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Abstract. The goal of generic side-channel distinguishers is to allow key recoveries
against any type of implementation, under minimum assumptions on the under-
lying hardware. Such distinguishers are particularly interesting in view of recent
technological advances. Indeed, the traditional leakage models used in side-channel
attacks, based on the Hamming weight or distance of the data contained in an im-
plementation, are progressively invalidated by the increased variability in nanoscale
electronic devices. In this paper, we consequently provide two contributions related
to the application of side-channel analysis against emerging cryptographic imple-
mentations. First, we describe a new statistical test that is aimed to be generic and
efficient when exploiting high-dimensional leakages. The proposed distinguisher is
fully non-parametric. It formulates the leakage distributions using a copula and
discriminates keys based on the detection of an “outlier behavior”. Next, we pro-
vide experiments putting forward the limitations of generic side-channel analysis
in advanced scenarios, where leaking devices are protected with countermeasures.
Our results exhibit that all non-profiled attacks published so far can sometimes
give a false sense of security, due to incorrect leakage models. That is, there exists
settings in which an implementation is secure against such non-profiled attacks and
can be defeated with profiling. This confirms that the evaluations of cryptographic
implementations should always consider profiling, as a worst case scenario.

1 Introduction

Since the introduction of differential power analysis by Kocher, Jaffe and Jun in the late
1990s [13], physical attacks have become an important issue for the security of crypto-
graphic devices. On the academic side, it gave rise to many exciting developments of new
attacks, countermeasures and models for the evaluation (or, recently, proof) of physical
security. On the industrial side, security against such attacks is now required to reach
high certification levels for cryptographic products. Roughly speaking, side-channel at-
tacks are usually classified as profiled or non-profiled [15]. Profiled attacks are typically
useful in an evaluation context, where one can exploit devices with known keys in order
to build precise leakage models, e.g. templates [5]. They can then be used in order to
estimate evaluation metrics such as the mutual information, in order to capture a worst-
case scenario [28]. By contrast, non-profiled attacks, on which we will focus in this paper,
rather aim to capture the behavior of actual adversaries, who do not have a precise prior
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characterization of the devices they target. They are usually suboptimal from a data com-
plexity point of view, and exploit the “on-the-fly” estimation of the leakage probability
distributions (or their moments) in order to recover secret information. In general, the
gap between these two scenarios can be large. Hence, profiled and non-profiled attacks
are complementary and shed a different light on the security of embedded devices.

In brief, a non-profiled side-channel attack generally works by comparing key-dependent
models of the leakage with actual measurements. If the attack is successful, the key can-
didate giving rise to the best comparison is the one manipulated by the target device. As
a consequence, evaluating the performances of such a distinguisher can typically be done
along two axes. On the one hand, attacks are expected to be efficient, meaning that they
allow recovering keys with limited data (i.e. measurements), time and memory. On the
other hand, attacks should also be generic, i.e. applicable against any type of device and
(if possible) unsensitive to unprecise leakage models. A brief look at the state-of-the-art
suggests that most previous works can be viewed as exploring the tradeoff between these
two (usually contradictory) goals. For example, in the seminal paper of Crypto 1999,
the so-called “single-bit DPA” is performed using a simple difference-of-means test. This
approach has limited efficiency, because the single-bit model implies a low signal-to-noise
ratio, and it cannot take advantage of any knowledge of the target device that may be
available to the adversary. As a consequence, many “multiple bit” extensions have been
proposed in the literature. Most prominently, the Correlation Power Analysis (CPA) in-
troduced in 2004 works very efficiently in contexts where a device leaks according to a
well known and linear (e.g. Hamming weight) model [2]. But it is also quite specific, and
can end up to be completely ineffective if an unprecise leakage model is used. In order
to avoid this model-dependency, a powerful solution is to build stochastic models “on-
the-fly”, as suggested by Schindler, Lemke and Paar in 2005 [26]. A possible drawback
of stochastic models is their parametric nature. But as discussed in [6], such a linear
regression-based approach gives excellent results in the context of first-order side-channel
attacks against unprotected devices. Alternatives to stochastic models include the Mu-
tual Information Analysis, introduced in 2008 [8], and tests such as the Cramér-von-Mises
one, discussed in [31]. These last two distinguishers are quite generic, and can capture any
type of leakage dependency. They are also non-parametric in the case of MIA (which still
implies pdf estimation, e.g. with histograms or Kernels, hence requiring to select number
of bins or Kernel bandwidth adequately [19]) and completely free of parameters for the
Cramér-von-Mises test (which only requires to build empirical cumulative functions).

Interestingly, recent technological advances suggest that the genericity of side-channel
distinguishers could be an important feature in the evaluation of future cryptographic
devices. Indeed, as discussed in [24], the move towards nanoscale electronic circuits im-
plies the apparition of new leakage functions, that strongly deviate from the traditional
(Hamming weight, distance) assumptions. Also, the increasing device variability implies
that each target implementation can be characterized by a different leakage model. Quite
naturally, the situation turns out to be even nastier when moving to higher-order attacks
against devices protected with masking [4, 10]. Indeed, straightforward extensions of DPA
and CPA require the introduction of a heuristic dimensionality reduction technique, usu-
ally denoted as the combination function in the literature [17]. But as discussed in [20, 29],
the selection of a good combination function is inherently dependent on the leakage func-
tion (i.e. the target device), and can only degrade the amount of information exploited by



the distinguisher. Similarly, extensions of the stochastic model are direct in the profiled
context [14], when masks are available during the profiling, but their application in a non-
profiled scenario requires either to estimate pdf mixtures in an unsupervised manner (i.e.
a problem for which we do not have systematic and efficient solutions), or to take advan-
tage of some heuristic assumptions (e.g. using a combination function). In fact, only MIA
directly generalizes to multivariate side-channel attacks, without requiring a combination
function [1, 7, 19]. Given this attractive feature, it appears natural to investigate how such
distinguishers can deal with advanced scenarios, mixing non-linear leakage functions and
countermeasures like masking. This paper presents two contributions in this direction.

First, we propose a new test for side-channel analysis, aimed to be generic and ef-
ficient when exploiting high-dimensional leakages. For this purpose, we start from the
observation that, in order to be generic, MIA selects the key candidate that maximizes
the mutual information between an adversary’s key-dependent leakage models and actual
measurements. Our new distinguisher uses the alternative criterion to select the key can-
didate for which these leakage models deviate the most from a reference (e.g. uniform)
distribution. As discussed in Section 3, there exists contexts in which this new criterion
allows discriminating the key, whereas the strict application of MIA does not. Next, it
has been observed in experiments on MIA that the generalization to multivariate attacks
can be less efficient, because of the difficulty of estimating a multivariate pdf “on-the-fly”,
without specific assumptions [29]. Also, previously considered estimation methods such as
using histograms, Kernels, or splines [30], generally require to tune a parameter, e.g. the
number of bins in histograms, that directly impacts the efficiency of the attack. Hence,
although MIA aims at genericity more than efficiency, it would be interesting to avoid
such parameters, or to make their tuning as easy as possible. Our new distinguisher takes
advantage of advanced statistical tools in order to mitigate these issues. For this purpose,
we first apply a leakage transformation, exploiting copulas [18]. It projects the samples
into a new space where their distribution (among each dimension) is uniform. Thanks
to this transform, we base our distinguisher on the generic criterion of selecting the key
candidate for which the model maximizes the deviation from uniform. Afterwards, we
exploit distance sampling, i.e. we evaluate the distribution of the distance between two
samples (conditioned on a leakage model), rather than the distribution of single samples.
Distance sampling has interesting features in a multivariate setting, as it allows to avoid
dealing with multivariate distributions directly (we rather evaluate the univariate distri-
bution of a distance taken over several dimensions). As a result, our test is completely
free of parameters and mainly requires to compute empirical cumulative distributions,
for each dimension taken independently. Summarizing, it is pointed out in [33] that the
efficiency loss of MIA is due to the problem of estimating the leakage distributions. The
present paper complements this view and aims at making this estimation step easier.

Second, we propose different experiments in order to evaluate this new distinguisher.
Namely, we investigated attacks against unprotected and masked S-box computations, in
three different settings: naive Hamming weight simulations, real measurements of a 65
nanometer CMOS chip, Spice simulations of a dual-rail logic style. These examples are
expected to be reflective of the variety of leakage functions that one can find in side-
channel analysis. They highlight that the proposed generic test compares favorably with
MIA, in all investigated scenarios. They also underline that, despite the generic nature of
MIA and the new distinguisher, their application against modern electronic devices can



be strongly affected by inaccurate leakage models, and that the impact of such impre-
cisions is amplified with countermeasures such as masking. In other words, even generic
tests can be unsuccessful in certain contexts, unless preliminary assumptions (similar to
profiling) are available to the adversary. We note finally that this last observation holds
for all non-profiled distinguishers published so far. Hence, it raises the question whether
non-profiled attacks could be improved to deal with such critical contexts, or alterna-
tively, whether these contexts can be formalized and used as a design criteria for new
countermeasures. For now on, these results at least confirm the importance of a profiled
information theoretic analysis when evaluating leaking cryptographic devices.

2 Side-channel analysis

In a side-channel attack, an adversary tries to recover secret information from a leaking
implementation, e.g. an IC computing a cryptographic algorithm. As most cryptanalytic
techniques, side-channel attacks are based on a divide-and-conquer strategy. For example,
in the context of a block cipher implementation, one typically targets small pieces of the
master key - called subkeys in the following - one by one. The core idea is to compare
subkey-dependent models of the leakage with actual measurements. That is, for each sub-
key candidate, the adversary builds models that hypothetically correspond to the leakage
generated by the encryption of different plaintexts. Then, he evaluates which model (i.e.
which subkey) gives rise to the best prediction of the physical leakage, measured for the
same set of plaintexts. Hence, assuming that the models can be represented by a random
variable X, and the leakages can be represented by a random variable Y , side-channel
analysis can be seen as the problem of detecting a dependency between these two vari-
ables. In the following, we consider that X is a discrete random variable and that Y is a
continuous one, sampled with a sufficient resolution (e.g. using an oscilloscope).

The next sections of the paper analyze the attack depicted in Figure 1, as described
in [1]. That is, we consider a device performing several cryptographic computations Ek(p)
on different plaintexts p drawn uniformly from the text space P, using some fixed key k
drawn uniformly from the key space K. While computing Ek(P ) (where P is a random
variable over P), the device will handle some intermediate values (defined as sensitive
variables in [25]) that depend on the known input P and the unknown key k. In practice,
the interesting sensitive variables in a DPA attack are the ones that only depend on an
enumerable subkey s: we denote them as Vs,P . Anytime such a sensitive intermediate
value is computed, the device generates some physical leakage, denoted as Yk,P .

In order to perform a key recovery, an adversary first has to select a sensitive value.
Given that this value only depends on a subkey s, he can then evaluate its result for
the same plaintexts that have been used to generate Yk,P and all the possible subkey
candidates j ∈ S. It gives rise to different hypothetical values Vj,P . Afterwards, he uses
a leakage model to map these values from their original space V towards a hypothetical
leakage space X . It is usually in this step that engineering intuition can be exploited, if
available. For example, a usual model that has been experimentally confirmed, e.g. in the
DPA book [15], is to take the Hamming weight of the values Vj,P . Such a model is justified
by the dominating dynamic part of the power consumption in certain microelectronic
devices. As a result, the adversary obtains |S| different models denoted as Xj,P , again
corresponding to the different subkey candidates. Eventually, he uses a distinguisher D
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Fig. 1. Schematic illustration of a side-channel key recovery attack.

to compare the different models Xj,P with the actual leakages Yk,P . If the attack is
successful, the best comparison result (i.e. the highest value of the distinguisher) should
be obtained for the correct subkey candidate j = s. This procedure can then be repeated
for different subkeys in order to eventually recover the full key.

3 MIA with an identity leakage model

The basic principle of MIA is to use the mutual information between the adversary’s
models Xj,P and the actual leakage Yk,P as a distinguisher. That is, to estimate:

Î(Xj,P ;Yk,P ), (1)

and to select the subkey j that maximizes this value. Compared to CPA that can only take
advantage of linear dependencies between Xj,P and Yk,P , MIA exploits all the information
available in a leakage trace, at the cost of a more difficult estimation problem. In other
words, it allows successful key recoveries against more devices, but is less efficient than
CPA in contexts where the leakage function and adversary’s models are linearly correlated.

Following the goal of increasing genericity, the first description of MIA in [8] also came
with the proposal of generic leakage models, based on the identity function. That is, one
expected advantage of MIA over other non-profiled attacks was that using the target
values Vj,P (or some of their bits) directly as leakage model should lead to successful
attacks against most devices1. In this section, we consequently motivate the introduction
of a new statistical test and show empirically that maximizing the mutual information
between Xj,P and Yk,P may not always be the best solution for this purpose.

As a simple example, one can mount the following simulated experiment. Take the
Hamming weight of the AES S-box as leakage function and launch MIA with an “identity”
leakage model, made of 1 to 7 bits of this S-box output. That is, take Yk,p = WH(S(p⊕k))

1 This expectation will be re-discussed and moderated in Section 5.
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Fig. 2. Estimated mutual information versus subkey candidate.

and Xj,p = [S(p ⊕ k)]1:n, with 1 ≤ n ≤ 7. Figure 2 illustrates the mutual information
estimated with histograms, for the different subkey candidates. One can clearly see that
the correct subkey candidate (s = 63) maximizes the mutual information when using
1-bit, 2-bit, 3-bit, 4-bit and 5-bit models, but minimizes it for the 7-bit model. We note
that this observation is independent of the estimation method and, e.g. is also exhib-
ited when using Kernels such as proposed in [19]. This unexpected feature of MIA was
observed independently by Whitnall and is given a probabilistic interpretation in [32].
One could naturally try to adapt MIA in order to be successful in this case too. But this
experiment suggests that, in order to perform successful key recoveries, adversaries may
be more interested in the “outlier” behavior of the correct key model than in its mutual
information with the measured leakages. Hence, it gives a motivation for the introduction
of an alternative statistical test, as will be detailed in the following section.

Note that this observation has strong relations with the experiments in [24], where it
is shown that the information “perceived” by an adversary in a side-channel attack can be
negative, if provided with a bad leakage assumption. Quite naturally, such a bad leakage
assumption can typically happen in a non-profiled attack scenario and lead MIA to fail.
By contrast, it does not contradict the use of the mutual information as an evaluation
metric, proposed in [28], for which profiling is expected to allow a precise modeling of
the leakage distributions. Hence, this section also confirms the previous discussion from
CHES 2009 [31], where the difference between a mutual information metric and a mu-
tual information based distinguisher was already stated. That is, performing MIA is not
equivalent to computing the information theoretic metric, unless a perfect leakage model
is used (which is generally not the case in non-profiled attack scenarios). Note also that
the example in Figure 2 only shows that MIA with a 7-bit leakage model can theoreti-
cally fail, which does not prevent it to remain successful in many practical settings. In
particular, this example is based on a somewhat artificial noiseless leakage function.



4 The new generic test

A central problem in non-profiled side-channel analysis is to properly estimate the leakage
distribution “on the fly” during an attack. Previous methods for this purpose typically
range in two categories. A first class of distinguishers exploits specific assumptions about
the target implementation, resulting in efficient attacks provided that these assumptions
are fulfilled. Another class of distinguishers aims to avoid relying on assumptions, at the
cost of a (hopefully small) efficiency loss. Quite naturally, the genericity of this second
class of distinguishers essentially comes from that they try to completely characterize the
leakage distribution (rather than its first- or second-order moments, typically). And its
efficiency loss comes from the difficulty of the density estimation problem. For example,
tools for estimating pdf usually rely on a good choice of parameters: number of modes
in Gaussian mixtures, number of bins in histograms, bandwidth in Kernel estimators, to
name a few. Also, these estimators strongly suffer from the curse of dimensionality: a 9-bin
univariate histogram will typically require 81 bins in two dimensions. In the remainder
of the section, we first describe a distinguisher, illustrated in Figure 3, that aims to limit
these drawbacks. Next, we discuss its advantages and limitations in detail.

4.1 Specification

The distinguisher is based on six main steps (one being optional).

Leakage space transform. In order to circumvent the problem of estimating the leakage
distribution, our method first transforms the samples by means of copula. A copula simply
applies the probability integral transform to every marginal variable, which renders the
distribution of samples along each axis uniform. More precisely, for Y = (Y1, Y2, . . . , Yd)
a d-dimension random variable, the copula transformation gives a derived variable Z =
(Z1, Z2, . . . , Zd) = (F1(Y1), F2(Y2), . . . , Fd(Yd)), where Fi is the cumulative distribution
function of Yi, defined by Fi(yi) = Pr[Yi ≤ yi]. Interestingly, the Zi have a uniform dis-
tribution by definition of the probability integral transform, but any dependency among
the Yi variables implies a corresponding dependency among the Zi’s. This is illustrated
in Figure 3, where it is clearly seen that the marginal distribution Pr[Z = z] is uni-
form after reduction, while the conditional distributions remain easily distinguishable.
For illustration, the figure represents the simple case of a single-bit leakage model.

In practice, since the leakage density and its cumulative function are both unknown,
we compute an empirical copula, i.e. a copula where the cumulative distributions are
approximated by empirical distributions. For an n-sample set y1, · · · yn drawn from the
distribution of a one-dimension random variable Y , the empirical cumulative distribution
of a value y is given by F̂ (y) = 1

n

∑
i I(y ≤ yi), where I is the indicator function. That

is, it only requires to sort the samples and is equivalent to computing the quantile of y
for that sample set. Thanks to the Glivenko-Cantelli theorem [3, 9], we know that the
empirical cumulative distribution function converges almost surely towards the common
cumulative distribution function, uniformly over all y. That is:

‖F̂n − F‖∞ ≡ sup
y∈R

∣∣F̂n(y)− F (y)
∣∣ a.s.−−→ 0. (2)
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A significant advantage of the empirical copula is that reduced samples only take
quotient values: 0, 1

n , . . . ,
i
n , . . . 1, built from n real-valued leakages. Hence, from now

on, we can deal with probability mass functions instead of densities, which simplifies
computations. In the global scope of a side-channel key recovery, this amounts to working
on modified values Zk,P instead of the leakages Yk,P , which have by construction a simple
uniform distribution, but still retain the information contained in the original leakages.

Leakage partitioning. This step is common to all side-channel attacks. After trans-
formation, the leakage samples are classified, based on predictions Xj,P made up from
the plaintexts and key hypotheses. The expectation is that predictions obtained from
the correct key candidate will lead to a meaningful leakage partition, i.e. there will be
a dependency between the categories x and the samples y they contain. By contrast, a
wrong key hypothesis should give rise to random predictions, so that the categories only
correspond to a random shuffling of leakages from the sample set. Interestingly, thanks to
the transformation step, a random sampling should tend towards a uniform distribution,
as illustrated in the leakage partition step in Figure 3.

Feature selection and template building. Given the (uniform or not) distributions
representing the key candidates, one can select a feature of these distributions, that prop-
erly captures possible non-uniformities. In the following, we will consider the distance
between couples of samples for this purpose, which corresponds to the notion of spac-
ings in statistics [21]. When dealing with multivariate leakages, we define spacings via
the L1 or Manhattan distance (instead of the Euclidean one), which avoids dealing with
irrational values. The Manhattan distance between two samples z and z′ is given by
d1(z, z′) =

∑
i |zi − z′i|, where the sum is taken over the different dimensions of the sam-

ples. Next, since the marginal distribution of the leakages is known to be always uniform,
we simply build a template for the distribution of the distance between two uniform
samples. This template is precomputed once for all attacks, independently of the target
implementation. Its shape is actually a spline, which ensure a degree of smoothness (see
appendix A for details). We note that the interest of feature selection is not obvious in
the univariate attack context of Figure 3. But it implies a dimensionality reduction that
becomes convenient in a multivariate setting, as will be clear later in the section2. Also,
it leads to a very efficient solution for the estimation problem, as we now detail.

Estimation. This is the central step of the attack, in which we try to model the distri-
butions corresponding to the different key candidates. For this purpose, one limitation of
MIA was the need to estimate one conditional distribution per model value, for each key
candidate. In other words, each of these distributions has to be estimated from only a
part of the available samples3. By contrast, our new test allows to estimate only one dis-
tribution, from all the available samples. This is possible because we know (again thanks
to the application of a copula) that the marginal distribution should be uniform for a
wrong key candidate. Hence, we can sample the Manhattan distance for all partitions,
and combine the results into a single probability mass function, which has to be consistent

2 We also mention that distance sampling is reminiscent of the use of an absolute distance
combining function in higher-order side-channel attacks [17]. The prior application of a copula
allows us to give it a stronger foundation and to remove its device-dependent flavor.

3 For example, in case of a Hamming weight leakage model, MIA can only exploit one sample
in every 256 to estimate the pdf conditioned on model 0 and 8.



with uniformly drawn samples. Combined with the previous feature selection, it implies
that one can estimate the distributions for each key candidate by iterating the next steps:

– Pick a random leakage z from the complete set of samples.
– Pick a different random leakage z′, from the same model category as z.
– Compute their Manhattan distance d1(z, z′).

Finally, we obtain the sampled probability mass function of the distance. This distance
can only take n · d distinct values, with n the number of samples available and d the
dimensionality of the leakages. This is possible because we use the Manhattan distance
(i.e. there are as many possible distances as there are samples). Note that if there are m
leakages corresponding to a model value X = x, the number of possible couples to sample
scales as m2. In our following experiments, it was always possible to test these couples
exhaustively. But in attacks requiring millions of traces, exploiting Monte Carlo sampling
would of course be an alternative to reduce the time complexity to more tractable values.

Smoothing. As can be seen from Figure 3, the distance histograms can be used to
discriminate the different partitions, but they remain quite noisy. In order to improve
the signal-to-noise ratio of the pdf estimations, one straightforward solution is to apply
a lowpass filter. Different solutions can be used for this purpose. A very generic one,
that we applied in our experiments, is to use Kernel smoothing with an Epanechnikov
function [12] (which is both the most efficient Kernel and the least costly to compute). The
advantage of Kernel smoothing is to generalize easily to distributions with any number
of dimensions. Its drawback is to introduce a parameter (the window size used in the
smoothing). However, we note that this parameter is significantly easier to select than,
e.g. the number of bins or Kernel bandwidth in the case of MIA, since we know exactly how
the distribution of the wrong key candidates should look like. Namely, this distribution
should correspond to the previously described uniform distance template. How to select
this parameter adequately will be explained in the next subsection.

Evaluation. Finally, we compute the integrated square distance between the sample
distributions of all the key candidates and the theoretical distance distribution (i.e. the
uniform ditance template construted in step 3 of the attack). The attack is successful if
the correct key candidate corresponds to the largest deviation4.

4.2 Pros and cons

Compared to previous distinguishers for side-channel analysis, one first important advan-
tage of this new test is that it very nicely extends to multivariate attacks. As illustrated
in Figure 4 for a bivariate example (i.e. d = 2) and a Hamming weight leakage model,
the leakage transformation is performed independently for each dimension. That is, we
just have to compute d univariate empirical cumulative functions (rather than one d-
dimensional distribution when applying MIA). The empirical cumulative functions are
straightforward to compute and require no parameter at all. By applying the copula, the
leakage samples are transformed in such a way that their marginal distribution along each
dimension becomes uniform over [0, 1]. As a result, we can again discriminate key candi-
dates by simply assuming that the leakage model generated with the good key candidate
should lead to a partitioning for which the distance to uniform is large.

4 As detailed in [31], different solutions could be considered in this final test. A robust alternative
would be to use the smoothed median of the distributions for all key hypotheses as a template.
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Next, during the estimation step, the Manhattan distance over d dimensions produces
an univariate distance distribution, independent of the dimensionality of the attack, hence
allowing an easy visualization of the results, which generally helps interpretation. In
addition, as the marginal distribution of the wrong key candidates is assumed to be
uniform, one can use an ideal template corresponding to the distribution of the distance
between uniform samples. This ideal template can be precomputed since it is identical for
all attacks of the same dimensionality (i.e. there is one 1D template, one 2D template,
one 3D template, . . . to precompute, independent of the implementations).

On the negative side, the estimation of the distance distribution follows a multinomial
distribution (a generalization of the binomial distribution to more than two categories),
which implies that the sampled distribution tends to be noisy. The smoothing part that
aims at reducing this noise requires to set a parameter that can be seen as the counterpart
of the number of bins or Kernel bandwidth when directly trying to estimate the leakage
pdf in MIA. However, this task is arguably easier in our new distinguisher, since we only
need to detect departures from a well-characterized distribution. In practice, a Kernel
smoothing with window size equal to 1 allows us to only retain the general features of the
distance distribution, which is enough to detect departures from the uniform template.
This is only suboptimal when dealing with very low-noise scenarios, where a smaller
window size is enough to smooth out the estimated densities.

We finally note that the feature selection step, and the dimensionality reduction that
it implies, is optional to a certain extent. That is, one could directly test the deviation
from uniformity of the copula-transformed leakages, after the partitioning step. But this
would again require the estimation of conditional multivariate distributions, using only a
part of the available leakages. As will be illustrated experimentally in the next section,
the distance sampling, where we estimate an univariate distribution based on a (possibly
multivariate) distance, is not only a convenient choice but also an efficient one. In other
words and as previously observed in [29], reducing dimensionality can only result in a
loss of information in a profiled attack scenario, but can turn out to be very useful in a
non-profiled setting, where efficiently estimating the distributions is the main challenge.

5 Experiments

In this section, we provide extensive experiments, in order to verify the relevance of the
previously introduced generic test and to compare its efficiency with other distinguishers
used in side-channel analysis. For this purpose, we consider the following contexts.

1. Different target computations. We investigated three possible cases. In the first one,
we target the leakage corresponding to the execution of an unprotected AES S-box,
denoted as vk,p = S(p⊕k) yk,p, where the adversary is provided with the plaintext
p and leakage yk,p. In the second one, we consider the execution of a masked AES
S-box, denoted as v1k,p = S(p ⊕ k) ⊕ m  y1k,p, v2k,p = m  y2k,p. In this case, the
mask m is a uniformly selected random value and the adversary is provided with
the plaintext p and leakages y1k,p, y

2
k,p. Finally, in the third case, we again consider

the execution of a masked S-box, but the the adversary only receives the plaintext
p and a combination of the two leakage samples. Following the previous analyzes
in [20, 29], we used the normalized product between the samples, i.e. C(y1k,p, y

2
k,p) =

(y1k,p − Ê(Y 1
k,P )) · (y2k,p − Ê(Y 1

k,P )), where Ê denotes the sample mean operator.



2. Different leakage functions and target devices. We again analyzed three possible cases.
In the first one, the leakages are simulated with a Hamming weight function, to
which we added a Gaussian noise, with mean 0 and variance σ2

n. Although not always
realistic, the investigation of this setting is justified by the numerous works carried out
under this assumption, as a reference. In the second case, we use the leakage measured
from an S-box implemented in a 65 nanometer CMOS technology, running at 2MHz
and sampled with a 1 Gsample/sec digital oscilloscope), previously analyzed in [24]. In
the third case, the leakage of a dual-rail pre-charged S-box, implemented in the same
65 nanometer technology and using the logic style described in [11], was simulated
with Spice. The details of this S-box are out of the scope of this paper, but it was
selected as an example of leakage function that strongly deviates from the Hamming
weight model. Both for the CMOS and the dual-rail S-boxes, we selected one single
leakage sample per target operation. This selection is not supposed to be optimal, but
was the same for all the investigated attacks, in order to allow fair comparisons.

3. Different distinguishers. Our evaluations considered four different statistical tools.
First, correlation attacks based on Pearson’s coefficient were applied, following the
descriptions in [2]. Next, we performed MIA5 with histogram-based pdf estimation,
following [8]. The number of bins in histograms was selected according to Scott’s rule
of thumb [27]. Third, we used the stochastic approach first described in [26] and ana-
lyzed in the non-profiled setting by Doget et al. [6]. The goal of the stochastic approach

is to approximate the S-box leakages with a linear function L̂(j, p) =
∑
αi gi(j, p),

where the coefficients αi are determined by regression, and the gi(j, p)’s correspond
to the base functions used in the attack. Finally, we experimented our new generic
test, with the window size in the Kernel smoothing step systematically set to one in
the attacks (i.e. a version of the distinguisher completely free of parameters).

4. Different leakage assumptions. As detailed in Section 2, the non-profiled distinguish-
ers studied in this paper need to rely on some preliminary assumptions on the leakage.
For correlation attacks, MIA and the new test, we first evaluated the Hamming weight
and identity leakage models (where one takes xj,p as the Hamming weight, or the 7
least significant bits of vj,p, respectively). These are the usual assumptions that an
adversary would make when performing a side-channel attack. However, as will be
discussed in the remaining of the section, these models were not sufficient to per-
form successful key recoveries in all the investigated contexts. Hence, for illustration
purposes, we additionally used a profiled leakage model in some of our experiments.
Different solutions are possible for this purpose, e.g. exploiting carefully profiled tem-
plates [5]. In the following, we built model classes by grouping together transitions
leading to similar leakage values (e.g. 9 such groups would appear for an 8-bit Ham-
ming weight model, corresponding to the 9 possible weights). The model groups were
built using a K-means clustering algorithm. Again, this selection is not supposed to
be optimal, but to serve as a background to discuss generic distinguishers. As for the
stochastic approach, one just needs to select the base vectors used in the adversary’s
predictions. We followed the classical strategy and used the target S-box output bits
for this purpose (i.e. a 9-element basis, with 8 bits and a constant value).

5 In order to avoid issues like described in Section 3, we performed a more robust variant of
MIA, by selecting the subkeys according to their mutual information bias, i.e. the distance
between Î(Xj,P , Yk,P ) and the median of this quantity, computed over all key candidates.



The evaluations we performed follow the proposal in [28]. As our goal is to compare
distinguishers, we are mainly interested in the security analysis part of this framework.
Hence, for each investigated context, we computed the success rate of the attacks, over a
set of 100 to 500 independent experiments. The figures corresponding to these experiments
have been reported in appendix. They allow a number of interesting observations.

Observation 1. On different types of leakage functions. As expected, the different leakage
functions considered imply very different constraints for the non-profiled adversaries. In
the case of Hamming weight leakages (Figures 5, 6, 7), this function is purely linear, i.e.
L(k, p) =

∑
αi vj,p[i], with vj,p[i] the ith bit of the S-box output and all αi coefficients set

to 1. In addition, as shown in [29], the bivariate distribution of the leakages conditioned on
the key, for a masked S-box, is very accurately characterized by the correlation between
the samples L1

k,P and L2
k,P in this case. As a result, all investigated attacks are extremely

efficient. By contrast, when moving to the analysis of real measurements on a 65nm chip
(Figures 8, 9, 10), the Hamming weight assumption becomes invalid, and the quadratic,
cubic, . . . terms in L(k, p) =

∑
αi vj,p[i]+

∑
βi,j vj,p[i] ·vj,p[j]+ . . . are non-negligible. As

a result, attacks using this model are not successful anymore. Interestingly, the stochastic
attack using a linear basis is still efficient, confirming the analysis in [24] that the linear
terms of the leakage function are still significant. Surprisingly, the correlation attacks in
Figure 8 and 9 suggests that attacking a masked S-box may be easier than attacking an
unmasked one, under a Hamming weight assumption. This can be explained by the fact
that actual leakages are not accurately predicted by Hamming weights in the unprotected
case, whereas their inter-sample correlation remains informative in a second-order attack
against a masked implementation. Eventually, the (simulated) dual-rail S-box is a typi-
cal example of implementation with completely non-linear leakages, as witnessed by the
impossibility to perform a successful stochastic attack using a linear basis (see Figure 11).

Observation 2. On the limits of generic distinguishers and models. Generic distinguishers
are expected to capture any type of leakage dependency. Still, they are dependent on
the leakage model used to build the partitions in a side-channel attack. An interesting
outcome of our experiments is that these distinguishers are in fact strongly affected by
incorrect assumptions. For example, the Hamming weight leakage model does not lead
to successful attacks, neither against the 65nm CMOS chip, nor against the dual-rail
pre-charged one. More critically, the identity leakage model that is supposed to provide
a generic way to target any implementation in [8], is not successful either in certain
cases (Figures 10, 11 and 12). For Figures 10 and 11, only models obtained through
profiling lead to successful key recoveries with the new distinguisher. For Figure 12, only
template attacks are successful. These limitations are due to the lack of relevance of the
leakage models used by the adversary. They are in fact not new: already in 2005, Mangard
et al. observed an implementation for which even single-bit leakage models were not
accurate enough to perform a successful DPA [16]. More generally, and as also emphasized
in [32], MIA-like distinguishers can naturally exploit identity models when applied to non-
bijective S-boxes (as in the DES), because such S-boxes imply a meaningful partition by
design. But the genericity of this model does not extend to bijective S-boxes (or other
block cipher components), excepted if justified by specific implementation choices. In
other words, there is no generic leakage model. As discussed in [31], even MIA requires
a partitioning such that Î(Xj,P ;Yk,P ) is maximized for the correct key candidate. The
extension of MIA in this paper faces a very similar requirement.



Observation 3. On the limits of non-profiled side-channel attacks. Another consequence
of our experiments is to emphasize that, in the context of the dual-rail S-box (Figure 11),
none of the non-profiled side-channel attacks could lead to successful key recoveries. Inter-
estingly, the “on-the-fly” stochastic approach fails in this context, even when increasing
the size of the basis (e.g. using not only linear, but quadratic, cubic, . . . terms). The
failure of a stochastic model using linear base vectors is easily explained by the strongly
non-linear nature of the simulated leakages produced by the dual-rail S-box. The un-
successful results with larger bases just derive from the fact that these large bases allow
refining the model for all key candidates (i.e. not only the correct one). In fact, also in this
case, it is important that the base vectors are justified by a reasonable physical intuition.
For example, in case of linear leakage functions, the regression is easy for the correct key
candidate (because provided with a good basis) and difficult for the wrong key candidates
(because the regression essentially has to capture the non-linearity of a modified S-box S′

such that S(x⊕ kw) = S′(x⊕ kg), with kg and kw the good and a wrong key candidate).
But as soon as the base vectors do not have a connection with the actual leakages, the
advantage of the correct key candidate in building a good stochastic model vanishes6.
And when combining this dual-rail logic style with masking (in Figure 12), we see that
only a bivariate template attack, similar to the ones in [29], allows recovering keys. In
this respect, it is also worth noting that a leakage model that is sound in an unprotected
setting (e.g. the one based on clustering in Figure 11) does not translate into a sound
model for the corresponding masked implementation (in Figure 12).

Observation 4. MIA versus the new test. Finally, our new distinguisher compares favorably
to MIA in all the investigated experiments. We note that the efficiency of MIA could
possibly be improved, by exploiting pdf estimation based on Kernels, splines or parametric
techniques [19]. However, more than the efficiency of the distinguisher, it is worth to
notice that in certain settings, e.g. the masked 65nm CMOS S-boxes in Figures 9 and
10, it allows exploiting a leakage assumption while MIA cannot. It is an open question
to determine whether these experiments can be formally confirmed (e.g. are they due to
identified limitations as in the example of Section 3?) or are the result of measurement
artifacts that would vanish with more intensive measurement efforts.

6 Conclusion and open problems

Generic distinguishers are a useful tool in the evaluation of leaking cryptographic de-
vices. In this paper, we first proposed a new and efficient generic test that is fully non-
parametric, based on a natural discriminating criterion, and exploits state-of-the-art sta-
tistical tools. It can be useful in all scenarios where the previously introduced MIA shows
significant advantages compared to other non-profiled distinguishers.

Next, we discuss the relevance of generic distinguishers in general. Based on experimen-
tal validation in different implementation contexts, we put forward that such non-profiled
attacks do not get rid of the need of sound assumptions during the partitioning step in
a side-channel analysis. Similarly, when applied “on-the-fly”, the stochastic approach of

6 This limitation is only due to the application of the stochastic approach in a non-profiled
scenario. In the case of profiled attacks, the stochastic approach remains perfectly sound, as
soon as provided with enough base vectors, just as a template attack.



Schindler et al. is only sound when provided with meaningful based vectors, that may not
be easy to guess for practical adversaries. This observation suggests that the gap between
profiled and non-profiled side-channel attacks can be huge, when such assumptions are are
not available. It re-emphasizes the need to consider two aspects in the security analysis of
a leaking device, as advocated in [28]. First, the worst case security can only be evaluated
with a profiled attack (e.g. using templates), and quantified with an information theoretic
metric. Second, different types of non-profiled distinguishers can be compared with a se-
curity metric, in order to measure how efficiently they can take advantage of the available
information. In this respect, generic tests bring an interesting alternative to more specific
(e.g. correlation-based) statistical tools. But they are not immune to model imprecisions,
and resisting such attacks is not sufficient to conclude that an implementation is secure.

Admittedly, the most critical examples we exhibit in this paper are based on simula-
tions and practical implementations usually show linear dependencies in their leakages.
Nevertheless, this discussion underlines that the theoretical limits of present non-profiled
attacks have to be properly understood. It also leads to interesting questions for the design
and analysis of secure implementations. First, as non-profiled distinguishers published in
the literature seem specially affected by non-linear leakage functions, designing hardware
logic styles with this criterion in mind appears as an interesting scope for further research.
Preliminary experiments reported in [23] suggest that the DDSLL logic style may not be
the most suitable for this purpose. Second, the partitioning step of generic distinguish-
ers is made specially easy when non-bijective S-boxes (or components) are used. Hence,
such S-boxes should be avoided when designing ciphers to be secured against physical
attacks. In the same lines, targeting the output of MixColumn in an AES implementation
could be an interesting topic for further investigation. Depending on the architectures
(e.g. 8-bit software or 32-bit hardware), it could also lead to leakage models that are sim-
ple to exploit. Eventually, non-profiled security evaluations are typically misleading when
randomization-based countermeasures such as masking are combined with the difficulty
to make sound assumptions on the leakage model. Hence, developing new tools in order
to get rid of this limitation, or showing that no such tools actually exist, appears as an
important challenge for evaluating the security of future embedded cryptographic devices.
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A Building the distance templates

The distance templates are built by convolution of independent uniform random variables.
That is, for one dimension, the probability of a spacing of length u is the probability that
two random variables X and X ′ drawn from the n-valued discrete uniform distribution
on the interval [0, 1] (each value has probability 1

n ) will differ by an amount u. That is:

Pr[U = u] =
∑
x

Pr[X = x] · Pr[X ′ = x± u]

In our specific case, since the discrete uniform distribution results from an integral
transform of continuous variables, it is impossible to have a spacing of 0. The spacing
distribution is therefore Pr[U = u] = 2

n−1 × (1− u) for u > 0, 0 otherwise.
As one considers higher dimensions, using the Manhattan distance to extend the notion

of spacings, the distribution becomes a convolution of spacings on one dimension:

Pr[U = u] =
∑
ui

d−1∏
i=1

Pr[Ui = ui] · Pr

[
Ud =

(
u−

d−1∑
i=1

ui

)]
,

where the Ui are spacings taken along dimension i. In the case of two dimensions, this
formula simply gives :

Pr[U = u] =
∑
u1

Pr[U1 = u1] · Pr[U2 = u− u1],



which is the integral of two affine functions, therefore a piecewise cubic polynomial since
U1 and U2 are only defined on the interval [0, 1] while U ranges over [0, 2]. While it
is possible to compute the sampling distribution analytically for higher dimensions, it
quickly becomes cumbersome, and it is much more practical to build the distribution by
composing lower-dimension distance histograms. This is done very efficient by following
a method similar to the square-and-multiply algorithm, where for example the template
for dimension 4 is built by convoluting the template for dimension 2 with himself.

B Results of our experiments
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Fig. 5. Simulations, unprotected S-box, Hamming weight leakage function.
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Fig. 6. Simulations, masked S-box, Hamming weight leakage function, combined samples.



MIA – HW model.
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Fig. 7. Simulations, masked S-box, Hamming weight leakage function, bivariate leakages.
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Fig. 8. Measurements, unprotected S-box, 65nm CMOS chip.
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Fig. 9. Measurements, masked S-box, 65nm CMOS chip, combined samples.
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Fig. 10. Measurements, masked S-box, 65nm CMOS chip, bivariate leakages.
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Fig. 11. Simulations, unprotected S-box, 65nm dual-rail logic style.
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Fig. 12. Simulations, masked S-box, 65nm dual-rail logic style, bivariate leakages.


