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Abstract

As traditional oblivious transfer protocols are treated as cryptographic primitives
in most cases, they are usually executed without the consideration of possible attacks,
e.g., impersonation, replaying, and man-in-the-middle attacks. Therefore, when these
protocols are applied in certain applications, such as mental poker game playing and
fairly contracts signing, some extra mechanisms must be combined to ensure its
security. However, after the combination, we found that almost all of the resulting
schemes are not efficient enough in communicational cost, which is a significant
concern for all commercial transactions. Inspired by this observation, we propose a
novel secure oblivious transfer protocol based on bilinear pairing which not only can
provide mutual authentication to resist malicious attacks but also is efficient in
communicational cost.

Keywords: oblivious transfer, mutual authentication, ID-based cryptosystem,
impersonation, bilinear pairing

1. Introduction

Oblivious transfer (OT) is an important tool for designing cryptographic
primitives and has been widely used in various applications like fairly contracts
signing, obliviously database searching, mental poker games playing,
privacy-preserving auctions, secure multiparty computations, and so on. In 1981,
Rabin [1] first proposed an interactive OT scheme in which the probability for the
receiver to be able to decrypt a message sent by the sender is 1/2. Rabin used the
proposed OT to design a 3-pass secret exchange (EOS) protocol, hoping that two
parties can exchange their secrets fairly. In 1985, Even, Goldreich, and Lempel [2]
presented a more generalized form of OT, naming 1-out-of-2 OT ( 2

1OT ) which can let
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a sender send two encrypted messages to a chooser, whereas the chooser can decrypt
only one of them that he had chosen in advance. In addition, they also presented a
contract-signing protocol by evoking 2

1OT multiple times to achieve the goal that
one party cannot obtain the other party's contract signature without first showing his
own. In 1986, Brassard and Crépeau [3] further extended 2

1OT to 1-out-of-n OT
( n

1OT , also known as "all-or-nothing"), the case of sending n messages to a chooser
with only one of them can be obtained by the chooser. They pointed out that their

n
1OT scheme can be used to implement a multi-party mental poker game [31] against

players’coalition. Except for the above interactive versions, Bellare and Micali [4]
first proposed a non-interactive 2

1OT scheme in 1989. In the scheme, a user can
obliviously transfer messages to another party whom is equipped with two public
keys.

During 1999 to 2001, based on the above-mentioned interactive and

non-interactive OT schemes, Naor et al. proposed some related OT works such as,

adaptive n
kOT [5], proxy 2

1OT [6], distributed n
kOT [7], efficient n

1OT [8], and

efficient n
kOT [9]. Here, n

kOT scheme is the final form of OT schemes. In it, from n

encrypted messages sent by the sender, the chooser can obtain k of them which he had
chosen without the sender’s knowledge about which part of the messages can be
decrypted by him. In Naor et al.’s distributed schemes [7], the sender distributes her
two messages (M0, M1) among n servers and the chooser contacts with k (k<n) servers
to get one and only one (Mσ, σ= 0 or 1) of these messages. They claimed that their
schemes can protect the privacy for both parties. However in 2007, Ghodosi [27]
showed two attacks on their schemes. One is that two collaborating servers could
reveal the chooser’s choice σ, and the other is that by only collating with one server,
the chooser could learn both M0 and M1. In 2002, Mu et al. [10] proposed three
k-out-of-n OT schemes constructed from RSA encryption, Nyberg-Rueppel signature,
and ElGamal encryption scheme, respectively. Two of them are interactive and the
other can be either interactive or non-interactive. They claimed that their schemes are
complete, robust, and flexible, and can induce a significant improvement in
communicational cost. However in 2006, Ghodosi et al. [28] showed that their
schemes fail to satisfy the requirement of the oblivious transfer. In 2004, Ogata and

Kurosawa [11] based on RSA blind signature proposed another n
kOT scheme which

can be employed in either an adaptive or non-adaptive manner,. They claimed that
their scheme can be applied in oblivious key searching. After that, in 2005, Chu et al.
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also proposed three n
kOT schemes [12-14]. Among them, [12] is the most efficient

because it needs only 2 passes to send 1024k bits from the chooser to the sender and

1024*(k+1)+n*|Data| bits from the sender to the chooser, where Data is a message or a
ciphertext and |Data| represents the bits length of Data. In 2006, Parakh [15] proposed
an elliptic-curve based algorithm allowing A to obliviously transfer his secrecy nA to B
with one-half success probability. However, we found that A can decide whether B
can obtain his secret nA (one-to-one mapping to PnA) by first assuming that PA =PB.
Under this assumption, on receiving {nBPB; nB(nAPA)+R; nBR} from B, A can obtain
B’s one-time random variable R by computing (nB(nAPA)+R)–nA(nBPB). Then, A can

obtain nBK by computing nA(nBR) = nB(nAR). Finally, he can obtain ZB by computing
(nA(nBR) + PnA)–nBK, as B does in step 5(b). Therefore, if A can confirm that ZB =
PnA, A knows that B can obtain nA after the protocol run; otherwise B cann’t obtain the
value. This violates B’s privacy. In the same year, for coping with all possible attacks
encountered in an open network, Kim et al. [16] proposed two 2

1OT protocols, which
are modified from Bellare-Micali non-interactive 2

1OT scheme [4] by appending the
sender's signature to make the sender undeniable about what he had sent and be
authentic to the chooser. However, we found that other than the weaknesses pointed
by Chang et al. [25], Kim et al.’s protocol still has a the reblocking problem [23]
when modulus nA > nB, message MA cannot be recovered by Bob. This makes legal
Alice unable to be authenticated by Bob.

In 2007, Halevi and Kalai [17] proposed another 2
1OT scheme by using smooth

projective hashing and showed that the used RSA-composite in their scheme needn’t
be a product of safe primes. Also in 2007, Camenish et al. and Green et al. proposed
two related OT schemes [18, 19] respectively. Both focus on the security of full
simulatability for the sender and receiver to resist against the selective-failure attack
[5]. In 2009, Qin et al. [29] proposed two non-interactive n

1OT schemes. However in
their protocols, a receiver has to interact with a third party to obtain the choice-related
secret key each time when he wants to select one of the n messages sent by the sender,.
This makes their scheme somewhat inconvenient and inconsistent with the meaning
of non-interactive protocols as indicated in the title. (This phenomenon can also be
found in other proposed non-interactive OT schemes as well.) Also in 2009, Chang et
al. [20] presented a robust n

kOT scheme using both the RSA blind signature and
Chinese Remainder Theorem. However, we found that their scheme fails since the
sender Alice can decide which parts of the sent messages were chosen by the chooser
Bob. We will describe this weakness in Section 3.2.

After surveying all of the above-mentioned OT schemes, we found that almost all
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of them lack the consideration of adding security features. Only [1] and [16] do
contemplate the protection against all possible attacks. However, study [16] fails.
Hence, if we wish all of the proposed OT protocols, other than scheme [1], to be able
to resist against various attacks, we should run them through secure channels. This
would incur extra communicational overhead. For this reason, in this paper, we
propose a novel interactive n

kOT scheme that needs only two passes but can get rid
of using a secure channel to avoid adding extra communicational overhead. It not only
is simple in concept but also encompasses some essential security features such as,
mutual authentication, and the prevention of man-in-the-middle (MIMA) attack and
replay attack. Thus, when compared with other interactive OT schemes, our scheme
promotes not only in the communicational efficiency but also in the aspect of security.

The rest of this paper is organized as follows. The introduction has been presented
in Section 1 and some preliminaries are shown in Section 2. In Section 3, we review
Chang et al.’s scheme and show its weakness. After that, we show our protocol in
Section 4. Then, the security analyses of our scheme and the communicational cost
comparisons among related works are made in Section 5. Finally, a conclusion is
given in Section 6.

2. Preliminaries

In this section, we briefly introduce the security features of our n
kOT scheme in

Section 2.1, the principles of bilinear paring in Section 2.2, and some intractable
problems used in this article in Section 2.3.

2.1 Security features of our n
kOT scheme

As in a traditional OT scheme, our n
kOT also has two parties, the sender S and

the chooser C. In it, S obliviously transfers n messages to C, and C can choose k
messages among them without S’s knowledge about which k messages are selected,
where 2n and nk  . In addition, our scheme possesses the following three
security features as does in a traditional OT scheme:

(1) Correctness: Eventually after the protocol run, C should obtain the valid data
which he had chosen.

(2) Chooser's privacy: In the protocol, each of the k choices (chosen by the chooser)
should not be known to the sender or any other third party. More
precisely, each of the chooser's encrypted choice can be any valid
choice with equal probability, i.e. for an encrypted choice y and any
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valid choice x, Pr[x|y] = Pr[x]. This property is known as Shannon
perfect secrecy.

(3) Sender's privacy: At end of the protocol run, the chooser cannot get any
knowledge about the other messages that he did not choose. More
formally, the ciphertexts sent by the sender are semantically secure
[30]. The chooser can obtain a plaintext from its ciphertext only if he
has the key offered by the sender to decrypt the ciphertext.

Except for the above three properties, our interactive n
kOT scheme also has the

following security features, (4) through (6), to guard against possible security threats.

(4) Impersonation attack resistance: Each party has to authenticate the counterpart
as the intended party. That is, it should be a mutual-authentication OT.

(5) Replaying attack resistance: An adversary could not obtain any messages by only
replaying old messages that a sender sent to a chooser before.

(6) Man-in-the-middle attack (MIMA) resistance: MIMA is an attack that an
adversary eavesdropping on the communication line between two
communicating parties uses some means to make them believe that they
each are talking to the intended party. But indeed, they are talking to the
adversary.

2.2 Bilinear paring

Let 1G and 2G be two groups of order q, where q is a large prime, 1G be a
subgroup of an additive group composed of points on an elliptic curve E/Fp, and 2G

be a subgroup of a multiplicative group with elements in a finite field *
2p

F . A bilinear

mapping is defined as ê : 1G  1G → 2G . The mapping must satisfy the following

properties:

(1) Bilinear: A mapping ê : 1G  1G → 2G is bilinear if ê(aP, bQ)= ê abQP ),( for all P,

Q 1G and all a, b *
qZ .

(2) Non-degenerate: The mapping does not map all pairs in 1G  1G to the identity in

2G .

(3) Computable: There is an efficient algorithm to compute ê(P, Q) for any P, Q 1G .

(4) If P is a generator for 1G then ê(P, P) is a generator for 2G .
(5) Commutative: For all 121, GPP  , ê( 1P , 2P ) = ê( 2P , 1P ).
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(6) Distributive: For all 1321 ,, GPPP  , ê( 21 PP  , 3P ) = ê( 1P , 3P )ê( 2P , 3P ).

2.3 Diffie-Hellman problems

Let *,, qR Zcba  , and the three groups, gG , PG1 , and 2 gG 

(=ê )),( PP , each be a group of prime order q. In the following, we describe some

well known intractable Diffie-Hellman problems that will be used in this paper.

(1) The Computational Diffie-Hellman (CDH) problem: CDH problem is that in G,
given (g, ag , bg ), finding the element abgC  .

(2) The Decisional Diffie-Hellman (DDH) problem: DDH problem is that in G,
given (g, ag , bg , cg ), deciding whether c=ab.

(3) The Bilinear Computational Diffie-Hellman (BCDH) problem: BCDH
problem is that given (P, aP, bP, cP) in G1, finding ê abcPP ),( in G2.

According to Boneh and Frank's study [23], the BCDH problem is no
harder than the CDH problem in G (or equivalently G2).

(4) Chosen-Target CDH (CTCDH) problem: Let GH *}1,0{: be a hash
function, )(T be a target oracle which returns a random element in G, and

c)( a helper oracle, where c is a random integer from *
qZ . Also let qt be the

number of queries to )(T and qh the number of queries to c)( . The
CTCDH problem is that finding l pairs of ),( 11 vj , ... , and ),( ll vj , with each
satisfying vi = (T(ji))c, for li 1 and th qlq  . Without loss of

generality, we can let qh and qt be l-1 and l, respectively. The CTCDH
problem can then be rephrased as that after obtaining T(j1), ... , T(jl) and

),( 11 vj , ... , ),( 11  ll vj via querying the )(T oracle and the helper oracle

c)(correspondingly, trying to find the lth pair ),( ll vj . The CTCDH problem

is proposed and considered as a hard problem by Boldyreva in 2002 [21]. Its
former version in RSA is proved by Bellare et al. in [22].

3. Review of Chang et al.'s protocol

In 2009, Chang et al. proposed a robust n
kOT scheme based on CRT, hoping that

their scheme can achieve the requirements of general n
kOT schemes. However, we
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found that their scheme can not satisfy the chooser’s privacy. In the following, we
first review the scheme in Section 3.1 then show the weakness in Section 3.2.

3.1 Review

We roughly describe the protocol by listing the relevant steps in the following (see
[20] for more details).

Step 1: After receiving the request sent by Bob for all messages a1, a2,…, an, Alice
owning these n messages selects n relatively prime integers, d1, d2, …, dn, and
computes D = d1*d2* …*dn. He then constructs the congruence system

C ≡ a1 mod d1, C ≡ a2 mod d2,…, C ≡ an mod dn

Furthermore, Alice computes the following values:

T1= d1
e

mod N, T2= d2
e

mod N, ..., Tn= dn
e

mod N,

by using her public key e. Finally, Alice publishes C and the n pairs of (IDi,
Ti), for i=1 to n, in the public board.

Step 2: If Bob wants to learn the k messages among the information possessed by

Alice, then Bob must select k pairs of ( ',' jj TID ), for j = 1 to k, from the public

board and generate k corresponding random numbers r1, r2,…, rk, for each pair

of ( ',' jj TID )first. Bob subsequently computes the following:

NTr e mod'111  , NTr e mod'222  ,…, NTr k
e

kk mod' ,

byusing Alice’s public key e and then sends {α1,α2,…,αk} back to Alice.
Step 3: Upon receiving the messages sent by Bob, Alice employs her private key d to

compute NdrTr dd mod'' 111111  , NdrTr dd mod'' 222222  , … ,

NdrTr kk
d

kk
d
kk mod''  , and then sends the results {β1, β2, …, βk} to

Bob.

Step 4: After receiving the messages sent by Alice, Bob computes the following

values: Nrd mod' 1
1

11   , Nrd mod' 2
1

22   , Nrd kkk mod' 1   .

Consequently, Bob learns the demanded messages successfully by computing

b1 = C mod '1d , b2 = C mod '2d ,…, bk = C mod 'kd .

3.2 Weaknesses

Although Chang et al. claimed that their scheme can achieve the requirements

an n
kOT scheme needs, we found that Bob’s privacy has been violated. Since according

to their protocol, Alice first sets n values of di (i=1 to n), and Bob commits his k choices to
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the k values of αj (j=1 to k). After computing the k values of βj (j=1 to k), Alice can use
each of the di

-1s (i=1 to n) to compute rji = βj*di
-1, for j = 1 to k and i = 1 to n. And by

using each rji Alice can compute the n values of αi
(*) = (rji*di)e, for i = 1 to n to compare

with the k committed values αj. For example, suppose Bob chooses the first message T1=

d1
e mod N and Alice want to guess out which Ti Bob chosen, Alice start to use d1

-1 to

compute r11 = β1 * d1
-1 mod N= α1

d (= r1*d1) * d1
-1 mod N =r1 mod N. He will get α1(*) =

(r11*d1) e mod N = α1=r1e*T1. That is, Alice will find a match α1 and knows Bob chooses

the first message. Conversely, if Alice uses di
-1, (i=2, n), to computer r1i = β1 * di

-1, he will

get αi (*) = (r1i*di) e mod N which is not equal to α1. In other words, Alice cannot
know the right message T1 Bob chosen. That is, once a pair, says (αi

(*), αj), has matched,

Alice knows that Bob has chosen the ith message. Hence, we can easily see that such
exploration at most needs n*k multiplications to obtain rji, n2

*k multiplications and n2
*k

exponentiations to yield all αi
(*). Therefore, totally with at most (n2

*k + n*k)
multiplications and n2

*k exponentiations which is computationally feasible, Alice can

decide which k values Bob selected. This violates Bob’s privacy.

4. Proposed protocol

For the simplicity in key distribution and management, an ID-based public key
cryptosystem is often suggested for the authentication of user’s identity. In this section,

we present our ID-based n
kOT protocol based on bilinear parings which were proved

and applied to cryptography by Boneh and Franklin in 2001 [24]. Our scheme consists
of two phases: (1) initialization phase, and (2) oblivious transfer phase. In the
following, we describe these two phases. Then for demonstrate its chooser’s privacy
preservation, we take a counter example. The other case for receiver’s privacy can be
reasoned in a similar fashion, we omit it here.

(1) Initialization phase

In this phase, we adopt the same system parameters as the ones used in [24]. In
addition, there also exists a key generation center (KGC) who initially chooses an
additive group PG1 of order q, a multiplicative group 2G ê ),( PP of the
same order, where ê is a bilinear mapping, i.e. ê : 211 GGG  , and three one-way

hash functions: H: *}1,0{ l}1,0{ , 2H : 1G l}1,0{ , and 1H which maps a string (a

user's ID) to an element in 1G , i.e. 1H : *}1,0{ 1G . Moreover, KGC selects *
qZs

as its private master key and computes the corresponding system public key as Ppub =
sP. Then, KGC publishes the system parameter set {G1, G2, q, ê, P, Ppub, H, H1, H2}.
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After that, when a user U (sender/chooser) registers his identifier UID to KGC, KGC

will compute a public/private key pair Upub/Upriv for him, where Upub=H1(IDU) and
Upriv = sUpub.

(2) Oblivious transfer phase

In this phase, when a sender possessing n messages ( 1m , 2m , ... , and nm ) wants

to obliviously transfer k messages of them (
1

m ,
2m , ... , and

k
m ) to a chooser, they

will execute the following steps, where the public/private key pairs of the sender and
chooser are Spub/Spriv and Cpub/Cpriv respectively, and {σ1,σ2,…,σk}{1, 2, ..., n} are
the set of k choices selected by the chooser in advance. We also depict them in Fig.1.

Step (1): The chooser randomly chooses two integers a, b *
qZ , and computes

pubabCV  , privjj CbHV )( , where j=1, 2, ... , k. After that, he generates a

signature Sig on V by computing )(2 VHh  and privhCSig  . Then, he

sends IDR, V, V1, ... , Vk together with Sig to the sender.
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Fig. 1: The proposed k-out-of-n authentic OT protocol

Step (2): After receiving kR VVVID ,...,,, 1 and Sig from the chooser, the sender

computes )(2 VHh  and verifies the chooser's signature by checking

whether the equation ê ),( SigP = ê ),( pubpub hCP holds. If it holds, he

believes that the chooser is the intended party as claimed. Then, the sender

randomly chooses an integer c *
qZ , and computes

jj cVU  and  ii mct ê c
privSViH ),)(( , where j = k,...,1 and i = n,...,1 .

He then sends nk ctctUU and...,,,,..., 11 to the chooser.
Step (3): After receiving the message nk ctctUU and...,,,,..., 11 from the sender, the

chooser can obtain the intended messages by computing


jj σσ ctm ê a

pubj SU ),( for j = 1,…, k.


jj

ctm  ê(Uj, Spub)
a.

Sender

(Spub/Spriv(=sSpub))

IDC, V, V1, ... ,Vk, Sig

(2). Computes h=H2(V) and verifies

ê(P, Sig) =? ê(Ppub, hCpub).

. Selects c *
qR Z and computes

If it does not hold, aborts.

Uj = cVj, for j = 1, ... , k, and

cti = miê(H(i)V, Spriv)
c, for i =1, ... , n.

U1, ... ,Uk, ct1, ... ,ctn

(1). Selects a, b *
qR Z ,

computes V = abCpub,

for j = 1 to k

computes Vj = bH(σj)Cpriv,

Chooser

(Cpub/Cpriv(=sCpub))

computes h = H2(V) and Sig = hCpriv.

(3). For j = 1 to k, computes
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(3) A counter example for chooser’s privacy preservation

For demonstrating the chooser’s privacy more clearly, we take a counter example.
Suppose in step (1) of the protocol, the chooser computes v1,…,vk, where

privjj CbHV )( , j=1 to k. A misleading may be that vi/vj= ( )iH  / ( )jH  , since b

and Cpriv are both the same in vi and vj. Then a cheating sender can precompute

( )iH  / ( )jH  for each i, j in [1, n]. After the sender receives v1,…,vk, he can first

compute each vi / vj for [1, k], and then compare them with the precomputed values.
Finally, the sender may guess some or all of the chooser’s chooses. So the protocol 
cannot achieve chooser security. However, the mistake here is that both vi and vj are
two points in the additive group G1. The operation vi / vj is invalid. In other words, in
the group there exists no division operation.

5. Security analysis

In this Section, we use the following claims to show that our protocol not only is
correct but also possesses the properties of mutual authentication, chooser's privacy
and sender's privacy, and can resist against attacks such as relay attack and
man-in-the-middle attack.

Claim 1: The proposed protocol is correct.

Proof: After the protocol run, the chooser can exactly obtain the k messages which he
selected by computing


jσ

ct ê a
pubj SU ),(

= 
jσ

ct ê ( a
pubprivj SCcbH ),)(

= 
jσ

ct ê ( a
pubpubj SbcsCH ),)(

= 
jσ

ct ê ( c
pubpubj sSabCH ),)(

= 
jσ

ct ê ( c
privj SVH ),)( =

jσ
m .

Claim 2: The proposed protocol can achieve mutual authentication.

Proof: We show the hold of this claim by using the following two reasons:

(1).Apparently, it can be easily seen that the sender can authenticate the chooser
by verifying the chooser's signature, Sig (as described in Step (2)).



12

(2).For that the ciphertext cti (= miê(H(i)V, Spriv)c ) contains the sender's private

key Spriv (= sSpub), the chooser can compute the meaningful message
jσ

m only via

using the sender's public key Spub (also refer to the equation in Claim 1). This
means that only the true sender can produce the right ctis and thus can be
authenticated by the chooser using his public key.

Claim 3: The proposed protocol can achieve the chooser's privacy.

Proof: For each of the chooser's k choices σj{1,2, ... ,n} are first hashed and

randomized by H and b respectively then signed as Vj = bH(σj)Cpriv by C in Step

(1), where b is a random number. We argue that nobody except for the chooser

can know the choice σj because even an attacker might steal the chooser's private

key Cpriv, he cannot obtain bH(σj) from Vj due to the hardness of ECDLP. That is,

he can not figure out bH(σj), not to mention σj. More formally, let A = {(b,

σj)Zq*Zn | bH(σj)Cpriv= Vj}; that is, A consists of all the possible ordered pairs (b,

σj) satisfying the equation bH(σj)Cpriv= Vj. If we are given a value Vj, then under

fixed Cpriv, there only exists an unique value bH(σj) satisfying the equation. And

for a given bH(σj), under the definition of a collision-free one-way hash function,

once σj has been determined, the value of b is determined as well. That is, the

relationship between b and σj is one-to-one. Having this observation and the

dimension ofσj is n, we can see that there are n (b,σj) pairs in A. In other words,

Pr[σj|Vj] = Pr[σj] = 1/n which meas that under seeing a specific Vj, the choiceσj of

the chooser can’t be revealed other than quessing. This achieves the Shannon

perfect secrecy. Therefore, the proposed protocol possesses chooser's privacy.

Claim 4: The proposed scheme can achieve the sender's privacy.

Proof: Assume that chooserĈwants to obtain more than k messages in the protocol. If
he could succeed, then the sender's privacy is violated (see Section 2.1). However,
we will prove that it is computationally infeasible for Ĉ to obtain the (k+1)th

message by using the following two arguments, (I) and (II). In argument (I), we
show that why Ĉmust follow the protocol to form the values of V and Vjs;
otherwise, he can not obtain the k chosen messages. In argument (II), we show
that ifĈintends to obtain the (k+1)th message, he will face the intractable CTCDH
problem under the assumption that H(.) is a random hash function.
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Argument (I):Ĉmust follow the protocol to form the values of V (= abĈpub) and
Vj (= bH(σj)Ĉpriv), for j=1 to k; otherwise, he can not obtain the k chosen

messages,
j

mm  ...,,
1

.

In the following, we further divide this argument into three cases: (a) Ĉ
fakes V but forms Vjs honestly, (b) Ĉfakes Vjs but forms V honestly, and (c)
Ĉfakes both the values of V and Vjs. (For each case’s explanation, refer to
Fig.1.)

(a) Ĉfakes V but forms Vjs honestly

Assume that Ĉ is dishonest in forming V but forms Vjs in the same
manner as specified in the original protocol. For example, without loss
of generality, he replaces V with a specified XG1 and computes Vj =
bH(σj)Ĉpriv. Then, the sender will compute Uj = cVj, cti = miê(H(i)X,
Spriv)c, and send them back to Ĉ. As a result, Ĉ can not decrypt

j
ct (

jσ
ct = 

j
m ê a

pubj SU ),( ) to obtain the k messages since

ê a
pubj SU ),( is obviously not equal to ê(H(σj)X, Spriv)c. Perhaps, for

obtaining the k messages,Ĉmay try another way by computing ê(H(i)X,

Spriv)c expected to be equal to ê a
pubj SU ),( . But this is computationally

infeasible sinceĈdoesn't know both the sender's private key Spriv and the
one-time secrecy c. To extract c from Uj is an ECDLP.

(b)Ĉfakes Vjs but forms V honestly

Assume that Ĉ is dishonest in forming Vjs but forms V in the same
manner as specifed in the original protocol. For example, without loss of
generality, he replaces Vj with a specified XjG1 and computes V = abĈ

pub. Then, the sender will compute Uj = cVj = cXj, cti = miê(H(i)V,
Spriv)c = miê(H(i)abĈpub, Spriv)c, for i=1 to n, and send them back toĈ.

As a result, Ĉcan not decrypt s
j

ct since ê a
pubj SU ),( is obviously not

equal to ê(H(i)V, Spriv)c. Perhaps, for obtaining the k messages,Ĉmay try
another way by computing ê(H(i)V, Spriv)c (=ê(H(i)abĈ pub, Spriv)c)

expected to be equal to a
pubj SU ),( . But again this is computationally

infeasible sinceĈdoesn't know both the sender's private key Spriv and the
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one-time secrecy c. Even he knows Spriv, however, it is an ECDLP to
extract c from Uj (=cXj). Hence, Ĉcan not compute the value ê(H(i)V,

Spriv)c to decrypt s
j

ct to obtain the k messages, s
j

m .

(c)Ĉfakes both the values of V and Vjs

Without loss of generality, we assume that Ĉreplaces V with X and also
fakes Vj as H(σj)X. Under this construction, the value of Uj computed by

the sender would be Uj = cVj = cH(σj)X and the ciphertexts
j

ct would

be 
j

m ê(H(σj)X, Spriv)c, for j=1 to k, or equivalently,


jj

mct  ê ),)(( privj SXcH  . Although, Ĉ knows the value of

cH(σj)X (since it just equals to Uj received from the sender), he still can

not compute ê ),)(( privj SXcH  without the knowledge of Spriv. From

above description, we know that when the setting of V is X and Vj is

H(σj)X,Ĉcan not obtain
j

m . Not to mention,Ĉmight set Vj as H(σj)Y,

where Y(X) is a random chosen element in G1. In summary, Ĉcan not
obtain the k messages under the violation of setting both the values, V
and Vjs .

Argument (II): If Ĉ follows the protocol honestly to obtain k messages, but
intends to extract the (k+1)th message, then he will face the intractable
CTCDH problem under the assumption that H(.) is a random hash function.

ThatĈwants to obtain message mi impliesĈwould have the knowledge
of ê(H(i)V, Spriv)c (=ê(Uj, Spub)a) (In fact, according to argument (I), an honest
chooser Ĉcould know k of the n values, ê(H(i)V, Spriv)c, for i=1 to n, since
ê(H(i)V, Spriv)c = ê(Uj, Spub)a, for i = σj and j =1 to k.). Let y(i)

2G and

ê(H(i)V, Spriv)c = y(i). According to argument (I), for obtaining the k chosen
messages, Ĉcan not change the structures of V (=abĈpub) and Vj (=bH(σj)
Ĉpriv). Under this situation, y(i) only can be decomposed as y(i) = ê(H(i)abĈpub,
Spriv)c = ê(abH(i)Ĉpriv, Spub)c. Moreover, under the assumption that H(.) is a
random hash function and the fact that Ĉhas the knowledge of a, b, Ĉpriv,
and Spub, y(i) can be represented as (gi)c, where gi equals to ê(abH(i)Ĉpriv, Spub)
and is a random element in G2 due to the assumption that H(.) is a random
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hash function. Consequently, the problem Ĉreally faces is that finding the
(k+1)th pair (σk+1, (gσk+1)

c) with the knowledge of k pairs of (σ1, (gσ1)
c), (σ2,

(gσ2)
c), ... , and (σk, (gσk)

c), where (gσj)
c = ê(Uj, Spub)a, but without the

knowledge of sender's one-time secrecy c. This is known as the intractable
CTCDH problem introduced in Section 2.3. Therefore, the chooser can not
obtain the (k+1)th message.

According to arguments I and II, we have proven Claim 4 that our scheme has
the sender's privacy.

Claim 5: The proposed scheme can resist against replay attack.

Proof: Suppose that an adversary intercepts a chooser's OT request (containing IDC, V,
Vjs, and Sig) and replays it later. After receiving the sender's new response
(U1, ... ,Uk, ct1, ... ,ctn) computed from the replayed V and Vjs, the adversary can not

obtain the k selected messages by computing
j

m =
j

ct  ê(Uj, Spub)a since he

does not know the value of a embedded in the replayed message V. It is

computationally infeasible for the adversary to extract a from pubabCV  , due to

the hardness of ECDLP.

Claim 6: The proposed scheme can resist against man-in-the-middle attack (MIMA).

Proof: MIMA is an attack that an adversary E slinkingly intercepts the communication
line between two communicating parties and uses some means to make them
believe that they each are talking to the intended party as claimed. But indeed,
they are talking to E. Fig. 2 illustrates the scenario of such a MIMA. We first
argue that the adversary E cannot succeed in this scenario since he can not
generate the valid message (2), (IDC, 'V , '1V , ... , 'kV , 'Sig ) as shown in the

figure. More clearly, without the knowledge of chooser's private key Cpriv, he can
not forge a valid signature 'Sig in message (2) to be verified successfully by the
sender since 'Sig should be equal to H2(V)Cpriv. In addition, it is also hard for E
to forge valid message (4), ( '1U , ... , 'kU , '1ct , ... , 'nct ), to be accepted by the
chooser. Since that for embedding a meaningful 'im into 'ict , E must have the

knowledge of ê(H(i)V, Spriv)c. Although, E can choose another random nonce 'c

such that 'jU = 'c Vj , he still has to know the sender's private key Spriv to form

the valid 'ict (= im ê(H(i)V, Spriv)c' ) . Therefore, without the knowledge of Spriv,

E can not launch such a MIMA attack.
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Fig. 2: The scenario of MIMA attack

5.2 Communicational cost comparisons
Generally, the communicational cost of a protocol run consists of three factors: (1)

needed passes, (2) computational overhead, and (3) needed transmission data size
(NTDS) or bandwidth consumption. It is well known that factor (1) is always
dominant over factor (2). Hence, in this section, we focus only on factor (1) and (3)

among our non-adaptive n
kOT protocol and the other n

kOT protocols of the same

type, such as Chu et al.'s [12] (which is up to now, to our best knowledge, the most

efficient n
kOT scheme), Mu et al.'s [10], Naor et al.'s [5], and recent works [13, 14,

18, 20]. From the needed passes viewpoint, our scheme is the most efficient since it
just requires two passes. Moreover, except for the least requirement in needed passes,

the data size transmitted in our scheme is also the minimal among such type of n
kOT

schemes. In the following, we will illustrate this by first describing the underlying
facts and used notations before making the comparison.

Generally speaking, we have the following two facts for cryptosystems:

Fact(1): For the same security level, a RSA cryptosystem would require a key length
of 1024 bits while an ElGamal or ECC-based cryptosystem only needs 160
bits.

Fact(2): The length of the ciphertexts for RSA, ElGamal, and ECC-based
cryptosystems are 1024 bits, 1024 bits, and 160 bits, correspondingly.

Notations: We use |string/action| to represent the bit length of a string, or the required
bit length an action performs.

After the description of used facts and notations, we now use them to estimate
the needed transmission data size (NTDS) of our scheme and the above-mentioned

n
kOT protocols. In our scheme, each of the variables V, V1, ... , Vk, Sig, U1, ... , Uk

transmitted between the chooser and sender is an ECC point. Thus, the NTDS from a

Sender (Spub/Spriv) Chooser (Cpub/Cpriv)E (Epub/Epriv)

',...',',...')4( 11 nk ctctUUnk ctctUU ,...,,...)3( 11

',',...,',',)2( 1 SigVVVID kC SigVVVID kC ,,...,,,)1( 1
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chooser to a sender is estimated as 160*(k+2) bits and from the sender to the chooser

is 160k+n*|ciphertext| bits. Naor et al.'s scheme [5] constructs their n
kOT scheme by

evoking an 2
1OT primitive logn times. Thus, the needed number of passes is logn

times of the 2
1OT 's work and likewise the NTDS is about logn times of the 2

1OT 's

work. Therefore, their scheme has the most expensive communicational cost. As for
Green et al.'s protocol [18], the communicational cost is expensive as well due to the
complexity of the protocol. In their protocol, the sender first sends n commitments to
the chooser, and then the sender and the chooser together run a proof-of-knowledge
(Pok) sub-protocol for assuring the correctness of the commitments. If the proof is
valid, the sender sends n ciphertexts to the chooser, and the chooser then runs the
BlindExtract sub-protocol k times with the help of the sender to extract the blind
choices to decrypt the ciphertexts.

Table 1: Needed rounds and data size comparisons among n
kOT protocols

Protocol passes Size of message:

C→S (bits)

Size of message:

S→C (bits)

Mutual

Authentication

Ours 2 160*(k+2) 160k+n*|ciphertext| yes

Naor et al. [5] k*log n 2
1OT depends on 2

1OT depends on 2
1OT no

Mu et al.'s

scheme(1) [10]
3 1024k 1024n+nk*|ciphertext| no

Mu et al.'s

scheme(2) [10]
2 1024*2n n*|ciphertext| no

Chu et al. [12] 2 1024k 1024* (k+1)+ n*|ciphertext | no

Zhang et al. [13] 2 1024* (k+3) 1024n+ n*|ciphertext | no

Huang et al. [14] 3 1024k (n+k)*|ciphertext |

Green et al. [18] 2+k*Pok |Pok|+k*|BlindExtract|
n*| ciphertext |+|Pok|+

k*|BlindExtract|
no

Chang et al. [20] 4 1024k (n+2k+2)*1024 no

Consequently, the number of passes for executing protocol [18] is 2+k*Pok, where

Pok represents the required passes for executing the proof-of-knowledge sub-protocol.
Besides, the NTDS from chooser to sender is estimated as |Pok| + k*|BlindExtract|,
and from sender to chooser is n*|ciphertext| + |Pok| + k*|BlindExtract|. Similarly, the

passes and NTDS of other studies can be estimated in the same manner. We show the
comparison results in Table 1. From Table 1, we can see that our scheme not only
possesses the mutual authentication function but also is the most efficient in both
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needed passes and NTDS while compared with other works.

6. Conclusion

An OT scheme which is secure and efficient in communicational cost is essential
and eager for commercial applications. After reviewing most of the OT schemes, we
found that almost of them lack the security services, such as mutual authentication,
and the prevention of replay and main-in-the-middle attacks. Hence, they should run
under a secure channel when applied in commercial applications. This will increase
execution overhead. Hence, to get rid of using the secure channel (for improving the
communicational efficiency in some applications such as, mental poker playing,
oblivious key searching), we propose a novel k-out-of-n oblivious transfer protocol by
combining an OT scheme with a security mechanism based on bilinear pairing. We
have proved that our scheme not only is correct but also possesses the properties of
mutual authentication, the sender's privacy, and the chooser's privacy, and can resist
against replay and MIMA attacks. Further, we have compared our scheme with other
non-adaptive k-out-of-n OT schemes in the aspects of needed passes, NTDS, and the
function of mutual authentication, and shown the result in Table 1. From Table 1, we
can see that our scheme is the most efficient in communicational cost (including

needed passes and NTDS). In addition, to our knowledge, it is the only n
kOT scheme

that has integrated the function of mutual authentication nowadays.
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