
Direct Exponent and Scalar Multiplication Classes of 
an MDS Matrix 

Ghulam Murtaza1, Nassar Ikram2 

 
1,2 National University of Sciences and Technology, Pakistan 

1azarmurtaza@hotmail.com 
2dr_nassar_ikram@yahoo.com 

 
Abstract. An MDS matrix is an important building block adopted by different 
algorithms that provides diffusion and therefore, has been an area of active 
research. In this paper, we present an idea of direct exponent and direct square 
of a matrix. We prove that direct square of an MDS matrix results in an MDS 
matrix whereas direct exponent may not be an MDS matrix. We also delineate 
direct exponent class and scalar multiplication class of an MDS matrix and 
determine the number of elements in these classes. In the end, we discuss the 
standing of design properties of a cryptographic primitive by replacing MDS 
matrix by dynamic one. 
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1   Introduction 

According to Shannon, confusion and diffusion are two mandatory properties for a 
secure cipher [1]. Confusion is to make the relationship of statistical independence 
between ciphertext string and the statistical independence of plaintext string more 
complicated while Diffusion is associated with dependency of bits of the output on 
bits of the input. A cipher with good diffusion satisfies the Strict Avalanche Criteria 
(SAC), one of the prime requirements for algorithms to meet.  

Serge Vaudenay suggested to use MDS matrices in cryptographic primitives to 
produce multi-permutations [2]. These functions have perfect diffusion i.e. for a 
change of t input bits out of m bits; at least m-t+1 of the output bits are changed. The 
branch number of diffusion layer in SPN structure has been regarded as a criterion for 
diffusion layer design. As MDS matrix can reach maximum branch number compared 
with permutation of similar size, so it is of good diffusion property.  

MDS matrices are used for diffusion in block ciphers like AES [3], Twofish [4] 
and Khazad [5]. These are also used in stream ciphers like MUGI [6] and 
cryptographic hash functions like WHIRLPOOL [7]. 



The use of keyed components in the design of cryptographic algorithms is well 
known [4, 9, 10. 11, 12, 14, 17]. It is another school of thought in the designing of 
secure cryptographic primitive. In [4, 9] the author uses keyed S-Boxes having 
concepts of providing more security over ciphers using fixed S-Boxes. Although there 
exist some analyses [13] of ciphers that are based on these keyed S-Boxes but still 
they are not as mature as in case of fixed S-Boxes if used in same cipher. Moreover, 
multiple layer security approach [17] seems noble in designing cryptographic 
algorithms by keeping efficiency in view. This approach is used to enhance the 
security of existing ciphers and can also be used to increase the key size without 
redesigning a key scheduling algorithm. 

In [8], the authors show that scalar multiplication of an MDS Matrix is an MDS 
Matrix. By using the results, crypto primitives can be designed with keyed MDS 
layer, instead of using some static MDS layer.  In this paper our effort is to classify 
some methods of generating new MDS Matrices from existing matrices and help 
crypto primitive designers to introduce dynamic MDS Matrix Layer in their designs.   

The rest of the paper is organized as follows. In Section 2, we define a direct 
square matrix and prove that direct square matrix of an MDS Matrix is also an MDS 
matrix. In Section 3 we define direct exponent matrix and direct exponent class of 
MDS Matrices. Section 4 presents the scalar multiplication of MDS Matrix classes. In 
section 5 we briefly discuss the aspiration behind the use of MDS Matrices in a cipher 
algorithm and make out that the use of dynamic MDS does not affect the purpose of 
MDS matrices.  

2   Direct Exponent MDS Matrix Class 

In this section, we define a direct exponent MDS Matrix Class. We find out the 
number of MDS matrices in this class. We also have an example of direct exponent 
MDS Matrix Class in case of AES algorithm. We will explicitly use notation F for 
field GFሾxሿ/fሺxሻ from now onwards. 

Definition 1 

If A ൌ ሾa୧,୨ሿ୫୶୫, we say Direct Exponent (element-wise exponent matrix), Aୢ౛ of 
A is a matrix whose each element is the result of exponentiation of corresponding 
elements of A. If e ൌ 2, then we say Aୢమ is a direct square matrix of A. 

In the following, we prove that direct square of an MDS matrix is an MDS matrix. 
We will use a well know result about MDS Matrices i.e. A matrix A is an MDS 
Matrix iff all of its square sub matrix are non singular 
 
 



Theorem 1 

If  A ൌ ሾa୧,୨ሿ୫୶୫,  a୧,୨ א F is an MDS matrix, then direct square matrix Aୢమ of A is an 
MDS matrix. 

 Proof 

Let A be an MDS matrix ൌ൐ for any square sub-matrix S of A ,|S| ് 0  

  ൌ൐ Rank of S = No of rows of S = No of columns of S 

We take any two rows say SRభ
/ , SRమ

/ of S/ ൌ  Sୢమ ൌ ൣs୧,୨
ଶ ൧,    

where 1 ൑ Rଵ, Rଶ ൑ m, Rଵ ് Rଶ  

We have to show that SRభ
/ ് k. SRమ

/ for any k Ԗ F 

Suppose that  SRభ
/ ൌ k. SRమ

/  for some k so that หS/ห ൌ 0  

ൌ൐ sRభ,୨
ଶ ൌ k. sRమ,୨

ଶ  j ׊ 

ൌ൐ sRభ,୨ ൌ  k/. sRమ,୨ ׊ j, where k/మ ൌ k א F 

ൌ൐ SRభ ൌ  k/. SRమ , for some k/ א F 

ൌ൐ Rank of S ൏ Rows of S 

ൌ൐ A contradiction to that A is an MDS matrix. Hence our supposition is incorrect 
and Aୢమ is an MDS matrix. 

Corollary 1 

If  A ൌ ሾa୧,୨ሿ୫୶୫,  a୧,୨ א F is an MDS matrix, then  ܣ
ௗమ೔  , i ൌ 1,2, … of A is an MDS 

matrix. 

The following theorem provides the relation between inverse of an MDS Matrix 
and inverse of its direct square matrix. It can be used to efficiently compute inverse of 
direct square of an MDS matrix. 

Theorem 2 

If inverse of a matrix B is ܣ then inverse of direct square matrix of B is Aୢమ
ିଵ. 



 Proof 

Let A ൌ ሾa୧,୨ሿ୫୶୫, B ൌ ሾb୧,୨ሿ୫୶୫,  a୧,୨,  b୧,୨ א GFሾxሿ/fሺxሻ and B ൌ Aିଵ  ൌ൐   a୧,୨ .  b୧,୨ ൌ
0  for i ് j  and   a୧,୧ .  b୧,୧ ൌ 1 . As Aୢమ ൌ ሾa୧,୨

ଶ ሿ୫୶୫ and Bୢమ ൌ ሾb୧,୨
ଶ ሿ୫୶୫,  so we have 

a୧,୨
ଶ  .  b୧,୨

ଶ ൌ  a୧,୨ .  a୧,୨ .  b୧,୨ .  b୧,୨ ൌ 0  and  a୧,୧
ଶ . b୧,୧

ଶ ൌ  a୧,୧ .  a୧,୧ .  b୧,୧ .  b୧,୧ ൌ 1 . Hence the 
proof. 

Definition 2 

We define direct exponent class of MDS matrix A as Clୢ౛ሺAሻ ൌ ሼA`: A` ൌ  Aୢ౟, i ൌ
2,3,4, … OrdሺFሻሽ 

Theorem 3 

If  A ൌ ሾa୧,୨ሿ୫୶୫,  a୧,୨ א F is an MDS matrix, then direct exponent matrix, Aୢ౛ of A for 
e ് 2୧ is not necessarily be an MDS matrix. 

Proof 

Since for any kଵ, kଶ א F. If kଵ
ୣ ൌ kଶ

ୣ ്൐  kଵ ൌ  kଶ, then direct exponent matrix Aୢ౛ is 
not an MDS matrix. 

Lemma 1 

If  A ൌ ሾa୧,୨ሿ୫୶୫,  a୧,୨ א F is not an MDS matrix, then direct square matrix and direct 
exponent matrix of A are not MDS matrices. 

Proof 

Since for any sRభ,୨ ൌ k. sRమ,୨  ൌ൐ sRభ,୨
ଶ ൌ k୧. sRమ,୨

ଶ  i ׊ 

Theorem 4 

If an element a/ of MDS Matrix A  such that  หa/ห  ൌ Maxหa୧,୨ห , then  ୪୭୥หୟ/ห
୪୭୥ ଶ

െ 1 ൑

# MDS matrices in Clୢ౛ሺAሻ  ൑ OrdሺFሻ െ  1 

Proof 

Since by theorem 1, we have Aୢ౟ , i ൌ  2୩, k ൌ 1,2,3, … is an MDS matrix, therefore, 

for an order หa/ห, we have at least ୪୭୥หୟ/ห
୪୭୥ ଶ

െ  1 different MDS matrices. Now as order of 

any element of matrix may have a maximum value equal to the order of field, so 



number of different MDS Matrices generated can not exceeds the OrdሺFሻ - 1. Hence 
the proof. 

Example 1 

Direct exponent class of MDS matrix used in AES contains 236 MDS matrices. The 
matrices generated by the following exponents are not MDS matrices. 

13 26 51 52 67 85 102 104 119 134 
153 161 170 187 204 208 221 238 255  

3   Scalar Multiplication MDS Matrix Class 

In this section, we define a scalar multiplication MDS matrix Class. We find out 
the number of MDS matrices in this class. We also have an example of number of 
elements in scalar multiplication MDS matrix of AES algorithm. 

Theorem 5  

Let A ൌ ሾa୧,୨ሿ୫୶୫,  a୧,୨ א F୯ be an MDS matrix, for an element e ് 0 א F୯, eA is an 
MDS matrix [8]. 

The proof of above result given in [8] is valid for element e ് 0 א F୯multiplied to 
single or more rows of the matrix A. In the following we generalize this result for 
elements e୧ ് 0 א F୯, i ൌ 1,2, … , m, multiplying i െ th row of matrix A where e୩not 
necessarily be the same as e୪for any 1൑ k, l ൑ m. 

Theorem 6s  

Let A ൌ ൥
Aଵ
ڭ

A୫

൩ , A୧ ൌ ሾ a୧,ଵ …  a୧,୬ሿ,  a୧,୨ א F୯ be an MDS matrix, and ܧ ൌ ሾ e୧ሿ, i ൌ

1,2, … , m. then scalar multiplication EA ൌ ൥
 eଵAଵ

ڭ
 e୫A୫

൩ ,  e୧A୧ ൌ ሾ e୧ a୧,ଵ …  e୧ a୧,୬ሿ is 

an MDS Matrix. 

Proof 

We prove the result on the same ground as of theorem 5 given in  [8]. 



Let  A୫ൈ୬  be an MDS matrix ൌ൐  any sub square matrix  S୪ൈ୪ of  A୫ൈ୬ , 1 ൑ l ൑
minሺm, nሻ , | S୪ൈ୪| ് 0.  

Suppose EA  is not an MDS matrix ൌ൐ ׌  ,௟ S୪ൈ୪ܧ  ௟ܧ ൌ ൥
݁௞భ

ڭ
݁௞೗

൩ , 1 ൑ ݇ଵ, … , ݇௟ ൑

minሺm, nሻ  such that |ܧ௟ S୪ൈ୪| ൌ 0  ൌ൐ |௟| S୪ൈ୪ܧ ൌ 0 ൌ൐ | S୪ൈ୪| ൌ ׶ 0 ݁௜ ് ݅׊ 0 , a 
contradiction to that  A୫ൈ୬ is an MDS matrix. So our supposition that EA is not an 
MDS matrix is wrong. 

Definition 3 

We define scalar multiplication class of an MDS matrix A୫ൈ୬
`  by a scalar value 

ܧ ൌ ሾ
݁ଵ
ڭ

݁௠

ሿ as Clୱ୫ሺ A୫ൈ୬ሻ ൌ ሼA୫ൈ୬
` : A୫ൈ୬

` ൌ  E A୫ൈ୬, ௜݁׊ ് 0 א F,  iሽ ׊

Theorem 6 

Number of elements in class Clୱ୫൫A୫ൈ୬
` ൯ is ሺܱ݀ݎሺܨሻ െ 1ሻ௠.  

Proof 

Clearly the non-zero number of elements in field ܨ is ܱ݀ݎሺܨሻ െ 1. Since there are ݉ 
such elements in ܧ  so number of elements in class is ሺܱ݀ݎሺܨሻ െ 1ሻ ൈ ሺܱ݀ݎሺܨሻ െ
1ሻ ൈ … ݉ െ ݏ݁݉݅ݐ ൌ ሺܱ݀ݎሺܨሻ െ 1ሻ௠. 

Example 2 

For MDS matrix used in AES, the number of elements for which newly generated 
matrices are MDS one, would be ሺ2଼ െ 1ሻସ ؆ 2ଷଵ.ଶହ. 

4    Viability of Use in Crypto Primitives 

Generally in the design of crypto primitives, an MDS matrix is used as a part of its 
diffusion component. In some ciphers like AES, it is also used to maximize the 
number of active S-Boxes which provides immunity against differential cryptanalysis. 
The quantitative effect of an MDS Matrix with the change proposed is independent of 
the coefficients of MDS Matrix used. Furthermore, changing the coefficients of MDS 
Matrix, the resultant cipher is isomorphic [16] to the original. Therefore it is obvious 
that there is no difference in statistical properties of cipher by changing its MDS 



Matrix. Similarly the design strength of a crypto primitive remains unaltered using 
different MDS matrices.  

5   Conclusion 

We have defined direct square of a matrix and showed that direct square of an 
MDS matrix is an MDS matrix. We can use this method to generate a random MDS 
matrix from the existing one. We also present direct exponent class and scalar 
multiplication class of an MDS matrix. Our work is helpful in designing ciphers with 
keyed MDS matrices. It will also open ways in describing diffusion switching 
mechanism in ciphers containing MDS layers and possible cryptanalytic techniques 
based on it. Moreover the strength of primitive against different cryptanalytic 
techniques can be enhanced by introducing dynamic MDS matrices using these 
classes in perspective of multiple layered security[17]. 
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