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Abstract—Any linear code can be used to construct a linear
secret sharing scheme. In this paper, it is shown how to decid
optimal linear codes (i.e., with the biggest information rde)
realizing a given access structure over finite fields. It amauots
to solving a system of quadratic equations constructed from
the given access structure and the corresponding adversary
structure. The system becomes a linear system for binary ced.
An algorithm is also given for finding the adversary structure
for any given access structure.

Index Terms—Cryptography, secret sharing, linear code, access
structure, adversary structure.

1) An access structure uniquely determines an adversary
structure and vice versa. We first give an algorithm for
finding the adversary structur® corresponding to a
given access structuie

We show that finding linear codes for an access structure
T" is equivalent to solving a system of quadratic polyno-
mial equations which is constructed frdmand R. The
given access structur is realizable by a linear code
over Fy, if and only if the system has a solution ov&y.
When the underlying field ig%, the system becomes a

2)

linear system, so can be solved in polynomial time (in
terms of the sizes of' and R).
3) We show how to reduce the number variables that are
used in the polynomial equations, hence speeding up
any algorithm for solving the polynomial system. This
seems to be the first algorithmic approach for the access
structure problem.
We propose an algorithm to construct the optimal linear
code realizing a given access structure if the ideal linear
code does not exist.

|I. INTRODUCTION

ECRET sharing schemes were first introduced by Blak-
ley [4] and Shamir [22] in 1979. Since then, many
constructions have been proposed. The relationship batwee
Shamir's secret sharing scheme and Reed-Solomon codes was
pointed out by McEliece and Sarwate in 1981 [18]. Later 4)
several authors have considered construction of secrehgha
schemes using linear error correcting codes. Massey adiliz
linear codes for secret sharing schemes and pointed out the
relationship between the access structure and the minimaRelated Works. The secret sharing schemes we consider
codewords of the dual code of the underlying codes [15h this paper are ideal and perfect. A secret sharing scheme
[16]. Several authors have investigated minimal codeworgiscalled ideal if the size of each share is equal to the size
for several classes of codes and characterized their accgfsthe secret, and called perfect if every subset of shares ca
structures [1], [2], [3], [10], [11], [21], [23]. Unforturtely, either reconstruct the secret or get no partial information
determining minimal codewords is an NP-hard problem fefll on the secret, that is, if a subset of the participants can
general linear codes. deduce any partial information on the secret then they can
As pointed out by Massey [17], the main problem is t@ompletely reconstruct the secret. The span program pegpos
characterize which access structures can be realized &grlinpy Karchmer and Widgerson [14] is a secret sharing scheme
codes. We call this the access structure problem. that can be perfect but not ideal. In their paper, an access
In [14], Karchmer and Widgerson gave a significant resudtructure corresponds to a monotone Boolean function. They
that there exists a linear code for any access structure@monshow how to compute monotone functions via matrices over
participants, however, there still exist the following pkems: finite fields (which correspond to generating matrices foedir
1) whether does there exist an ideal linear code realiziggdes). They pointed out that it is easy to realize any access
given access structure? how to construct it if it existsstructure via non ideal secret sharing schemes. Furtheltses
A linear code is ideal if the length of code is equal tdn this direction can be found in [5], [8], [9], [12], [13], A,
n + 1, wheren is the number of participants. [25].

how to gain the optimal linear code realizing given Qutline of the Paper. The paper is organized as follows. In
access structure if there is not ideal linear code? A lineggction 11, we recall the relationships between secretishar
code is optimal if the length of code is the shortesfchemes and linear codes. In Section Ill, we consider the
among all linear codes which realize the given accegsistence of linear codes over a finite field for a given
structure. Obviously, the length of optimal linear codgccess structure and present an efficient algorithm forrfandi

is bigger thamn + 1. the adversary structure for any given access structure. In
Our Contributions. Section IV, we give improvements on results in Section lll,
especially on what reducing the number of constraints reeede
from R. In Section V, an algorithm to find optimal linear code
is proposed.
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[l. SECRETSHARING SCHEMES AND LINEAR CODES A subsetS C [1,n] is called an access or accepted set of

A linear codeC' of lengthn + 1 overF, is simply a linear C if thereisc e G+ such thateo = 1 and
subspace oF”*!. If C has dimensior, thenC is generated
by the rows z)f ak x (n+ 1) matrix G = (80,81, " ;8n) supite) € SUA0},
of rank &, which is called a generating matrix @. There where supfc) = {i € [0,7n]|c; # 0}, called the support of
are several ways to use linear codes to construct secelf S is an accepted set then any set containthés also
sharing schemes [15], [21]. We focus mainly on secret sharigccepted. An access sgis called minimal if no proper subset
schemes that are perfect and ideal. of it is an access set. L&t(C) denote the set of all minimal
Suppose a secret is to be shared among participants, access sets ifi. Then a subse$ is an access set @f iff S
identified as1,...,n. We assume that the secretcan be contains one of the sets di{C).
viewed as an element in a finite fielt,. Let C' be a linear A subsetS is called a rejected set @ if it is not an access
code of lengthn + 1 overF, with dimensionk. To compute set. If S is a rejected set then its any subset is also rejected.
the shares ofs, a dealerD chooses a random codeword rejected subses is called maximal if every subset proper
t = (to,t1,-..,tn) € C such thatty = s. Thent; is the share containings is an access set. Lét(C) denote the set of all
for the participant, 1 < ¢ < n. More concretely, this can donemaximal rejected sets f.
as follows. Supposé& = (go,81, -+ ,8x) IS @ generating  Note that, given a cod€’, we do not know any efficient
matrix for C" where eacly; is a column vector of lengtlt.  aigorithm to find['(C'), as the problem of finding vectors of
Choose a random vectar = (u, ..., ux—1) € Fy such that minimum Hamming weight in an arbitrary linear code is NP-
s = ugy. There are altogethef'~! such vectors1 € Fy. The hard. In the next section, we shall show how to fiRdC)

dealerD computes the corresponding codeword from T'(C), and give necessary and sufficient conditions for
t = (to, 1, ., tn) = uG, an access structure to be realizable b)_/ linear co_des. _
Before we proceeds to the next section, we briefly mention
then securely sendg to participanti as a share foi = more general secret sharing schemes constructed fronr linea
L,2,..,n. codes. Suppose the secret is a ve¢ter. . ., s¢) of £ elements
The dual code”* of C is defined as from a finite fieldF,, and it is to be shared by participants
1,...,n. Letm > n. We use a linear cod€ of lengthm + /¢

1 n+1 t__
= F = i .
¢ {ce a |Ge =0}, over F, to get a secret sharing scheme as follows. Partition

that is, a vector € F*+! is in C iff c is orthogonal to all the set[l,m] = {1,2,...,m} as

codewords inC. If ¢ = (co,c1,...,cn) € C* with 0
(o, e1, - €n) ¢ 7 1,m]=TiUTaU--UT,.

then, for any codewords, t1, . ..,t,) € C, we have
LI Suppose”’ has a generator matrix of the form
K3
s=Y_ ——ti. (1)
i=1 0 G:(ul;-~-;u€;g17~-~7gm)7
Let . .
Se = {ill <i<n, ande; % 0} where the column vectons,, ..., u, are Imearly independent
c = =" t ’ overF,. To share a secréty, . . ., s¢), a dealer picks a random

Then the equation (1) implies that the secretan be recon- codeword

structed from the sharefs,i € S.. Now supposeS is an
as’ N pp y C:(Ul,---,U[,ﬁl,-..,t»m)EC

subset of[1,n] = {1,...,n}. The following lemma tells us
when the participants i$' can reconstruct the secret. such that(ui,...,u)) = (s1,...,5¢). The share for the
Lemma 1.Let (s,t1,...,t,) € C be a random codeword participant; (1 < i < n) is the sequence;, j € T;.

whereC' is generated by a matri& = (go, 81, ,8n)- TheN, ~ \when/ — 1, this secret sharing scheme is equivalent to
for any subsets of [1, 7], the span program of Karchmer and Widgerson [14], which
(@) if go is a linear combination ofg;,i € S, then the s perfect but not ideal. It is easy to show that an arbitrary
participants inS can reconstruct the secretby a linear access structure can be realized by choosing a largad a
function as in (1) for some € C*+ ; and proper partition off1,m]. So the access structure problem for
(b) if go is not a linear combination of;,i € S, then the this class of secret sharing schemes is trivial. Howevetirfon
participants in.S' can not compute any information onthe smallestn to realize a given assess structure is still wide
s. open, which corresponds to the shortest program to compute
Part (a) is straightforward. Part (b) needs some clarificati a monotone Boolean function.
When (s, t1,...,t,) is a random codeword id, the values When ¢ > 1, the above secret sharing scheme is not
s,t1,...,t, can be viewed as random variables. Then it igerfect any more, that is, it is possible that a subset of
straightforward to show that the conditional Shannon gmtrothe participants can compute some partial information on
H(slt;,i € S) = 0 in part (b). Hence the values,i € S the secret(sy,. .., s¢), but can not completely determine the
do not contain any information on This means that there issecret. These schemes are studied by | Cascudo and H Chen
no function (linear or nonlinear) nor algorithm to compute et al in [6], [7], and by W. Ogata and K Kurosawa in [19],
from the shares;,i € S. [20].



I1l. LINEAR CODES FORGIVEN ACCESSSTRUCTURES hjx # 0,hj,; = 0 and hy,, = 0,y # 0. Certainly,s <

LetT = {5, ..., S} be any collection of subsets @f, n]. ()
Without loss of generality, we assume that no subsétgon- ~ AlSo, for any subsetB C [1,m], let Hp denote the
tains another subset in. ThenT defines an access structur@UPmatrixt consisting of the rows indexed by elements in
for which a subsetS of [1,n] is accepted iffS contains a 5 We say a subsef’ C [1,7] overlays a subseB C [1,m]
subset inl’. Our goal in this section is characterizing, for 4 for eachi € B, there existy € 7' such thath,; # 0.
given access structufé, when there is a linear codg over ~_-émma 2.Let B C [1,m] with |B| = ¢ If T\ C A;,
F, such thatl = I'(C). |Ty| > _C;,l, and any two elements iff; are in different
A subsetT’ of [1, 7] is called rejected if it does not containd™UPS in4;, thenT; must Z_over[ayB. o
any subset in". The collection of all rejected sets is called”’™0f: There exist at most, ‘) different groups in4; in ¢t—1
the adversary structure @f. Let R denote the collection of FOWS Of H, hence,I must overlays3. [J _
all maximal rejected sets df. Note that if AU A./ = [1,%] andANA =0, thenA = A’
Example 1. Assume an access structure We have the following simple lemma. _
Lemma 3. Let B C [1,m]. ThenT C [1,n] overlaysB if
r=1{(1,23),(3,4,5),(3,5,6)} and only if T does not contain any; € I with i € B.
Theorem 1. A subsefl’ C [1,n] is a maximal rejected set
of T" iff [1,m] is overlayed byl" but not by any proper subset.
Proof: For anyk € T, T U {k} contains at least &; € T
R ={(1,2,4,5,6), (1,3,4,6), (2,3,4,6), (1,3,5),(2,3,5)}. Thatis, T is a rejected set, bif U {k} is not a rejected set
foranyk € T, i.e.,k ¢ T, henceT is a maximal rejected set
according to the definition of maximal rejected set.
On the other hand, it € R, then'S must overlay[1, m]
Suppose we are given an access structure: from Lemma 3. Now, assume there exists a proper subset
= {S1, . S} S’ c S such thatS’ overlaps[l,m], then S’ is a rejected
rrm e set. HoweverS c S’ is contrary to the assumption thétis
where S; C [1,n] for 1 < i < m. ' can be denoted by aa maximal rejected set. That is,Sfis a maximal rejected set,

in a secret sharing scheme with participafits2, 3,4,5,6}.
Then its adversary structure is

A. Finding Adversary Structures from Access Structures

matrix: then it must be generated by a $etwhich overlays|1, m],
hi1 hia ... hin however,[1, m] is not overlayed by any proper subsetiof]
I — ha1 haa ... ha, According to this theorem, we provide an algorithm to

e generate adversary structuReof T'.
hml hm2 oo hmn

whereh;; # 0if j € S, elseh;; = 0for 1 < i < m, Algorithm: Finding R from T".
1 < j < n. Also, we define an x (n+ 1) matrix H with the 1) Initially R is empty. Defined;’s from I" as above.

following form: 2) If A,, # 0, then add{i} to R for eachi € A,,.
1 hy b hy hy 3) Fori from m — 1 down to1, if A,,_; # 0, find all
1 hor  hos ... hon hy subsets
Tl C A'rn—i; T2 c Al U"'UA'rrL—i—h
1 hml hm2 cee hmn hm .
2) such thafl, m]| is overlayed byl'; UT, not by any proper
Wherel is an a”_one Co|umn vector. Subset OﬁFl U T2, and|T1| Z 1. For eaCh Of them, add

We shall assume in the rest of the paper that each participant 71U 72 t0 R.
i € [1,n] is in some subset ift, soH has no all-zero column. ~ 4) ReturnR.
Compared with matrix’, the matrixH is only added a column  This algorithm may still have exponential running time
called theOth column, and other columns @& are called whenn is large. We hope to improve it to polynomial time
the 1st,... nth column. Thei-th column of H corresponds to in terms of the sizes df andR. Note that it is possible that

participant; for i = 1,2, ..., n. the size ofR itself may be exponentially larger than that of
Let z; denote the jth column off, 1 < j < n. For each I'. So there is no algorithm that is polynomial in the size of
1 <i <'m, define ‘R alone.

A, ={1<j< N =1 . _ .
i = {1 =5 < nllsuprz;)| =i}, B. Finding Linear Codes for Given Access Structures

wherg.S| denotes the number elements in a SetEach4;  |n this section, we propose a method to decide when an
can be partitioned as access structur@ can be realized by linear codes, that is,
Ay = A U U Ay, whether there is a linear code overF, such thaf’ = T'(C).

We need another characterization of rejected sets.
wherek,l € A; are in one group iff théth andith column Lemma 4.LetC C F7*! be any linear code. Then a subset
of H have the same support. This implies thatifl are in T C [1,n] is a rejected set o’ iff there is a codeword
different groups, there exist,j2 € {1,2,...,m} such that ¢ = (¢g,c1,...,¢,) € C such thatey = 1 and¢; = 0 for



allieT.

Proof: Let G = (go,81," -
for C. SupposeG has k rows (which need not be linearly Let
independent). First assume thatis a rejected set of’. By

definition, this means that, is not a linear combination of 1 hiy
the vectorsg;,i € T. By linear algebra, there is a vector H=|1 o0
v =(v1,...,v) € F¥ such that 1 0
vgo=1, wvg;,=0, forallieT.
Hence the codeword = vG € C has the required the 1 8
property. G- | 1
Conversely, suppos€ contains such a codewokd € C. | 981
Thenc = vG for some vectorv = (v1,...,v) € FF. T g
51

must be a rejected set, sincélifwere an accepted set thgp
would be a linear combination of the vect@s: € T'. Since

According to Theorem 1,
,8,) be any generator matrix R = {(1,2,4,5,6),(1,3,4,6),(2,3,4,6),(1,3,5),(2,3,5)}.

hia hiz 0
0 haz ho
0 hss O
0 g3 O

go2 0 0
0 0 0

ga2 0 gua
0 0 g5

0
has
has

g25

g3s5
0

0

o O O

946
gs6

c; = vg; = 0 for all i € T, we would haver, = vgy = 0, a Whereh;; € Fy for 1 <i <3,1 <j <6, andg;; € F, for

contradiction.d 1<i<5,1<5<6.

This lemma immediately gives us a method for find- According to Theorem 2, we need to solve the following

ing linear codes to realize a given access strucfiire= system of equations:

{51, 52,...,5n}. Let H be defined as above whehg; ~ 0
were treated as unknowns for glle S;. Suppose we have 1+ hisgiz3 =0
found the corresponding adversary structurd’of 14 hi2g22 =0
14+ h11931 =0
R:{R17R2,...,R(}. 1+h12g42:0
! 1+ h11g51 =0
Define
1+ h23g13 =0
1 g1 g12 - g1 1+ h2sg25 =0
1 921 922 - gon 1+ hasgss =0 (%)
G= 3
oo oo “ e P “ e ’ () 1+h24g44:0
1 gan g2 -+ Ggem 1+ ha4gsa =0
. . , 1+ h33913 =0
whereg;; = 0if j € R; andg;; is an unknown for alj & R;. 1+ hasgas = 0
Theorem 2There is a linear code for a given access structure 1+ hasgas = 0
r = {5,..,S,} if and only if the following system of 1+ haggas = 0
guadratic equations 1+ haggse = 0
GH' =0, (4)

. . It is straightforward to find a general solutiohjs = hes =
has a solution forh;;, j € S;, andg,;, j & Ri, overF, with IS straightiorw ! genetal solutionis %
s ?é 0 forj cS hss, hos = hss, qSI = g51 = *hu ,1922 = G42 = *hlgl,

1] - _ _ - _ _ - _ _ -
. : ; _ ga4 = G54 = —h24 » 25 = g35 = —h25 y ga6 = gs6 = —h36 )
Proof: Assume there exists a linear codeso thatl'(C) =T. 15 = —hi;. Hence there is a linear cod@ in F7 for the

Then all the minimal codewords with the first component
in C+ are justhy, ..., h,,, and for eachR; € R, there is no
codewordh € C* such thathy = 1 and supph) \ {0} C R;.

According to Lemma 4R; € R if and only if if there exists 1(1,2),(2,3),(3,4)}-
a codewordg; € C such thatg;o =1 andg;; =0 if j € R;.
Obviously,(g;,h;) =0for1 <i </ andl < j <m. Hence

ccess structurk. O

the system (4) has a required solution o¥gr 1
Now, assumé&s and H is a solution to (4). LeC be the row H=1]1
span ofG. Obviously,hy, ..., h,, € C*, henceSy,....S,, € 1

I'(C). Also, theith row of G implies thatR;, € R(C) for
1 <4 < L. Therefore,C' has no other minimal accepted sets,
so is a linear code so tha&{(C) =T. O

—_

—_

C. Some Examples

Example 2. Find a linear code overIFZ for T' =

{(1,2,3),(3,4,5),(3,5,6)}. I<i<3,1<j<4

hir hiz 0
0  hoo hos
0 0 hs3
0 g1z O
0 g2 g23

931 0 g33

0
0
h34

Example 3. Find a linear code C in IFg for T

According to Theorem 1R = {(1, 3), (1,4),(2,4)}. Let

whereh;; € F; for1 <i<3,1<j<4,andg;; € F, for



According to Theorem 2, we obtain the following equationgiszgss = 0, 1+hg1951 +hesgss = 0, 1+hragas+h73gas = 0,
1+hgogao+hgsgas = 0, 1+hoagas +ho3gas = 0, 1+h14g34+

1+nh =0

14 hii;z —0 hisgss = 0, 1+hasgsa+hasgss = 0, 1+hragza+hrsgs5 = 0,
1+ hi1gss =0 1+h2agaa+haeges = 0, 1+hsag24+hseg26 = 0, 1+hgagaa+
1+ hasgia = 0 hssg26 = 0, 1+h3sg15+hsegie = 0, 1+hesg15+hecgie = 0,
1 4 h22g22 + hagges = 0 (6) L+ hosgis + faggs = 0.

B When g = 2, the polynomial system (4) becomes a linear
14+ h23933 =0 :

- system forG, as the nonzero entries Hf must all bel. Hence
1+ iaags =0 the syst be solved by G limination. Theref
1+ hasgas = 0 'e system can be solved by Gauss elimination. Therefore,

given an access structufg if the adversary structur® is
1+ h3zgss =0

found, then one decide in polynomial time (in terms of the
It is again straightforward to check that this system has rires ofI" and R) where there is a linear code ovEs to
solution overF, for all ¢. Hence there is no a linear code realizeT.

in Iy for the access structuiie. [J

companiesA and B. The administrators of compang are Since O+ is the row span space df. We consider the
players1,2,3 and administrators of company are players following definition '

4,5,6. They plan to start a joint venture project. The projec? Definition 1[7] AlsubsetR C [1,n] is called a real rejected
can be executed only if majority of the administrators ofreac t ofC' if there is noy ¢ C- gucﬁ thatyo — 1 andsupp(y)\
company agree. Hence the following model could be usef} L C R A real re}j,ected ol is ca(l)led R maxirﬂz;lyreal

for this situation. Generally, setd and 5 may have more rejected set if any seR’ with R C R’ can recover the secret.

elements. . : T .

Example 4. Let According to this above definition, it is obvious that some
' subsetsR;,,...,R;, in R are rejected sets because it is

r = {(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5), (1,3,4,6)impossible for eachR;, (j = 1,2,...,t) that there is a
(17 3,5, 6), (27 3,4, 5)’ (27 3,4, 6), (27 3,5, 6)} codewordc € C* such thatsupp(c) \ {0} - Rij . Hence,
we only consider a smaller adversary structure called ds rea
Then adversary structur®(C') in which each elemenR maybe
H H 1 —
Ro= (1230, (12,3:5),(12,8.6).(1,4,5.6), (2.4,5,650 Y (1% SIS & codeworic € suchhao = 1 and
(3,4,5,6)}. In this secti(;n, we will proposed an algorithm to fiRdC').
Let

1 hyy hig O hiy his 0 A. Definition of Real Adversary Structure

1 hoy haps 0 hoy 0 hog SinceC* is the row span space @, any vectory € C+

1 h31 h32 0 0 hss h36 is of the form:

1 h41 0 h43 h44 h45 0 m m m

H=| 1 hs1 O  hsz hsa 0 s |, Y = (Y0, Y1, Yn) = (Z ki, Z kihii, ..., Z kihin) (7)

1 h(;l 0 h63 0 h65 h66 i=1 i=1 =1

1L 0 hra hrs hza hzs O Let B = {i1,ia,....,iz} C [1,m] and2 < ¢t < m. We use

10 hsy hgs hsa O hss Hp denotes a sub-matrix @ which is composed of all rows

10 hoa hos O  hos hos of H indexed byB, that is,

10 0 0 0 915 916 1 hy1 hie oo hin h;,

1 0 0 0 924 0 926 1 hz 1 hz 2 ... hz n hz

G = 1 0 0 0 gsa g5 O Hp = ’ ) .2. ’ -1 . 2 - (8)

1 0 942 943 0 0 0 ’ 1 h/itl hitQ e hitn hit

1 gs1 0 gs3 O 0 0 - .

1 g1 gex O 0 0 0 Definition 2. (Possible Vector ofig). We call a row vector
whereh;; € F; for 1 <4 <9,1 < j <6, andg;; € F, for Y = (Y0, Y15 Yn) = (Z ki,Zkihﬂ,...,Zkihm)
1<:<6,1<5<6. i€B  i€B i€B

The general solution is of the form ify,: h;; = ha; = as a possible vector dfl 5 wherek; € F; for i € B.
ha1 = gir'y hi2 = hog = hgas = g’y har = hs1 = her = Definition 3. (Candidate Accepted Vector Bfz). We call
91 haz = hsz = hes = ggz» hra = hsa = hoa = g5, @ possible vectory = (1,y1,...,y,) of Hp as candidate
hrs = hgs = hoz = gsg» h1a = has = ha = g3,', his = accepted vector dfip if y does not cover any one of vectors

has = h1s = gi5's hoa = hsa = hsa = g5, hog = hse = hy, ... h;,.

hss = g1 has = hes = hos = gas'» has = hee = hos = gog Definition 4. (Maximal Candidate Accepted Vectorif;).
wherel + hi1g61 + hi2ge2 = 0, 1 + ha1ge1 + ha2gee = 0, A candidate accepted vecter= (1,1, ..., y,) of Hp is called
1+hs1961+h32g62 = 0, 1+ha1951+hasgss = 0, 1+hs1951+ maximal candidate accepted vectorléf; if for each: with



y; = 0, and there are at least two non-zero entries in ite Proof: Let I'; be only related with thei;-th, ..., is,-th
column ofHp, then there isj € B such thatsupp(h;) C columns ofl" for 1 <i < ¢, wheres; + s2 + ... + s = n.

supp(y) U{:}. Assume anys € 71 ®7To®- - -®7Ty, thatis,S = S1US,U- - -U
Let Visp be the set of all maximal candidate acceptefi; and eacts; € 7; fori = 1,2, ..., t. Obviously,S C [1,n] is
vectors ofHp. a candidate accepted set because it is independent betmgen a

Definition 5. ((Maximal) Candidate Accepted Set). A seb; andS;. At the same timeS must be a maximal candidate
Sy is called as candidate accepted setyifis a candidate accepted set, otherwise, then there exists at least & such
accepted vector. A candidate accepted Sgtis called as that S U {;j} is a candidate accepted set, hericis related
maximal candidate accepted setyifis a maximal candidate with somel’;, that is, there exists sont§ such thatS; U {j}
accepted vector. is a candidate accepted set which is contrary to this case tha

Let Ryp = {Sclc € Vup}. S; is a maximal candidate accepted set.$a 7.

Definition 6. For any B C [1,m] with |B| > 2, let R}, Assume anyS € 7, then S can be divided inta5 = S; U
consist of elements i,z that do not contain any one of SoU---US;, whereS; C {i1, ..., 4, }. Because all participants

S1,...,Sm. Let in .S cannot reconstruct the secret, hence all participants in
, eachsS; can not also do it.
R(C) = Usci,m],B|>2 B If some S; is only a candidate accepted set, but noZjn
R(C) is called as real adversary structure dffrom C-. i.e., it is not a maximal candidate accepted set, howeveerot
Example 5. Assume access structurel — S, €7T,,j#1i. Forset{iy,...,is }, there must exist a subset
{(1,2,3),(3,4,5),(3,5,6)} in a secret sharing schemeS’ C {i1,. s} suchthats’us; € 7;, henceS, U---US'U
with participants{1,2,3,4,5,6}. HenceH is of the form S;U---US; also is a maximal candidate accepted sets, it is
contrary toS = S1US;U---US; € T. So, eachS; € 7;, for
I ar ap a3 0 0 0 i=1,2,..,t
H=|1 0 0 b b b3 0 |. (9  Thatis,ifanySe 7T, thenS e T, 6 L& - & 7. O
L0 0 a 0 c c Hence, it is reduced to construct real adversary structiire o
According to Definition 6,R(C) = {(1,2,4,5,6), (3,4,6)}. indecomposable matrik; when we try to find real adversary

{
Comparing with Example 1R(C)| < |R]. structure off. . _ _
Let A; = {j|1 < j < n,|supp(z;)| = i}, wherez; is the
_ jth column of Hp. Obviously,>>™" | |4;] = n.
B. Construction of Real Adversary Structure Lemma 5. For any Hp, if [ € A, the participant?, must
Definition 7.A matrix M is called decomposable if therebelong to every element in generating adversary structtire o

is a row and column permutation transforming into the Hp.

following form: Proof: Assumey = (1,u1,...,yn) IS @ possible vector of
M0 Hp, then theith component ofy can be computed from
M = ( 01 M, ) yw o= Z;Zl kjhi;i. Becauseks, ...,k € Fy, and only one

of h;,i, ..., hi,; does not equal 0, hengg # 0. O
where eachV/; (i = 1,2) has at least one non-zero row afd Theorem 4.1f B is overlayed byl UT5, but not by any proper
denotes a alB matrix. Otherwise\/ is called indecomposable. subset ofl; UT5, thenT; U T, € 75, whereTy N A; = () and

By permuting rows and columng] can be transformed into 7> N A; = (. Every element irfz can be obtained by this
the following form: way.
Proof: For anyk € Ty UT, andk ¢ Ay, Ty U T, \ {k} does
not overlay B, T; UT» U {k} contains at least on§; € T
H = , (10) wherej € B. That is,7; UT» is a candidate accepted set,

1 0 0 T, but T3 UT, U {k} is not a candidate accepted set for any

ke ThUTy, e,k ¢ ThUTy, henceTy UT, is in Tp
where eacll’; are indecomposable sub-matrixes foK i < according to the definition of maximal candidate accepted se
t. T1NA; =0 andTy N A; = 0 hold from Lemma 5.
Definition 8.DefineEdF = {Z|Z = XUY,X € E\Y € F}, On the other hand, if € 75, thenS must overlayB from
where E and F' are any two collects of sets. Lemma 3. Now, assume there exists a proper subset S
Theorem 3. Suppose such thatS’ overlays B, then S’ is a generating candidate

set of Hg. However,S C S’ is contrary to this case is

F01 192 g a maximal candidate accepted set. That is§ i a maximal
= o , (11) rejected set ofl g, then it must be generated by a ewhich
o overlaysB, however,B is not overlayed by any proper subset
0o 0 ... TI, gl
and everyl';(1 < i < t) is indecomposable. 1T, 71, ..., 7; Now, we will provide an algorithm to generafe(C') for
are real adversary structure of access structlitel';,...,I'; any access structuie
respectively, the =7, ¢ L ¢ --- © T;. Assume access structuie is decomposable and is com-

posed ofl'y,...,I';, where eachl’; is indecomposable for



i=1,..,t G1<1 0 0 giz3 0 O 0>
Algorithm : Finding R(C) from T. I g1 g2 0 0 gos O
1) Construct real adversary structufefor I';. whereh;; € Fy for 1 <i<3,1<j<6, andg; € F, for
a) Assume thall; = (1T;)is anm;x(n;+1) matrix, 1<i<2,1<j<6.
for simplicity we denote its rows and columns by According to Corollary 1, we obtain the following equa-
using symbols{ry, 73, ...,7m, } and {0,1y,...,1,,} tions.

respectively, where columi denotes the first 1+ hi3g13 =0
column of H;, SX!_, m; = m and >/, n; = n. 1+ h11go1 + hiagae =0
H;, is a sub-matrix ofH; which is composed of 1+ hozgi3 =0 (14)
all rows of H; indexed byB which is a subset of 1+ hasgas =0
{r1,r9, oy, } @nd2 < t(= | B|) < m. 1+ h3zgi3 =0
b) The following algorithm will generatd;,, of H, 14 h3s925 =0
(initially 7;,, is empty. Assume Obviously, Equations 14 has solutions in any finite figldC]
Aj = {lx|k € {1,...,n;}, |supp(sk)| = 7} Since|R(C)| < |R|, the matrixG; determined byR(C)

is much less than the matri determined byR. Hence, it is

where column vectas;, is thekth column ofHi;.  gagjer to resolve equation 12 than to resolve equation 4.

i) If A, # 0, then add{l4,...,1,,} \ {j} to 75,
for eachj € A;.

i) AssumeA;_; #0.1f j=1,..,t—3 andT} C
Apj, Ty C AgU.UA; 1, add{ly, ..., 1o, }\ In Section Ill, we solve this problem that how to construct
Ty UT, to T;,, orif j = t —2 andTy; C an ideal linear code realizing given access strucllr it
Ay, Ty C Ay, then add{ly, ..., 1,,,} \ Ty UT, to exists, however, how can we gain the optimal linear code
7;,, whereB is overlayed byl U T, but not realizing given access structure if there does not existleali
by any proper subset af, U T, and|T}| > 1. linear code? In this section, we will propose an algorithm to

c) ConstructZ;. AssumeT;, = 7, U D, where any find the optimal linear code realizing given access strectur
b € 7/, must not include any sef, wherey is

V. THE OPTIMAL LINEAR CODE

any one row vector off;, then A. An Algorithm to Find the Optimal Linear Code
T, = UBg[1,m7,]T'¢B- For given access structufe how can we obtain the optimal
|B|>2 linear code if there does not exist an ideal linear codezieai
2) Construct R(C) for T'. According to Theorem 3, it? thatis, how can we obtain the optimal linear code readjzi
RCO)=T1®..07T;. T if there is no solution for quadratic equations (4)?

This algorithm may still have exponential running time when In an ideal linear code, each participant In "owns”

is large. However, we will find adversary struct@®¢C) with an only component of a code, hence he "owns” an only
smaller size if there exist only one non-zero element in sorgerresponding column of generator mattixand check matrix
columns ofH. Especially, the size oR(C) will be smaller H. In the optimal linear code, each participantlin"owns”

if these columns with only one non-zero elementsibare Some components of a code, as a result, he "owns” some

more. corresponding columns d& and H. However, the generator
Let matrix G and check matrixH of the optimal linear code
1 gu g1z - Gin g realizing_F still satis_fies qua(_jratic e_quations_ 4), henc_e,we
1 g1 goz -+ Gon 2 can obtain the following algorithm which can find the optimal
Go=| 777 7 = 2|, (12) inear code realizing’.
1 gu g - g g Algorithm: The optimal linear code realizing.

1) Adding to a column in matrixe& andH respectively,
we obtain two matrixe&; andH; with n+ 2 columns.
We emphasis that the new column is tite column
of G; andH; respectively, furthermore, thgh column

Wheregij =0if JER; andR(C) = {Rl,Rg, ...,Rl}.
Corollary 1. There is a linear code for a given access structure
r = {5,..,5,} if and only if the following system of
quadratic equations

GHT =0 has same forms with th& + 1)th column inG; and
1H' =0, (13) . ’

H; respectively for every = 2,3,...,n. Two columns
has a solution forh;;, j € S;, andg,;, j € R;, over[F, with have same forms if their elements satisfies restrictions
hij # 0 for j € S;. in Theorem 2.

Example 6. (Continued Example 2) There exists a linear code with length+ 2 realizing
Answer: According to Theorem 4, R(C) = I if the system of quadratic equatiofis H? = 0 has
{(1,2,4,5,6),(3,4,6)}. a solution. There is an output which is a linear code

Let realizingT.

1 hi1 his hiz O 0 0 2) If there does not exist solution d&,H! = 0, two
H = 1 0 0 hoz hog hos O , columns are added up in matrix& and H which are
1 0 0 hszs O hss hss changed into two matrixe&, andH, with lengthn + 3



respectively. New two columns have same forms witB. An Example
two columns or one column di andH respectively.
There exists a linear code with length+ 3 realizing
I if the system of quadratic equatiofisHZ = 0 has
a solution. There is an output which is a linear cod
realizingT.

In this section, we show an example to explain our algo-
rithms. According to Example 3, there is not an ideal linear
code realizingl = {(1,2),(2,3),(3,4)} in F. Now, we will
find its optimal linear code according to our algorithm in

. . T section 5.1.
3) Suppose there does not exist sglutlon([hﬂ[ﬂ? =0 According to step 1 of our algorithms in section 5.1, we
where matrixe€z; andH; are obtained by being addedcan obtain(Hy, G1) with the following forms:
up ¢ columns from matrixe& andH respectivelys + 1 b 9 '

columns are added up in matrix& and H which are 1 ki, hi hix O 0
changed into two matrixe&;,; andH,, with n+i+2 (@ Hi=|1 0 0 hoy has O 7
columns respectively. New + 1 columns have same 1 0 0 0  hss has

forms withi+1 columns, ot columns, ..., or one column

of G andH respectively.

There exists a linear code with lengthti + 2 realizing G,
T" if the system of quadratic equati0®+1H?+1 =0

—_

0 0 g12 0 gus
= 1 0 0 g2  go3 0 3

. . AT 1 g5 93 0 g3 O
has a solution. There is an output which is a linear code o
realizingT".
4) repeating the step 3, and obtaining a linear code reglizin 1 hiyr hily hiz O 0
I until the system of quadratic equatioBis HY,, = 0 (b) Hy=( 1 0 hhy ha hay O ,
has a solution for some 1 0 0 0 hsz hsg
Remarks: in order to obtain the optimal linear code, 1) in step /
. 1 0 g12 12 0 gua
2, let new two columns have same forms with two columns G =1 o / )
1= G2 922 923 0 ;

of G and H respectively, then new two columns have same
forms with one column ofs andH respectively if there is not
a linear code when two columns have forms of two columns.

2) In step 3, let new + 1 columns first have forms af+ 1 1 hix hiz 0 0 0
columns, then forms of columns if there is not a linear code (c) Hy= 1 0 ha hij hos O )
for forms of i + 1 columns, then forms of — 1 columns if 1 0 0 hgy hss ha
there is not a linear code for forms 6€olumns ,..., then same
forms if there is not a linear code for forms of 2 columns. 1 0 g1z 0 0 gus

! .
3) In step 3, if newi + 1 columns have forms of columns G = 0 922 933 923 0 ;

in G (or H), its information rate is belongs 05, 3, - , =5} gsr 0 gz gaz O

wherel < j < i+ 1. So, we first consider the linear code

1 g3z 0 0 g33 O

\
— =

with information rate;, then s, - -, finally 5. 1 hy hs 0 0 0
Theorem 5. Given access structurg, the optimal linear (d Hy=| 1 0  hy hy 0 0 ,
code realizing it must can be found from the above algorithm. 1 0 0 hss hiyy haa

Proof: According to [14], the above algorithm must have
outputs which is a linear code realizilig Next, we will prove 0 g1z 0 gl gua
this linear code is the optimal linear code realizing 0 ga2 go3 O O

Case 1: If there is an output in step 1, then this output 1 g1 0 g3z O 0
must be the optimal linear code realiziligbecause there is . . _ ‘
not ideal linear code realizinf and our linear code has the Wherehg;, hi; € Fy for 1 < < 3,1 < j < 4, and

shortest lengti +2. The information rate of the optimal linear9ii- 9i; € Fy for 1 <i <3,1<j < 4.
code is%. According to Theorem 2, we obtain the following equation

systems (a’), (b’), (¢’) and (d’) for (a), (b), (c) and (d)

P!
_

I
—_

Case 2: The linear code with length+ 3 in step 2 is the

shortest among all linear codes realizifgbecause there is respeciively:
not linear code with length + 1 andn + 2 which can realize 1+ grohia = 0
I". We can obtain the optimal linear code according to remark 1+ grohas = 0
1, and its information rate i§ or %, 1+ grahss = 0
Case 3: The linear code with length+ ¢ + 2 in step 3 is 14 goohi12 =0
the shortest among all linear codes realizihgecause there is (@) {1+ gaghos + gaghas =0
not linear code with length = n+1,n+2, ..., n+i+ 1 which 1+ gazh33 =0
can realizel. We can obtain the optimal linear code realizing 1+ gs1hi1 + g5,h; =0
I" according to remark 2 and remark 3, and its information 1+ g3zhas =0
rate is belongs td 3, %, - - ,Z.J%Q} O 1+ g33hs3 =0




1+ giohia + g1oh, =0

1+ giahao + g1ohhy =0

14 giah3s =0

14 gaohi2 + ggohis =0

(0') § 1+ gazhoo + ghohiy + gashas =0

1+ gazhsz =0

14 g31h11 =0

1+ g33haz =0

1+ gs3hsz =0

14 gi2h12 =0

1+ gi2ho =0

1+ grahsa =0

1+ g22h12=0

() 14 gashas + gashas + ghshhs =0

1+ goshss + gozhsz = 0

1+g31h11 =0

1 + gs3has + gh3hss =0

1 + gs3has + gi3hs3 =0
1+ gi2h12=0
1+ gi2ha2 =0
1+ g1ahsa + g14h3, =0
1+ g22h12=0

(d')§ 1+ gazhoo + gashas =0

1+ goghss =0
1+g31h11 =0
1+ g3zho3 =0
1+ gsshss =0

There exist solution for systems (b’),(c’)ovéy,, and no
solution for systems (a’),(d") ovef,, hence there is the
optimal linear code with length 6 ﬂﬁg for the access structure
I.
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