier, in [23], although the latter provided no security analysis.
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• Hohenberger and Weis [20] present a PSI-CA construction, also based on [15], and with similar
(sub-quadratic) complexities.

• Kissner and Song [29] proposes a PSI-CA protocol for multiple (n ≥ 2) parties, incurringO(n2·v)
communication and O(v2) computational overhead.

• Vaidya and Clifton [38] construct a multi-party PSI-CA protocol, based on commutative one-way
hash functions [31] and Pohlig-Hellman encryption [35]. It incurs n rounds, and involvesO(n2 ·v)
communication and O(vn) computational overhead.

• Camenisch and Zaverucha [8] present an APSI variant (private intersection of certified sets) that
computes the cardinality of (certified) set intersection and incurs quadratic communication and
computation complexity.

3 Preliminaries

This section defines PSI-CA/PSU-CA functionalities, along with their privacy requirements, and
introduces computational assumptions.

3.1 Definitions

Definition 1 (Private Set Union Cardinality (PSU-CA)) A protocol involving server, on input a set of
w items S = {s1, . . . , sw}, and client, on input a set of v items C = {c1, · · · , cv}. It results in the latter
outputting |U|, where: U = S ∪ C.

Definition 2 (Private Set Intersection Cardinality (PSI-CA)) A protocol involving server, on input a
set of w items S = {s1, . . . , sw}, and client, on input a set of v items C = {c1, · · · , cv}. It results in the
latter outputting |I|, where: I = S ∩ C.

Informally, both PSI-CA and PSU-CA entail the following privacy requirements:

• Server Privacy. Client learns no information beyond: (1) cardinality of set intersection/union and
(2) upper bound on the size of S.

• Client Privacy. No information is leaked about client set C, except an upper bound on its size.

• Unlinkability. Neither party can determine if any two instances of the protocol are related, i.e.,
executed on the same input by client or server, unless this can be inferred from the actual protocol
output.

Remark: As mentioned earlier in the paper, for any C and S, the size of C ∪ S can be computed as
|C| + |S| − |C ∩ S|. Thus, privately computing cardinality of the intersection of C and S allows one to
privately compute the cardinality of their union as well. Consequently, the rest of the paper only focuses
on PSI-CA.

3.2 Computational Assumptions

DDH Assumption. Let G be a cyclic group and g be its generator. We assume that bit-length of group
size is l. The DDH problem is hard in G if, for every efficient algorithm A, the following probability is
a negligible function of κ:
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Client, on input Server, on input
C = {c1, . . . , cv} S = {s1, . . . , sw}

Rc ← Zq (ŝ1, . . . , ŝw)← Π(S)

∀i 1 ≤ i ≤ v : ∀j 1 ≤ j ≤ w : hsj = H(ŝj)
hci = H(ci);

ai = (hci)
Rc

{a1, . . . , av}
//

Rs ← Zq

∀i 1 ≤ i ≤ v : a′i = (ai)
Rs

(a′`1 , . . . , a
′
`v

) = Π′(a′1, . . . , a
′
v)

∀j 1 ≤ j ≤ w : bsj = (hsj)
Rs

∀j 1 ≤ j ≤ w : tsj = H ′(bsj)
∀i 1 ≤ i ≤ v:

{ts1, . . . , tsw}

{a′`1 , . . . , a
′
`v
}

oo

bci = (a′`i)
1/Rc mod q

∀i 1 ≤ i ≤ v:
tci = H ′(bci)

Output: |{ts1, . . . , tsw} ∩ {tc1, . . . , tcv}|

Figure 1: Proposed PSI-CA Protocol. All computation is mod p. Π and Π′ are random permutations.

∣∣Pr[x, y ← {0, 1}l : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ← {0, 1}l : A(g, gx, gy, gz) = 1]
∣∣

One-More-DH Assumption. Informally, the One-More-DH assumption [5] states that the DH problem
is hard even if the adversary is given access to a “DHx(·)” oracle. Formally, let (G, q, g)← KeyGen(κ)
the Key-Generation algorithm outputting a multiplicative group of order q and assume x← Zq. We say
that the One-More-DH problem is (τ, t)-hard if for every algorithm A that runs in time t we have:

Pr[{(gi, (gi)x)}i=1,···v+1 ← ADHx(·)(g1, · · · , gch)] ≤ τ

where ch > v and A made at most v queries to the DHx(·) oracle.

Gap-One-More-DH Assumption [27]. We say that that Gap-One-More-DH problem is hard if One-
More-DH is hard even when the adversary has access to a “DDH(·, ·, ·, ·)” oracle. Formally,

Pr[{(gi, (gi)x)}i=1,···v+1 ← ADHx(·),DDH(·,·,·,·)(g1, · · · , gch)] ≤ τ

where ch > v and A made at most v queries to the DHx(·) oracle.

To ease exposition, we replace the oracle DDH(·, ·, ·, ·) with DLx(·, ·) that, on input (a, b), returns 1
iff b = ax. Note, in fact, that the oracle DLx(·, ·) can be easily constructed from DDH(·, ·, ·, ·) and
DHx(·, ·) as DLx(·, ·) = DDH(a,DHx(a), ·, ·).

4 New PSI-CA and PSU-CA

This section presents our PSI-CA construction, secure in the presence of semi-honest adversaries in
the Random Oracle Model (ROM). We outline it in Figure 1. Protocol executes on common input of
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two primes p, q (where q|p− 1), a generator g of a subgroup of size q, and two hash functions (modeled
as random oracles), H : {0, 1}∗ → Z∗p and H ′ : {0, 1}∗ → {0, 1}κ, given the security parameter κ.
(Notation a← A denotes that a is chosen uniformly at random from A).

Intuition. First, client masks its set items (ci-s) with a random exponent (Rc) and sends resulting values
(ai-s) to server, which “blindly” exponentiates them with its own random value Rs. Server shuffles the
resulting values (a′i-s) and sends them to client. Then, server sends client the output of a one-way func-
tion, H ′(·), computed over the exponentiations of server’s items (sj-s) to randomness Rs. Finally, client
tries to match one-way function outputs received from server with one-way function outputs computed
over the shuffled (a′i-s) values, stripped of the initial randomness Rc. Client learns the set intersection
cardinality (and nothing else) by counting the number of such matches. As showed below, unless they
corresponding to items in the intersection, one-way function outputs received from server cannot be used
by client to learn related items in server’s set (under the DDH assumption). Also, client does not learn
which items are in the intersection as the matching occurs using shuffled a′i values.

Complexity. Protocol complexity is linear in the sizes of the two sets. Let |S| = w and |C| = v.
Client performs 2(v+1) exponentiations with short, i.e., |q|-bit, exponents modulo |p|-bit and v modular
multiplications. Server computes (v+w) modular exponentiations with short exponents and w modular
multiplications. In practice, one can select |p| = 1024 or |p| = 2048, and |q| = 160 or |q| = 224.
Communication overhead amounts to 2(v + 1) |p|-bit and w κ-bit values.

Semi-Honest Participants. We start with security in the semi-honest model. Note that the term ad-
versary refers to insiders, i.e., protocol participants. Outside adversaries are not considered, since their
actions can be mitigated via standard network security techniques.

Definition 3 (Correctness) If both parties are honest, at the end of the protocol, executed on on inputs
((S, v), (C, w)), server outputs ⊥, and client outputs (|S ∩ C|).

The following client and server privacy definitions follow from those in related work [15, 14, 18]. In
particular, as formalized in [17] (Sec. 7.2.2), in case of semi-honest parties, the traditional “real-versus-
ideal” definition framework is equivalent to a much simpler framework that extends the formulation
of honest-verifier zero-knowledge. Informally, a protocol privately computes certain functionality if
whatever can be obtained from one party’s view of a protocol execution can be obtained from input and
output of that party. In other words, the view of a semi-honest party (including C or S, all messages
received during execution, and the outcome of that party’s internal coin tosses), on each possible input
(C,S), can be efficiently simulated considering only that party’s own input and output.

Definition 4 (Client Privacy) Let ViewS(C,S) be a random variable representing server’s view during
execution of PSI-CA with inputs C,S. There exists a PPT algorithm S∗ such that:

{S∗(S, |S ∩ C|)}(C,S)
c≡ {ViewS(C,S)}(C,S)

Definition 5 (Server Privacy) Let ViewC(C,S) be a random variable representing client’s view during
execution of PSI-CA with inputs C,S. There exists a PPT algorithm C∗ such that:

{C∗(C, |S ∩ C|)}(C,S)
c≡ {ViewC(C,S)}(C,S)
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In other words, on each possible pair of inputs (C,S), client’s view can be efficiently simulated by
C∗ on input: C and |S ∩ C| (as well as v, w). Thus, as in [17], we claim that the two distributions
implicitly defined above are computationally indistinguishable. (Notation “

c≡” indicates computational
indistinguishability.)

We claim that the protocol in Figure 1 is correct under Definition 3 and secure under Definitions 4
and 5 above. Proof of such claims is provided next.

Proofs

Correctness. For any ci held by client and sj held by server, if ci = sj , hence, hci = hsj , we obtain:

tc`i = H ′(bc`i) = H ′(a`i
(1/Rc)) = H ′(hci

Rs) = H ′(hsj
Rs) = H ′(bsj) = tsj

Hence, client learns set intersection cardinality by counting the number of matching pairs (tc`i , tsj). �

Client Privacy. We claim that the views of server – i.e., S and ai = H(ci)
Rc for i = 1, . . . , v where

H is modeled as a random oracle – is indistinguishable from r1, . . . , rv with ri ← Zp. Therefore it is
possible to construct a PPT algorithm S∗ such that {S∗(S, |S ∩ C|)}(C,S)

c≡ {ViewS(C,S)}(C,S).

When v = 1, for any hc1 = H(c1) there exists Rc1 such that a1 = hc
Rc1
1 . Therefore, a1 is uniformly

distributed – i.e., distributed identically to r1.
For v ≥ 2, elements a1, . . . , av are indistinguishable from r1, . . . , rv assuming the hardness of DDH.

In particular, the existence of an efficient distinguisher D that outputs 0 when presented with r1, . . . , rv
and outputs 1 when it observes a1, . . . , av allows us to construct a simulator SIMs that violates the DDH
assumption, as follows.

Upon receiving a DDH challenge (ḡ, ḡx, ḡy, ḡz), SIMs:

• Selects random set C composed of v elements C = {c1, . . . , cv}, v−2 random values d1, . . . , dv−2
from Zq and Rc at random from Zq.

• Sends {a1, . . . , av} = {ḡy, ḡz, (ḡy)d1 , . . . , (ḡy)dv−2} to D.

• Answers queries for H as follows: H(c1) = ḡ; H(c2) = ḡx; H(ci) = ḡdi−2 for 3 ≤ i ≤ v and
with a random value otherwise. Queries and responses to H are stored by SIMS for consistency.

Note that if (ḡ, ḡx, ḡy, ḡz) is a Diffie-Hellman tuple, i.e. z = xy, then a1, . . . , av is distributed like
a1, . . . , av; thus, D must output 1. If (ḡ, ḡx, ḡy, ḡz) is not a Diffie-Hellman tuple, then a1, . . . , av is not
properly distributed (since a2 6= (H(c2))

y) and therefore D must output 0. As a result, SIMs can use
D’s output to respond to the DDH challenge correctly iff D’s output is correct. Therefore, D can only
answer correctly with negligible advantage over random guessing. �

Server Privacy. We show that client’s view can be efficiently simulated by a PPT algorithm SIMC , i.e.,
{SIMC(C, |S ∩ C|)}(C,S)

c≡ {ViewC(C,S)}(C,S). The simulator is constructed as follows:

1. SIMC builds two tables T1 = (u, h) and T2 = (u′, h′) to answer theH andH ′ queries respectively.
SIMC responds to a query u (resp. u′) with a value in h ← Zp for H (resp. h′ ← Zp for H ′), and
stores (u, h) in T1 ((u′, h′) in T2 resp.). SIMC uses T1, T2 to respond consistently to queries from
client.
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2. SIMC constructs a set TS = {ts1, . . . , tsw}, where tsi ← {0, 1}κ, and a random subset TS′ =
{ts′1, . . . , ts′|S∩C|} ⊆ TS, such that |TS′| = |S ∩ C|.

3. Then, SIMC adds |S∩C| distinct pairs (H(ci)
Rs , ts′i ∈ TS′) to T2 and continues to answer queries

to H and H ′ consistently using T1 and T2 as defined in Step 1.

4. Upon receiving {a1, . . . , av} from client, SIMC picks Rs ← Zq and computes a′i = aRs
i . Finally

SIMC sends Π′(a′i, . . . , a
′
v) and {ts1, . . . , tsw} to client.

Any efficient semi-honest client C∗ cannot distinguish between an interaction with an honest server
with input S = {s1, . . . , sw} and SIMC .

By construction,C∗’s view differs from the interaction with an honest server only in the way elements
{ts1, . . . , tsw} are constructed. Let distinguisher D be an algorithm that outputs 0 on input an element
from distribution:

D0 ={(H(s1), . . . ,H(sw)),Π(ts1 = H ′(H(s1)
Rs), . . . , tsw = H ′(H(sw)Rs)),

(a1 = H(c1)
Rc , . . . , av = H(cv)

Rc),Π′(a′1 = H(c1)
RcRs , . . . , a′v = H(cv)

RcRs)}hsi

and 1 on input an element from:

D1 =
{

(hs1, . . . , hsw),Π
(
ts1 = H ′(H(c1)

Rs), . . . , ts|S∩C| = H ′(H(c|S∩C|)
Rs),

ts|S∩C|+1 = H ′(r|S∩C|+1), . . . , tsw = H ′(rw)
)
, (a1 = H(c1)

Rc , . . . , av = H(cv)
Rc),

Π′(a′1 = H(c1)
RcRs , . . . , a′v = H(cv)

RcRs)}hsi

with r|S∩C|+1, . . . , rw random elements from Zp and where D is allowed to select the elements in sets
C = {c1, . . . , cv} and S = {s1, . . . , sv}. The existence of D violates the hardness assumption of
DDH: Let (g, gx, gy, gz) be a DDH challenge for simulator SIM, which interacts with D as follows:
SIM responds to H(x) queries from D with grhi for a random rhi ∈ Zq, and stores (x, grhi) in table
TH for consistency and to queries H ′(x) with a random string, using TH′ to store queries-response for
consistency.

W.l.o.g., letH(ci) = grhi ; SIM computes a′i = (gy)rhi·Rc and constructs ch = ((g, gx, gr3 , . . . , grw),
Π(ts1 = H ′(gy), ts2 = H ′(gz), ts3 = H ′((gy)r3), . . . , tsw = H ′((gy)rw)), (a1, . . . , av), (a

′
1, . . . , a

′
v))

with r3, . . . , rw random elements in Zp. Note that ch belongs to distribution D0 iff (g, gx, gy, gz) is a
proper Diffie-Hellman tuple, i.e., z = xy and to D1 otherwise. Moreover, while D can test for which
elements H ′(a′i) = tsj , pairs i, j are distributed as expected because of the permutation Π′. Therefore,
D has only negligible advantage in distinguishing the two distributions. �

5 Fast Authorized PSI-CA

We now introduce the concept of Authorized PSI-CA (APSI-CA). It extends “plain” PSI-CA to en-
force (pre-)authorization of client input. Similar to APSI [12] (reviewed in Section 2), APSI-CA involves
an offline trusted third party – Certification Authority (CA) – that provides client with authorizations (in
practice, signatures) to input into the set intersection cardinality computation.
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Client, on input Server, on input
C = {(c1, σ1), . . . , (cv, σv)} S = {s1, . . . , sw}
(∀i, 1 ≤ i ≤ v : σi

e = hci)

Rc ← ZN/2

∀i, 1 ≤ i ≤ v :

ai = (σi)
2Rc

{a1, . . . , av}
//

Rs ← ZN/2

∀i, 1 ≤ i ≤ v, tci = H ′((ai)
eRs)

(tc`1 , . . . , tc`v ) = Π(tc1, . . . , tcv)

∀j, 1 ≤ j ≤ w, bsj = (hsj)
Rs∀i, 1 ≤ j ≤ w :

tsj = H ′((bsj)
2Rc)

{bs1, . . . , bsw}

{tc`1 , . . . , tc`v}oo

Output: |{tc`1 , . . . , tc`v} ∩ {ts1, . . . , tsw}|

Figure 2: Authorized PSI-CA. All computation is mod N .

Definition 6 (Authorized PSI-CA (APSI-CA)) A protocol involving a server, on input of a set of w
items: S = {s1, · · · , sw}, and a client, on input of a set of v items with associated authorizations (i.e.,
signatures), C = {(c1, σi) · · · , (cv, σv)}. It results in client outputting |I∗|, where:

I∗ = {sj ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Verify(σi, ci) = 1}.

APSI-CA entails the following informal privacy requirements:

• Server Privacy (APSI-CA). The client learns no information beyond what can be inferred from the
protocol output, i.e., (1) cardinality of set intersection on authorized items and (2) upper bound on
the size of S.

• Client Privacy (APSI-CA). No information is leaked about items or authorizations in client set
(except an upper bound on their number).

• Unlinkability. Similar to PSI-CA, we require that neither server nor client can determine if any
two instances of the protocol are related, i.e., executed on the same input by client or server.

We illustrate our APSI-CA protocol in Figure 2. Observe that the CA is responsible for generating all
public parameters: on input the security parameter κ, it executes (N, e, d, g)← RSA.KGen(κ), where
g is a generator of QRN , and selects H : {0, 1}∗ → ZN ∗ (Full-Domain Hash) and H ′ : {0, 1}∗ →
{0, 1}κ (random oracles). The CA authorizes client input ci by issuing σi = H(ci)

d mod N (i.e., an
RSA signature). The protocol is executed between client and server, on common input (N, e,H,H ′).
We assume that server’s input (S) is randomly permuted before protocol execution to mask any ordering
of the items contained in it. Finally, hci and hsj denote, respectively, H(ci) and H(sj).

Similar to its PSI-CA counterpart, this APSI-CA has the following properties:
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• Correctness. For any (σi, ci) held by client and sj held by server, if: (1) σi is a genuine CA
signature on ci, and (2) ci = sj , hence, hci = hsj , we obtain: tc`i = H ′((σi)

2eRcRs) =
H ′((hci)

2RcRs) = tsj .

• Privacy. In this version of the paper, we only provide some intuition for our security arguments,
and defer to future work formal proofs. Client privacy is based on its input being statistically indis-
tinguishable from a random distribution in QRN . Arguments regarding server privacy are similar
to those for PSI-CA, thus, we do not repeat them here. We argue that if one could violate APSI-CA
server privacy, then the one would also violate server privacy of the APSI construct in Figure 1
of [11], proven secure under the RSA and DDH assumptions. Finally, note that the protocol is
unlinkable, given that random values, Rc, Rs, are selected fresh for each protocol execution.

• Efficiency. This APSI-CA protocol incurs linear computation (for both parties) and communica-
tion complexity. Specifically, client and server perform respectively O(w) and O(w+ v) modular
exponentiations. However, exponents are now taken in the RSA settings, while in PSI-CA can be
taken from a smaller group, thus, be much shorter (e.g., 160-bit vs 1024-bit long). Communication
complexity amounts to O(w + v). Note that this is significantly lower than related work, i.e., [8],
which incurs quadratic overhead (see Section 2.2).

6 Combining PSI-CA and PSI

As mentioned in Section 1, it is often desirable to privately assess the magnitude of the set intersec-
tion before engaging in an actual (private) set intersection computation. We are motivated by potential
concerns with respect to server privacy, arising in PSI executions where the intersection obtained by
client is close to the entire server set (i.e., |S ∩ C| ≈ |S|).

We now show how to combine our proposed PSI-CA construct with with PSI functionality, in order
to address such concerns. Specifically, rather than engaging in PSI, parties first run the PSI-CA protocol
with their client/server roles reversed. This way, server learns (only) the intersection cardinality and the
size of the parties’ inputs, and uses this information to decide whether to proceed with PSI. In case it de-
cides to proceed, client only needs to receive one more message from server to compute the intersection.
In other words, server defines a policy – based on the size of (i) the two sets and (ii) the intersection –
and only if the policy is satisfied, server engages in PSI protocol (thus, client privately obtains the set
intersection).

The resulting protocol is presented in Figure 3. In the first two rounds, server and client run PSI-CA
with their roles reversed (i.e., server learns the cardinality of the intersection), and, assuming server’s
policy is satisfied, the last round allows client to learn the set intersection. The same approach can be
used for other private set operations, such as PSU [19]. Indeed, similar concerns about server privacy
occur in a scenario where |C ∪ S| ≈ |C|+ |S|, and can again be addressed by running PSI-CA with roles
reversed. Observe that protocol in Figure 3 incurs complexities comparable to the underlying PSI-CA
(illustrated in Figure 1): only one additional message must be sent to realize policy-based PSI.

The security of this protocol, in presence of semi-honest adversaries, trivially stems from that of
the underlying PSI-CA. Nonetheless, we defer to future work extending our constructions to malicious
security. In fact, there is no guarantee that malicious parties maintain the same input over multiple
interactions or do not abort execution prematurely. This constitutes an interesting open challenge that we
defer to future work.
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Server, on input: Client, on input:
S = {s1, . . . , sw} C = {c1, . . . , cv}

Rs ← Zq (ĉ1, . . . , ĉv)← Π(C), with Π
random permutation

∀i 1 ≤ i ≤ v : ∀i 1 ≤ i ≤ v : hci = H(ĉi)
ai = (hsi)

Rs Rc ← Zq{a1, . . . , aw}
// ∀i 1 ≤ i ≤ w : a′i = (ai)

Rc

(a′`1 , . . . , a
′
`w

) = Π′(a′1, . . . , a
′
w)

∀j 1 ≤ j ≤ v : bcj = hcj
Rc

∀j 1 ≤ j ≤ v : tcj = H ′(bcj)∀i 1 ≤ i ≤ w :
{tc1, . . . , tcv}

{a′`1 , . . . , a
′
`w
}

oo

bsi = (a′`i)
1/Rs

∀i 1 ≤ i ≤ w, tsi = H ′(bsi)

T ∗ = {tc1, . . . , tcv} ∩ {ts1, . . . , tsw}

If Policy.isSatisfied(w,v,|T ∗|):
T ∗ // ∀ tcj ∈ T ∗: Output cj ∈ S ∩ C

Figure 3: Combining PSI-CA and PSI for a three-round policy-based Private Set Intersection protocol.
(All computation is mod p).

Remark: Our technique in Figure 3 is not to be confused with the concept of Policy-Enhanced PSI,
recently proposed by [37]. Using the latter, two parties privately obtain the intersection of their sets, while
enforcing policies pertaining what/how to share, based on policies and authorizations related to single
items. Whereas, policy enforced by server in our protocol is much simpler – it is based on the cardinality
of set intersection: depending on this (and on its relationship to set size), server decides whether or not
to disclose set intersection’s content to client. A vaguely comparable approach is so-called Knowledge-
oriented Multi-party Secure Computation [30], where each participating party is able to reason about the
increase in knowledge that other parties could gain as a result of the secure computation, and may choose
not to participate to restrict that gain.

7 Conclusion

This paper presented a protocol for PSI-CA, with linear computational and communication com-
plexities. It can be used to compute PSU-CA, without introducing any additional overhead. Then, we
presented two novel extensions. First, we introduced Authorized PSI-CA, or APSI-CA, that is useful
in settings where client input must be authorized by a certification authority. Then, we used PSI-CA to
realize a PSI protocol where server determines (in privacy-preserving manner) cardinality of set inter-
section before deciding whether or not to engage in a PSI interaction with client. Such an approach is
very efficient, as it requires only one additional message on top of our PSI-CA protocol.

We will release an optimized implementation of all protocols presented in this paper along with the
final version of the paper. As part of future work, we plan to investigate extensions to guarantee security
in the presence of malicious adversaries and in the UC framework.

Acknowledgments. We wish to thank Stanislaw Jarecki for his valuable feedback.
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