
Lower bounds of shortest vector lengths in
random knapsack lattices and random NTRU

lattices

Jingguo Bi1 and Qi Cheng2

1 Lab of Cryptographic Technology and Information Security
School of Mathematics
Shandong University

Jinan, 250100, P.R. China.
Email: jguobi@mail.sdu.edu.cn

2 Computer Science School
University of Oklahoma

Norman, OK 73019, USA
Email: qcheng@cs.ou.edu

Abstract. Finding the shortest vector of a lattice is one of the most im-
portant problems in computational lattice theory. For a random lattice,
one can estimate the length of the shortest vector using the Gaussian
heuristic. However, no rigorous proof can be provided for some classes of
lattices, as the Gaussian heuristic may not hold for them. In the paper we
study two types of random lattices in cryptography: the knapsack lattices
and the NTRU lattices. For random knapsack lattices, we prove lower
bounds of shortest vector lengths, which are very close to lengths pre-
dicted by the Gaussian heuristic. For a random NTRU lattice, we prove
that with a overwhelming probability, the ratio between the length of the
shortest vector and the length of the target vector, which corresponds
to the secret key, is at least a constant, independent of the dimension of
the lattice. The main technique we use is the incompressibility method
from the theory of Kolmogorov complexity.
Key words: Shortest vector problem , Kolmogorov complexity , Knap-
sack lattice, NTRU lattice

1 Introduction

A lattice is a set of points in an Euclidean space with periodic structure.
Given n linearly independent vectors b1, . . . ,bn ∈ Rm (n ≤ m), the
lattice generated by them is the set of vectors

L(b1, . . . ,bn) = {
n∑
i=1

xibi : xi ∈ Z}

The vectors b1, . . . ,bn form a basis of the lattice.



The most famous computational problem on lattices is the shortest
vector problem(SVP): Given a basis of a lattice L, find a vector u ∈ L,
such that ‖ v ‖≥‖ u ‖ for any vector v ∈ L \ 0. For the hardness of SVP,
Ajtai first proved that SVP is NP-hard under a randomized reduction [1]
and his result was strengthened in [12][4][3][9][7]. The upper bound for
the length of the shortest vector is given in the famous Minkowski Convex
Body Theorem. Nevertheless, there is no known efficient algorithm which
can always find a vector within the Minkowski bound.

The study of random lattices has a long history, dated back from
[18]. It turns out that one can define a measure on the set of all n-
dimensional lattices of a fixed determinant, and have a precise estimation
of the expected length of the shortest vector [2]. One way to achieve it
is to use the so-called Gaussian heuristic. Given a n-dimensional lattice
L with determinant det(L), the Gaussian heuristic predicts that there
are about vol(C)/det(L) many lattice points in a measurable subset C
of Rn of volume vol(C). It can be made precise, for example, when C is
convex and symmetric around the original point O, and vol(C) is much
bigger than det(L). If we take C to be an n-sphere centered at O, for
C to contain a few points, vol(C) is about det(L). In the other words,
the length of the shortest vector can be approximated by the radius of
a sphere whose volume is det(L), which is about

√
n/2eπdet(L)1/n. As

an interesting comparison, the Minkowski Convex Body Theorem asserts
that if the volume of sphere C is greater than 2ndet(L), then it must
contain a nonzero lattice point. This gives an upper bound of the shortest
vector length at about

√
2n/eπdet(L)1/n, which is only twice as large as

the prediction made from the Gaussian heuristic.

Most of lattices appearing in cryptanalysis are random in some sense,
but some of them are not random according to the above measure. See
discussion in [15]. The length of the shortest vector may be much shorter
than the prediction made from the Gaussian heuristic. In this paper, we
consider two classes of random lattices appeared frequently in cryptogra-
phy: knapsack lattices and NTRU lattices. Knapsack lattices are closely
related to the Lagarias-Odlyzko lattices [10], which was first introduced to
solve the knapsack problem. A knapsack lattice is spanned by b1, . . . ,bn

below:

b1 = (a1, 1, 0, . . . , 0)
b2 = (a2, 0, 1, . . . , 0)

...
bn = (an, 0, 0, . . . , 1),
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where a1, a2, · · · , an are integers. We call the lattice random, if a1, a2, · · · , an
are selected uniformly and independently from r-bit integers, namely, the
integers between 0 and 2r − 1. Random knapsack lattices were used by
Nguyen and Stehle [15] to assess the performance of LLL algorithm. We
prove that with probability at least 1 − 1

nr , the length of the shortest

vector in the knapsack lattice La1,a2,··· ,an is greater than
√

n+1
2πe ·2

r
n+1 (1 +

O( log(nr)n )), which is not far away from the Gaussian heuristic.
The NTRU cryptosystem was first introduced at the rump section of

Crypto 96 by [6]. It operates in the ring of truncated polynomials given
by Z[X]/(XN − 1). Define T (d1, d2) be the set of polynomials of degree
N − 1 with d1 coefficients 1, d2 coefficients −1 and rest coefficients 0. Let
β be a positive constant ≤ 1/2 and let d = bβNc. The security of the
NTRU cryptosystem is based on the difficulty of finding short vectors in
an NTRU lattice:

LNTRU =



1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


(1)

where q is a positive integer, (h0, h1, · · · , hN−1) is the coefficient vector
of a polynomial h(x) =

∑N−1
i=0 hix

i and there exist polynomials f(x) =∑N−1
i=0 fix

i ∈ T (d+ 1, d) and g(x) =
∑N−1

i=0 gix
i ∈ T (d, d) such that

h(x)f(x) = g(x) (mod q, xN − 1).

We call an NTRU lattice random if f(x) is selected uniformly from the
invertible elements ( in the ring (Z/qZ)[x]/(xN − 1) ) in T (d+ 1, d), and
g(x) is selected uniformly from T (d, d).

Remark 1. A random NTRU lattice can not be obtained by selecting
(h0, h1, h2, · · · , hN−1) in (1) randomly from (Z/qZ)N . If fact, a lattice
obtained in that manner is most likely not an NTRU lattice.

Interestingly Gaussian heuristic clearly does not hold for random NTRU
lattices. According to the Gaussian heuristic, the shortest vector length
is about

√
Nq/2eπ, but the vector

(f0, f1, · · · , fN−1, g0, g1, · · · , gN−1),
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which will be called the target vector, is in the lattice and has length
O(
√
N). Many conjecture that the target vector is indeed the shortest

vector in the lattice in most of cases. However, no formal proof has been
provided. It is important to bound the length of the shortest vector from
below, since if the shortest vector is significantly shorter than the tar-
get vector, say that it has length o(

√
N), then it can be recovered by

an exhaustive search in time 2o(N), and can be used in breaking NTRU
cryptosystems [5]. In this paper, we prove that with a overwhelming prob-
ability, the ratio between the length of the shortest vector and length of
the target vector is at least a constant. In the other word, we prove that
most likely, the target vector is as long as the shortest vector up to a
constant factor. In particular, if d = bN/3c, as it is commonly set, then
with a overwhelming probability, the shortest vector in a random NTRU
lattice is longer than

√
0.28N .

Remark 2. There are other variants of NTRU cryptosystems, which cor-
respond to lattices of slightly different forms. We will not discuss them
due to the space limitation. Nevertheless similar results can be obtained
by our techniques.

Since it is known that approximating the shortest vector by any constant
factor is NP-hard [9] for general lattices, this result provides a strong
evidence for the security of the NTRU cryptosystem against the lattice
reduction attack.

We regard the main contribution of this paper is to use Kolmogorov
complexity to study the expected length of a random lattice in certain
class, which is powerful yet conceptually simple. The rest of the paper is
organized as follows. In Section 2, we will review some backgrounds about
lattices and Kolmogorov complexity. The lower bound for the shortest
vector length of the random knapsack lattice will be studied in Section
3. In Section 4 we prove the lower bound of the length of the shortest
vector for a random NTRU lattice. The proof in Section 3 is simpler,
which can be considered as a warm-up for Section 4. We conclude this
paper in Section 5. In this paper, we use log to denote the logarithm base
2 and use ln to denote the natural logarithm.
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2 Preliminaries

2.1 Lattices

Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the set

L(b1, . . . ,bn) = {
n∑
i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent (column) vector
b1, . . . ,bn ∈ Rm. The integer n and m are called the rank and dimension
of the lattice. A lattice can be conveniently represented by a matrix B,
where b1, . . . ,bn are the row vectors. The determinant of the lattice L is
defined as

det(L(B)) =
√

det(BBT ) (2)

The most famous computational problem on lattices is the shortest
vector problem(SVP): Given a basis of a lattice L, find a vector u ∈ L,
such that ‖ v ‖≥‖ u ‖ for any vector v ∈ L \ 0. The following is a
well-known theorem on the upper bound of the shortest vector length in
lattice L.

Theorem 1 (Minkowski) Any lattice L of rank n contains a non-zero
vector v with

||v|| ≤ (1 + o(1))
√

2n/eπ det(L)
1
n

In many literatures, the theorem is presented with a weaker bound
√
n det(L)

1
n .

2.2 Number of integral points in a sphere

To obtain our results, it is important to have an accurate estimation of
the number of integral points inside of n-sphere centered at the origin of
radius R. Denote the number by W (n,R). In general, one can approxi-
mate W (n,R) by the volume of the sphere, denoted by V (n,R). However,
if the radius of the sphere is small, compared to the square root of the
dimension, then the volume estimate is not very accurate. More precisely,
if the radius of the sphere R ≥ n1/2+ε, the number of integral points in
the sphere is equal to the volume

V (n,R) = (
√
πn+O(1))−1(

√
2πe

n
R)n

with a small additive error. If r is
√
αn for some small constant α, then

the estimation using volume is not so precise. To see this, note that when
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α < 1
2πe , the volume of the sphere is exponentially small, yet it still

contains many integral points. We should use the result found in [14] to
estimate W (n,R) for R = O(

√
n):

Proposition 1. Let α be a constant. Then there exists a constant δ,
depending only on α, such that W (n,

√
αn) ≥ eδn for n large enough.

Moreover, as α gets larger, δ is approaching ln(
√

2πeα).

To find δ from α, one defines θ(z) = 1 + 2
∑∞

i=1 z
i2 . Set δ(α, x) =

αx + ln θ(e−x). We can compute δ = minx≥0 δ(α, x). As a comparison,
W (n,

√
0.1n) ≈ e0.394415n, and V (n,

√
0.1n) ≈ e0.267645n. W (n,

√
0.5n) ≈

e1.07246n, and V (n,
√

0.5n) ≈ e1.07236n. For α > 0.5, the difference between
log V (n,

√
αn)/n and logW (n,

√
αn)/n is less than 0.0001. See Table 1 in

[14]. We also have

Proposition 2. Let δ be a constant. Then there exists a constant α such
that if a n-sphere centered at the origin contains more than eδn many
integral points, the radius of the sphere must be greater than

√
αn for n

large enough. As δ gets larger, α is approaching e2δ/2πe.

2.3 Kolmogorov complexity

The Kolmogorov complexity of a binary string x, conditional to y, is
defined to be the length of the shortest program that given the input
y, prints the string x, and is denoted by K(x|y). We define K(x) to be
K(x|ε), where ε is the empty string. It turns out that if one switches
from one programming language to another, the Kolmogorov complexity
is invariant, up to an additive constant, as long as both of the program-
ming languages are Turing Universal. The book [11] gave an excellent
introduction to the theory of Kolmogorov complexity.

One can show that for any positive integer s, K(s) ≤ log s+O(1). If
s = 1n, the binary string of length n consisting of only 1, then K(s) ≤
log n+O(1). Similarly if s is the first n binary digits of the number π after
the decimal point, then K(s) ≤ log n+O(1). From the examples, one can
see that the Kolmogorov complexity is a good measure of randomness in
the string.

For each constant c, a positive integer x is c-incompressible if K(x) ≥
log(x)− c. By the counting argument, one can show

Proposition 3. For any y, a finite set A of cardinality m has at least
m(1− 2−c) + 1 elements x with K(x|y) ≥ logm− c.
This observation yields a simple yet powerful proof technique — the in-
compressibility method.
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3 Lower bound for the length of shortest vector of
knapsack lattice

Knapsack lattices are closely related to the lattices introduced by Lagarias
and Odlyzko [10] to solve the knapsack problem: Given positive integers
a1, a2, . . . , an and s, whether there is a subset of the ai that sums to
s. That is equivalent to determine whether s =

∑n
i=1miai is solvable

under the conditions mi ∈ {0, 1}, 1 ≤ i ≤ n. For more details about the
knapsack cryptosystem, please refer to [13][17][10][16] .

To solve the knapsack problem, one usually studies the lattice spanned
by b1, . . . ,bn below.

b1 = (a1, 1, 0, . . . , 0)
b2 = (a2, 0, 1, . . . , 0)

...
bn = (an, 0, 0, . . . , 1)

We denote the lattice by La1,a2,··· ,an .

From the equation (2), we can compute that det(L) =
√∑n

i a
2
i + 1.

From Theorem 1, we can get that the length of the shortest vector is

smaller than
√

2n
eπ (
∑n

i a
2
i + 1)

1
2n ≈

√
2n
eπ · 2

r
n . For the lower bound of the

shortest vector’s length, we prove a theorem below.

Theorem 1. Let β be a constant. Let n be a positive integer and r =
bβnc. Let S = s1s2 · · · snr be a binary string with length nr and

K(S|n, r) > nr − log(nr).

For 1 ≤ i ≤ n, let ai be the integer whose binary representation is

s1+(i−1)rs2+(i−1)r · · · sr+(i−1)r.

Then there exists a constant α, depending only on β, such that for the
knapsack lattice La1,a2,··· ,an, the shortest vector’s length is greater than√
αn. Moreover, as β gets larger, α is approaching 22β/2πe.

Proof. Suppose vector v = (v1, . . . , vn+1) be the shortest vector of the
lattice L, then v should be the linear combination of b1, . . . ,bn,

v =
n∑
i=1

tibi
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where ti ∈ Z and ti are not all zero. So we have

v1 = t1a1 + t2a2 + . . .+ tnan (3)

vi = ti−1, 2 ≤ i ≤ n+ 1 (4)

From equation(3)(4), we have v1 =
∑n

i=2 viai, where the coefficients
vi for 2 ≤ i ≤ n+ 1 are not all zero. Let k be the smallest integer greater
than 2 such that vk 6= 0. Then we can get

ak =
v1 −

∑n+1
i=2,i 6=k viai

vk
(5)

From equation (5), we see that there exists a program that will print S,
given (a1, a2, · · · , ak−1, ak+1, · · · , an) and v. The length of such a program
(not including the input) is O(1). Suppose that the length of the vector
v is R. To describe v, we note that it is an integral point in the (n+ 1)-
hypersphere of radius R centered at the origin. So we only need to use
logW (n+ 1, R) bits. That is

K(S|n, r) < (n− 1)r + logW (n+ 1, R) +O(1)

On the other hand, we haveK(S|n, r) > nr−log(nr). So logW (n+1, R) ≥
βn+O(log n). It follows from Proposition 2 that R is large than

√
αn for

some constant α.

Corollary 1. Let β be a constant. Let n be a positive integer and r =
bβnc. If a1, a2, · · · , an are selected randomly and independently from in-
tegers between 0 and 2r−1, then with probability at least 1− 1

nr , the length
of the shortest vector in the lattice La1,a2,··· ,an is greater than

√
αn. More-

over, as β gets larger, α is approaching 22β/2πe.

Proof. If a1, a2, · · · , an are selected uniformly and independently from
integers between 0 and 2r − 1, then if we write them as binary strings
of length r, and concatenate them together to form a binary string S of
length nr, then with probability 1− 1

nr , K(s|n, s) > nr − log(nr).

A similar result can be achieved if r grows super-linearly in n.

Corollary 2. Let r = n1+ε. If a1, a2, · · · , an are selected randomly and
independently from integers between 0 and 2r−1, then with probability at
least 1 − 1

nr , the length of the shortest vector in the lattice La1,a2,··· ,an is

greater than
√

n+1
2πe · 2

r
n+1 (1 +O( log(nr)n )).
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4 Lower bound for the length of shortest vector of NTRU
lattice

The NTRU algorithm was first introduced by [6] at the rump section
of Crypto 96. It operates in the ring of truncated polynomials given by
Z[X]/(XN − 1). The security of the NTRU cryptosystem is based on the
difficulty of finding short vectors in NTRU lattices.

To describe the parameters of the NTRU cryptosystem, we begin by
choosing an integer N ≥ 1 and two moduli p, q such that gcd(N, p) =
gcd(p, q) = 1. Let R, Rp, and Rq be the convolution polynomial rings

R = Z[x]/(xN − 1), Rp = (Z/pZ)[x]/(xN − 1), Rq = (Z/qZ)[x]/(xN − 1)

For any positive integers d1 and d2, define the set

T (d1, d2) =

a(x) ∈ R :
a(x) has d1 coefficients equal to 1;
d2 coefficients equal to − 1;
has all other coefficients equal to 0


Polynomials in T (d1, d2) are called ternary polynomials. The public pa-
rameters is (N, p, q, d). The private key consists of two randomly chosen
polynomials

f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d)

and then computes the inverses

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp

compute
h(x) = Fq(x) ∗ g(x) in Rq (6)

and the public key is the polynomial h(x). From equation (6) we can
obtain relationship

f(x) ∗ h(x) ≡ g(x) in Rq (7)

where f(x) and g(x) have very small coefficients.
Define the NTRU lattice :

LNTRU =


b1

b2
...

b2N

 =



1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


(8)
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where (h0, h1, · · · , hN−1) are coefficients of h(x). Since g(1) = 0, so h(1) =
0 (mod q), thus this lattice has a trivial short vector (1N , 0N ), which can
be shorter than the private key. If we adopt Coppersmith and Shamir’s
approach [5], and use a slightly different lattice of rank 2N − 2:



1− 1/N −1/N · · · −1/N h0 h1 · · · hN−1
−1/N 1− 1/N · · · −1/N hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

−1/N −1/N · · · 1− 1/N h1 h2 · · · h0
0 0 · · · 0 q − q/N −q/N · · · −q/N
0 0 · · · 0 −q/N q − q/N · · · −q/N
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 −q/N −q/N · · · q − q/N


(9)

then the short vector (1N , 0N ) is eliminated from the lattice. Coppersmith
and Shamir proved if one can find a sufficiently short vector in the NTRU
lattice, then the short vector gives us an equivalent private key.

Lemma 1. Assume that d = bβNc for some constant 1/10 < β ≤ 1/2.
For any polynomial f , if we randomly select a polynomial g in T (d, d),
then with probability at least 1− 2−0.1N , we have

K(g|N, f) ≥ γN

for some constant γ, when N is large enough.

Proof. The cardinality of the set T (d, d) is(
N

d

)(
N − d
d

)
≥ 2(−2β log β−(1−2β) log(1−2β))N

NO(1)
.

So we may take γ = −2β log β − (1− 2β) log(1− 2β)− 0.1.

In most applications of NTRU cryptosystems, q is set to be a power of
two. In the following theorem, we assume that q is a prime for simplicity.
The proof for the power of two case is similar but more technical. We will
include the proof in the full version of the paper.

Theorem 2. Let N be an odd prime. Let q < N2 be a prime. Assume
that q has order N − 1 in (Z/NZ)∗. Fix a polynomial f in T (d + 1, d),
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which is invertible in R. Suppose that g is a polynomial in T (d, d) such
that

K(g|N, f) ≥ γN

for some constant γ. The length of the shortest vector in LNTRU is greater
than

√
αN for some constant α depending only on γ.

Proof. First observe that since f is invertible, we have

|K(g|N, f)−K(h|N, f)| = O(1).

Since q is a primitive root modulo N , we have that

(xN − 1)/(x− 1) = xN−1 + xN−2 + · · ·+ 1

is an irreducible polynomial over Fq.
Suppose the vector V = (v1, v2, . . . , v2N ) ∈ Z2N is the shortest vector

of LNTRU . If it is (1N , 0N ), then its length is
√
N . Otherwise there exists

integers k1, . . . , kN such that

V =

N∑
i=1

vibi +

N∑
j=1

kjbN+j. (10)

From equation(10), we can obtain that

h0v1 + hN−1v2 + . . .+ h1vN ≡ vN+1 (mod q)

h1v1 + h0v2 + . . .+ h2vN ≡ vN+2 (mod q)

...

hN−1v1 + hN−2v2 + . . .+ h0vN ≡ v2N (mod q)

Let ω be the N -primitive root of unit in the algebraic closure of Fq. The
ranks of the circulant matrix

v1 vN · · · v2
v2 v1 · · · v3
...

...
. . .

...
vN vN−1 · · · v1

 (11)

depends on the roots of the polynomial v1 + vNx + · · · + v2x
N−1. More

precisely, if d elements in {1, ω, ω2, ωN−1} are zeros of the polynomial,
then the rank is N − d [8]. Since (v1, · · · , vN ) can not be all 1, the rank
is at least N − 1. If

v1 + vN + · · ·+ v2 6= 0 (mod q),
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then the rank is N , we can recover (h0, h1, . . . , hN−1) from v. Otherwise
the rank is N − 1, then (h0, h1, . . . , hN−1) is in a 1-dimensional solution
space of the linear system, namely, it equals to B1 +aB2, where B1, B2 ∈
FNq can be uniquely determined by v, and a ∈ Fq. Suppose that the
length of the vector v is R. To describe v, note that v is an integral point
in the (2N)-hypersphere of radius R centered at the origin. So we can use
logW (2N,R) bits. To describe h, we just need v and a.

K(g|N, f) ≤ K(h|N, f) +O(1) ≤ log(W (2N,R)) + log q +O(1)

Since K(g|N, f) ≥ γN , we have

W (2N,R) ≥ 2γN/NO(1).

Hence R ≥
√
αN for some constant α by Proposition 2.

The above theorem shows that with a overwhelming probability, the
shortest vector in a random NTRU lattice is at least a constant factor
away from the target vector. In many practical applications of the NTRU
cryptosystem, d is set to be close to bN/3c. In this case, we calculate α.

Corollary 3. If d = bN/3c, then with probability greater than 1−2−0.1N ,
the shortest vector in a random NTRU lattice has length greater than√

0.28N .

Proof. By Lemma 1, we can take γ to be 1.48. Then

W (2N,R) ≥ 21.48N = e0.51∗2N .

Hence R ≥
√

0.14 ∗ 2N =
√

0.28N .

Note that if the target vector is the shortest vector, then R =
√

4N/3.
It is an interesting open problem to close the gap.

5 Conclusion

In this paper, we study the length of shortest vector of random knapsack
lattices and random NTRU lattices. Let a1, a2, · · · , an be integers selected
uniformly and independently from integers between 0 and 2r − 1, then
with probability at least 1 − 1

nr , the length of the shortest vector in the

knapsack lattice La1,a2,··· ,an is greater than
√

n+1
2πe ·2

r
n+1 (1+O( log(nr)n )). For

random NTRU lattices, we obtain that with a overwhelming probability,
the lower bound of the shortest vector length of NTRU lattice is Ω(

√
N).

The main problem left open by this work is to prove that with a high
probability, the target vector is shortest in a random NTRU lattice.
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