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Abstract. Due to the possibility of key exposure, forward security in
encryption and signing has been well studied, especially in the identity-
based setting where an entity’s public key is that entity’s name. From
an efficiency point of view, one would like to use the signcryption primi-
tive and have the best of both worlds. However, strong forward security,
where the adversary cannot signcrypt in sender’s name nor designcrypt
in receiver’s name for past time periods even if it has the secrets of
both, requires periodic updating of the secret keys of the users. This is
an improvement over signcryption schemes that only protect against de-
signcrypting in the past. In this paper, we propose the first ever strong
forward secure identity-based signcryption scheme which has public ci-
phertext verifiability and a third-party verification protocol.

Keywords: forward security, signcryption, pairing-based cryptography,
identity-based cryptography

1 Introduction

To achieve both authenticity and confidentiality, usually the sign-then-encrypt
paradigm is employed. Proposed by Zheng [28], the aim of signcryption is to com-
bine encryption and signing into one efficient primitive. As expected, the goals
of signcryption are confidentiality and unforgeability. In addition, if the current
state of the user is compromised, one would like to have assurances that this
information cannot be used to break the security of the system for past periods.
Several forms of forward security for signcryption schemes have been discussed
in the literature so far. It is often defined to mean that messages signcrypted
in the past cannot be designcrypted even if sender’s private key is exposed; we
will refer to this as partial forward secrecy. If past messages signcrypted cannot
be designcrypted even with access to both sender’s and receiver’s private keys,
then we say the signcryption scheme is forward secret. If in addition to being
forward secret, the adversary cannot forge signcryptions in the past, we say that
the signcryption scheme is strong forward secure.

Non-repudiation is another a desirable property of signcryption schemes,
also coming in several flavors. If the origin of a signcryption can be checked



by everybody then we say that the scheme has public ciphertext verifiability. A
stronger property is third party verification, where the receiver of a signcryption
can convince everybody else that it came from a particular sender and contains
a particular plaintext.

In identity-based cryptography, the names of the parties serve as their public
keys. There is a trusted party, the key generation center (KGC), that is capable of
computing the secret key corresponding to any public key and uses this capability
to give to each party its secret key. Secret keys are bound to public keys through
the master public key known to everybody. The master public key, together with
the master secret key are generated by KGC.

Our contribution In this paper, we propose the first identity-based strongly
forward secure signcryption scheme. We show the insider security [1] of our
scheme in the random oracle model. Additionally, third party verifiability can
be added to our scheme. The random oracle model [3], while less theoretically
desirable, allows us to obtain efficient constructions.

In order to achieve strong forward security, one would like for the signcryp-
tion scheme to be unforgeable and retain message secrecy (past signcryptions
cannot be designcrypted) for all periods prior to key exposure; thus, the secret
keys must be updated. We use the mechanism of binary tree encryption [5], first
adapted to signature schemes by Kang et al. [17] for updating the keys. In this
paper, we begin in Section 2 by reviewing the existing signcryption schemes that
purport to have forward security, as well as introducing the necessary prelimi-
naries about the computationally hard problems our scheme’s security will be
based on. In Section 3, we propose a definition for signcryption schemes in the
binary tree setting, together with definitions for their strong forward security.
The definitions are natural adaptations of definitions from earlier work, thus
they can be assumed to be the right ones. We propose a binary tree signcryption
scheme and show that it is strongly forward secure. We show how to transform
the binary tree based signcryption scheme to a plain strongly forward secure
signcryption scheme with evolving secret keys in Sec. 4. Last, a third party
message verification protocol is provided in Section 5.

Further related work. Using bilinear maps, Barreto et al. proposed efficient
and provably-secure signatures and signcryptions [2]. An efficient signcryption
scheme with public ciphertext verifiability was proposed by Chow et al. [7]. In
[29], forward secrecy is addressed for low-power devices. Also related are identity-
based key exchanged protocols, many of which have been proposed in the liter-
ature ([9,14,24,6] to name a few), and identity-based signing [21,15,19,22] and
encryption [4]. Combined (identity-based) public key schemes in which parties
use a public key encryption scheme and a signature scheme with a single public
key/private key pair are also worth mentioning here [12]. The only proposed
strong forward secure signcryption scheme that we are aware of is by Yin et al.
[27].

In many signcryption schemes, there is a general pattern employed in three
parts. First, a key transport protocol takes place via encrypting an ephemeral key
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under the receiver’s public key. Second, a symmetric encryption protocol using
the ephemeral key takes place. Last, the ciphertext output by the symmetric
encryption protocol is signed by the sender. In some cases, the signature on the
ciphertext can be verified by a third party from the signcryption (we discuss the
role of public verifiability). For a general discussion on the security of hybrid
signcryption schemes see [8].

2 Preliminaries and Definitions

We write x
$←X to denote that the value x is uniformly chosen from the set X.

We also write x
$←A(. . .) to denote that x is the result of running a probabilistic

algorithm A with certain arguments. We write AO1(·),O2(·),... to denote that the
algorithm A has access to oracles O1,O2, . . ..

Our constructions build on bilinear pairings commonly used in identity-based
schemes [4,18]1. Let G1 and G2 be two cyclic groups of prime order q (represented
additively and multiplicatively, respectively).

Definition 1 (Bilinear Map). A pairing is a bilinear map ê : G1 ×G1 → G2

where G1 and G2 have prime order q and satisfy the following properties:

1. Bilinearity: ∀P1, P2 ∈ G1, ∀α, β ∈ Z∗q , ê(αP1, βP2) = ê(P1, P2)αβ.
2. Non-Degeneracy: For any P1 ∈ G1, ê(P1, P2) = 1 for all P2 ∈ G1 iff P1 = O.
3. Computability: There exists an efficient algorithm to compute ê(P1, P2) from

P1, P2 ∈ G1.

The security proofs of our constructions depend on the hardness of certain
computational problems involving bilinear pairings. Namely, the bilinear deci-
sional Diffie-Hellman (BDDH) problem states that it is infeasible to distinguish
tuples of the form (P, αP, βP, γP, ê(P, P )αβγ) from tuples (P, αP, βP, γP, z).
Here P is a generator of G1, α, β, γ are uniformly chosen from Z∗q , and z is
uniformly chosen from G2. The hardness of BDDH problem implies that the
computational Diffie-Hellman (CDH) problem in G1 — given P, αP, βP ∈ G1,
find αβP — is hard, too.

In order to improve efficiency over “Sign-then-Encrypt” and “Encrypt-then-
Sign” paradigms, hybrid signcryption schemes often involve a symmetric encryp-
tion scheme. An established notion of security, we recall that indistinguishability
under chosen plaintext attack (IND-CPA) allows the adversary to get encryptions
of adaptively chosen messages [10]. We will use a symmetric encryption scheme
as part of our construction.

Definition 2 (Symmetric IND-CPA). Let the triple (K′, E ′,D′) with security
parameter µ be a symmetric key encryption scheme and A a probabilistic poly-
nomial time algorithm. Consider the following game between the adversary A
and the environment.

1 Although we do not focus on specific pairings, we assume that they are carefully
chosen as to avoid known attacks such as [25].
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1. The environment computes a key K
$←K′(1µ).

2. A can submit messages m to the environment. The environment answers
with E ′K(m).

3. Eventually, A selects messages m0 and m1 of equal length and submits them
to the environment.

4. The environment selects b
$←{0, 1} and returns E ′K(mb) to A.

In the end, A must guess b. Its advantage is the difference between its success
probability and 1/2. The symmetric encryption scheme is IND-CPA secure if no
probabilistic polynomial-time adversary has non-negligible advantage.

Identity-based public key cryptosystems enable the computation of a public
key for a user given the scheme parameters and a string identifying the user.
A key generation center (KGC) computes private keys from a master secret key
and distributes these to the users in the scheme. Signcryption schemes in the
identity-based setting consist of the four algorithms that follow. The first two of
them are executed by KGC, the last two by the users of the system.

G(1η) Upon input 1k the KGC generates the system’s master secret key msk and
master public key mpk .

K(msk , ID) outputs the secret key sk ID corresponding to the identity ID.
Sc(mpk , skA, IDB,M) computes the signcryption of the message M from the

party A to the party B.
Dc(mpk , skB, IDA, σ) designcrypts the signcryption σ sent to party B, and veri-

fies that it came from party A. It outputs the plaintext corresponding to σ
or ⊥ if an error occurred.

The consistency requirement states m = Dc(mpk , skB, IDA,Sc(mpk, skA,B,m)),
for any message m and identities A, B.

First proposed by An et al. [1], insider security assumes that the adversary
A is a legal user of the system (either a sender or receiver). An attack against
a signcryption scheme is either an attack against confidentiality or authenticity.
When attacking authenticity, the adversary has access to all private keys except
the sender’s, and when attacking indistinguishability, the adversary has access
to all private keys except the receiver’s. Additionally, the adversary has access
to signcryption oracles using any identity.

To achieve strong forward security, the private keys of the parties (but not the
public keys) must be updated during the lifetime of the scheme. To be efficient,
the signing and encryption must be meaningfully related. That is, one would
like the ability to sign using the same setup from a forward-secure encryption
scheme. This allows us to build a signcryption protocol that yields the forward
security in the strong sense that is desired. In Table 1, we show a comparison of
what previous schemes have achieved as compared to our signcryption scheme
BTSC which will be introduced in Section 3.

We note that Toorani and Shirazi [26] point out some flaws in the scheme
by Hwang et al. [16] mentioned in Table 1. As the secret key used to encrypt is
never updated in the scheme by Yin et al. [27], the scheme does not have any
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Table 1. Security comparison of signcryption schemes

Signcryption Scheme BTSC [7] [16] [20] [27]

Partial Forward Secrecy X X X X
Public Ciphertext Verifiability X X X X
Forward Secrecy X
Strong Forward Security X
Third Party Verification X X

forward secrecy. However, the scheme uses the forward-secure signature scheme
by Kang et al. [17] to achieve unforgeability in past time periods. In addition,
the table shows if an explicit algorithm for third party verification is given.

3 Forward Secure Signcryption in the Binary Tree
Setting

In [5], Canetti et al. propose a forward-secure encryption scheme in the stan-
dard model; we assume familiarity with the security of their construction. The
concept is similar to the forward-secrecy property in signcryption in that past
encryptions cannot be decrypted with the compromised current state of the user
(if one wishes to perform decryptions of past ciphertexts, the initial seed used to
create the secret keys must be stored in a separate secure device). The proposed
protocols use a binary tree and each node (not just the leaves) represents a time
period and has a corresponding secret key. A binary tree scheme is transformed
to a forward secure scheme by traversing the nodes of the tree in a certain or-
der (e.g. depth-first). We adapt their binary tree construction in this section to
signcryption. However, we use the identity-based setup in which a KGC creates
the parameters and keys rather than each individual user.

In the following, we address the nodes of a binary tree at level t ≤ ` with
bit-strings of length t where ` is the depth of the tree. The address of the root
node is the empty string ε. The children of the node (with the address) ω are
the nodes ω0, ω1. For these nodes, ω is the parent node. For a bit-string ω of
length t, we let ω|i denote its i-bit prefix. The sibling of a non-root node ω is
the other child of its parent; we denote it with ω. The bit-strings ω and ω have
the same length and differ only in their last bit.

An identity-based binary tree signcryption scheme has the same algorithms
as identity-based signcryption schemes (Sec. 2). It has an additional algorithm
R for updating the secret keys. This algorithm is executed by the users at the
end of time periods.

Definition 3 (BTSC). An identity-based binary tree digital signcryption scheme
(BTSC) is a 5-tuple of probabilistic polynomial-time algorithms (G,K,R,Sc,Dc),
where

G(1η, `, params) generates the master secret key msk, the master public key mpk,
and possibly other parameters.
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K(msk , ID) outputs the secret key sk ID
ε for the user ID, corresponding to the root

of the binary tree.
R(mpk , ω, sk ID

ω ) receives the address of the node ω of length strictly less than `
and the secret key sk ID

ω corresponding to this node. It returns the secret keys
sk ID
ω0 and sk ID

ω1 corresponding to the children of this node.
Sc(mpk , ω, skA

ω,B,M) computes the signcryption of the message M from the
party A to the party B, corresponding to the “time period” (or node) ω.

Dc(mpk , ω, skB
ω,A, σ) designcrypts the signcryption σ sent to party B, and veri-

fies that it came from party A. It outputs the plaintext corresponding to σ or
⊥ if an error occurred.

The algorithms must satisfy the consistency requirement: for any node ω (of
length polynomial in η), keys correctly generated for this node skAω and skBω output
by K(msk,A) and K(msk,B), respectively, and any message M , we have the
correct designcryption M = Dc(mpk , ω, skBω,A,Sc(mpk , ω, skAω,B,M)).

A signcryption is secure if it provides confidentiality and authenticity. It is
forward secure if an attacker with access to the secrets of current and future time
periods cannot compromise the security of communications in the past. In the
binary tree based setting, the time can be thought as flowing downwards from
the root node, with different branches being independent of each other. When the
adversary answers to a challenge at a certain node (time moment), it is allowed to
access the secrets in every node except the one under attack and its ancestors.
Similarly to [5], we force the adversary to first commit to the node where it
will attempt the challenge. This will still allow us to obtain a forward secure
scheme in the usual (non binary-tree) sense. The confidentiality and authenticity
definitions for the BTSC are the following. The first of them is the adaptation
of SN-CPA [5] to signcryptions and the identity-based setting. The second is
the adaptation of CMA security to the identity- and binary tree based setting.
Recall that the insider security of signcryption schemes was expressible in two
separate definitions.

Definition 4 (IB-BT-CPA). Let (G,K,R,Sc,Dc) be a BTSC. Consider the
following game between the adversary A and the environment.

1. The adversary gives ω∗ ∈ {0, 1}∗ to the environment.
2. The environment executes G(1η, `, params), obtains msk and mpk, and gives

the latter to the adversary. The environment also selects a random bit b.
The environment keeps a database mapping pairs (ID, ω) to secret keys skIDω .
Initially the database is empty. Whenever a key skIDω is needed, it is taken
from the database. If it is unavailable, and ω = ε, the algorithm K(msk , ID)
is invoked and the result is stored as skIDε . If ω 6= ε and |ω| < `, then the key
skIDω||ω|−1

is taken from the database, and R invoked to produce both skIDω and

skIDω , which are then added to the database.
3. The adversary can perform queries breakin(ID, ω). In response, the environ-

ment answers with skIDω .
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4. At a certain point, the adversary issues a query challenge(A,B,M0,M1). The
query is accepted only if the adversary has made no queries breakin(B, ω′),
where ω′ equals or is a prefix of ω∗. If it is accepted, it is answered with
Sc(mpk , ω∗, skAω∗ ,B,Mb).

5. The adversary can continue issuing breakin-queries, but not for the identity
B and the nodes ω′ that are prefixes of ω∗ in the challenge-query.

In the end, the adversary must guess b. Its advantage is the difference between its
success probability and 1/2. The BTSC is IB-BT-CPA-secure if no probabilistic
polynomial-time adversary has non-negligible advantage.

Definition 5 (IB-BT-CMA). Let (G,K,R,Sc,Dc) be a BTSC. Consider the
following game between the adversary A and the environment.

1. The adversary gives ω∗ ∈ {0, 1}∗ to the environment.
2. The environment executes G(1η, `, params), obtains msk and mpk, and gives

the latter to the adversary. The environment also selects a random bit b.
The environment keeps the same database of keys as in Def. 4.

3. The adversary can perform queries breakin(ID, ω). In response, the environ-
ment answers with skIDω .

4. The adversary can perform queries sc(ω,A,B,M). The environment answers
with Sc(mpk , ω, skAω,B,M).

In the end, the adversary A produces a message M , a signcryption σ, and two
identities A, B. The adversary wins if

– Dc(mpk , ω∗, skBω∗ ,A, σ) = M ;
– A did not issue any query breakin(A, ω′), where ω′ is a prefix of ω∗;
– A did not issue the query sc(ω∗,A,B,M).

The BTSC is IB-BT-CMA-secure if no probabilistic polynomial-time adversary
has non-negligible winning probability.

We say that a BTSC is strongly BT-forward secure if it is both IB-BT-
CPA- and IB-BT-CMA-secure. Next, we present a scheme that achieves strong
BT-forward security. Let (K′, E ′,D′) with security parameter µ be an IND-CPA-
secure symmetric encryption scheme as defined in Section 2. The scheme is
presented in Fig. 1.

A straightforward computation shows that the scheme in Fig. 1 satisfies the
consistency requirements of Def. 3 as shown in Appendix A. Next, we show that
it is strongly BT-forward secure.

Remark 1. Note in Figure 1 that ê(Ppub, QA) and ê(Ri, H(ω|i)) for i = 1, . . . , t in
algorithm Dc may be stored and reused by B to improve efficiency. Furthermore,
the symmetric encryption scheme ensures efficient exchange of large amounts of
data as opposed to simply using “Encrypt-then-Sign.”

Theorem 1. If the symmetric encryption scheme (K′, E ′,D′) is secure in the
sense of symmetric IND-CPA and the BDDH assumption in G1 and G2 holds,
then the BTSC scheme in Figure 1 is insider-secure in the sense of IB-BT-CPA.
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G(1η, `, 1µ) chooses two groups G1 and G2 of prime order q, a bilinear map ê : G1 ×
G1 → G2, a generator P of G1, and α ∈ Zq. It computes Ppub = αP and chooses
the hash functions H, H̄ : {0, 1}∗ → G1, H1 : ({0, 1}∗)3 × G∗1 × G2

2 → Zq, and
H2 : G2 → {0, 1}µ. (considered as random oracles). The master public key mpk
is (the descriptions of) (G1,G2, ê, Ppub, H, H̄,H1, H2). The master secret key is
msk = (mpk , α). The set of possible messages in the scheme is {0, 1}∗.

K(msk , ID) computes skIDε = (DID
ε ) = αQID where QID = H̄(ID).

R(mpk , ω, skIDω ) works as follows:
1. Parse skIDω as (RID

ω|1 , R
ID
ω|2 , . . . , R

ID
ω|t , D

ID
ω ), where t = |ω|.

2. Choose ρIDωb
$←Zq, set RID

ωb = ρIDωbP , and DID
ωb = DID

ω + ρIDωbH(ωb) for b ∈ {0, 1}.
3. Output skIDωb = (RID

ω|1 , R
ID
ω|2 , . . . , R

ID
ω|t , R

ID
ωb, D

ID
ωb) for b ∈ {0, 1}.

Sc(mpk , ω, skAω,B,M) works as follows:
1. Compute QB = H̄(B) ∈ G1.

2. Choose x
$←Z∗q , P1

$←G1\{0} and compute K := H2

(
ê(Ppub, QB)x

−1
)

.

3. Set R := (RA
ω|1 , . . . , R

A
ω|t) and T := ê(P1, P )x.

4. Set U := (x−1P, x−1H(ω|1), . . . , x−1H(ω)).
5. Compute c := E ′K(M), r := H1(ω,A,B, R, T, c), and S := rDA

ω + xP1.
6. The signcryption is σ = (R,S, r, U, c).

Dc(mpk , ω, skBω,A, (R,S, r, U, c)) works as follows:
1. Parse R as (R1, . . . , Rt) and U as (U0, . . . , Ut).

2. Compute K := H2

(
ê(U0, D

B
ω)∏t

i=1 ê(R
B
ω|i
, Ui)

)
.

3. Let QA = H̄(A). Set T = ê(S, P )
(
ê(Ppub, QA)

∏t
i=1 ê(Ri, H(ω|i))

)−r
. If r =

H1(c, ω,A,B, R, T ), then set M := D′K(c). Otherwise set M = ⊥.

Fig. 1. Binary Tree Signcryption Scheme (BTSC)

Proof. Let A′ be a distinguisher for the BTSC scheme that has a non-negligible
advantage p(η) in the IB-BT-CPA game. A simulates the KGC and all random
oracle queries. Since A′ has access to breakin(ID, ω), it can signcrypt messages
on its own. At some point, A′ outputs two messages m0 and m1 and identities A
and B, where one of the messages will be signcrypted uniformly at random from
A to B, and breakin(B, ω) has not been queried. Distinguisher A attacking the
symmetric encryption scheme selects the same two messages. Once A receives
E ′K(mb), it sets c := E ′K(mb), and computes S, r, U using a randomly generated
x. Then, A forwards (R,S, r, U, c) to A′. As A outputs the same bit returned by
A′, they have the same advantage p(η).

We note that if A′ can distinguish between the key K generated in the
symmetric IND-CPA challenge from H2(ê(Ppub, QB)x

−1

) using the x chosen by
A, then this would contradict the security of the Binary Tree Encryption scheme
[5] because A would break the BDDH assumption as we now prove.

Let A′ be a distinguisher for the BTSC scheme that has a non-negligible
advantage p(η) in the IB-BT-CPA game. Suppose that it makes at most qI(η)
queries to the oracle H̄ (also including the invocations of H̄ through breakin- and
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challenge-queries). We show how to construct a distinguisher A for the BDDH
problem. Let an instance (P, αP, βP, γP, z) of the BDDH problem be given. A
must guess whether z = ê(P, P )αβγ . The algorithm A will act as an environment
for A′ in the following manner.

1. A receives the value ω∗ from A′. Let t = |ω∗|.
2. A selects Ppub = αP and sets mpk = (G1,G2, ê, Ppub, H, H̄,H1, H2) where
H, H̄, H1 and H2 are random oracles also answered by A. It generates a

random number idx
$←{1, . . . , qI} and a random bit b

$←{0, 1}.
3. A randomly chooses χ1, λ1, ϕ1, . . . , χt, λt, ϕt, λ

0
t+1, ϕ

0
t+1, λ

1
t+1, ϕ

1
t+1 from Zq.

It sets H(ω∗|i) = χiP and H(ω∗|i) = λiP − 1
ϕi
βP for i ∈ {1, . . . , t}. It also

sets H(ω∗0) = λ0t+1P− 1
ϕ0

t+1
βP and H(ω∗1) = λ1t+1P− 1

ϕ1
t+1

βP . Clearly, this

means that the values of H in those points are chosen uniformly randomly
from G1, because P is a generator. Also, the values are independent of each
other because P has a different multiplier in each expression.

4. Whenever a H-query x is made and H(x) has not yet been fixed, a random
element of G1 is generated, stored, and returned.

5. Whenever (except for the next item) a H̄-query x is made by A′ or by
A itself, and that query has not been made before, it generates a random
exponent δ, stores (x, δ), and answers with δP . Denote δ with log H̄(x).

6. Let B be the argument to the idx-th H̄-query. The distinguisher A guesses
that A′ will attempt to guess b using a signcryption addressed to B. The
query is answered with βP by A.

7. After fixing H̄(B), the distinguisher A fixes the secret keys skBω for ω =

ω∗|i (1 ≤ i ≤ t) and ω = ω∗b∗ (b∗ ∈ {0, 1}). It selects RB
ω∗|i

$←G1, sets

RB
ω∗|i

= ϕiαP , and DB
ω∗|i

= λiϕiαP +
∑i−1
j=1 χjR

B
ω∗|j

for 1 ≤ i ≤ t. It

also sets RB
ω∗b∗ = ϕb

∗

t+1αP and DB
ω∗b∗ = λb

∗

t+1ϕ
b∗

t+1αP +
∑t
j=1 χjR

B
ω∗|j

for

b∗ ∈ {0, 1}. By the arguments of Canetti et al. [5], these keys have the
correct distribution.

8. Whenever A′ makes a query breakin(ID, ω), these are reduced to a number of
invocations of the algorithms K and R according to Def. 4. The result of the
invocation K(msk , ID) can be simulated by returning (log H̄(ID))αP . The
inputs to the algorithm R are available to A. The query cannot be answered
if ID = B and ω is a prefix of ω∗. If this happens, A gives up — it stops and
makes a random guess.

9. The query challenge(A,B,M0,M1) is answered as follows. Obtain skAω∗ . Let

K = H2(z). Set R = (RA
ω|1 , . . . , R

A
ω|t). Pick T0

$←G1. Set T = ê(T0, P ) and

U = (γP, χ1γP, . . . , χtγP ). Compute c = E ′K(Mb), r = H1(ω,A,B, R, T, c),
S = rDA

ω∗+T0 and return (R,S, r, U, c). If the second argument of the query
is not B, then give up.

We see that the secret γ is used as x−1 in answering the challenge-query. If
z = ê(P, P )αβγ then the symmetric key K is computed as in Fig. 1. If z is
random then the key K is also random. In Fig. 1, the secret x is also used
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to compute T and S, but always inside the subexpression xP1, where P1 is a
random element of G1. The value xP1 is also random and is simulated by T0.

In the end, A′ guesses the bit b. If z = ê(P, P )αβγ then the advantage of A′
is p(η). If z is random, then c is also random and the view of A′ contains no
information about b. Hence A guesses that z = ê(P, P )αβγ , if A′ guesses the bit
b correctly, and guesses that z is random if A′ is wrong. The advantage of A is
p(η)/2qI(η). ut

Remark 2. By multiplying each element of the set U by a fixed constant, the
key K becomes malleable, and thus, chosen ciphertext security is not guaran-
teed. Canetti et al. sketched some ways that chosen ciphertext security may be
achieved (in Section 3.2 of [5]).

Theorem 2. If the CDH problem is hard in G1 then the BTSC scheme in Fig-
ure 1 is insider-secure in the sense of IB-BT-CMA.

Proof. Let A′ be a forger for the BTSC scheme that has a non-negligible chance
in the IB-BT-CMA game. Suppose it makes at most qI(η) queries to the oracle
Ĥ. We show how to construct an algorithm A solving the CDH problem in G1.
Let an instance (P, αP, βP ) of the CDH problem be given. A must compute
αβP . It acts as an environment for A′ in the following manner.

1.–5. These steps of the description of the behaviour of A are the same as in the
proof of Thm.1.

6.–8. These steps of the description are also the same as in the proof of Thm. 1.
But this time, let us denote the distinguished identity with A. The algorithm
A guesses that A′ attempts to forge a signature coming from A.

9. The sc-queries are answered byA as follows. If the sender is not A or the node
is not a prefix of ω∗ then A can obtain the sender’s secret key in this node
and construct the signcryption normally. If A′ makes a query sc(ω,A,B,M),
where ω is a prefix of ω∗ then A simulates the signcryption by comput-

ing K, R, U and c as in Fig. 1, selecting r
$←Zq and S

$←G1, computing T =

ê(S, P )
(
ê(Ppub, QA)

∏t
i=1 ê(Ri, H(ω|i))

)−r
and definingH1(ω,A,B, R, T, c) :=

r.

Eventually,A′ will output a successful forgery (M, (R,S, r, U, c),A,B). With non-
negligible probability, A managed to guess the sender A. We can assume that r
has been output by H1(ω∗,A,B, R, T, c) for a certain T , because otherwise the
verification has only a negligible probability of succeeding. We can also assume
that before making that H1-query, the “public key” QA = H̄(A) had already
been computed, because T depends on QA as shown in the 3rd step of the
designcryption algorithm in Fig. 1 (except if r = 0; this has negligible probability
because r is an output from H1).

The algorithm A now reruns A′ with the same random tape. It also repeats
the answers to all oracle queries, up to, but excluding H1(ω∗,A,B, R, T, c). This
query is answered with r′ 6= r and the following queries are handled indepen-
dently of the first run of A′.

10



By the forking lemma [23], there is a non-negligible chance that the forgery
output by A′ in the second run uses the same query result of H1. In this case
the forged signcryption is (R,S′, r′, U ′, c). The first and last components are the
same because they were contained in the argument of H1. For the same reason,
the corresponding values T , A and QA are also the same for both runs. We have

T = ê(S, P )

(
ê(Ppub, QA)

t∏
i=1

ê(Ri, H(ω|i))

)−r

= ê(S′, P )

(
ê(Ppub, QA)

t∏
i=1

ê(Ri, H(ω|i))

)−r′

Recall that Ppub = αP and QA = βP . Also recall that H(ω|i) = χiP where
χi was generated by A. By comparing the exponents of ê(P, P ) in the above
equation, we find that

S − r(αβP +

t∑
i=1

χiRi) = S′ − r′(αβP +

t∑
i=1

χiRi) .

It is straightforward to find αβP from here. ut

4 Strongly Forward Secure Signcryption

The binary tree setting can be easily modified into the usual setting of forward
security with evolving keys.

Definition 6 (Signcryption with Evolving Keys). An identity-based digital
signcryption scheme with evolving keys is a 5-tuple of probabilistic polynomial-
time algorithms (G,K,R,Sc,Dc), where

G(1η, params) generates the master secret key msk and the master public key
mpk. It fixes the maximum number of time periods for the scheme as τ .

K(msk , ID) outputs the secret key sk ID
ε for the user ID, corresponding to the first

time period.
R(mpk , i, sk ID

i ) receives the current time period i < τ and the secret key sk ID
i in

this period. It returns the secret key sk ID
i+1 for the next time period.

Sc(mpk , i, skA
i ,B,M) computes the signcryption of the message M from the

party A to the party B, corresponding to the time period i.
Dc(mpk , i, skB

i ,A, σ) designcrypts the signcryption σ sent to party B, and verifies
that it came from party A. It outputs the plaintext corresponding to σ or ⊥
if an error occurred.

Again, Dc(mpk , i, skB
i ,A,Sc(mpk , i, skA

i ,B,M)) = M is the consistency require-
ment for all correctly generated mpk, skA

i , skB
i .

11



The confidentiality and authenticity definitions for forward secure signcryp-
tion with evolving keys can be straightforwardly adapted from the definitions
of IB-BT-CPA and IB-BT-CMA. For the sake of space, we do not repeat them
here. Compared to definitions in Sec. 3, there are following differences.

– Instead of node names ω ∈ {0, 1}∗, there are time periods i ∈ N.
– The adversary does not have to commit to the time period of the attack

(denoted with ω∗ in Sec. 3) in the beginning. Instead, the time period is
indicated in the challenge-query or in the produced forgery.

– For the identity that the adversary attacks, breakin-queries are allowed only
for time periods later than the period of the attack.

Canetti et al. [5] have shown how to transform a binary tree based encryption
scheme into a forward secure encryption scheme with evolving keys. Exactly the
same construction works here. Let us recall a couple of main points of that
construction and its security proof here (see [5] for full details).

The algorithm G(1η, params) invokes GBTSC(1η, `, params). Additionally, it
fixes (in mpk) the maximum depth of the tree by defining ` as the smallest such
value that a complete binary tree of depth ` has at least τ nodes (in our case
τ = 2`+1 − 1). The key extraction algorithm K works exactly as KBTSC. The
secret key in the scheme is a stack of secret keys of the BTSC scheme (initially
containing the key produced by K as the only element). The algorithms Sc and
Dc invoke ScBTSC and DcBTSC, passing the key at the top of the stack as the
secret key.

The key update algorithm R(mpk , i, [skIDω1
, . . . , skIDωk

]) is the most interesting

one. The topmost key skIDωk
is popped off of the stack. If it does not correspond

to a leaf node, then the algorithm invokes RBTSC(mpk , ωk, sk
ID
ωk

), obtains skIDωk1

and skIDωk0
and pushes them (in that order) to the stack. If ωk corresponds to a

leaf node then nothing more is done.
The security of this scheme is reduced to the security of the BTSC scheme.

The simulator guesses the time period where the adversary attempts the attack
(the guess is correct with non-negligible probability), translates it into ω∗ of the
topmost key in the stack in that period, and hands it over to the environment
defining IB-BT-CPA or IB-BT-CMA security.

5 Public Ciphertext Verifiability and Third Party
Verification

With signcryption, B can be sure that the signcryption received came from A.
Public verifiability constitutes to ciphertext verifiability which can be done with
signcryption σ and the public parameters by any third party. In Figure 1, since
computing T and r may be done by any party, this signcryption scheme has
public ciphertext verifiability.

Remark 3. In the indistinguishability game, suppose that A selects messages M1

and M2. A gets a signcryption of M1 or M2. With public message verifiability,

12



A can check whether M1 or M2 was signcrypted, thus distinguishing. Hence,
when the authors cited refer to public verifiability, they are typically referring
to public ciphertext verifiability which can be done without the aid of B.

For third party verification, we denote the prover by B and the third party
verifier by T. The verifier knows the plaintext M as well as the key K, such that
M = D′K(c), but wants to get proof that these indeed were the plaintext and the
key used by the sender. Knowing both c and K amounts to knowing M . Hence
B will provide proof that K was the correct key.

We use a hash function H3 : G4
1 × G3

2 → Zq in the random oracle model.
Non-interactive proofs in the bilinear group setting have been proposed in [13].
Our proof is standard and uses the Fiat-Shamir heuristic to convert a ZK proof
into a NIZK proof. The construction for the BTSC scheme in Fig. 1 is given in
Fig. 2.

B The prover does the following on signcryption (R,S, r, U, c), message M and key K,
where M = D′K(c):

1. Let K̃ ∈ G2 be the argument to H2 in step 2 of the algorithm Dc in Fig. 1. B
recomputes it.

2. Choose y
$←Zq.

3. Set Y = ê(P, Ppub)y and K′ = ê(Ppub, U0)y.

4. Set z = H3(P, Ppub, QB, U0, K̃, Y,K
′).

5. Set Z = yPpub + zDB
ω.

6. Return π = (K̃, Y,K′, Z).
T The verifier does the following on this signcryption and proof:

1. Verify that A signed c using algorithm Dc from Figure 1.
2. Verify that K = H2(K̃).

3. Set z′ = H3(P, Ppub, QB, U0, K̃, Y,K
′).

4. If the following holds, then accept π as proof of signcryption σ from A to B on
M for time period ω.

(a) ê(Z,U0) = K′
(
K̃
∏t
i=1(Ui, R

B
ω|i)
)z′

(b) ê(Z,P ) = Y
(
ê(Ppub, QB)

∏t
i=1 ê(H(ω|i), RB

ω|i)
)z′

Fig. 2. Third Party Verification

Theorem 3. The third party verification protocol (B,T) in Figure 2 is secure.

Proof. Completeness — the property that if B and T are honest then T accepts
— can be verified by a straightforward but tedious computation; see Appendix B.
Soundness — if T accepts then the signcryption (R,S, r, U, c) sent from A to B
actually contained the message M — follows from the fact that when computing
π, the party B has no foreknowledge on the value of z he obtains in step 4. Hence,
after choosing the values y, Y and K ′ in steps 2 and 3, the party B must be
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capable of constructing a valid Z for several possible values of z. For example,
let z0 and z1 be two possible values for which B is capable of constructing Z0

and Z1, such that both (K̃, Y,K ′, Z0) and (K̃, Y,K ′, Z1) are accepted as proofs

if the hash value H3(P, Ppub, QB , U0, K̃, Y,K
′) equals z0 or z1, respectively. In

this case, K̃ must be equal to the argument of H2 as computed in the step 2
of the designcryption algorithm in Fig. 1. Indeed, the equalities (a) resp. (b)
checked by T give us

K̃z0−z1 =
ê(Z0 − Z1, U0)(∏t

i=1 ê(Ui, R
B
ω|i)
)z0−z1

ê(Ppub, QB)z0−z1 =
ê(Z0 − Z1, P )(∏t

i=1 ê(H(ω|i), RB
ω|i)
)z0−z1 .

Thus, (ê(Ppub, QB)z0−z1)
−x

= K̃z0−z1 implies that K̃ = ê(Ppub, QB)−x. ut

In the insider-security model from Section 3, we need to consider the im-
plication of allowing an adversary to obtain third party verification proofs as
described in Figure 2. The definitions of IB-BT-CPA and IB-BT-CMA need to
be extended with queries allowing the adversary to obtain proofs that a cer-
tain signcryption corresponds to a certain plaintext and symmetric key. The
adversary is allowed to make these queries only if it actually knows the plaintext
corresponding to the signcryption. These queries must be handled by the simula-
tor reducing the security of the BTSC scheme to the hardness of a Diffie-Hellman
related problem. Given a signcryption σ = (R,S, r, U, c) from A to B, a message
M , and a key K, such that σ corresponds to M , it is possible to simulate the
third-party verification proof in the random oracle model, without the simulator
knowing the secret key of B. If the signcryption has been correctly constructed,
then the oracle H2 has been used to generate the key K. The simulator locates
the query K̃ to H2 that resulted in K. It will then

1. select z
$←Zq and Z

$←G1;

2. set Y =

(
ê(Ppub, QB)

∏t
i=1 ê(H(ω|i), RB

ω|i)
)z

ê(Z,P )
andK ′ =

(
K̃
∏t
i=1 ê(Ui, R

B
ω|i)
)z

ê(Z,U0)
;

3. set H3(P, Ppub, QB, U0, K̃, Y,K
′) = z.

Obviously, if M actually is the plaintext corresponding to σ, then this produces
the same distribution of (K̃, Y,K ′, Z) as the prover’s algorithm in Fig. 2. Indeed,
z is uniformly randomly distributed because it is output by the random oracle.
Z is also distributed uniformly randomly and independently from z because of
the component yPpub. The values of Y and K ′ are determined by z and Z.

6 Conclusions and Future Work

We have proposed an identity-based signcryption scheme that is forward secure
in a stronger sense than what has been proposed before. The scheme protects
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not only the confidentiality, but also the authenticity of the messages against a
break-in by the adversary.

Now that a forward-secure signcryption scheme has been proposed, one may
explore the connections with key dependent cryptography. As shown in [11],
allowing key-dependent signature queries along with a public verification or-
acle means that the secret key must necessarily be updated. However, in the
signcryption setting here, the public ciphertext verifiability would not help an
adversary that can guess which message was signcrypted because it is encrypted.
This brings up the question as to what additional conditions need to be met in
order for a signcryption scheme to withstand an adversary that can query key-
dependent signcryptions. For example, if we impose that the symmetric scheme
(in the scheme proposed here) have the indistinguishability property despite
an adversary getting encryptions of functions of the secret key, would this suf-
fice? Also, leakage-resilient signcryption schemes may be constructed from re-
cent schemes proposed in signing and encryption, the connection being that all
of these notions involve the user’s state being exposed to some extent.
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11. M. González Muñiz and R. Steinwandt. Security of signature schemes in the pres-
ence of key-dependent messages. In Central European Conference on Cryptography
- CECC 2009, 2009.
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A Consistency of BTSC Scheme

We first show that
ê(U0, D

B
ω)∏t

i=1 ê(R
B
ω|i , Ui)

= ê(Ppub, QB)x
−1

. Indeed,

ê(U0, D
B
ω)∏t

i=1 ê(R
B
ω|i , Ui)

=
ê(x−1P, αQB +

∑t
i=1 ρ

B
ω|iH(ω|i))∏t

i=1 ê(ρ
B
ω|iP, x

−1H(ω|i))

=
ê(x−1P, αQB)

∏t
i=1 ê(x

−1P, ρBω|iH(ω|i))∏t
i=1 ê(ρ

B
ω|iP, x

−1H(ω|i))

=
ê(Ppub, QB)x

−1 ∏t
i=1 ê(ρ

B
ω|iP, x

−1H(ω|i))∏t
i=1 ê(ρ

B
ω|iP, x

−1H(ω|i))
= ê(Ppub, QB)x

−1

.

Next, we show the correctness of the ciphertext verification. For S := rDA
ω+xP1,

and DA
ω = sQA +

∑t
i=1 ρ

A
ω|iH(ω|i) in Figure 1, we have the following consistency

check:

ê(P, S) = ê(P, rDA
ω + xP1) = ê(P, rDA

ω)ê(P, xP1)

= ê(rP, sQA +

t∑
i=1

ρAω|iH(ω|i))ê(xP, P1) = ê(rP, sQA)ê(rP,

t∑
i=1

ρAω|iH(ω|i))T

=

(
ê(P, sQA)

t∏
i=1

ê(ρAω|iP,H(ω|i))

)r
T =

(
ê(Ppub, QA)

t∏
i=1

ê(Ri, H(ω|i))

)r
T,

meaning that in step 3 of algorithm Dc in Fig. 1, we recompute the same T as
in step 3 of the algorithm Sc.
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B Completeness of Third Party Verification Protocol

For z = H3(P, Ppub, QB, U0, K̃, Y,K
′), we have the following:

ê(Z,U0) = ê(yPpub+zD
B
ω, U0) = ê(yPpub, U0)ê(zDB

ω, U0) = ê(Ppub, U0)y ê(DB
ω, U0)z

= K ′ê(αQB +

t∑
i=1

ρBω|iH(ω|i), U0)z = K ′

(
ê(αQB, U0)ê(

t∑
i=1

ρBω|iH(ω|i), U0)

)z

= K ′

(
K̃

t∏
i=1

ê(x−1H(ω|i), ρBω|iP )

)z
= K ′

(
K̃

t∏
i=1

ê(Ui, R
B
ω|i)

)z
and

ê(Z,P ) = ê(yPpub + zDB
ω, P ) = ê(yPpub, P )ê(zDB

ω, P ) = ê(Ppub, P )y ê(DB
ω, P )z

= Y ê(αQB +

t∑
i=1

ρBω|iH(ω|i), P )z = Y

(
ê(αQB, P )ê(

t∑
i=1

ρBω|iH(ω|i), P )

)z

= Y

(
ê(Ppub, QB)

t∏
i=1

ê(H(ω|i), ρBω|iP )

)z
= Y

(
ê(Ppub, QB)

t∏
i=1

ê(H(ω|i), RB
ω|i)

)z
.
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