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The Optimal Linear Secret Sharing Scheme for Any
Given Access Structure
Tang Chunming, Gao Shuhong, and Zhang Chengli

Abstract—Any linear code can be used to construct a linear
secret sharing scheme. In this paper, it is shown how to decide
optimal linear codes (i.e., with the biggest information rate)
realizing a given access structure over finite fields. It amounts
to solving a system of quadratic equations constructed from
the given access structure and the corresponding adversary
structure. The system becomes a linear system for binary codes.
An algorithm is also given for finding the adversary structure
for any given access structure.

Index Terms—Cryptography, secret sharing, linear code, access
structure, adversary structure.

I. I NTRODUCTION

SECRET sharing schemes were first introduced by Blak-
ley [4] and Shamir [22] in 1979. Since then, many

constructions have been proposed. The relationship between
Shamir’s secret sharing scheme and Reed-Solomon codes was
pointed out by McEliece and Sarwate in 1981 [18]. Later
several authors have considered construction of secret sharing
schemes using linear error correcting codes. Massey utilized
linear codes for secret sharing schemes and pointed out the
relationship between the access structure and the minimal
codewords of the dual code of the underlying codes [15],
[16]. Several authors have investigated minimal codewords
for several classes of codes and characterized their access
structures [1], [2], [3], [10], [11], [21], [23]. Unfortunately,
determining minimal codewords is an NP-hard problem for
general linear codes.

As pointed out by Massey [17], the main problem is to
characterize which access structures can be realized by linear
codes. We call this the access structure problem.

In [14], Karchmer and Widgerson gave a significant result
that there exists a linear code for any access structure among n
participants, however, there still exist the following problems:

1) whether does there exist an ideal linear code realizing
given access structure? how to construct it if it exists?
A linear code is ideal if the length of code is equal to
n + 1, wheren is the number of participants.

2) how to gain the optimal linear code realizing given
access structure if there is not ideal linear code? A linear
code is optimal if the length of code is the shortest
among all linear codes which realize the given access
structure. Obviously, the length of optimal linear code
is bigger thann + 1.
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1) An access structure uniquely determines an adversary
structure and vice versa. We first give an algorithm for
finding the adversary structureR corresponding to a
given access structureΓ.

2) We show that finding linear codes for an access structure
Γ is equivalent to solving a system of quadratic polyno-
mial equations which is constructed fromΓ andR. The
given access structureΓ is realizable by a linear code
overFq if and only if the system has a solution overFq.
When the underlying field isF2, the system becomes a
linear system, so can be solved in polynomial time (in
terms of the sizes ofΓ andR).

3) We show how to reduce the number variables that are
used in the polynomial equations, hence speeding up
any algorithm for solving the polynomial system. This
seems to be the first algorithmic approach for the access
structure problem.

4) We propose an algorithm to construct the optimal linear
code realizing a given access structure if the ideal linear
code does not exist.

Related Works. The secret sharing schemes we consider
in this paper are ideal and perfect. A secret sharing scheme
is called ideal if the size of each share is equal to the size
of the secret, and called perfect if every subset of shares can
either reconstruct the secret or get no partial informationat
all on the secret, that is, if a subset of the participants can
deduce any partial information on the secret then they can
completely reconstruct the secret. The span program proposed
by Karchmer and Widgerson [14] is a secret sharing scheme
that can be perfect but not ideal. In their paper, an access
structure corresponds to a monotone Boolean function. They
show how to compute monotone functions via matrices over
finite fields (which correspond to generating matrices for linear
codes). They pointed out that it is easy to realize any access
structure via non ideal secret sharing schemes. Further results
in this direction can be found in [5], [8], [9], [12], [13], [24],
[25].

Outline of the Paper. The paper is organized as follows. In
Section II, we recall the relationships between secret sharing
schemes and linear codes. In Section III, we consider the
existence of linear codes over a finite fieldFq for a given
access structure and present an efficient algorithm for finding
the adversary structure for any given access structure. In
Section IV, we give improvements on results in Section III,
especially on what reducing the number of constraints needed
from R. In Section V, an algorithm to find optimal linear code
is proposed.
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II. SECRET SHARING SCHEMES AND L INEAR CODES

A linear codeC of lengthn + 1 over Fq is simply a linear
subspace ofFn+1

q . If C has dimensionk, thenC is generated
by the rows of ak × (n + 1) matrix G = (g0,g1, · · · ,gn)
of rank k, which is called a generating matrix ofC. There
are several ways to use linear codes to construct secret
sharing schemes [15], [21]. We focus mainly on secret sharing
schemes that are perfect and ideal.

Suppose a secrets is to be shared amongn participants,
identified as1, ..., n. We assume that the secrets can be
viewed as an element in a finite fieldFq. Let C be a linear
code of lengthn + 1 over Fq with dimensionk. To compute
the shares ofs, a dealerD chooses a random codeword
t = (t0, t1, ..., tn) ∈ C such thatt0 = s. Thenti is the share
for the participanti, 1 ≤ i ≤ n. More concretely, this can done
as follows. SupposeG = (g0,g1, · · · ,gn) is a generating
matrix for C where eachgi is a column vector of lengthk.
Choose a random vectoru = (u0, ..., uk−1) ∈ Fk

q such that
s = ug0. There are altogetherqk−1 such vectorsu ∈ Fk

q . The
dealerD computes the corresponding codeword

t = (t0, t1, ..., tn) = uG,

then securely sendsti to participanti as a share fori =
1, 2, ..., n.

The dual codeC⊥ of C is defined as

C⊥ = {c ∈ F
n+1
q |Gct = 0},

that is, a vectorc ∈ Fn+1
q is in C⊥ iff c is orthogonal to all

codewords inC. If c = (c0, c1, ..., cn) ∈ C⊥ with c0 6= 0
then, for any codeword(s, t1, . . . , tn) ∈ C, we have

s =

n
∑

i=1

−
ci

c0
ti. (1)

Let
Sc = {i|1 ≤ i ≤ n, andci 6= 0}.

Then the equation (1) implies that the secrets can be recon-
structed from the sharesti, i ∈ Sc. Now supposeS is any
subset of[1, n] = {1, . . . , n}. The following lemma tells us
when the participants inS can reconstruct the secret.

Lemma 1. Let (s, t1, . . . , tn) ∈ C be a random codeword
whereC is generated by a matrixG = (g0,g1, · · · ,gn). Then,
for any subsetS of [1, n],

(a) if g0 is a linear combination ofgi, i ∈ S, then the
participants inS can reconstruct the secrets by a linear
function as in (1) for somec ∈ C⊥ ; and

(b) if g0 is not a linear combination ofgi, i ∈ S, then the
participants inS can not compute any information on
s.

Part (a) is straightforward. Part (b) needs some clarifications.
When (s, t1, . . . , tn) is a random codeword inC, the values
s, t1, . . . , tn can be viewed as random variables. Then it is
straightforward to show that the conditional Shannon entropy
H(s|ti, i ∈ S) = 0 in part (b). Hence the valuesti, i ∈ S
do not contain any information ons. This means that there is
no function (linear or nonlinear) nor algorithm to computes
from the sharesti, i ∈ S.

A subsetS ⊆ [1, n] is called an access or accepted set of
C if there isc ∈ C⊥ such thatc0 = 1 and

supp(c) ⊆ S ∪ {0},

where supp(c) = {i ∈ [0, n]|ci 6= 0}, called the support of
c. If S is an accepted set then any set containingS is also
accepted. An access setS is called minimal if no proper subset
of it is an access set. LetΓ(C) denote the set of all minimal
access sets inC. Then a subsetS is an access set ofC iff S
contains one of the sets onΓ(C).

A subsetS is called a rejected set ofC if it is not an access
set. If S is a rejected set then its any subset is also rejected.
A rejected subsetS is called maximal if every subset proper
containingS is an access set. LetR(C) denote the set of all
maximal rejected sets ofC.

Note that, given a codeC, we do not know any efficient
algorithm to findΓ(C), as the problem of finding vectors of
minimum Hamming weight in an arbitrary linear code is NP-
hard. In the next section, we shall show how to findR(C)
from Γ(C), and give necessary and sufficient conditions for
an access structure to be realizable by linear codes.

Before we proceeds to the next section, we briefly mention
more general secret sharing schemes constructed from linear
codes. Suppose the secret is a vector(s1, . . . , sℓ) of ℓ elements
from a finite fieldFq, and it is to be shared byn participants
1, . . . , n. Let m ≥ n. We use a linear codeC of lengthm+ ℓ
over Fq to get a secret sharing scheme as follows. Partition
the set[1, m] = {1, 2, . . . , m} as

[1, m] = T1 ∪ T2 ∪ · · · ∪ Tn.

SupposeC has a generator matrix of the form

G = (u1, . . . ,uℓ,g1, . . . ,gm),

where the column vectorsu1, . . . ,uℓ are linearly independent
overFq. To share a secret(s1, . . . , sℓ), a dealer picks a random
codeword

c = (u1, . . . , uℓ, t1, . . . , tm) ∈ C

such that (u1, . . . , uℓ) = (s1, . . . , sℓ). The share for the
participanti (1 ≤ i ≤ n) is the sequencetj, j ∈ Ti.

When ℓ = 1, this secret sharing scheme is equivalent to
the span program of Karchmer and Widgerson [14], which
is perfect but not ideal. It is easy to show that an arbitrary
access structure can be realized by choosing a largem and a
proper partition of[1, m]. So the access structure problem for
this class of secret sharing schemes is trivial. However, finding
the smallestm to realize a given assess structure is still wide
open, which corresponds to the shortest program to compute
a monotone Boolean function.

When ℓ > 1, the above secret sharing scheme is not
perfect any more, that is, it is possible that a subset of
the participants can compute some partial information on
the secret(s1, . . . , sℓ), but can not completely determine the
secret. These schemes are studied by I Cascudo and H Chen
et al in [6], [7], and by W. Ogata and K Kurosawa in [19],
[20].
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III. L INEAR CODES FORGIVEN ACCESSSTRUCTURES

Let Γ = {S1, ..., Sm} be any collection of subsets of[1, n].
Without loss of generality, we assume that no subset inΓ con-
tains another subset inΓ. ThenΓ defines an access structure
for which a subsetS of [1, n] is accepted iffS contains a
subset inΓ. Our goal in this section is characterizing, for a
given access structureΓ, when there is a linear codeC over
Fq such thatΓ = Γ(C).

A subsetT of [1, n] is called rejected if it does not contain
any subset inΓ. The collection of all rejected sets is called
the adversary structure ofΓ. Let R denote the collection of
all maximal rejected sets ofΓ.

Example 1. Assume an access structure

Γ = {(1, 2, 3), (3, 4, 5), (3, 5, 6)}

in a secret sharing scheme with participants{1, 2, 3, 4, 5, 6}.
Then its adversary structure is

R = {(1, 2, 4, 5, 6), (1, 3, 4, 6), (2, 3, 4, 6), (1, 3, 5), (2, 3, 5)}.

A. Finding Adversary Structures from Access Structures

Suppose we are given an access structure:

Γ = {S1, ..., Sm},

where Si ⊂ [1, n] for 1 ≤ i ≤ m. Γ can be denoted by a
matrix:

Γ =









h11 h12 . . . h1n

h21 h22 . . . h2n

. . .
hm1 hm2 . . . hmn









where hij 6= 0 if j ∈ Si, else hij = 0 for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Also, we define am× (n + 1) matrix H with the
following form:

H =
(

1 Γ
)

=









1 h11 h12 . . . h1n

1 h21 h22 . . . h2n

. . .
1 hm1 hm2 . . . hmn









=









h1

h2

· · ·
hm









,

(2)
where1 is an all-one column vector.

We shall assume in the rest of the paper that each participant
i ∈ [1, n] is in some subset inΓ, soH has no all-zero column.
Compared with matrixΓ, the matrixH is only added a column
called the0th column, and other columns ofH are called
the 1st,... nth column. Thei-th column ofH corresponds to
participanti for i = 1, 2, ..., n.

Let zj denote the jth column ofH, 1 ≤ j ≤ n. For each
1 ≤ i ≤ m, define

Ai = {1 ≤ j ≤ n| |supp(zj)| = i},

where|S| denotes the number elements in a setS. EachAi

can be partitioned as

Ai = Ai1 ∪ · · · ∪ Ais,

wherek, l ∈ Ai are in one group iff thekth and lth column
of H have the same support. This implies that ifk, l are in
different groups, there existj1, j2 ∈ {1, 2, ..., m} such that

hj1k 6= 0, hj1l = 0 and hj2k = 0, hj2l 6= 0. Certainly,s ≤
(

i

m

)

.
Also, for any subsetB ⊆ [1, m], let HB denote the

submatrixH consisting of the rows indexed by elements in
B. We say a subsetT ⊆ [1, n] overlays a subsetB ⊆ [1, m]
if, for eachi ∈ B, there existsj ∈ T such thathij 6= 0.

Lemma 2. Let B ⊆ [1, m] with |B| = t. If T1 ⊆ Ai,
|T1| > Ci

t−1, and any two elements inT1 are in different
groups inAi, thenT1 must overlayB.
Proof: There exist at most

(

i

t−1

)

different groups inAi in t−1
rows of HB, hence,T1 must overlayB. �

Note that ifA ∪A′ = [1, n] andA ∩ A′ = ∅, thenA = A′.
We have the following simple lemma.

Lemma 3. Let B ⊆ [1, m]. ThenT ⊆ [1, n] overlaysB if
and only ifT does not contain anySi ∈ Γ with i ∈ B.

Theorem 1. A subsetT ⊆ [1, n] is a maximal rejected set
of Γ iff [1, m] is overlayed byT but not by any proper subset.
Proof: For anyk ∈ T , T ∪ {k} contains at least aSi ∈ Γ.
That is,T is a rejected set, butT ∪ {k} is not a rejected set
for any k ∈ T , i.e., k /∈ T , henceT is a maximal rejected set
according to the definition of maximal rejected set.

On the other hand, ifS ∈ R, thenS must overlay[1, m]
from Lemma 3. Now, assume there exists a proper subset
S′ ⊂ S such thatS′ overlaps[1, m], then S′ is a rejected
set. However,S ⊂ S′ is contrary to the assumption thatS is
a maximal rejected set. That is, ifS is a maximal rejected set,
then it must be generated by a setT which overlays[1, m],
however,[1, m] is not overlayed by any proper subset ofT .�

According to this theorem, we provide an algorithm to
generate adversary structureR of Γ.

Algorithm: FindingR from Γ.
1) Initially R is empty. DefineAi’s from Γ as above.
2) If Am 6= ∅, then add{i} to R for eachi ∈ Am.
3) For i from m − 1 down to 1, if Am−i 6= ∅, find all

subsets

T1 ⊆ Am−i, T2 ⊆ A1 ∪ · · · ∪ Am−i−1,

such that[1, m] is overlayed byT1∪T2 not by any proper
subset ofT1 ∪ T2, and |T1| ≥ 1. For each of them, add
T1 ∪ T2 to R.

4) ReturnR.
This algorithm may still have exponential running time

when n is large. We hope to improve it to polynomial time
in terms of the sizes ofΓ andR. Note that it is possible that
the size ofR itself may be exponentially larger than that of
Γ. So there is no algorithm that is polynomial in the size of
R alone.

B. Finding Linear Codes for Given Access Structures

In this section, we propose a method to decide when an
access structureΓ can be realized by linear codes, that is,
whether there is a linear codeC overFq such thatΓ = Γ(C).
We need another characterization of rejected sets.

Lemma 4.LetC ⊆ Fn+1
q be any linear code. Then a subset

T ⊆ [1, n] is a rejected set ofC iff there is a codeword
c = (c0, c1, . . . , cn) ∈ C such thatc0 = 1 and ci = 0 for
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all i ∈ T .
Proof: Let G = (g0,g1, · · · ,gn) be any generator matrix
for C. SupposeG has k rows (which need not be linearly
independent). First assume thatT is a rejected set ofC. By
definition, this means thatg0 is not a linear combination of
the vectorsgi, i ∈ T . By linear algebra, there is a vector
v = (v1, . . . , vk) ∈ Fk

q such that

vg0 = 1, vgi = 0, for all i ∈ T.

Hence the codewordc = vG ∈ C has the required the
property.

Conversely, supposeC contains such a codewordc ∈ C.
Then c = vG for some vectorv = (v1, . . . , vk) ∈ Fk

q . T
must be a rejected set, since ifT were an accepted set theng0

would be a linear combination of the vectorsgi, i ∈ T . Since
ci = vgi = 0 for all i ∈ T , we would havec0 = vg0 = 0, a
contradiction.�

This lemma immediately gives us a method for find-
ing linear codes to realize a given access structureΓ =
{S1, S2, . . . , Sm}. Let H be defined as above wherehij 6= 0
were treated as unknowns for allj ∈ Si. Suppose we have
found the corresponding adversary structure ofΓ:

R = {R1, R2, . . . , Rℓ}.

Define

G =









1 g11 g12 · · · g1n

1 g21 g22 · · · g2n

· · · · · · · · · · · · · · ·
1 gℓ1 gℓ2 · · · gℓn









, (3)

wheregij = 0 if j ∈ Ri andgij is an unknown for allj 6∈ Ri.
Theorem 2There is a linear code for a given access structure
Γ = {S1, ..., Sm} if and only if the following system of
quadratic equations

GH
⊤ = 0, (4)

has a solution forhij , j ∈ Si, and gij , j 6∈ Ri, over Fq with
hij 6= 0 for j ∈ Si.
Proof: Assume there exists a linear codeC so thatΓ(C) = Γ.
Then all the minimal codewords with the first component 1
in C⊥ are justh1, ...,hm, and for eachRi ∈ R, there is no
codewordh ∈ C⊥ such thath0 = 1 and supp(h) \ {0} ⊆ Ri.
According to Lemma 4,Ri ∈ R if and only if if there exists
a codewordgi ∈ C such thatgi0 = 1 andgij = 0 if j ∈ Ri.
Obviously,〈gi,hj〉 = 0 for 1 ≤ i ≤ ℓ and1 ≤ j ≤ m. Hence
the system (4) has a required solution overFq.

Now, assumeG andH is a solution to (4). LetC be the row
span ofG. Obviously,h1, ...,hm ∈ C⊥, henceS1, ..., Sm ∈
Γ(C). Also, the ith row of G implies thatRi ∈ R(C) for
1 ≤ i ≤ ℓ. Therefore,C has no other minimal accepted sets,
so is a linear code so thatΓ(C) = Γ. �

C. Some Examples

Example 2. Find a linear code overF
7
q for Γ =

{(1, 2, 3), (3, 4, 5), (3, 5, 6)}.

According to Theorem 1,
R = {(1, 2, 4, 5, 6), (1, 3, 4, 6), (2, 3, 4, 6), (1, 3, 5), (2, 3, 5)}.
Let

H =





1 h11 h12 h13 0 0 0
1 0 0 h23 h24 h25 0
1 0 0 h33 0 h35 h36



 ,

G =













1 0 0 g13 0 0 0
1 0 g22 0 0 g25 0
1 g31 0 0 0 g35 0
1 0 g42 0 g44 0 g46

1 g51 0 0 g54 0 g56













,

wherehij ∈ F∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6, andgij ∈ Fq for

1 ≤ i ≤ 5, 1 ≤ j ≤ 6.

According to Theorem 2, we need to solve the following
system of equations:







































































































1 + h13g13 = 0
1 + h12g22 = 0
1 + h11g31 = 0
1 + h12g42 = 0
1 + h11g51 = 0
1 + h23g13 = 0
1 + h25g25 = 0
1 + h25g35 = 0
1 + h24g44 = 0
1 + h24g54 = 0
1 + h33g13 = 0
1 + h35g25 = 0
1 + h35g35 = 0
1 + h36g46 = 0
1 + h36g56 = 0

(5)

It is straightforward to find a general solution:h13 = h23 =
h33, h25 = h35, g31 = g51 = −h−1

11 , g22 = g42 = −h−1
12 ,

g44 = g54 = −h−1
24 , g25 = g35 = −h−1

25 , g46 = g56 = −h−1
36 ,

g13 = −h−1
13 . Hence there is a linear codeC in F7

q for the
access structureΓ. �

Example 3. Find a linear code C in F5
q for Γ =

{(1, 2), (2, 3), (3, 4)}.
According to Theorem 1,R = {(1, 3), (1, 4), (2, 4)}. Let

H =





1 h11 h12 0 0
1 0 h22 h23 0
1 0 0 h33 h34



 ,

G =





1 0 g12 0 g14

1 0 g22 g23 0
1 g31 0 g33 0



 ,

wherehij ∈ F ∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, andgij ∈ Fq for

1 ≤ i ≤ 3, 1 ≤ j ≤ 4.
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According to Theorem 2, we obtain the following equations:






















































1 + h12g12 = 0
1 + h12g22 = 0
1 + h11g31 = 0
1 + h22g12 = 0
1 + h22g22 + h23g23 = 0
1 + h23g33 = 0
1 + h34g14 = 0
1 + h33g23 = 0
1 + h33g33 = 0

(6)

It is again straightforward to check that this system has no
solution overFq for all q. Hence there is no a linear codeC
in F5

q for the access structureΓ. �

For the next example, one can imagine that there are two
companiesA and B. The administrators of companyA are
players1, 2, 3 and administrators of companyB are players
4, 5, 6. They plan to start a joint venture project. The project
can be executed only if majority of the administrators of each
company agree. Hence the following model could be useful
for this situation. Generally, setsA and B may have more
elements.
Example 4. Let

Γ = {(1, 2, 4, 5), (1, 2, 4, 6), (1, 2, 5, 6), (1, 3, 4, 5), (1, 3, 4, 6),

(1, 3, 5, 6), (2, 3, 4, 5), (2, 3, 4, 6), (2, 3, 5, 6)}.

Then

R = {(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 3, 6), (1, 4, 5, 6), (2, 4, 5, 6),

(3, 4, 5, 6)}.

Let

H =





























1 h11 h12 0 h14 h15 0
1 h21 h22 0 h24 0 h26

1 h31 h32 0 0 h35 h36

1 h41 0 h43 h44 h45 0
1 h51 0 h53 h54 0 h56

1 h61 0 h63 0 h65 h66

1 0 h72 h73 h74 h75 0
1 0 h82 h83 h84 0 h86

1 0 h92 h93 0 h95 h96





























,

G =

















1 0 0 0 0 g15 g16

1 0 0 0 g24 0 g26

1 0 0 0 g34 g35 0
1 0 g42 g43 0 0 0
1 g51 0 g53 0 0 0
1 g61 g62 0 0 0 0

















,

wherehij ∈ F∗
q for 1 ≤ i ≤ 9, 1 ≤ j ≤ 6, andgij ∈ Fq for

1 ≤ i ≤ 6, 1 ≤ j ≤ 6.
The general solution is of the form inFq: h11 = h21 =

h31 = g−1
51 , h12 = h22 = h32 = g−1

42 , h41 = h51 = h61 =
g−1
61 , h43 = h53 = h63 = g−1

43 , h72 = h82 = h92 = g−1
62 ,

h73 = h83 = h93 = g−1
53 , h14 = h44 = h74 = g−1

24 , h15 =
h45 = h75 = g−1

15 , h24 = h54 = h84 = g−1
34 , h26 = h56 =

h86 = g−1
16 , h35 = h65 = h95 = g−1

35 , h36 = h66 = h96 = g−1
26

where1 + h11g61 + h12g62 = 0, 1 + h21g61 + h22g62 = 0,
1+h31g61+h32g62 = 0, 1+h41g51+h43g53 = 0, 1+h51g51+

h53g53 = 0, 1+h61g51+h63g53 = 0, 1+h72g42+h73g43 = 0,
1+h82g42+h83g43 = 0, 1+h92g42+h93g43 = 0, 1+h14g34+
h15g35 = 0, 1+h44g34+h45g35 = 0, 1+h74g34+h75g35 = 0,
1+h24g24+h26g26 = 0, 1+h54g24+h56g26 = 0, 1+h84g24+
h86g26 = 0, 1+h35g15+h36g16 = 0, 1+h65g15+h66g16 = 0,
1 + h95g15 + h96g16 = 0.

When q = 2, the polynomial system (4) becomes a linear
system forG, as the nonzero entries ofH must all be1. Hence
the system can be solved by Gauss elimination. Therefore,
given an access structureΓ, if the adversary structureR is
found, then one decide in polynomial time (in terms of the
sizes ofΓ and R) where there is a linear code overF2 to
realizeΓ.

IV. I MPROVEMENT ONADVERSARY STRUCTURE

Since C⊥ is the row span space ofH. We consider the
following definition.

Definition 1[7] A subsetR ⊆ [1, n] is called a real rejected
set ofC if there is noy ∈ C⊥ such thaty0 = 1 andsupp(y)\
{0} ⊆ R. A real rejected setR is called a maximal real
rejected set if any setR′ with R ⊂ R′ can recover the secret.

According to this above definition, it is obvious that some
subsetsRi1 , ..., Rit

in R are rejected sets because it is
impossible for eachRij

(j = 1, 2, ..., t) that there is a
codewordc ∈ C⊥ such thatsupp(c) \ {0} ⊆ Rij

. Hence,
we only consider a smaller adversary structure called as real
adversary structureR(C) in which each elementR maybe
satisfy that there is a codewordc ∈ C⊥ such thatc0 = 1 and
supp(c) \ {0} ⊆ R.

In this section, we will proposed an algorithm to findR(C).

A. Definition of Real Adversary Structure

SinceC⊥ is the row span space ofH, any vectory ∈ C⊥

is of the form:

y = (y0, y1, ..., yn) = (

m
∑

i=1

ki,

m
∑

i=1

kihi1, ...,

m
∑

i=1

kihin) (7)

Let B = {i1, i2, ..., it} ⊆ [1, m] and 2 ≤ t ≤ m. We use
HB denotes a sub-matrix ofH which is composed of all rows
of H indexed byB, that is,

HB =









1 hi11 hi12 . . . hi1n

1 hi21 hi22 . . . hi2n

. . .
1 hit1 hit2 . . . hitn









=









hi1

hi2

. . .
hit









. (8)

Definition 2. (Possible Vector ofHB). We call a row vector

y = (y0, y1, ..., yn) = (
∑

i∈B

ki,
∑

i∈B

kihi1, ...,
∑

i∈B

kihin)

as a possible vector ofHB whereki ∈ F ∗
q for i ∈ B.

Definition 3. (Candidate Accepted Vector ofHB). We call
a possible vectory = (1, y1, ..., yn) of HB as candidate
accepted vector ofHB if y does not cover any one of vectors
hi1 , ...,hit

.
Definition 4. (Maximal Candidate Accepted Vector ofHB).

A candidate accepted vectory = (1, y1, ..., yn) of HB is called
maximal candidate accepted vector ofHB if for each i with
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yi = 0, and there are at least two non-zero entries in theith
column ofHB, then there isj ∈ B such thatsupp(hj) ⊆
supp(y)

⋃

{i}.
Let VMB be the set of all maximal candidate accepted

vectors ofHB.
Definition 5. ((Maximal) Candidate Accepted Set). A set

Sy is called as candidate accepted set ify is a candidate
accepted vector. A candidate accepted setSy is called as
maximal candidate accepted set ify is a maximal candidate
accepted vector.

Let RMB = {Sc|c ∈ VMB}.
Definition 6. For any B ⊆ [1, m] with |B| ≥ 2, let R′

MB

consist of elements inRMB that do not contain any one of
S1, ..., Sm. Let

R(C) = ∪B⊆[1,m],|B|≥2R
′
MB.

R(C) is called as real adversary structure ofΓ from C⊥.
Example 5. Assume access structureΓ =

{(1, 2, 3), (3, 4, 5), (3, 5, 6)} in a secret sharing scheme
with participants{1, 2, 3, 4, 5, 6}. HenceH is of the form

H =





1 a1 a2 a3 0 0 0
1 0 0 b1 b2 b3 0
1 0 0 c1 0 c2 c3



 . (9)

According to Definition 6,R(C) = {(1, 2, 4, 5, 6), (3, 4, 6)}.
Comparing with Example 1,|R(C)| ≤ |R|.

B. Construction of Real Adversary Structure

Definition 7.A matrix M is called decomposable if there
is a row and column permutation transformingM into the
following form:

M =

(

M1 0

0 M2

)

where eachMi(i = 1, 2) has at least one non-zero row and0
denotes a all-0 matrix. OtherwiseM is called indecomposable.

By permuting rows and columns,H can be transformed into
the following form:

H =









1 Γ1 0 . . . 0

1 0 Γ2 . . . 0

. . .
1 0 0 . . . Γt









, (10)

where eachΓi are indecomposable sub-matrixes for1 ≤ i ≤
t.
Definition 8.DefineE⊕F = {Z|Z = X∪Y, X ∈ E, Y ∈ F},
whereE and F are any two collects of sets.
Theorem 3. Suppose

Γ =









Γ1 0 . . . 0

0 Γ2 . . . 0

. . .
0 0 . . . Γt









, (11)

and everyΓi(1 ≤ i ≤ t) is indecomposable. IfT , T1, ..., Tt

are real adversary structure of access structureΓ, Γ1, ..., Γt

respectively, thenT = T1 ⊕ T2 ⊕ · · · ⊕ Tt.

Proof: Let Γi be only related with thei1-th, ..., isi
-th

columns ofΓ for 1 ≤ i ≤ t, wheres1 + s2 + ... + st = n.
Assume anyS ∈ T1⊕T2⊕· · ·⊕Tt, that is,S = S1∪S2∪· · ·∪

St and eachSi ∈ Ti for i = 1, 2, ..., t. Obviously,S ⊂ [1, n] is
a candidate accepted set because it is independent between any
Si andSj . At the same time,S must be a maximal candidate
accepted set, otherwise, then there exists at least aj ∈ S such
that S ∪ {j} is a candidate accepted set, hencej is related
with someΓi, that is, there exists someSi such thatSi ∪ {j}
is a candidate accepted set which is contrary to this case that
Si is a maximal candidate accepted set. SoS ∈ T .

Assume anyS ∈ T , thenS can be divided intoS = S1 ∪
S2∪· · ·∪St, whereSi ⊆ {i1, ..., isi

}. Because all participants
in S cannot reconstruct the secret, hence all participants in
eachSi can not also do it.

If someSi is only a candidate accepted set, but not inTi,
i.e., it is not a maximal candidate accepted set, however, other
Sj ∈ Tj , j 6= i. For set{i1, ..., isi

}, there must exist a subset
S′ ⊂ {i1, ..., isi

} such thatS′∪Si ∈ Ti, henceS1∪· · ·∪S′ ∪
Si ∪ · · · ∪ St also is a maximal candidate accepted sets, it is
contrary toS = S1 ∪S2 ∪ · · · ∪St ∈ T . So, eachSi ∈ Ti, for
i = 1, 2, ..., t.

That is, if anyS ∈ T , thenS ∈ T1 ⊕ T2 ⊕ · · · ⊕ Tt. �

Hence, it is reduced to construct real adversary structure of
indecomposable matrixΓi when we try to find real adversary
structure ofΓ.

Let Ai = {j|1 ≤ j ≤ n, |supp(zj)| = i}, wherezj is the
jth column ofHB. Obviously,

∑m

i=0 |Ai| = n.
Lemma 5. For any HB, if l ∈ A1, the participantPl must
belong to every element in generating adversary structure of
HB.
Proof: Assumey = (1, y1, ..., yn) is a possible vector of
HB, then the lth component ofy can be computed from
yl =

∑t

j=1 kjhij l. Becausek1, ..., kt ∈ F ∗
q , and only one

of hi1l, ..., hitl does not equal 0, henceyl 6= 0. �

Theorem 4.If B is overlayed byT1∪T2, but not by any proper
subset ofT1∪T2, thenT1 ∪ T2 ∈ TB , whereT1∩A1 = ∅ and
T2 ∩ A1 = ∅. Every element inTB can be obtained by this
way.
Proof: For anyk ∈ T1 ∪ T2 andk /∈ A0, T1 ∪ T2 \ {k} does
not overlayB, T1 ∪ T2 ∪ {k} contains at least oneSj ∈ Γ
where j ∈ B. That is, T1 ∪ T2 is a candidate accepted set,
but T1 ∪ T2 ∪ {k} is not a candidate accepted set for any
k ∈ T1 ∪ T2, i.e., k /∈ T1 ∪ T2, henceT1 ∪ T2 is in TB

according to the definition of maximal candidate accepted set.
T1 ∩ A1 = ∅ andT2 ∩ A1 = ∅ hold from Lemma 5.
On the other hand, ifS ∈ TB, thenS must overlayB from

Lemma 3. Now, assume there exists a proper subsetS′ ⊂ S
such thatS′ overlaysB, then S′ is a generating candidate
set of HB. However,S ⊂ S′ is contrary to this caseS is
a maximal candidate accepted set. That is, ifS is a maximal
rejected set ofHB, then it must be generated by a setT which
overlaysB, however,B is not overlayed by any proper subset
of T . �

Now, we will provide an algorithm to generateR(C) for
any access structureΓ.

Assume access structureΓ is decomposable and is com-
posed of Γ1, ..., Γt, where eachΓi is indecomposable for
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i = 1, ..., t.
Algorithm : FindingR(C) from Γ.
1) Construct real adversary structureTi for Γi.

a) Assume thatHi = (1 Γi) is anmi×(ni+1) matrix,
for simplicity we denote its rows and columns by
using symbols{r1, r2, ..., rmi

} and {0, l1, ..., lni
}

respectively, where column0 denotes the first
column of Hi,

∑t

i=1 mi = m and
∑t

i=1 ni = n.
HiB

is a sub-matrix ofHi which is composed of
all rows of Hi indexed byB which is a subset of
{r1, r2, ..., rmi

} and2 ≤ t(= |B|) ≤ mi.
b) The following algorithm will generateTiB

of HiB

(initially TiB
is empty. Assume

Aj = {lk|k ∈ {1, ..., ni}, |supp(sk)| = j}

where column vectorsk is thekth column ofHiB
.

i) If At 6= ∅, then add{l1, ..., lni
} \ {j} to TiB

for eachj ∈ At.
ii) AssumeAt−j 6= ∅. If j = 1, ..., t− 3 andT1 ⊆

At−j , T2 ⊆ A2∪...∪At−j−1 , add{l1, ..., lni
}\

T1 ∪ T2 to TiB
, or if j = t − 2 and T1 ⊆

A2, T2 ⊆ A2, then add{l1, ..., lni
} \T1∪T2 to

TiB
, whereB is overlayed byT1 ∪ T2 but not

by any proper subset ofT1 ∪ T2, and|T1| ≥ 1.
c) ConstructTi. AssumeTiB

= T ′
iB

∪ D, where any
b ∈ T ′

iB
must not include any setSy wherey is

any one row vector ofHi, then

Ti = ∪B⊆[1,mi]
|B|≥2

T ′
iB

.

2) Construct R(C) for Γ. According to Theorem 3,
R(C) = T1 ⊕ ... ⊕ Tt.

This algorithm may still have exponential running time whenn
is large. However, we will find adversary structureR(C) with
smaller size if there exist only one non-zero element in some
columns ofH. Especially, the size ofR(C) will be smaller
if these columns with only one non-zero elements ofH are
more.

Let

G1 =









1 g11 g12 · · · g1n

1 g21 g22 · · · g2n

· · · · · · · · · · · · · · ·
1 gl1 gl2 · · · gln









=









g1

g2

· · ·
gl









, (12)

wheregij = 0 if j ∈ Ri andR(C) = {R1, R2, ..., Rl}.
Corollary 1. There is a linear code for a given access structure
Γ = {S1, ..., Sm} if and only if the following system of
quadratic equations

G1H
⊤ = 0, (13)

has a solution forhij , j ∈ Si, and gij , j 6∈ Ri, over Fq with
hij 6= 0 for j ∈ Si.

Example 6. (Continued Example 2)
Answer: According to Theorem 4, R(C) =
{(1, 2, 4, 5, 6), (3, 4, 6)}.

Let

H =





1 h11 h12 h13 0 0 0
1 0 0 h23 h24 h25 0
1 0 0 h33 0 h35 h36



 ,

G1 =

(

1 0 0 g13 0 0 0
1 g21 g22 0 0 g25 0

)

,

wherehij ∈ F ∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6, andgij ∈ Fq for

1 ≤ i ≤ 2, 1 ≤ j ≤ 6.
According to Corollary 1, we obtain the following equa-

tions.






























1 + h13g13 = 0
1 + h11g21 + h12g22 = 0
1 + h23g13 = 0
1 + h25g25 = 0
1 + h33g13 = 0
1 + h35g25 = 0

(14)

Obviously, Equations 14 has solutions in any finite fieldFq.�
Since |R(C)| ≤ |R|, the matrixG1 determined byR(C)

is much less than the matrixG determined byR. Hence, it is
easier to resolve equation 12 than to resolve equation 4.

V. THE OPTIMAL L INEAR CODE

In Section III, we solve this problem that how to construct
an ideal linear code realizing given access structureΓ if it
exists, however, how can we gain the optimal linear code
realizing given access structure if there does not exist an ideal
linear code? In this section, we will propose an algorithm to
find the optimal linear code realizing given access structure.

A. An Algorithm to Find the Optimal Linear Code

For given access structureΓ, how can we obtain the optimal
linear code if there does not exist an ideal linear code realizing
it? that is, how can we obtain the optimal linear code realizing
Γ if there is no solution for quadratic equations (4)?

In an ideal linear code, each participant inΓ ”owns”
an only component of a code, hence he ”owns” an only
corresponding column of generator matrixG and check matrix
H. In the optimal linear code, each participant inΓ ”owns”
some components of a code, as a result, he ”owns” some
corresponding columns ofG and H. However, the generator
matrix G and check matrixH of the optimal linear code
realizing Γ still satisfies quadratic equations (4), hence,we
can obtain the following algorithm which can find the optimal
linear code realizingΓ.

Algorithm: The optimal linear code realizingΓ.

1) Adding to a column in matrixesG andH respectively,
we obtain two matrixesG1 andH1 with n+2 columns.
We emphasis that the new column is theith column
of G1 andH1 respectively, furthermore, theith column
has same forms with the(i + 1)th column in G1 and
H1 respectively for everyi = 2, 3, ..., n. Two columns
have same forms if their elements satisfies restrictions
in Theorem 2.
There exists a linear code with lengthn + 2 realizing
Γ if the system of quadratic equationsG1HT

1 = 0 has
a solution. There is an output which is a linear code
realizingΓ.

2) If there does not exist solution ofG1HT
1 = 0, two

columns are added up in matrixesG and H which are
changed into two matrixesG2 andH2 with lengthn+3
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respectively. New two columns have same forms with
two columns or one column ofG andH respectively.
There exists a linear code with lengthn + 3 realizing
Γ if the system of quadratic equationsG2HT

2 = 0 has
a solution. There is an output which is a linear code
realizingΓ.

3) Suppose there does not exist solution ofGiH
T
i = 0,

where matrixesGi andHi are obtained by being added
up i columns from matrixesG andH respectively.i+1
columns are added up in matrixesG and H which are
changed into two matrixesGi+1 andHi+1 with n+i+2
columns respectively. Newi + 1 columns have same
forms withi+1 columns, ori columns, ..., or one column
of G andH respectively.
There exists a linear code with lengthn+ i+2 realizing
Γ if the system of quadratic equationsGi+1HT

i+1 = 0
has a solution. There is an output which is a linear code
realizingΓ.

4) repeating the step 3, and obtaining a linear code realizing
Γ until the system of quadratic equationsGi+1HT

i+1 = 0
has a solution for somei.

Remarks: in order to obtain the optimal linear code, 1) in step
2, let new two columns have same forms with two columns
of G and H respectively, then new two columns have same
forms with one column ofG andH respectively if there is not
a linear code when two columns have forms of two columns.

2) In step 3, let newi+1 columns first have forms ofi+1
columns, then forms ofi columns if there is not a linear code
for forms of i + 1 columns, then forms ofi − 1 columns if
there is not a linear code for forms ofi columns ,..., then same
forms if there is not a linear code for forms of 2 columns.

3) In step 3, if newi+1 columns have forms ofj columns
in G (or H), its information rate is belongs to{ 1

2 , 1
3 , · · · , 1

i+2},
where1 ≤ j ≤ i + 1. So, we first consider the linear code
with information rate1

2 , then 1
3 , · · · , finally 1

i+2 .

Theorem 5. Given access structureΓ, the optimal linear
code realizing it must can be found from the above algorithm.
Proof: According to [14], the above algorithm must have
outputs which is a linear code realizingΓ. Next, we will prove
this linear code is the optimal linear code realizingΓ.

Case 1: If there is an output in step 1, then this output
must be the optimal linear code realizingΓ because there is
not ideal linear code realizingΓ and our linear code has the
shortest lengthn+2. The information rate of the optimal linear
code is 1

2 .

Case 2: The linear code with lengthn + 3 in step 2 is the
shortest among all linear codes realizingΓ because there is
not linear code with lengthn+1 andn+2 which can realize
Γ. We can obtain the optimal linear code according to remark
1, and its information rate is12 or 1

3 ,

Case 3: The linear code with lengthn + i + 2 in step 3 is
the shortest among all linear codes realizingΓ because there is
not linear code with lengthj = n+1, n+2, ..., n+i+1 which
can realizeΓ. We can obtain the optimal linear code realizing
Γ according to remark 2 and remark 3, and its information
rate is belongs to{ 1

2 , 1
3 , · · · , 1

i+2} �

B. An Example

In this section, we show an example to explain our algo-
rithms. According to Example 3, there is not an ideal linear
code realizingΓ = {(1, 2), (2, 3), (3, 4)} in F5

q. Now, we will
find its optimal linear code according to our algorithm in
section 5.1.

According to step 1 of our algorithms in section 5.1, we
can obtain(H1, G1) with the following forms:

(a) H1 =





1 h′
11 h11 h12 0 0

1 0 0 h22 h23 0
1 0 0 0 h33 h34



 ,

G1 =





1 0 0 g12 0 g14

1 0 0 g22 g23 0
1 g′31 g31 0 g33 0



 ;

(b) H1 =





1 h11 h′
12 h12 0 0

1 0 h′
22 h22 h23 0

1 0 0 0 h33 h34



 ,

G1 =





1 0 g′12 g12 0 g14

1 0 g′22 g22 g23 0
1 g31 0 0 g33 0



 ;

(c) H1 =





1 h11 h12 0 0 0
1 0 h22 h′

23 h23 0
1 0 0 h′

33 h33 h34



 ,

G1 =





1 0 g12 0 0 g14

1 0 g22 g′23 g23 0
1 g31 0 g′33 g33 0



 ;

(d) H1 =





1 h11 h12 0 0 0
1 0 h22 h23 0 0
1 0 0 h33 h′

34 h34



 ,

G1 =





1 0 g12 0 g′14 g14

1 0 g22 g23 0 0
1 g31 0 g33 0 0



 .

where hij , h
′
ij ∈ F ∗

q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and
gij , g

′
ij ∈ Fq for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4.

According to Theorem 2, we obtain the following equation
systems (a’), (b’), (c’) and (d’) for (a), (b), (c) and (d)
respectively:

(a′)























































1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 = 0
1 + g22h12 = 0
1 + g22h22 + g23h23 = 0
1 + g23h33 = 0
1 + g31h11 + g′31h

′
11 = 0

1 + g33h23 = 0
1 + g33h33 = 0
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(b′)























































1 + g12h12 + g′12h
′
12 = 0

1 + g12h22 + g′12h
′
22 = 0

1 + g14h34 = 0
1 + g22h12 + g′22h

′
12 = 0

1 + g22h22 + g′22h
′
22 + g23h23 = 0

1 + g23h33 = 0
1 + g31h11 = 0
1 + g33h23 = 0
1 + g33h33 = 0

(c′)























































1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 = 0
1 + g22h12 = 0
1 + g22h22 + g23h23 + g′23h

′
23 = 0

1 + g23h33 + g′23h
′
33 = 0

1 + g31h11 = 0
1 + g33h23 + g′33h

′
23 = 0

1 + g33h33 + g′33h
′
33 = 0

(d′)























































1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 + g′14h

′
34 = 0

1 + g22h12 = 0
1 + g22h22 + g23h23 = 0
1 + g23h33 = 0
1 + g31h11 = 0
1 + g33h23 = 0
1 + g33h33 = 0

There exist solution for systems (b’),(c’)overFq, and no
solution for systems (a’),(d’) overFq, hence there is the
optimal linear code with length 6 inF6

q for the access structure
Γ.

VI. CONCLUSION

In this paper, we consider existence of ideal linear code for
given access structureΓ, and give a method to construct the
optimal linear code realizingΓ if there is not an ideal linear
code realizingΓ. This is the best work so far in this field.
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