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Abstract

Secure computation enables mutually suspicious parties to compute a joint function of their
private inputs while providing strong security guarantees. Amongst other things, even if some
of the participants are corrupted the output is still correctly computed, and parties do not learn
anything about each other’s inputs except for that output. Despite the power and generality of
secure computation, its use in practice seems limited. We argue that one of the reasons for this
is that the model of computation on the web is not suited to the type of communication patterns
needed for secure computation. Specifically, in most web scenarios clients independently connect
to servers, interact with them and then leave. This rules out the use of secure computation
protocols that require that all participants interact simultaneously.

In this paper, we initiate the study of secure computation in a client-server model where each
client connects to the server once and interacts with it, without any other client necessarily being
connected at the same time. We point out some inherent limitations in this model and present
definitions that capture what can be done. We also present a general feasibility result and
several truly practical protocols for a number of functions of interest. All our protocols are
based on standard assumptions, and we achieve security both in the semi-honest and malicious
adversary models.
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1 Introduction

Web-servers are a dominant communication medium in today’s society. Some examples include
users of social networks that communicate by sending messages to the web-servers of their network
to “write on the wall” of their friends (and these servers distribute the messages to the intended
recipients), program committees that use web-based systems to share their reviews and discussions,
readers that participate in on-line polls on newspapers’ web-sites, voters using web-based election
systems, and so on.

The systems in all of these examples exhibit a star-like communication pattern: End-users never
communicate directly, instead they send their messages to central web-servers, and these servers
take care of processing the messages and/or forwarding them as needed. In many cases, direct
interaction between users is impossible simply because users are off line most of the time. For
example, readers may spend only a few minutes every day browsing the newspaper’s web-site and
participating in on-line polls. Similarly, program committee members may login to the review site
every day or two to participate in the discussion and votes, and then log off until the next time.

In almost all systems today, the web-server serves not only as a communication medium but
also as a trusted party. It receives all the information from the users and does all the processing,
and it is trusted by the users to only use their information as needed for the application (or as
specified in the “privacy policy” of the web site). This may be appropriate in some cases, but there
are many cases where there is no reason for users to trust the server or each other, and indeed many
cases where this trust was found to be unjustified in retrospect. For a few examples, see [20, 1, 8].

A natural approach toward rectifying this problem is to use some of our cryptography technology
for eliminating trusted parties. Indeed, the last three decades saw a very significant body of work
within the cryptography research community (going under the general name of secure multi-party
computation), devoted to finding various ways of transforming systems that rely on trusted parties
into systems that do not need them (see, e.g., [12, Ch. 7] for an overview).

In fact, with client-side processing in Web-2.0 we now have a huge mass of parties with serious
computing platforms and conflicting interests, all wishing to interact with each other to perform
some joint tasks. This seems to offer the perfect setting for mass deployment of secure multi-party
computation, but in reality there are several reasons why such mass deployment does not happen.
Some of these reasons are related to practical issues with browser technology (e.g., clients cannot
verify that they run the right program). In this work, however, we consider a more cryptographic
reason, namely the fact that our current multi-party protocols seem incompatible with the commu-
nication patterns in today’s web applications. Much of the work on secure multi-party computation
assumes that all parties remain on-line throughout the computation, and most solutions also rely
on very strong communication primitives like secure broadcast. The question arises, then, whether
we can eliminate the need for the web-server being a trusted party, even in this setting of loosely
connected parties that are off line most of the time. Addressing this question is the focus of the
current work.

We stress that beyond the practical interest that we discussed above, addressing multi-party
computation in this model is also of significant theoretical interest. It is not at all clear that
theoretically meaningful secure computation can be achieved in a setting where each party carries
out a single interaction with an untrusted server at a different time (either in the semi-honest or the
malicious settings). The power of this model is therefore a natural theoretical question to consider.

We note at the outset that a naive approach using fully homomorphic encryption [22, 9] does
not solve the problem of secure computation in our setting: Although each party can encrypt its
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input and the computation can be done homomorphically, there is still the need to decrypt the
final ciphertexts while preventing decryption of the intermediate ciphertexts.

1.1 Our Contributions

In this paper we initiate a study of this scenario. We define security, and observe that in this
setting it is not always possible to achieve the same level of security as in the standard setting of
secure computation. We formalize what can be done in this model, and then present theoretical
and practical constructions, for both the cases of semi-honest and malicious adversaries. Our
constructions all rely on standard assumptions (like the DDH assumption) and are in the standard
model. The only exception is that for our practical construction in the case of malicious adversaries,
we use random oracles in order to obtain practical non-interactive zero-knowledge via the Fiat-
Shamir paradigm [7].

We begin by considering a very basic setting of a server and n parties, denoted P1, P2, . . . , Pn.
Each party Pi has an input xi, and the parties wish to jointly evaluate a function f(x1, . . . , xn)
(e.g., the sum of the inputs, or their maximum value), such that the server learns the output value.
To simplify the exposition, consider the case where the parties talk to the server in order, first
party P1, then party P2, all the way up to party Pn, and if everyone cooperates then after talking
to them all the server should be able to learn the output value.

Consider first the case of semi-honest parties. It is easy to see that protocols in this model cannot
always provide the same privacy guarantees as standard secure-function-evaluation protocols (SFE).
For example, if the last n − i parties collude with the server, then they can always evaluate the
residual function

g~xi (zi+1, . . . , zn)
def
= f(x1, . . . , xi, zi+1, . . . , zn)

on as many inputs (zi+1, . . . , zn) as they like. This is due to the fact that these last n − i parties
must have the capability of computing f(x1, . . . , xi, xi+1, . . . , xn) for every possible vector of their
inputs xi+1, . . . , xn. Furthermore, since the first i parties are no longer involved, nothing prevents
the last n− i parties from just rerunning the rest of the protocol many times with different inputs
zi+1, . . . , zn.

We formalize the inherent “leakage” in this model by introducing the concept of a one-way
decomposition of a function: A decomposition of an n-input function f(x1, x2, . . . , xn) is a vector
of functions {fi(yi−1, xi) : i = 1, . . . , n}, where yi represents the intermediate result after taking
in the inputs of parties 1 through i and y0 is defined as the empty string, such that for all inputs
x1, x2, . . . , xn it holds that

f(x1, x2, . . . , xn) = fn(· · · f2(f1(x1), x2) . . . , xn).

One can see that every protocol for computing f in our model corresponds to some (possibly
randomized) decomposition of f , roughly because we can think of yi as the state of the server
after interacting with party Pi. However, as we will see, not all decompositions are equal, some
are better than others (and some are incomparable). We therefore break up the problem of secure
computation in this model into (a) finding a “good” decomposition of the given function f , and
(b) devising a protocol to securely compute a given decomposition.

This approach separates the inherent information leakage in our model from anything additional
that may be learned from the computational process. This is analogous to the standard definition
of secure computation that guarantees that the only information that can be learned about the
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parties’ private inputs is that which can be learned from the specified output. The question of
which functions can be safely computed (i.e., for which the output does not reveal too much) is
orthogonal to the question of how to compute the function so that only the output is revealed. Here
too, the question of which decomposition can be safely computed is orthogonal to the question of
how to compute the function so that only the inherent leakage due to the setting and decomposition
is learned.

1.1.1 Good Decompositions

Although every function f can be decomposed as described above, some decompositions are more
“interesting” or “natural” than others. A trivial example is that any function f can be decomposed
by setting the functions f1, . . . , fn−1 to all be the identity function and then setting fn = f . A
more interesting example is that the sum function, f(x1, . . . , xn) =

∑
i xi, can be decomposed by

letting the fi’s be the partial sums, fi(yi−1, xi) = yi−1 + xi. Clearly, the decomposition of the sum
function using partial sums is much better than its decomposition using the identity functions,
since it reveals much less information to the adversary.

We are particularly interested in “minimum-disclosure” decompositions of f , where yi = fi(· · · )
carries no more information about the inputs x1, . . . , xi than the truth-table of the residual function
g~xi from above. (i.e., the output of g~xi on every possible (zi+1, . . . , zn) which can always be learned if
the last n− i parties collude with the server). It is easy to see that for the the sum function, having
the fi’s be the partial sums is indeed a minimum-disclosure decomposition (see Section 4.3). In
Section 2 we define this notion of minimum-disclosure decompositions and describe many functions
that have efficient minimum-disclosure decompositions, and in Section 4.1 we describe practical
protocols for securely computing some of these decompositions (in a PKI model). The functions
that we can handle in this fashion include all the symmetric functions on small domains (and
also some other functions), so for example we get a practical protocol for computing the majority
function (or a referendum), as privately as can be in our model.

1.1.2 Securely Computing any Decomposition

Given a specific decomposition of f (that codifies the “leakage” that we are willing to tolerate
while computing f in our model), what does it mean for a protocol to securely compute this
decomposition? In keeping with the intuition that yi represents the partial result up to party i,
we set out to formalize the requirement that these partial results are the only thing that can be
learned by the bad parties.

First, observe that many of the intermediate results yi’s can be hidden from the corrupted
parties. For example, if parties P1, P2 and P3 are honest then we expect the partial results y1

and y2 to remain hidden, even if a dishonest P4 learns y3. In fact our formal definition requires a
little more: A protocol is said to securely compute a given decomposition of f if the only partial
result that it leaks is the one after the last honest party. Namely, the view of any set of adversarial
parties can be simulated knowing only the value yi = fi(. . .), where i is the index of the last honest
party. Furthermore, if the server is honest, then nothing but the output of f is revealed.

The rationale for this definition is that as long as some honest parties are still on deck, we can
hope to have some secrecy against the adversarial parties so we do not let them learn the current
yj ’s. However, once all the honest parties have had their turn and only the adversarial parties are
left, we can no longer expect to have any secrecy so we let the adversarial parties learn that last yi.
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(We remark that a weaker definition that allows the bad parties to learn all the yi’s for which
party i + 1 is dishonest, is essentially equivalent to the notion of i-Hop homomorphic encryption
from [11].)

In Section 5 we consider the task of devising a protocol to securely compute a particular given
decomposition of a function f . Using re-randomizable garbled circuits similar to Gentry et al. [11]
we show that under the DDH assumption any efficient decomposition of f can be securely computed
in our model (if PKI is available). Our treatment simplifies the techniques from [11], in that we
use re-randomizable garbled circuits only in conjunction with re-randomizable encryption (whereas
[11] needed also re-randomizable OT). We also strengthen the construction from [11] slightly in
order to deal with malicious parties. See Section 5 for more details about these points.

1.2 Some Related Work

Some of the techniques that we use for our practical protocols are similar to those used in the work
of Harnik et al. [14]: In that work they considered a multi-party-computation settings where you
incorporate the inputs of parties one at a time, with the goal of minimizing the number of OTs
that are needed every time a new input is incorporated. In particular our protocols for symmetric
functions are reminiscent of their Tables Method.

Another related work is that of Choi et al. [4]: They considered a setting where the parties
can interact in a setup phase before receiving their inputs, and then they want to minimize online
communication while maintaining full security. Their results are not applicable in our model,
however, since, as we explained, full security cannot obtained in our model (and this remains true
even given an interactive setup phase).

2 One-Pass Decompositions

Throughout the text we denote the number of parties (not counting the server) by n, and the
security parameter by m. For an integer n we denote Zn = {0, 1, . . . , n− 1} and [n] = {1, 2, . . . , n}.
In the text we also refer to randomized functions which can be viewed as distributions over deter-
ministic functions all with the same domain and range It it convenient to consider a randomized
function f : D → R as one that takes as input x ∈ D and randomness which is chosen from some
well-specified distribution and outputs y ∈ R. A concatenation of randomized functions implies
choosing the randomness for each one independently of the others.

Definition 2.1 (Decomposition). Let f : Dn → R be an n-variable function (from domain D to
range R). A deterministic one-pass decomposition of f is a sequence of functions f1 : D → {0, 1}∗,
fi : {0, 1}∗ × D → {0, 1}∗ for i = 2, 3, . . . , n − 1, and fn : {0, 1}∗ × D → R such that for all
x1, . . . , xn ∈ D, it holds that

f(x1, x2, . . . , xn) = fn(· · · f2(f1(x1), x2) · · · , xn). (1)

A randomized one-pass decomposition of f is a sequence of n randomized function with the same
domains and ranges as above, such that Equation (1) holds with overwhelming probability (in the
implicit security parameter).

Below we will omit the “one-pass” qualifier and just call this sequence of functions a decompo-
sition. We often also omit the distinction between deterministic and randomized decompositions.
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Given a decomposition f̄ = 〈f1, . . . , fn〉, we denote by f̃i the concatenation of the first i functions,

f̃i(x1, x2, . . . , xi)
def
= fi(· · · f2(f1(x1), x2) · · · , xi). (2)

2.1 Minimum-Disclosure Decompositions

As was mentioned above, some decompositions are better than others and some functions have
efficient decompositions that are “as good as possible” (in that they do not leak anything beyond
the ability to compute the residual functions gi). Fix an n-input function f and n particular inputs
x1, . . . , xn, and recall that for all i = 0, . . . , n we denote by g~xi the “residual function” with the
first i variables fixed. That is, for ~x = 〈x1, . . . , xn〉, define

g~xi (zi+1, . . . , zn)
def
= f(x1, . . . , xi, zi+1, . . . , zn). (3)

(In particular g~x0 = f and g~xn is the constant function g~xn(·) = f(x1, . . . , xn).) As we explained
above, any decomposition of f must “at least leak the ability to compute g~xi ” on all residual input
vectors zi+1, . . . , zn. A minimum-disclosure decomposition is one that does not leak anything else.
Namely, for all i it is possible to compute the output of the composition of the first i functions
f1, . . . , fi, given only oracle access to the residual function g~xi (·).

Definition 2.2 (Minimum-Disclosure). A decomposition f̄ is minimum disclosure if there exists a
probabilistic black box simulator S such that for every vector of inputs ~x = 〈x1, . . . , xn〉 of total
length m and every i ∈ [n],

• Sg~xi (·)(m,n, i) runs in time polynomial in m+ n, and

• The output of Sg
~x
i (·)(m,n, i) equals f̃i(x1, . . . , xi), except with negligible probability.1

The notion of one composition which is better than another can be similarly defined via a
simulator that can compute y′i from yi. This is omitted in the current version. We stress that not
all functions have efficient minimum-disclosure decompositions,2 as we now prove:

Theorem 2.3. If one-way functions exist, then there are functions that do not have efficient
minimum-disclosure decompositions.

Proof. The proof follows from the observation that a decomposition is minimum-disclosure only
when the residual functions gi are efficiently learnable. We know from HILL [15] and GGM [13] that
one-way functions imply pseudorandom functions, so consider a particular pseudorandom function
f : Seeds× Inputs→ Outputs. We prove that the function f (when viewed as a two-input function
f(s, x), where the two inputs are the seeds and the input, respectively) does not have an efficient
minimum-disclosure decomposition.

Assume to the contrary that 〈f1, f2〉 is a minimum-disclosure decomposition. This means that
(a) given y1 = f1(s) is it possible to efficiently compute f(s, x) = f2(y1, x) for any x, and (b) there
is an efficient simulator S that can compute y1 = f1(s) given oracle access to the function f(s, ·).

But this immediately yields an attack on the pseudo-randomness of f . Given access to an
oracle O, which computes either f(s, ·) or a random function, perform the following procedure:

1In the case of randomized functionalities f , we require that {Sg
~x
i (·)(m,n, i)} c≡ {f̃i(x1, . . . , xi)}.

2The residual truth table of a function is always minimum disclosure; however, it may be exponentially large.
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First run the simulator SO to get y1, then choose some arbitrary input x∗ that was not queried
during the run of SO and check whether O(x∗) = f2(y1, x

∗). If the oracle O implements f(s, ·)
then the answers must agree, whereas if O is a random function then with high probability they
disagree.

Incomparable Decompositions. We also note that there are functions that seemingly do not
have one best decomposition but rather many incomparable ones. For example, consider the Naor-
Reingold pseudorandom function [19]. This is a construction over a group G of prime-order q with
generator G where DDH is hard. The keys are (n + 1)-vectors of indexes in Zq, and the function
maps n-bit strings into the group G.

f : Zn+1
q × {0, 1}n → G, f(〈a0, a1, . . . , an〉 , 〈σ1, . . . , σn〉)

def
= Ga0·

∏n
i=1 a

σi
i

Naor and Reingold proved that under DDH this is a pseudorandom function, and by the proof
of Theorem 2.3 this means that it has no minimum-disclosure decomposition (when viewed as a
two-input function). Moreover, it seem that “the only way” of computing this two-input function
in a one-pass manner is for the first player to reveal all its indexes ai. In fact, there are slightly
less revealing decompositions: For every i = 0, 1, . . . , n there is a decomposition of f that reveals
only Gai and not ai itself (but still reveals all the other aj ’s in the clear). Namely, we decompose f

into f̄ (i) =
〈
f

(i)
1 , f

(i)
2

〉
such that f

(i)
1 (a0, a1, . . . , an) = 〈a0, . . . , ai−1, G

ai , ai+1, . . . , an〉 . Clearly,

given f (i)(~a) (for any i) it is possible to compute the function f(~a, ·), hence these are all valid
decompositions of f . Also, it is easy to see that none of these values f (i)(~a) can be computed from
any other f (i′)(~a) if computing discrete-logarithms is hard in G.

2.2 Examples of Functions with Minimum-Disclosure Decompositions

The sum function. Perhaps the simplest example is the sum function over a group: f(x1, . . . , xn)
=
∑n

j=1 xj . In this case clearly the decomposition into partial sums fi(yi−1, xi) = yi−1 + xi is

minimum disclosure. Indeed, we have f̃i(x1, . . . , xi) =
∑i

j=1 xj , and the simulator S can simply

query g~xi (0, . . . , 0) and return the answer that it gets:

g~xi (0, . . . , 0) = f(x1, . . . , xi, 0, . . . , 0) =
i∑

j=1

xi = f̃i(x1, . . . , xi).

Selection functions. Other illustrating examples of functions with minimum-disclosure decom-
positions are the selection functions. Consider first the selection function with index at the end,
f(x1, . . . , xn−1, j) = xj . Here we can see that the trivial decomposition, where for i < n we have
fi = identity and for i = n we have fn = f , is minimum disclosure. This is because given oracle
access to g~xi for any i < n, the simulator can just query it with varying inputs of the selection
variable j, thus getting all the inputs x1, . . . , xi.

On the other hand, consider the selection function with index at the beginning, f(j, x2, . . . , xn) =
xj . Here a minimum disclosure decomposition would maintain a value and a state bit (wait/done),
such that when the state is wait then the value is j, and when the state is done then the value is xj .
Namely, we have f1(j) = 〈j,wait〉, and for all i > 1

fi(〈val, state〉 , xi) =

{
〈xi, done〉 if state=wait and val = i
〈val, state〉 otherwise
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(and of course the last function fn omits the state bit). To see that this is indeed minimum
disclosure, notice that given access to g~xi the simulator can test if the selection index j is larger
than i, e.g., by testing if g~xi gives different values on 〈0, 0, . . . , 0〉 and 〈1, 1, . . . , 1〉. If j > i then the
simulator can find j by testing which is the input that g~xi depends on, and if j < i the the simulator
can output xj (which is the output of g~xi on every input).

The general case of a selection function with index in the middle, f(x1, . . . , xt−1, j, xt+1, . . . , xn) =
xj , can be obtained from the two previous cases. A minimum-disclosure decomposition will have
fi=identity for i < t, ft(x1, . . . , xt−1, j) computes the appropriate 〈value,state〉 pair, and the rest
of the fi’s defined as in the case of index at the beginning.

Binary symmetric functions. An n-input binary symmetric function takes n bits as input,
and the output depends only on the number of 1’s in the input (i.e., the Hamming weight). Some
examples include the AND, OR, PARITY, and MAJORITY functions. We note that the truth table
of a binary symmetric function has an efficient representation: we just list for every 0 ≤ j ≤ n
the output of f on inputs with Hamming-weight n. Thus, the truth table is of length n+ 1 rather
than of length 2n. We also note that for a binary symmetric function f and input ~x, all the
corresponding g~xi ’s are also binary symmetric functions, and moreover the truth table of g~xi+1 can

be computed from the value of xi and the truth table of g~xi . Specifically, for xi = 0 the truth table
of g~xi+1 is obtained from that of g~xi by removing the last row, and for xi = 1 the truth table of g~xi+1

is obtained by removing the first row from that of g~xi .
For a binary symmetric function f , consider the decomposition that outputs at every step i

the truth table of g~xi . The above observations implies that this decomposition is efficient, and it
is minimum disclosure since it is easy to compute the truth table of a symmetric function given
oracle access to that function.

To illustrate this concretely, consider the MAJORITY function over 3 inputs. The truth table
(in vector form) equals (0, 0, 1, 1) where the ith entry corresponds to inputs of Hamming weight i.

Now, g
(0,·,·))
1 (z2, z3) = (0, 0, 1) and g

(1,·,·)
1 (z2, z3) = (0, 1, 1); g

(0,0,·))
2 (z3) = (0, 0), g

(0,1,·))
2 (z3) = (0, 1),

g
(1,0,·))
2 (z3) = (0, 1), and g

(1,1,·))
2 (z3) = (1, 1). As can be seen, the truth table in each step is obtained

by removing the first or last element. In order to carry out the above for the PARITY function,
just do the same when starting with truth table (0, 1, 0, 1).

Symmetric functions over other domains. The observations from above can be extended to
symmetric functions over other domains. We assume without loss of generality that the domain
is Zc = {0, 1, . . . , c − 1} for some integer c. An n-input symmetric function over Zc is one where
permuting the inputs does not affect the output. In other words, the output depends only on how
many of the inputs assume what value of the domain. This type of function is common for statistical
measurement, including functions like SUM, AVERAGE, MEDIAN, MAJORITY, MAXIMUM and
more.

The truth table for a symmetric function over Zc can be expressed using a single row for all the
inputs that have exactly j0 inputs of value 0, j1 inputs of value 1, and so on up to jc−2 inputs of
value c− 2 and jc−1 = n−

∑c−2
i=0 ji inputs of value c− 1. That is, we have a row in the truth table

for every c-vector of non-negative integers 〈j0, j1, . . . , jc−1〉 that sum up to n, so we have a total of(
n+c−1
n

)
rows. Hence the truth table is of polynomial-size O(nc) for any constant c. Moreover, in

this case we again have the properties that all the g~xi ’s are symmetric, and the truth table of g~xi+1
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can be computed efficiently from the value of xi and the truth table of g~xi+1 (see Section 4.2 for
more details).

Also similarly to the binary case, when the truth table has polynomial size then it can be
constructed efficiently given only oracle access to the function, hence the functions that output at
every step i the truth table of g~xi constitute a minimum-disclosure decomposition of the original
symmetric function f .

3 Server-Based One-Pass Protocols

All our protocols are staged in the PKI model. We assume that in an initial setup phase each
honest party has chosen a public and a private key according to a known key-generation algorithm,
and the public key is made known to all the other parties. After seeing the public keys of all the
honest parties, the dishonest parties get to choose their own public keys (in any way that they see
fit) and these public keys too are made known to everyone. Hence, at the onset of the protocol
each party knows the public keys of all other parties, and each honest party knows the private key
corresponding to its own public key.

A server-based one-pass protocol for n clients and a server is in fact a sequence of n two-party
protocols, π̄ = 〈π1, . . . , πn〉, which are carried out sequentially with πi being a two-party protocol
between the server and the ith client Pi. In our model the input to the ith honest client consist
of its private key and the public keys of all the other parties, and also another input xi which
is its input to the function f . The input of the server is its private key and the public keys of
all the clients, and also its output from the previous protocol πi−1 (which is empty for π1). We
model the setting where the server has no input to f ; if it does have input, then it can play both
client Pn and the server. The output of the protocol π̄ is defined as the output of the server after
the last protocol πn. Below we denote the clients by P1, P2, . . . , Pn and the server by Pn+1. We
denote the joint outputs of an adversary A and server Pn+1 after a real execution of π̄ with inputs
~x = (x1, . . . , xn), vector of public/private key-pairs ~kp, auxiliary input z to A, corrupted parties
I ⊆ [n+ 1], and security parameter m, by REALπ̄,A(z),I(~x, ~kp, 1

m).

Securely computing a decomposition. We define security via the ideal/real paradigm in the
stand-alone setting with static corruptions; the extension to composition and adaptive corruptions
is left for future work. In the ideal world, there is an additional trusted party that carries out
the computation for the parties. In our setting, the trusted party receives the input from all the
clients, and the identities of the corrupted parties, and sends the function output to the server
together with any additional information that is inherently learned in our model (based on who is
corrupted). We stress that the ideal model is defined for a function decomposition f̄ . (It is not
necessary to include f since f̄ fully determines f .)

In the ideal world of the semi-honest model, the output that is given to the server is always
the value of the function f(x1, . . . , xn) on the given inputs of all the clients. (Since the parties
are semi-honest, the inputs used by the clients in the protocol equal those that appear on their
input tapes.) In addition, if the server is corrupted, then the trusted party sends it the value
f̃i(x1, . . . , xi) = fi(· · · , f2(f1(x1), x2) · · · , xi) where i is the index of the last honest party. We
denote the outputs of a semi-honest ideal-world adversary S and server Pn+1 after an ideal execution
with inputs ~x = (x1, . . . , xn), auxiliary input z to S, corrupted parties I ⊆ [n + 1], and security
parameter m, by IDEALsh

f̄ ,S(z),I
(~x, z, 1m).
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The ideal-world of the malicious model is exactly the same, except that corrupted clients may
send any arbitrary inputs to the trusted party, not necessarily the ones from their input. By
convention, if a client sends input ⊥, then the output of the function is defined to be ⊥ (representing
an aborted execution). The joint output here is denoted IDEALmal

f̄ ,S(z),I
(~x, z, 1m).

Definition 3.1 (Securely Computing a Decomposition). Let f be an n-input function and let
f̄ = 〈f1, . . . , fn〉 be a decomposition of f . A server-based one-pass protocol π̄ securely computes the
decomposition f̄ in the semi-honest (resp. malicious) model, if for every non-uniform probabilistic
polynomial-time semi-honest (resp. malicious) adversary A in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S for the semi-honest (resp. malicious) ideal world,
such that for all ~x ∈ ({0, 1}∗)n and z ∈ {0, 1}∗{

IDEALf̄ ,S(z),I(~x, 1
m)
}

c≡
{
REALπ̄,A(z),I(~x, ~kp, 1

m)
}

where the key-pairs ~kp are chosen as described above.

We stress that if the server is honest, then in all cases nothing is learned by the adversary.
We also note that a protocol that securely computes a decomposition f̄ is only as good as its
decomposition. When the function has a minimum-disclosure decomposition and we have a protocol
that realize it, then we say call this protocol an optimally-private protocol.

Definition 3.2 (Optimally-Private). Let f be an n-input function. We say that π̄ is an optimally-
private server-based one-pass protocol for computing f if there exists a minimum-disclosure decom-
position f̄ of f such that π̄ securely computes f̄ in the semi-honest (resp. malicious) model.

We remark that for the case of optimal server-based one-pass protocols, an equivalent way of
defining the ideal model is that in the case that the server is corrupted and Pi is the last honest
party, it can query the trusted party with zi+1, . . . , zn and receive back g~xi (zi+1, . . . , zn) as many
times as it wishes (where ~x are the inputs actually sent to the trusted party in the ideal execution).

4 Practical Optimal Protocols

In Section 5 below, we show that any decomposition can be securely computed given a public-key
infrastructure, under the DDH assumption. In particular, any function that has a minimum-
disclosure decomposition can be computed with optimal privacy. However, this construction is far
from being practical; even for simple functions and semi-honest adversaries, it requires computing
hundreds of exponentiations per gate. In this section, we present highly efficient protocols for
specific examples from Section 2.2. These protocol are truly practical and could be implemented,
for example, in a conference program committee review site in order to carry out secure voting.
(With only a few tens of users, the solution that provides security in the presence of malicious
adversaries would only require a few seconds of computation by each client and the server.)

4.1 Protocols for Symmetric Functions

We begin by showing how to securely compute any binary symmetric function, based on the truth-
table decomposition described in Section 2.2.
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4.1.1 The Semi-Honest Case

Recall that symmetric functions have a concise truth table of size n + 1, and that the minimum-
disclosure decomposition for functions of this class consists of the truth table of the g~xi ’s, and that
computing the next truth table is done by removing the first or last row of the current truth table.
Intuitively, our protocol works by having the first client P1 encrypt each entry of the truth table
iteratively (in an onion like structure) under all parties’ public keys. Then, each party in turn
removes the encryption under its public key, and removes the first row of the truth table if its input
is 0 and last row of the truth table if its input is 1. After the last player, the table contains just
one row which is encrypted under the server’s key, so the server can decrypt it and output the
right value. (We remark that if all parties should receive output, then the server can just send the
output to them.)

Note that if the server and last n − i parties are corrupted, then they can decrypt the truth
table that they receive; however, this is exactly f̃(x1, . . . , xi) which is what they are allowed to
receive. This solution is not quite enough, however. For example, a collusion of P1 and P3 can
learn P2’s exact input (irrespective of whether or not the server is corrupted). To see this, observe
that P1 generates all the ciphertexts, so in particular it can see all the P3 ciphertexts, as they will
be seen by P3 after P2 decrypts its layer of encryption. Hence, given P3’s view P1 can determine if
P2 removed the first or the last row of the table.

We solve this problem by using rerandomizable public-key encryption; loosely speaking, this
means that given an encryption c = Epk(x) and the public key pk it is possible to generate an
equivalent encryption c′ = Epk(x) with independent randomness. We stress that the rerandomiza-
tion must work on all layers of the (onion-type) encryption. The requirements here are therefore
different from the standard notion. Let Epk(x; r) denote an encryption of x using randomness r,
and let Epk1,...,pkn+1(x; r1, . . . , rn+1) = Epk1(· · ·Epkn+1(x; rn+1) · · · ; r1) denote a layered encryption
starting with the encryption of x under pkn+1 with randomness rn+1 and re-encrypting under each
pki in turn, using randomness ri. For shorthand, we write Ē~pk(x;~r) where ~pk = (pk1, . . . , pkn+1)
and ~r = (r1, . . . , rn+1). 3 We define:

Definition 4.1. A public-key scheme (G,E,D) is layer rerandomizable if there exists a procedure
R such that for every x ∈ {0, 1}∗ and every ~r ∈ ({0, 1}∗)n,{

~pk , Ē~pk(x;~r), Ē~pk(x;~r′)
}
≡

{
~pk, Ē~pk(x;~r), R(~pk, Ē~pk(x;~r))

}
where ~pk = (pk1, . . . , pkn) is such that all the pki’s are in the range of G, and r ∈R ({0, 1}∗)n is a
vector of uniformly distributed random strings.

We stress that the definition requires the rerandomization to work for all randomness ~r (even
randomness that is “badly chosen”). However, it is assumed that all the public keys are “legitimate”
in that they are in the range of G. In the case of malicious adversaries, a proof may need to be
added that the keys are legitimate in order to ensure that the rerandomization works.

Layer rerandomizability can be obtained from any additively homomorphic encryption scheme.
Namely, define an initial layered encryption of x by

Ē~pk(x;~r)
def
= 〈Epk1(x1; r1), . . . , Epkn(xn; rn)〉

3Below we abuse these notations somewhat, denoting by Ē~pk(x;~r) a procedure that encrypts x under all the public
keys but not necessarily in an onion fashion.
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where x1, . . . , xn are chosen at random under the constraint that ⊕nj=1xj = x. A j’th step layered
encryption of x is defined as

Ēj~pk(x;~r)
def
=

〈
x1, . . . , xj , Epkj+1

(xj+1; rj+1), . . . , Epkn(xn; rn)
〉

We will typically refer generally to layered encryption, assuming that jth level layered encryption
is used after the interaction of pj with the server. Rerandomization works by adding to the xi’s
random δi’s that sum up to zero, and then rerandomizing each ciphertext separately, under the
appropriate key. In addition, it is possible to decrypt in layers by having each party decrypt its
ciphertext in turn and pass on the decrypted value along with the rest. Namely, the jth party
transform a (j − 1)th level layered encryption to a jth level layered encryption. Below we show
that using El Gamal it is possible to work more efficiently than this.

An optimally-private protocol for binary symmetric functions and semi-honest adversaries, using
layer rerandomizable encryption, appears in Protocol 4.2.

PROTOCOL 4.2. (Semi-Honest Optimal Protocol for a Binary Symmetric f)

• Inputs: Each party Pi (1 ≤ i ≤ n) has a private input xi ∈ {0, 1}, its own private key ski,
and a vector of public keys (pk1, . . . , pkn+1); the server Pn+1 has skn+1 and (pk1, . . . , pkn+1).

• The protocol:

1. Truth table initialization – interaction of P1 with Pn+1:

(a) Party P1 constructs the truth table T = (t0, . . . , tn) where ti = f(1i0n−i).

(b) Party P1 removes the last element of T if x1 = 0 and the first element of T if
x1 = 1. Denote the result by T1 = (t′1, . . . , t

′
n).

(c) For every j = 1, . . . , n, P1 computes cj = Ē ~pk(t′j) and sends the encrypted truth

table C1 = (c1, . . . , cn) to the server Pn+1.

2. Interaction of clients P2, . . . , Pn with server Pn+1: For i = 2, . . . , n, party Pi interacts
with the server Pn+1 as follows:

(a) Pn+1 sends Pi the encrypted truth table Ci−1 of length n− i+ 1.

(b) Pi removes the last element of Ci−1 if xi = 0 or the first element if xi = 1.

(c) Pi decrypts a layer of all of the remaining ciphertexts in Ci−1 using its secret key
ski; denote the result by C′i.

(d) Pi rerandomizes all of the ciphertexts in C′i using the public key pki+1; denote
the result by Ci.

(e) Pi sends Ci back to the server.

3. Concluding the computation: Upon receiving the encrypted truth table Cn of length 1
from Pn, the server Pn+1 decrypts the ciphertext using its secret key skn+1 and
outputs the result.

Theorem 4.3. Let f be a binary symmetric function. If the encryption scheme (G,E,D) is layer
rerandomizable, and all honest parties’ public keys are generated honestly using G, then Proto-
col 4.2 is an optimally-private server-based one-pass protocol for computing f , in the presence of
semi-honest adversaries. Moreover, it is secure even if the semi-honest adversary can choose the
randomness for the protocol in an arbitrary manner.
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Proof (sketch). We separately prove the case that Pn+1 is corrupted and the case that it is not. If
Pn+1 is not corrupted, then it suffices to prove that it obtains correct output and that the adversary’s
view can be simulated without any help from the trusted party. Correctness is immediate from the
construction. The view of the adversary can be simulated since everything is encrypted under the
key of the honest server. Specifically, every time an honest party Pi is supposed to carry out its
interaction with the server, construct a brand new truth table Ci which contains n−i+1 encryptions
of 0 under the public-keys pki+1, . . . , pkn+1, in turn. The fact that this is indistinguishable from a
real execution follows directly from the hiding property of encryptions, and the rerandomizability
property.

Next, we consider the case that the server Pn+1 is corrupted, and 1 ≤ i ≤ n is the index of the
last honest party. In this case, the simulator S is given the value yi = f̃i(x1, . . . , xn), which in this
case is the appropriate partial truth table. The simulation is the same as before for every iteration
up to and including i − 1. In the ith iteration, S simulates the message sent by the honest Pi
by encrypting under the public keys pki+1, . . . , pkn+1 the partial truth table that it received from
the trusted party. As before, the output distribution of the adversary is indistinguishable from a
real execution (note that the last simulated message is actually identical to in a real execution;
the difference comes from prior ones which are all encryptions of 0 instead of the real partial truth
table).

A concrete instantiation. A simple and highly efficient layer rerandomizable encryption scheme
can be constructed from El Gamal. Let G be a group of prime order q with generator G. Then, for
public-key h = Gα and Epk(x) = (Gr, hr · x), define R(pk, 〈u, v〉) = 〈u ·Gs, v · hs〉, where s ∈R Zq.
Observe that for u = Gr, v = hr ·x it follows that R(pk, u, v) = (Gr+s, hr+s ·x), which is distributed
identically to an encryption of x under an independent random string r′ = r + s mod q.

In order to make this layer rerandomizable without increasing the size of the ciphertext, we
define layered encryption as follows. Each party Pi has an El Gamal public-key hi = Gαi relative
to the same group (G, q, g) as before. However, an encryption of x under the public keys h1, . . . , hn
is defined to be (Gr, (H1,n)r · x), where H1,n =

∏n
j=1 hj = G

∑n
j=1 αj . In general, we define Hi,n =∏n

i=1 hi = G
∑n
j=i αj . It remains to show how Pi “decrypts” under its key hi and rerandomizes the

result. Given (u, v) where u = Gr and v = (Hi,n)r · x, party Pi decrypts by computing

u′ = u and v′ = v · u−αi .

This works because taking u = Gr and v = x · (Hi,n)r we have that

v · u−αi = x · (Hi,n)r · (Gr)−αi = x ·
(
G

∑n
j=i αj

)r
·
(
G−αi

)r
= x ·

(
G

∑n
j=i+1 αj

)r
= x · (Hi+1,n)r

and so (u′, v′) is a valid encryption of x with randomness r, under public key Hi+1,n. Reran-
domization is then carried out as described above, using public-key Hi+1,n. That is, we compute
u′′ = u′ ·Gs and v′′ = v′ · (Hi+1,n)s.

Efficiency. Party P1 carries out just n encryptions since it first computes H1,n at the cost of
n multiplications (which is not significant), and then computes each ciphertext at the cost of 2
exponentiations. Next, each Pi computes n − i decryptions and rerandomizations at a total cost

12



of 3(n − i) exponentiations.4 Finally, the overall communication complexity is O(n2) ciphertexts
which equals n(n − 1) group elements, but each party Pi only receives n − i + 2 ciphertexts and
returns n − i + 1 ciphertexts. This can be carried out in practice, even for n’s in the tens of
thousands. (Using El Gamal over an Elliptic curve group, each encryption/decryption costs just a
few milliseconds.)

Order of parties. Observe that using our concrete instantiation, the parties can connect and
interact with the server in any order. This is an important property for practical implementation
and deployment.

4.1.2 The Malicious Case

There are a number of possible attacks in the malicious case. First, P1 can generate an incorrect
truth table and break correctness. Likewise, any intermediate corrupted Pi can just send Ci+1 that
is generated from scratch. We solve these problems by having the parties prove that they have
generated everything correctly. This requires the use of zero-knowledge proofs of knowledge, which
are reminiscent of those needed in mix-net type constructions. However, in our setting, these proofs
must be non-interactive so that an intermediate party Pi can verify that all of the actions of parties
P1, . . . , Pi−1 were carried out correctly. We first describe the protocol in general terms and prove
its security, and then show how to efficiently instantiate all the components. Unlike the generic
construction with malicious security of Section 5.4, here we use a random oracle in order to obtain
efficient non-interactive zero-knowledge proofs of knowledge via the Fiat-Shamir paradigm. We will
also need each party to have a pair of keys for a secure digital signature scheme, to make sure that
no intermediate party reconstructs everything from scratch, effectively changing the inputs of prior
parties.

Although this strategy sounds like it must be computationally very expensive, we will show
that it can be carried in reasonable time, and that it can be practical for n’s that are not too large.
Full details appear in Protocol 4.4. We note that we separate the interaction of P1 into distinct
steps for the sake of clarity only; the messages can be sent together.

4If each party Pi defines i − 1 public keys, then encryption can be modified to use a single Gr value for all
encryptions, where all Hi values are raised to the same power of r. This, in turn, reduces the overhead of each Pi to
2(n− i) exponentiations.
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PROTOCOL 4.4. (Malicious Optimal Protocol for a Binary Symmetric Functionf)

• Inputs: Each party Pi (1 ≤ i ≤ n) has a private input xi ∈ {0, 1}, its
own private keys ski and sk′i for encryption and signing, and a vector of pub-
lic keys (pk1, pk

′
1, . . . , pkn, pk

′
n, pkn+1); the server Pn+1 has one secret key skn+1 and

(pk1, pk
′
1, . . . , pkn, pk

′
n). In addition, all parties have a common reference string for a system

of non-interactive zero-knowledge proofs of knowledge.

We assume that all of the public keys are certified, meaning that it is guaranteed that they
are all legitimately constructed, and all parties verify all keys (for El Gamal this simply
involves verifying that the public-key is in the group).

• The protocol:

1. Truth table initialization – interaction of P1 with Pn+1:

(a) Party P1 constructs the truth table T = (t0, . . . , tn) where ti = f(1i0n−i).

(b) For every j = 0, . . . , n, P1 computes cj = Ē ~pk(t′j) and sends the encrypted truth

table C1 = (c0, . . . , cn) to the server Pn+1.

(c) Party P1 generates a non-interactive zero-knowledge proof of knowledge that C0
was generated correctly; denote the proof string by ρ0. P1 signs on the pair
(C0, ρ0) using its digital signing key sk′1; denote the signature by σ0.

(d) Party P1 sends (C0, ρ0, σ0) to the server Pn+1.

(e) Pn+1 verifies the signature and proof; if they are not correct it halts and out-
puts ⊥.

2. Interaction of clients P1, . . . , Pn with server Pn+1: For i = 1, . . . , n, party Pi interacts
with the server Pn+1 as follows:

(a) Pn+1 sends Pi the tuples (C0, ρ0, σ0), . . . , (Ci−1, ρi−1, σi−1).

(b) Pi verifies the proof and signature for all j = 0, . . . , i − 1. If they are not all
correct, it halts and outputs ⊥.

(c) Pi removes the last element of Ci−1 if xi = 0, or the first element of Ci−1 if xi = 1.

(d) Pi decrypts all of the remaining ciphertexts in Ci−1 using its secret key ski; denote
the result by C′i.

(e) Pi rerandomizes all of the ciphertexts in C′i using the public key pki+1; denote
the result by Ci.

(f) Pi generates a proof ρi that Ci is a rerandomization of Ci−1 minus either the first
or last row. Pi generates a signature σi on (Ci, ρi) using its signing key sk′i.

(g) Pi sends (Ci, ρi, σi) back to the server.

(h) Pn+1 verifies the proof ρi and signature σi; if they are not both correct, it halts
and outputs ⊥.

3. Concluding the computation: The server Pn+1 decrypts the remaining ciphertext in
Cn using its secret key skn+1 and outputs the result.

We remark that if all parties should receive output, then Pn+1 can send all of the tuples
(C1, ρ1, σ1), . . . , (Cn, ρn, σn) along with the output value y and a proof ρn+1 that the remaining ci-
phertext in Cn is an encryption of the value y. As in the semi-honest case, the concrete instantiation
of the encryption scheme must be specified; we use the same variant of El Gamal here.

Theorem 4.5. Let f be a binary symmetric function. Assume that the encryption scheme (G,E,D)
is layer rerandomizable, the digital signature scheme is existentially unforgeable, that all honest
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parties’ public keys are generated honestly using G, and the proof system is a non-interactive zero-
knowledge proof of knowledge. Then, Protocol 4.4 is an optimally-private server-based one-pass
protocol for computing f , in the presence of malicious adversaries.

Proof (sketch). Since the semi-honest version of this protocol is secure for every chose of the ran-
domness by the corrupted players, then adding noninteractive zero-knowledge proofs of correct
behavior is sufficient to get security in the malicious model.

Efficiency. The complexity of this protocol is significantly higher than for the semi-honest case.
However, if the proofs are efficient then this protocol, too, is practical for n’s in the hundreds.
Assume for now that proving and verifying a table Ci of length n − i requires O(n − i) group
exponentiations. We have that each party carries out work that is quadratic in n (in contrast to
work that is linear in n as in the semi-honest case). Specifically, the ith party (1 ≤ i ≤ n) carries out
i proof and signature verifications, and generates one proof of length n − i. Since the verification
of a table of length n − i requires O(n − i) exponentiations, we have that party Pi computes∑i

j=1O(n − j) exponentiations. Thus, party Pn computes O(n2) exponentiations (overall the
complexity is cubic but since each party works completely separately in our setting, the individual
work is more significant). In addition, the communication complexity is the transmission of up to
O(n2) group elements. We use the following tools:

• El Gamal proofs: This include proving that an El Gamal ciphertext (u, v) is an encryption of
a given value z under public key h, proving that (u, v) is decrypted as z under the secret key
corresponding to public key h, proving that two ciphertexts encrypt the same value under h,
etc. It is known that all these proofs can be converted into a proof that some tuple of the form
(G, h, a, b) is a Diffie-Hellman tuple. Applying the Fiat-Shamir transform to the known Sigma
protocol for this language, we have that constructing the proof requires 2 exponentiations,
verifying the proof requires 4 exponentiations, and the length of the proof is 2 group elements
and one element of Zq.

• Proofs of compound statements: The AND of L statements costs L times an individual
statement (by just repeating and using the same query for each), and the OR of 2 statements
costs about twice an individual statement using the method of Cramer et al. [5].

For details on how to carry out the above and their exact cost, see [6] or [16, Chapter 6].
We begin by showing how P1 can prove the construction of the encrypted truth table. This is

just the AND of n statements of the type “this ciphertext is an encryption of the value f(1`0n−`)
under the public-key H1,n”. This proof therefore costs 2n exponentiations to generate and 4n
exponentiations to verify.

Next, we show how Pi can prove that it computed Ci correctly from Ci−1. We first show how to
prove that a single ciphertext is correctly computed. Recall that the “decryption” step of Pi is the
computation v′ = v · u−αi . Next, Pi rerandomizes (u, v′) into (u′′, v′′). By what we have described
above, these two steps involve proofs that (u, v · uαi , u′′, v′′) is a Diffie-Hellman tuple. Thus, this is
a conjunction of two Diffie-Hellman proofs at the overall cost of 4 exponentiations to prove and 8
exponentiations to verify. Now, observe that in order to prove that Ci is correctly computed from
Ci−1, party Pi must prove that it is either “decrypted and rerandomized” from the first n − i+
elements of Ci or the last n− i+ 1 elements of Ci. Thus, this is an OR of 3(n− i+ 1) conjunctions.
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The overall cost is 2(n− i+ 1) Diffie-Hellman proofs, or 4(n− i+ 1) exponentiations to prove and
8(n− i+ 1) exponentiations to verify.

We conclude that party P1 needs to compute 2n+ 4(n+ 1) exponentiations (to prove the truth
table and that it removed the first or last row), each Pi needs to compute less than 4n + 8in
exponentiations in order to verify what it received and an additional 4(n− i+1) exponentiations to
prove its step. We therefore have an upper bound of 8n2 exponentiations per party, achieving our
goal. We stress that the constant here is low, making this truly practical for n not too large. For
example, with n = 100, we have at most 8×1002 = 80, 000 exponentiations which can be computed
in about 2.5 minutes.

Order of parties. As for the semi-honest case, using our concrete instantiation the parties can
connect and interact with the server in any order.

4.2 Symmetric Functions over Zc

In this section, we show how to extend the techniques used for binary symmetric functions to those
over Zc where c is a constant. The first important observation is that a symmetric function of n
variables in the range {0, . . . , c− 1} has a truth table of size

(
n+c−1
n

)
, where each entry corresponds

to a vector of c values in the range {0, . . . , n}, such that the sum of all entries is n. This is because
the value of f(x1, . . . , xn) depends only on how many times each of the values 0, . . . , c− 1 appears
among x1, . . . , xn. Thus, each input vector x1, . . . , xn is mapped to the vector (a1, . . . , ac) such
that i ∈ Zc appears ai times in the vector x1, . . . , xn. The number of different vectors that can be
constructed in this way is

(
n+c−1
n

)
.

The protocol for the semi-honest case is identical to protocol 4.1.1, with the following modifica-
tions: P1 constructs a truth table according to the concise encoding of the table described above.
Then, in Steps 1(b) and 2(b), instead of removing the first or last entries of the table, the parties
remove a larger subset of the entries, as we describe next.

The truth table. We arrange the truth table of
(
n+c−1
n

)
rows in lexicographic order. For example,

for n = c = 3 we would have the following table:

Line # frequency vector function value

1. (0, 0, 3) f(2, 2, 2)
2. (0, 1, 2) f(1, 2, 2)
3. (0, 2, 1) f(1, 1, 2)
4. (0, 3, 0) f(1, 1, 1)
5. (1, 0, 2) f(0, 2, 2)
6. (1, 1, 1) f(0, 1, 2)
7. (1, 2, 0) f(0, 1, 1)
8. (2, 0, 1) f(0, 0, 2)
9. (2, 1, 0) f(0, 0, 1)

10. (3, 0, 0) f(0, 0, 0)

Each entry in the frequency-vector column is of the form (a0, a1, a2), where ai encodes the number
of times that the character i appears, and a0 +a1 +a2 = n = 3. (Note that frequency-vector column
contains only the indexes of the entries. The entry itself includes the output of the function for
this specific input.)
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P1 must send to P2 the reduced truth table where the entries that are inconsistent with P1’s
input are removed. That table encodes exactly the truth table of the residual function f(xi, ·, ·).
Clearly, the reduced table also encodes a symmetric function over Zc = Z3, this time with only
n− 1 = 2 inputs. Moreover, when P1 removes the inconsistent entries we get the truth table of the
residual function again ordered by lexicographic order, no matter what was P1’s input. Hence P2

can continue by again removing the entries that are inconsistent, with his input without having to
know which rows were removed by P1.

One way to see this visually is to imagine the following procedure that P1 employs for reducing
the truth table: on input x1 = i ∈ Zc, P1 first subtracts one from the i’th coordinate in each
entry of the frequency-vector column (to account for the fact that the input xi = i will be hard-
wired in the residual function and should not be counted anymore), and then removes the rows
corresponding to entries with negative numbers. (These are the inconsistent rows: since P1 has
input i then consistent frequency-vectors couldn’t have zero in the i’th position.) An illustration
of this transformation for the cases where P1’s input is x1 = 0 and x1 = 1 can be found below:

1. (0, 0, 3)
2. (0, 1, 2)
3. (0, 2, 1)
4. (0, 3, 0)
5. (1, 0, 2)
6. (1, 1, 1)
7. (1, 2, 0)
8. (2, 0, 1)
9. (2, 1, 0)

10. (3, 0, 0)︸ ︷︷ ︸
original table

1. (−1, 0, 3)
2. (−1, 1, 2)
3. (−1, 2, 1)
4. (−1, 3, 0)
5. ( 0, 0, 2)
6. ( 0, 1, 1)
7. ( 0, 2, 0)
8. ( 1, 0, 1)
9. ( 1, 1, 0)

10. ( 2, 0, 0)

⇒

5. (0, 0, 2)
6. (0, 1, 1)
7. (0, 2, 0)
8. (1, 0, 1)
9. (1, 1, 0)

10. (2, 0, 0)

︸ ︷︷ ︸
x1=0

1. (0,−1, 3)
2. (0, 0, 2)
3. (0, 1, 1)
4. (0, 2, 0)
5. (1,−1, 2)
6. (1, 0, 1)
7. (1, 1, 0)
8. (2,−1, 1)
9. (2, 0, 0)

10. (3,−1, 0)

⇒

2. (0, 0, 2)
3. (0, 1, 1)
4. (0, 2, 0)
6. (1, 0, 1)
7. (1, 1, 0)
9. (2, 0, 0)

︸ ︷︷ ︸
x1=1

Note that in both cases the reduced truth table has entries with the same set of indexes. Therefore
each subsequent party can apply a similar procedure to the table based on its own input, until the
server obtains a table containing a single entry with the output of the function.

4.3 A Protocol for The Sum Function

We saw in Section 2.1 that the sum function f(x1, . . . , xn) =
∑n

j=1 xj has a simple minimum-
disclosure decomposition. As we will see now, it also has a very simple optimally-private protocol.
Note that this protocol works even in the case that the domain of the inputs xj is large (and thus
the protocol for symmetric functions over Zc cannot be used).

The semi-honest case. The protocol uses additively homomorphic encryption over the same
group in which we compute the summation. The first party chooses n−1 random strings r1,2, . . . , r1,n

and encrypts the value x+
∑n

j=2 r1,j under a public key pkS that was chosen by the server. It also
encrypts each r1,j under the public-key pkj of the jth party Pj ; denote c∗1 = EpkS (x +

∑n
j=2 r1,j)

and c1,j = Epkj (r1,j). Next, when party Pj contacts the server, it receives the ciphertexts c∗j−1 and
ci,j for i ≤ j, decrypts the ciphertexts ci,j in order to obtain the ri,j ’s. Party j chooses random
rj,k’s for k > j and adds xj −

∑
i<j ri,j +

∑
k>j rj,k to c∗j−1 using the homomorphic operation. This

updated ciphertext c∗j is then sent back to the server, together with the cj,k’s. It is clear that the
only thing that can be learned by the server and a coalition of dishonest players is the partial sum of
the honest parties up until the last honest party. Thus, this achieves the required level of security.
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It is possible to implement this using Paillier’s encryption [21]; this results in computing the sum
modulo N . If it is necessary to compute the sum over the integers, then one simply needs to take
N to be larger than n · L where (the absolute value of) each parties’ input is an integer between
0 and L. Alternatively we can use LWE-based schemes that can be made additively homomorphic
over any group Zc, e.g. [10]. (In this case we must take care to ensure that the distributions of
evaluated ciphertexts do not leak information.)

PROTOCOL 4.6. (Semi-Honest Optimal Protocol for the Sum Function)

• Inputs: Each party Pi (1 ≤ i ≤ n) has a private input xi, its own private key ski, and a
vector of public keys (pk1, . . . , pkn, pkS); the server Pn+1 has (pkS , skS) and (pk1, . . . , pkn).
Let D be the domain of the homomorphic encryption scheme with public key pkS .

• The protocol:

1. Initialization: Let c∗0 be an arbitrary encryption of zero under the Server’s public key.

2. Interaction of clients P1, . . . , Pn with the server: For every j = 1, . . . , n:

(a) The server Pn+1 sends to Pj the ciphertexts c∗j−1 and all the ci,j ’s for i < j. (If
j = 1 then P1 can compute c∗0 on its own and the ci,j ’s are an empty list.)

(b) For all i < j, Party Pj decrypts ci,j with its own secret key, ri,j ← Decskj
(ci,j).

It also chooses a random rj,k for k = j + 1, . . . , n + 1 and encrypts it under the
key of Party Pk, cj,k ← Encpkk

(rj,k).
Let sj−1 be the value encrypted in c∗j−1. Party j then uses the homomorphic
properties with public key pkS to compute c∗j as an encryption of sj = sj−1 +
xj −

∑
i<j ri,j +

∑
k>j rj,k.

(c) Party Pj sends back to Pn+1 the ciphertexts c∗j and all the cj,k’s for k > j.

3. Concluding the computation: Pn+1 decrypts c∗n+1 and outputs the value.

The malicious case. As in Protocol 4.2, we need to make sure that each party behaves cor-
rectly. First, we need to ensure that the server’s public key was generated correctly (to ensure
that the homomorphic operations truly hide each parties’ individual input). This can be carried
out efficiently and non-interactively using [3]. Next, we need to make sure that each party updates
c∗j correctly. This is a proof that two sums of ciphertexts (under different keys) are equal, which
for Paillier’s encryption could be rather expensive. Finally, we need to know the secret key skS of
the server (in case it is corrupted) in order to learn the new encrypted value (and the difference)
thereby defining each xj . However, this is already obtained via the proof in [3]. As in Protocol 4.4,
the parties all also sign on their messages and proofs, and all of these are verified.

4.4 The Selection Functions

In this section, we construct an optimally-private protocol for the selection function f(j, x2, . . . , xn) =
xj ; i.e., where the selector is first. As we have seen in Section 2.2, the disclosure in this case is the
least. Specifically, if the last honest party is after the selected party, then the only thing learned
by the server is the selected value and not even its position. Otherwise, the position is learned,
but nothing else. (Note that hiding the position is really the only interesting issue in this function,
since otherwise it can be trivially solved by having the selector first announce who is selected and
next having the selected party send its value.)
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The semi-honest case. Our protocol is similar to the following 1-out-of-N (semi-honest) obliv-
ious transfer protocol, using additively homomorphic encryption: The receiver, who wants to get
the j’th value, generates N ciphertexts, all encrypting 1 except the j’th that encrypts a 0. Using
the additive-homomorphism, the sender multiplies the ciphertexts by random numbers (a different
random number for each ciphertext) and then adds his value xi to the i’th ciphertext. When the
receiver decrypts, it gets the j’th value intact and all other values are random.

Our setting is a little more complicated than the OT setting, since (a) the inputs are split
between parties P2, . . . , Pn rather than all belonging to one sender, and (b) the receiver in our
case is the server Pn+1, while the selection index j is known to the first party P1. The latter
concern is handled by choosing an encryption scheme with plaintext space much much larger than
the domain of inputs to the parties. Now with high probability the j’th entry will be the only
one in the domain of inputs, so the server can identify it.5 To handle the first concern we will use
a mix-net-like construction (using a layer-rerandomizable ecnryption), with each party shuffling
the ciphertexts so that the following parties cannot tell which ciphertext came from what party.
(Also, we use El Gamal which is multiplicative- rather than additive-homomorphic, so we modify
the underlying OT protocol accordingly.)

In more detail, P1 with selector input j prepares a vector of El Gamal ciphertexts, all encrypting
the group generator G except the j’th that encrypts the group element 1. The i’th ciphertext in
this vector is encrypted under the compound El Gamal public key Hi,n+1 =

∏n+1
t=i ht. (When using

a generic layer-rerandomizable encryption, the i’th ciphertext is encrypted onion-style under the
public keys of parties i though n + 1.) We call this vector the “initial ciphretexts” and denote it
by I. During the protocol the initial ciphertexts will be passed unchanged, and the parties use
them to process another vector of ciphertexts that contain the actual values. We call that other
vector of ciphertexts the “work ciphertexts”, and denote it by W.

Each party Pi (i ≥ 2) gets the initial ciphertexts I and a vector Wi−1 of i− 2 ciphertexts. The
ciphretexts in W are all encrypted under Hi,n+1. Pi takes the i’th ciphertext from I (which is also
encrypted under Hi,n+1), uses the multiplicative homomorphism of El Gamal to raise the plaintext
inside it to a random power in Zq, then uses the homomorphism again to multiply the plaintext by
its input xi. It inserts the resulting ciphertext to Wi−1, thus getting a vecotr of i − 1 ciphertexts
which we denote by W ′i. Pi then peels off its layer of encryption (resulting in ciphertexts under
Hi+1,n+1), randomly permutes the ciphertxts and re-randomizes them, thus obtaining a new vector
of ciphertexts Wi, which Pi sends back to the server.

After all the players participated, the server has a vector of “work ciphertexts” Wn, encrypted
under the public key of the server Hn+1 = hn+1. The server decrypts this vector, and if the
corresponding plaintext vector has a single element from the input domain of the protocol then the
server outputs that element. A pseudocode description of this protocol (described using a generic
additively homomorphic encryption layer-rerandomizable) can be found in Protocol 4.7.

Using similar arguments as in the binary symmetric case, we have that Protocol 4.7 is optimally-
private in the presence of augmented semi-honest adversaries, if the encryption schemes used is addi-
tively homomorphic and layer rerandomizable, and has plaintext space which is super-polynomially
larger than the input space for the protocol.

An error-free variant. The small probability probability of error in the protocol above can be
easily removed. If the input space for the protocol is some Zc, then we choose encryption scheme

5See remark at the end of this section for an error-free variant of the same idea.
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PROTOCOL 4.7. (Semi-Honest Optimal Protocol for the Selection Function)

• Inputs: Party P1 has an index j (2 ≤ j ≤ n), and each party Pi (2 ≤ i ≤ n) has a private
input xi, its own private key ski, and a vector of public keys (pk2, . . . , pkn, pkn+1).

• The protocol:

1. First party instructions:

(a) For every i = 2, . . . , n, i 6= j, P1 computes ci = Ēpki,...,pkn+1
(1). For i = j, P1

computes cj = Ēpkj ,...,pkn+1
(0).

(b) P1 sends the vector of initial ciphretexts I = (c2, . . . , cn) to the server Pn+1.

2. Interaction of clients P2, . . . , Pn with server. For i = 2, . . . , n:

(a) Pn+1 sends Pi the initial ciphertexts I, and a vector Wi−1 of i − 2 ciphertexts,

encrypted under ~pki = (pki, . . . , pkn+1). (For i = 2, W1 is empty.)

(b) Pi extracts the i’th ciphretext from I, ci = I[i] (encrypting a bit bi ∈ {0, 1}
under ~pki.) It chooses a random number ri from the plaintext space and uses
the encryption additive-homomorphism to compute a ciphertext c′i = ri� ci�xi,
encrypting the plaintext value ri · bi + xi.

(c) Pi adds c′i to the vectos Wi−1 (thus receiving a vector of i− 1 ciphertexts under
(pki, . . . , pkn+1)) and decrypts a layer of all of these ciphertexts using its secret
key ski; denote the result by W ′i.

(d) Pi permutes the ciphertexts in W ′i and rerandomizes all of them using the public
keys pki+1, . . . , pkn+1. Denoting the result byWi, Pi sendsWi back to the server.

3. Concluding the computation: Upon receiving the encrypted vectorWn (of length n−1)
from Pn, the server Pn+1 decrypts all the ciphertext using its secret key skn+1. If the
corresponding plaintext vector includes a single element from the input space then
the server outputs that plaintext (else it outputs ‘?’).

with plaintext space that includes Zc+1 = {0, 1, . . . , c}. Then party Pi (i ≥ 2) with input xi ∈ Zc,
instead of choosing ri at random as above smiply sets ri = c− xi. This ensures that the value that
the server recovers is either xi (if Pi received an encryption of 0) or c (if Pi received an encryption
of 1).

The malicious case. As above, in this case we need to have the parties prove that they behaved
honestly. This can be achieved using similar techniques as those described above.

5 Securely Computing any Decomposition

We now turn to the task of securely computing an arbitrary given decomposition. For this we use
re-randomizable garbled circuits that were introduced by Gentry et al. for the purpose of multi-
Hop homomorphic encryption [11]. (Below we call this the GHV construction.) Very roughly, each
party i receives from the server a garbled circuit encoding f̃i−1(x1, . . . , xi−1), adds its input to
generate a garbled circuit for f̃i(x1, . . . , xi), then re-randomizes this garbled circuit (so as to hide
xi from colluding dishonest parties i− 1 and i+ 1) and sends the result back to the server.

The main problem that arises is that in our setting we do not want the server to be able to
evaluate all the f̃i’s. More specifically, if i is the index of the last honest party then we do not want
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the adversary to be able to evaluate f̃j for any j < i. (In contrast, in the setting of multi-Hop
homomorphic encryption if party i+ 1 is dishonest then the adversary can evaluate f̃i.)

To solve this we again use layered re-randomizable encryption: instead of giving the players
the input labels for the garbled circuit, we give them only the encryption of these input labels,
encrypted under all the keys of of the parties that did not participate yet. Each party peels of its
layer of encryption and re-randomizes the result, hence the server learns the input label only after
all the (honest) parties decrypted their layers, and it cannot evaluate the circuit earlier.

We note that the layered re-randomizable encryption is intertwined with the garbled-circuit
construction, since each party has to be able to transform the encryption of the inputs of one
garbled circuit into “freshly random” encryption on the inputs to a re-randomized version of the
garbled circuit. Recall that in the GHV construction the labels on the wires are balanced bit-
strings (with half 0s and half 1s), and re-randomizing a circuit is done by bitwise permuting the
labels. Hence we use bit-wise encryption (to handle the permutation) where ciphertexts can be
re-randomized (to hide the correlation to the previous circuit).

The GHV construction is described in Section 5.1. We mention that the original construction
from [11] is secure only in the semi-honest model. In particular a malicious party can choose “bad
labels” to wires to foil re-randomization, by choosing the two labels on a wire with a very small
(or very large) Hamming distance. We thus modify the construction slightly and require that
the Hamming weight between the two labels be exactly half their length. This turns the GHV
construction into one that works for any adversarial coins in the semi-honest model, so we can add
(non-interactive) zero-knowledge proofs and get resilience against malicious adversary.

5.1 The GHV Construction

The GHV construction works over an algebraic group of prime order q where the decision Diffie-
Hellman assumption is believed to hold. The labels on the wires of garbled circuits are of length
` = 3|q| (and we assume for convenience that ` is divisible by 4). A Boolean circuit is garbled by
choosing two random `-bit labels, each with Hamming weight exactly `/2, and in our variant also
with Hamming distance exactly `/2 from each other. One way to choose such labels is to start with
the labels L0∗ = 0`/21`/2 and L1∗ = 0`/41`/40`/41`/4, and then chose a random bit permutation π
and apply it to both L0∗, L1∗, setting L0 = π(L0∗) and L1 = π(L1∗).

Given the labels on all the wires, a gate is represented by four pairs of ciphertexts under the
(bit-by-bit version of the) BHHO cryptosystem [2], one pair for each line in the truth table of the
gate. Let R0, R1 be the two labels on the first input wire, S0, S1 be the two labels on the second
input wire, and T0, T1 be the two labels on the output wire of the gate. For a line (a, b) 7→ c in
the truth table (with a, b, c ∈ {0, 1}), we choose at random r, r′ ∈ {0, 1}` such that r ⊕ r′ = Tc,
and encrypt r under Ra and r′ under Sb, thus forming the pair (EncRa(r),EncSb(r

′)). The gate is
represented by the four pairs of ciphertexts in random order.

In addition, for the purpose of re-randomization we include with each ciphertext EncL(r) also
the BHHO public key corresponding to the secret key L. The same public keys can be used also
to identify the right ciphertext-pair to decrypt when evaluating the garbled circuit: If we know the
two input labels Ra, Sb for some gate, then we decrypt the ciphertext-pair that includes the public
keys corresponding to these two labels.

Finally, the mapping of the output labels of the circuit to 0-1 is done not by giving the labels
themselves, but by giving the corresponding BHHO public keys. Namely, if the two labels on an
output wire are L0, L1, corresponding to 0,1, respectively, then we include with the circuit two
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BHHO public keys pk(L0) and pk(L1) in order. Upon evaluation, we output 0 if the output labels
that we learn corresponds to the first public key and 1 if it corresponds to the second. (We
note that these public keys allow one to extend the garbled circuit, since to generate EncL(r) it is
sufficient to know pk(L) and we don’t need to know L explicitly.)

Re-randomization of a circuit is done as follows:

1. Choose a random bit permutation πw over [`] for every wire w in the circuit. If the labels on
that wire are L0w, L1w then the new labels will be πw(L0w), πw(L1w), respectively.

2. Use the BHHO key- and plaintext-homomorphism to translate each ciphertext EncL(r) into
Encπ(L)(π

′(r)) according to the permutations from Step 1. Also transform similarly all the
attached public keys from pk(L) to pk(π(L)). 6

3. For each ciphertext-pair (EL(r), EL′(r
′)), choose a random δ ∈ {0, 1}` and use the BHHO

plaintext homomorphism to transform the pair into (EL(δ ⊕ r), EL′(δ ⊕ r′)).

4. Using the attached public keys, re-randomize all the BHHO ciphertexts and public keys, thus
getting new (pseudo)random ciphertexts and public keys for the new labels.7

Let us denote by Λf = GC(f, r) the garbled circuit for circuit f that was generated using the
randomness r, and by Λ′f = ReRand(Λf , r

∗) the re-randomized circuit that was generated from Λf
using randomness r∗. The next lemma asserts that Λ′f results is (pseudo)random, even conditioned
on the randomness r.

Lemma 5.1. If the decision Diffie-Hellman problem is hard in the group underlying the GHV
construction, then for every fixed circuit f and randomness r, the following two distributions are
computationally indistinguishable:

Dfresh
def
=

{
(f, r,Λ′f ) : r′ is fresh randomness,Λ′f = GC(f, r′)

}
, and

DreRnd
def
=

{
(f, r,Λ′f ) : r∗ is fresh randomness,Λf = GC(f, r),Λ′f = ReRand(Λf , r

∗)
}

Proof (sketch). This lemma was essentially proved in Theorem 7 of Gentry et al. [11] (Theorem 8
in the full version). The only difference is that it was only proved for randomly chosen r, not
every r as stated above. The reason is that the GHV permutation lemma from [11] only applies
when the two labels on a wire are chosen at random. We note however that the proof of that lemma
goes through as long as the two labels on each wire have Hamming distance close to `/2 (and the
only use of the randomly-chosen labels is to argue that their Hamming distance is indeed close to
`/2). In our version of the construction the distance between the two labels is always exactly `/2,
regardless of the randomness used. Hence we get the stronger statement of Lemma 5.1.

5.2 Our Construction, Semi-Honest Model

As described above, we get security in our model by augmenting the GHV construction with
encryption of the input labels. Differently from Gentry et al., we do not use oblivious transfer to

6BHHO public keys are just encryptions of 0, so every operation that can be applied to ciphertexts can also be
applied to public keys.

7By pseudorandom we mean that they cannot be distinguished from fresh random ciphertexts (or public keys)
even by someone who knows the corresponding secret keys.
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encode the input of the first party but instead have that party encrypt the labels corresponding
to its input bits with El Gamal. (We note that the same simplification could be used also in the
contexts of multi-Hop homomorphic encryption.)

In more detail, our construction works in the PKI model, where each party i has a secret key ski
and a corresponding public key pki = pk(ski), and every party knows the public keys of all other
parties. In the description below we assume that these are all keys for El Gamal encryption, namely
we have ski = αi ∈ Zq and pki = Gαi where G is a generator in an order-q group G in which DDH
is hard.8

5.2.1 The Protocol

Let 〈f1, . . . , fn〉 be a given decomposition that we want to implement. Namely, we want a protocol
where the view of any set of cooperating semi-honest parties can be simulated knowing only the
value yi = f̃i(x1, . . . , xi) = fi(. . . f1(x1), . . . , xi), where i is the index of the last honest party (i.e.,
the last party not in the set).

Throughout the computation, we maintain the invariant that before interacting with party i
the server keeps a garbled circuit of the function f̃i−1(x1, . . . , xi−1) and an encryption of all the
labels corresponding to the inputs bits in x1, . . . , xi−1, where the encryption is with respect to the
public keys of the remaining parties pki, . . . , pkn, pkn+1 (pkn+1 is the key of the server.)

In more detail, let Λi−1 be a garbled circuit that the server keeps before talking to party i (where
Λ0 is the empty garbled circuit with no inputs). To slightly simplify notations we assume that all
the inputs xi are exactly t-bit long, and let xij denote the jth bit of xi, i.e. xi = xi1xi2 . . . xit.
Hence Λi−1 has (i− 1)t input wires, and there are two `-bit labels associated with each input wire.
We denote the 0 and 1 labels associated with the jth input wire of the ith party by L0ij , L1ij ,
respectively.

Below we also denote by σkij the kth bit of the label corresponding to the input bit xij . That

is, if xij = 0 then (σ1
ij . . . σ

`
ij) = L0ij and if xij = 1 then (σ1

ij . . . σ
`
ij) = L1ij . Hence before talking

to party Pi the server should have encryptions of all the bits σki′j for i′ < i, j = 1, . . . , t and
k = 1, . . . , `. Specifically, let Hi be the compounded public key of parties i through n+ 1, namely

Hi
def
=

n+1∏
j=i

hi.

Then for each bit σki′j with i′ < i, j ≤ t and k ≤ `, the server keeps an El Gamal encryption of σki′j

relative to public key Hi, i.e., a pair of the form (Gr, Gσ
k
ij ·H r

i ). (Of course, the exponents r in all
these ciphertexts are chosen independently.)

The ith party. The ith party has its input xi = (xi1 . . . xit), its secret key αi and the public
keys of the parties after it, hi+1, . . . , hn, hn+1. It receives from the server the garbled circuit Λi−1

corresponding to f̃i−1, and the encryption of all the bits σkij relative to the compounded public

key Hi. Recall that f̃i is an extension of f̃i−1 via fi(yi−1, xi), namely

f̃i(x1, . . . , xi−1, xi) = fi( f̃i−1(x1, . . . , xi−1)︸ ︷︷ ︸
yi−1

, xi).

8In general one can use any bit-by-bit additively homomorphic encryption scheme instead of El Gamal, the details
will be given in the full version.
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Hence party Pi can extend the garbled circuit Λi−1 corresponding to f̃i−1 into a garbled circuit
Λi corresponding to f̃i, using the output labels of Λi−1 as input labels for the wires of yi−1 and
choosing new input labels for the wires of xi. That is, party Pi builds the Yao circuit for f̃i,
choosing random labels for all wires except for the input wires corresponding to the output of f̃i−1;
the garbled labels on the input wires are taken as the output labels for the wires of the received
circuit. Thus, the two circuits are composed into one.

Next, party Pi uses its secret key αi to convert all the El Gamal ciphertexts relative to Hi into
encryption of the same bits relative to Hi+1. Namely, given a ciphertext (u = Gr, v = Gσ ·H r

i ),
Party i computes v′ = v/uαi and outputs the ciphertexts (u, v′). This is indeed an encryption of
the bit σ with respect to Hi+1, since Hi+1 = Hi/hi = Hi/G

αi and therefore

v′ =
v

uαi
=

Gσ ·H r
i

Grαi
= Gσ ·

(
Hi

Gαi

)r
= Gσ ·H r

i+1 .

Party i also encrypts the bits σkij of the labels corresponding to all of its input bits xij , relative to
the compounded public key Hi+1.

At this point Party i holds the complete state as needed for the next step of the computation,
and it only remains to re-randomize this state (so as to hide xi). To this end, Party i applies the re-
randomization procedure from Section 5.1 to the garbled circuit Λi to get a new garbled circuit Λ′i.
This includes in particular choosing a random permutation πij for the wire of every input bit
xij . Party Pi permutes accordingly the vector of El Gamal ciphertexts for the bits on that wire
(σ1
ij . . . σ

`
ij), thus obtaining an encryption of the new input label for this wire. (All these encryptions

are relative to the compound public key Hi+1.) Finally it re-randomize these encryptions by
choosing for each ciphertext a new exponent r′ and replacing the pair

〈
u = Gr, v = Gσ ·Hr

i+1

〉
with u′ = u ·Gr′ = Gr+r

′
and v′ = v ·Hr′

i+1 = Gσ ·Hr+r′

i+1 . Party i sends Λ′i and all the ciphertexts
(in order) to the server, and the server is now ready for Party i+ 1.

The server. After the interaction with the last Party n, the server has a garbled circuit for the
function f̃n = f , and encryption of the input labels corresponding to all the input bits of all the
parties, relative to the “compound” public key Hn+1 = hn+1. Since the server knows the secret
key αn+1 corresponding to hn+1, it can decrypt all these ciphertexts and recover the label on each
input wire. The server then evaluates the garbled circuit and obtains the result f(x1, . . . , xn), as
needed.

5.3 Security in the Semi-Honest Model

Theorem 5.2. For any decomposition f̄ = 〈f1, . . . , fn〉, the protocol from Section 5.2.1 is a server-
based one-pass protocol that securely computes f̄ in the semi-honest model, even if the dishonest
players can chose arbitrary random coins for the protocol.

Proof (sketch). Fix a given decomposition f̄ = 〈f1, . . . , fn〉 and a vector of inputs x̄ = 〈x1, . . . , xn〉.
Also fix a subset of parties S ( [n+1] and let i∗ be the highest index not in S, i∗ = max([n+1]\S).
We need to simulate the joint view of the parties in S (in the PKI model) given their own inputs
〈xi : i ∈ S〉 and the value yi∗ = f̂i∗(x1, . . . , xi∗), and also the public keys of the honest parties
〈hi : i /∈ S〉.

The intuition behind the proof is that before the turn of party i∗ the input labels of honest
parties remain hidden since they are encrypted under a compound key that includes the public key
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hi∗ . Hence essentially the only thing that the semi-honest set S sees is a set of garbled circuits for
the functions f̃i, i = 1, . . . , i∗−1 without their input labels, and these completely hide all the inputs
of the honest parties. Moreover, re-randomizing the garbled circuit ensures that the parties in S
cannot learn anything by correlating the garbled circuits for the different f̃i’s. Only after party i∗

uses its secret key to decrypt the input labels, does the set S learn a garbled circuit for f̃i∗ together
with one label on each input wire, and then the parties in S can compute yi∗ .

The simulator chooses at random the coins for the semi-honest parties i ∈ S (including their
secret and public keys), and gets the public keys of the honest parties, the inputs of the semi-honest
parties, and if i∗ < n then also the value yi∗ = f̂i∗(x1, . . . , xi∗).

The simulator works by generating for every honest party before i∗ (i.e., i /∈ S, i < i∗) a fake
garbled circuit Λ̃i that has the same topology as f̃i but where all ciphertext-pairs in all the gates
encrypt the all-zero label (instead of encrypting on of the labels on the output wire of the gate).
The output mapping of these fake garbled circuits are chosen at random, and the simulator also
produces fake encryptions of zero relative to the compounded key Hi+1, instead of the encryptions
of labels on input wires.

If the server is semi-honest (i.e, n + 1 ∈ S and therefore i∗ ≤ n), then the simulator also
generates a fake garbled circuit Λ̃i∗ that has the same topology as f̃i∗ but where all the gates
compute a constant function. (I.e., all input label combinations encrypt the same output label.)
The output mapping of Λ̃i∗ is set to be consistent with yi∗ , namely the label that is encrypted
in gates leading to output wires is mapped to value of the corresponding bit of yi. Also for this
garbled circuit the simulator produces encryptions of the bits from one of the two labels on each
input wire, relative to the compounded key Hi∗+1. (The label to encrypt is chosen at random from
the two labels on that input wire.)

If the server is semi-honest (n + 1 ∈ S) then the view of the parties in the set S includes the
fake garbled circuits and ciphertexts for all i /∈ S. If the server is honest (n + 1 /∈ S), the view of
the parties in S includes only these fake garbled circuits and ciphertexts corresponding to parties i
such that i+ 1 ∈ S. The output of the simulator is what the semi-honest adversary A would have
output on this view.

To prove that the simulation is indistinguishable from the real world, we go through several
hybrids. Starting from the real-world, we first replace all the re-randomized garbled circuits com-
puted by honest parties with fresh random garbled circuits for the same functions. By Lemma 5.1
these hybrids are indistinguishable from the real-world game. Then we replace the encryptions of
the input wires of Λi (i < i∗, i /∈ S) with encryptions of zeros, and use DDH to argue indistin-
guishability (since the parties in S do not know the secret key of party i∗). Next we setup hybrids
similar to the proof of security for Yao circuits in [17], where we go over the gates from bottom
to top and replace the encryptions of the “right labels” with encryptions of garbage. (For i < i∗

this garbage is the all-zero string, and for i∗ the garbage is an encryption of one of the two labels
on the output wire.) Here we argue indistinguishability by reduction to the semantic security of
BHHO encryption in the gates. Finally we replace the output mapping for circuits Λ̃i i < i∗ with a
random mapping, and here we argue that the view remains exactly the same (since only zeros are
encrypted in any of the ciphertexts in these Λ̃i’s).

Remark. Note that when i∗ = n+1 (i.e., the server is honest) then the view of S can be simulated
knowing nothing but the inputs of the parties in S. This is because in out model only the server
learns the output f(x1, . . . , xn). Similarly if i∗ = n (i.e., the server is semi-honest but the last party
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is honest) then the view of S can be simulated knowing only the inputs of the parties in S and the
output value f(x1, . . . , xn).

5.4 The Malicious Model

As we saw in Theorem 5.2, the security of the semi-honest protocol holds even if dishonest parties
are allowed to choose their coins arbitrarily (rather than at random). Thus, to achieve security
in the presence of malicious adversaries, it is sufficient that each party proves that it followed the
instructions of the protocol relative to some input and set of random coins. This proof must be
non-interactive and verified by all parties, and so a common reference string must be assumed. In
order for us to extract the inputs used in the ideal-model simulation, the proof also has to be a
proof of knowledge. One option for this is to use a universally composable non-interactive system
of zero-knowledge proofs of knowledge, using enhanced trapdoor permutations [18].

In addition, we need to ensure that if the server is corrupted, then it does not modify any of
the constructions carried out by the honest parties. This can be achieved using digital signatures
(and having the signing key be part of the public-key infrastructure).

Theorem 5.3. Assume the existence of enhanced trapdoor permutations and that DDH holds.
Then, for any decomposition f̄ = 〈f1, . . . , fn〉, there exists a server-based one-pass protocol that
securely computes f̄ in the semi-honest model, with a public-key infrastructure and in the common
reference string model.

6 Extensions and Open Problems

In this work we considered a very simple setting of a server and n clients that all know about each
other (and in particular have each other’s public keys), and where the order in which the clients
connect to the server is pre-set. Our practical solutions for symmetric functions extend also to the
“first come first serve” setting with no pre-set order, but for functions that are not symmetric even
defining what security means may be nontrivial.

Another possible extension deals with functions that have natural “projection” on any subset of
their variables. (For example, for the AVERAGE function, it is natural to talk about the average of
any subset of the variables.) In this case, it may be desirable that the server be able to compute the
function value as soon as at least t of the n clients connected to it.9 Although it may be possible to
replace the onion-like encryption in our protocols with encryption in a t-out-of-n manner, it seems
nontrivial to do it in such a way that will still not allow a subset of t players to decrypt all the
transcript of the protocol.

Another very interesting extension is when we have a large universe of clients that do not have
each other’s public keys, and we want to compute some function as soon as n of them connect to
the server (e.g., polling). In this case it may be reasonable to assume that the clients all share
some system parameters, and maybe even that each client has some secret key for the system, so
perhaps tools from identity-based cryptography can be used here.

Finally, we point out that if we can get each of the players to connect twice to the server
(rather than once), then our protocols can be used for achieving the standard notion of privacy

9In general, if we have a decomposition of f then we can think of f̃t(x1, . . . , xt) as the projection of f on the first
t variables. Computing f̃i may or may not be desirable, depending on the application.
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for secure computation. Indeed, instead of computing the original n-input function f(x1, . . . , xn),
we set up a protocol for computing the extended 2n-input function that depends only the first n
inputs f̂(x1, . . . , xn, xn+1, . . . , x2n) = f(x1, . . . , xn). We consider a decomposition of f̂ where the
intermediate value after the n’th input is f(x1, . . . , xn), design a protocol to realize it, and let
party i play the role of both parties i and i + n in this protocol. With this setup, if even one of
the players is honest then the intermediate result after “the last honest player” in the protocol is
f(x1, . . . , xn), hence the view of the corrupted parties can be simulated knowing only this value.
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