
Enhancing Data Privacy in the Cloud

Yanbin Lu and Gene Tsudik

University of California, Irvine
{yanbinl, gts}@uci.edu

Abstract. Due to its low cost, robustness, flexibility and ubiquitous nature, cloud computing is chang-
ing the way entities manage their data. However, various privacy concerns arise whenever potentially
sensitive data is outsourced to the cloud.

This paper presents a novel approach for coping with such privacy concerns. The proposed scheme
prevents the cloud server from learning any possibly sensitive plaintext in the outsourced databases. It
also allows the database owner to delegate users to conducting content-level fine-grained private search
and decryption. Moreover, our scheme supports private querying whereby neither the database owner
nor the cloud server learns query details. Additional requirement that user’s input be authorized by
CA can also be supported.

1 Introduction

Cloud computing involves highly available massive compute and storage platforms offering a wide range
of services. One of the most popular and basic cloud computing services is storage-as-a-service (SAAS). It
provides companies with affordable storage, professional maintenance and adjustable space.

On one hand, due to above-mentioned benefits, companies are excited by the public debut of SAAS. On
the other hand, companies are reticent about adopting SAAS. One of the major concerns is the privacy as
cloud service is generally provided by the third party. In the following, we call the company, who uses SAAS,
the database owner. We call anyone who queries the company’s database, the database user. And we call the
cloud servers, which store the database, the cloud server. Now we start to clarify different types of privacy
challenges during the deployment of cloud service.

From the perspective of the database owner, three challenges arise.

– Challenge 1: how to protect outsourced data from theft by hackers or malware infiltrating the cloud
server? Encryption by the cloud server and authenticated access by users seems to be a straightforward
solution. However, careful consideration should be given to both encryption method and its granularity.

– Challenge 2: how to protect outsourced data from abuse by the cloud server? A trivial solution is for
the owner to encrypt the database prior to outsourcing. Subsequently, users (armed with the decryption
key(s)) can download the entire encrypted database, decrypt it and perform querying in situ. Clearly,
this negates most benefits of using the cloud. A more elegant approach is to use searchable encryption.
Unfortunately, current searchable encryption techniques only support simple search (attribute=value),
as opposed to complicated SQL, queries.

– Challenge 3: how to realize content-level fine-grained access control for users? This challenge is even
harder to solve as it requires variable decryption capabilities for different users. Even trivial solution to
the second challenge does not solve this challenge as it gives each user equal decryption capability (same
decryption key). An ideal solution would entail the database owner issuing a given user a key that only
allows the user to search and decrypt certain records.

From user’s perspective, three more challenges arise.

– Challenge 4: how to query the cloud server without revealing query details? Learning user’s query details
means learning user’s possibly sensitive search interest. In addition, by learning user queries, the cloud
server gradually learns the information in the encrypted database.

– Challenge 5: how to hide query contents (e.g., values used in ”attribute=value” queries) from the database
owner. For the database owner to exercise access control over its outsourced data, a user should first
obtain an approval from the database owner over its query contents. However, in some cases, the user
may want to get the approval without revealing its query contents even to the database owner. This is
the case when the user happens to be a high-level executive who is automatically qualified to search any
value and is not willing to reveal query to anyone.

– Challenge 6: how to hide query contents while assuring database owner the hiden contents are authorized
by some certificate authority (CA). Such challenge surfaces, for example, when the user is FBI who does
not want to reveal the person it is investigating while database owner wants to get some confidence by
making sure FBI is authorized by the court to do this investigation.

To address the above challenges, we need a scheme for the scenario shown in Fig. 1. In the initial
deployment phase, the owner encrypts its database and transfers it to the cloud server. The encryption
scheme should guarantee that no plaintext is leaked in the encrypted database, thereby addressing challenges
1–2. When user poses an SQL query, such as:

”select from sample where ((last name=’Lobb’ AND birth date=’3/26/1983’) OR blood type=’B’)”

it first obtains a search token and decryption key from the database owner. Then, the user supplies the
search token to the cloud server who uses the token to search the encrypted database. Matching encrypted
records are returned to the user who finally decrypts them. The search token and the decryption key should
only allow user to search and decrypt records meeting the conditional expression in the specific query,
therefore addressing challenge 3. The search token should not reveal the conditional expression specified
by user, therefore solving challenge 4. Further, user should be able to get the search token and decryption
key without letting database owner know the query contents in order to solve challenge 5. Finally, to solve
challenge 6, database owner, even though not knowing the query contents, should be able to verify if these
contents are authorized by a CA.

In this paper, we present a new scheme that addresses aforementioned requirements. It relies on attribute-
based encryption [1] and blind Boneh-Boyen weak signature scheme [2]. In fact, we amend the standard
attribute-based encryption to make it privately searchable in the cloud computing scenario. Furthermore, we
use the blind Boneh-Boyen signature scheme to let user obliviously retrieve a search token and decryption key.
Moreover, blind search token and decryption key extraction procedure can be coupled with CA authorization
on user’s input.

This paper aims to make four contributions: First, we define the adversary and security model for an
encryption scheme aimed at the cloud database system. Second, we construct an encryption scheme that
protects data privacy and allows access control. Third, we develop techniques for a user to retrieve search
token and decryption key from database owner without revealing query contents. Fourth, we make it possible
that the database owner, without knowing query contents, can make sure these contents are authorized by
CA.

The rest of the paper is organized as follows. Sec. 2 overviews related work. Next, Sec. 3 defines the
function and security model. Then, Sec. 4 discusses some background issues. The new scheme is presented
in Sec. 5, followed by Sec. 6 that analyzes its performance. An in-depth performance evaluation is shown in
Sec. 7. Limitations of our scheme are discussed in Sec. 8. Finally, Sec. 9 concludes this paper. A complete
security proof is shown in Appendix A.

2 Related Work

Private Information Retrieval and Oblivious Transfer: Private Information Retrieval (PIR) [3] allows
a user to retrieve an item from a server’s (public) database without the latter learning which item is being
retrieved. While PIR is not concerned with privacy of the server database, Oblivious Transfer (OT) [4]
adds an additional requirement that the user should not receive records beyond those requested. Several

2

results [5, 6] apply PIR/OT concepts to relational databases in order to hide user SQL queries from the
database server.

There are significant differences between these approaches and our work. First these approaches target a
user/server scenario and it is unclear how to extend them to the cloud setting with the additional requirement
of protecting data from untrusted cloud server. Second user can query any items inside the database and
there is no way to enforce access control in these approaches.

Search on encrypted database: Searching on encrypted data (SoE), also known as privacy preserving
keyword-based retrieval over encrypted data, was introduced in the symmetric key setting by Song, et
al. [7]. This scheme allows a user to store its symmetrically encrypted data on an untrusted server and later
search for a specific keyword by giving the server a search capability, that does not reveal the keyword or
any plaintext. Its security and efficiency was later improved in [8] and [9]. Golle, et al. [10] developed a
symmetric-key version of SoE that supports conjunctive keyword search. Boneh, et al. [11] later proposed a
public-key version of encryption with keyword search (PEKS), where any party in possession of the public
key can encrypt and send encryption to an untrusted server, while only the owner of the corresponding
private key can generate keyword search capabilities. The server can identify all messages containing the
searching keyword, but learn nothing else.

Our work is different from SoE and PEKS since it supports flexible access control (any monotonic access
structure) on encrypted data, i.e. the database owner can issue a user a decryption key that only decrypts
data meeting a certain conditional expression. Also, our scheme supports oblivious (search token/decryption
key) retrieval.

Attribute-based encryption: Sahai and Waters [12] introduced the concept of Attribute-Based Encryption
(ABE) where a user’s keys and ciphertexts are labeled with sets of descriptive attributes and a particular
key can decrypt a particular ciphertext only if the cardinality of the intersection of their labeled attributes
exceeds a certain threshold. Later, Goyal, et al. [1] developed a Key-Policy Attribute-Based Encryption (KP-
ABE) where the trusted authority (master key owner) can generate user private keys associated with any
monotonic access structures consisting of AND, OR or threshold gates. Only ciphertexts that satisfy the
private key’s access structure can be decrypted. Bethencourt, et al. [13] explore the concept of Ciphertext-
Policy Attribute-Based Encryption where each ciphertext is associated with an access structure that specifies
which type of secret keys can decrypt it. Ostrovsky, et al. [14] extended [1] by allowing negative constraints
in a key access structure.

Our scheme is derived from that in [1]. However, compared to traditional ABE, there are several notable
differences. First, ABE only achieves payload hiding, i.e., attributes are revealed in plaintext, while our
scheme hides the attributes. Second, ABE does not support private search on encrypted data, while our
scheme does. Third, ABE does not support oblivious private key retrieval from the authority, while our
scheme does.

Predicate encryption: Predicate encryption can be considered as attribute-based encryption supporting
attribute-hiding. Ciphertexts are associate with a set of hidden attributes I. The master secret key owner
has the fine-grained control over access to encrypted data by generating a secret key skf corresponding to
predicate f ; skf can be used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1.

Several results have yielded predicate encryption schemes for different predicates. Waters, et al. con-
structed an equality tests predicate encryption scheme [15]. Shi and Waters [16] constructed a conjunction
predicate encryption scheme. In [17], Shi, et al. proposed a scheme for range queries. Boneh and Waters [18]
developed a scheme that handles conjunctions and range queries while satisfying a stronger notion of at-
tribute hiding. Katz, et al. [19] move a step further by making predicate encryption support inner products,
therefore supporting disjunction and polynomial evaluation.

Our approach is different in several respects. First, no concrete private search scheme exists in predicate
encryption. Although a predicate-only version is enough for private search [19], requiring private search on
a cloud server and access control for users probably means that two separate implementations of predicate
encryption are needed. Second, our scheme supports more flexible access control; although, range queries are
not covered. Finally, no oblivious retrieval of decryption key for predicate encryption exists so far.

3

USER

(Offline)

Database Owner

Cloud Server

Server

Server
Server Server

Server
Server

Encrypted Database

Transfer Encrypted Database

first_name last_name birth_date blood_type

Keith

Edward

John

Bruce

...

...

...

...

Lobb

Edmonds

Lobb

Simpson

4/2/1945

8/3/1973

3/26/1983

5/12/1972

A

A

B

B

CA

Sample Table

Fig. 1. Cloud storage architecture.

last_name='?' birth_date='?'

blood_type='?'

Fig. 2. Access tree example

3 Definition

3.1 Problem Description

Fig. 1 shows the architecture of the envisaged cloud storage scenario. There are four entities: the cloud server
(S), the database owner (DO), the database user (U) and the CA (CA). DO’s database table consists of w
attributes {α1, α2, . . . , αw}. Let Ω = {1, · · · , w}. For ease of description, we assume that every attribute is
searchable. Each record m includes w values: {vi}1≤i≤w with each vi corresponding to attribute αi. Fig. 1
also illustrates a sample database. The first row describes attribute names and each subsequent row denotes
a record.
U may issue S any SQL query with monotonic access structure. By monotonic access structure, we

mean a boolean formula only involving ’AND/OR’ combinations. We use an access tree (see Sec. 4.2 for
details) to describe any monotonic access structure. In our context, the access tree describes a combination
of ’AND/OR’ of attribute names, without specifying their values. For example, Fig. 2 depicts one type of
access tree corresponding to a conditional expression ((last name=? AND birth date=?) OR blood type=?).
If concrete values are supplied together with an access tree, a complete conditional expression can be defined.
For example, if a value set (Lobb, 3/26/1983, B) is specified, the expression will be ((last name=’Lobb’ AND
birth date=’3/26/1983’) OR blood type=’B’). We use Tγ to denote an access tree constructed over a subset
γ of Ω and use vγ to describe a set of values for Tγ to completely define a conditional expression. A complete
record can be viewed as vΩ . We use Tγ(vγ ,vγ′) to test whether a set of values vγ′ satisfies the conditional
expression defined by Tγ and vγ .

Our basic encryption scheme is a set of components: Setup, Encrypt, Extract, Test, Decrypt. Before starting,
the CA runs Setup to initialize some parameters. Then DO runs Encrypt over each record in its table to
form an encrypted database. The encrypted database is exported to S (off-line) and DO can insert new
encrypted items later. Whenever U forms an SQL query, it runs Extract with DO to extract a search token
and decryption key. Then, U hands the search token to S and the latter runs Test over each encrypted record,
in order to find matching records. After that. S sends matching records back and U runs Decrypt to recover
plaintext records. If additional requirement that DO learns nothing about query content is needed, U can
run BlindExtract instead of Extract with DO. If further requirement that U ’s query should be Authorized
by CA is needed, U can engage in AuthorizedBlindExtract with DO. We define each function in more detail
below.

3.2 Basic Scheme Definition

The basic scheme includes following components:
Setup(1k): on input a security parameter 1k, outputs parameters params, DO’s master key mskDO.
Encrypt(DO(params,mskDO,vΩ)): DO on input params,mskDO and a record vΩ , outputs a ciphertext.

4

Extract(U(params, Tγ ,vγ),DO(params,mskDO)): U on input (params, Tγ ,vγ) andDO on input (params,mskDO)
engage in an interactive protocol. At the end, U outputs a search token tk(Tγ ,vγ) and a decryption key
sk(Tγ ,vγ), and DO outputs (Tγ ,vγ).

Test(S(params, tk(Tγ ,vγ), C)): S on input parameters params, a search token tk(Tγ ,vγ) and a ciphertext
C = Encrypt(mskDO,v

′
Ω), outputs “yes” if Tγ(vγ ,v

′
Ω) = 1 and “no” otherwise.

Decrypt(U(params, tk(Tγ ,vγ)sk(Tγ ,vγ), C)): U on input params, a search token tk(Tγ ,vγ), a decryption key
sk(Tγ ,vγ) and a ciphertext C = Encrypt(mskDO,v

′
Ω), outputs v

′
Ω if Tγ(vγ ,v

′
Ω) = 1 and ⊥ otherwise.

3.3 Blind Extraction Definition

In order to protect U ’s query from DO, we need to replace Extract with a blinded version, called BlindExtract.

BlindExtract(U(params, Tγ ,vγ),DO(params,mskDO)): U on input (params, Tγ ,vγ) and DO on input
(params,mskDO, Tγ) engage in an interactive protocol. U ’s output is a search token tk(Tγ ,vγ) and a
decryption key sk(Tγ ,vγ), and DO’s output is Tγ .

Sometimes, it makes more sense to require U to prove that its input in BlindExtract is authorized by a
CA before U can get anything useful. In order to realize that, we introduce two other functions Authorize
and AuthorizedBlindExtract. Authorize helps a U get a commitment ψ and a signature σ from a CA. In
AuthorizedBlindExtract, DO is provided with Tγ , ψ, σ while U can prove statements about commitment ψ
using zero-knowledge proof.

Authoriz(U(params, Tγ ,vγ), CA(params,mskCA)): CA generates a commitment ψ over U ’s input (Tγ , vγ),
the randomness open used to compute ψ and a signature σ over ψ. CA’s output is (Tγ ,vγ , ψ, open, σ).
U ’s output is (ψ, open, σ).

AuthorizedBlindExtract(U(params, Tγ ,vγ , ψ, open, σ),DO(params,mskDO)): U on input (params, Tγ ,vγ ,
ψ, open, σ) and DO on input (params,mskDO) engage in an interactive protocol. DO’s output is
(Tγ , ψ, σ). If ψ = Commit((Tγ ,vγ), open) and VrfypkCA

(ψ, σ) = 1, U ’s output is a search token tk(Tγ ,vγ)

and a decryption key sk(Tγ ,vγ), and otherwise, U outputs ⊥.

3.4 Adversary Model and Security Requirement

In this paper, we assume the malicious adversary model (as opposed to semi-honest, aka “honest-but-
curious”) . A malicious adversary can arbitrarily deviate from the prescribed protocols. We also assume
that U may collude with S. However, DO does not collude with any party. In Appendix. A, we will prove
our scheme is secure against malicious adversary according to Def. 1, 2 and 3.

For the basic scheme, we define adversary’s advantage by defining a security game under chosen plaintext
attack in a selective set model, similar to [1].

Definition 1. (Selective-Set Secure (IND-SS-CPA)). Let k be a security parameter. Above scheme is
IND-SS-CPA-secure if every p.p.t. adversary A has an advantage negligible in k for the following game: (1)
Run Setup(1k) to obtain (params,mskDO), and give params to A. (2) A outputs two records m1, m2 to
be challenged on (3) A may query an oracle OExtract(params,mskDO, Tγ ,vγ) such that Tγ(vγ ,m1) 6= 1 and
Tγ(vγ ,m2) 6= 1. (4) Select a random bit b and give A the challenge c∗ ← Encrypt(params,mskDO,mb). (5)
A may continue to query oracle OExtract(·) under the same conditions as before. (6) A outputs a bit b′. We
define A’s advantage in the above game as |Pr[b′ = b]− 1/2|.

BlindExtractmust satisfy two security properties: Leak-free Extract [20] and Selective-failure Blindness [21].
Informally, the former means that a malicious U cannot learn more by executing the BlindExtract with an
honest DO than by executing Extract with an honest DO. Whereas, Selective-failure Blindness means that
a malicious DO cannot learn anything about U ’s choice of vγ during BlindExtract. Moreover, DO cannot
cause BlindExtract to fail based on U ’s choice. Now we formally define Leak-free Extract and Selective-failure
Blindness:

5

Definition 2. (Leak-Free Extract). BlindExtract protocol is leak free if, for all p.p.t. adversaries A, there
exists an efficient simulator such that for every value k, A cannot determine whether it is playing Game
Real or Game Ideal with non-negligible advantage, where
Game Real: Run Setup(1k). As many times as A wants, A chooses its Tγ ,vγ and executes BlindExtract(·)

with DO.
Game Ideal: Run Setup(1k). As many times as A wants, A chooses its Tγ ,vγ and executes BlindExtract(·)

with a simulator which does not know mskDO and only queries a trusted party to obtain tk(Tγ ,vγ) and
sk(Tγ ,vγ).

Definition 3. (Selective-Failure Blindness). BlindExtract is selective-failure blind if every p.p.t. adver-
sary A has a negligible advantage in the following game: First, A outputs params and a pair of (T ,v1),
(T ,v2). A random bit b is chosen. A is given black-box access to two oracles U(params, T ,vb) and
U(params, T ,v1−b). The U algorithm produces local output sb = (tk(T ,vb), sk(T ,vb)) and s1−b =
(tk(T ,v1−b), sk(T ,v1−b)) respectively. If sb 6= ⊥ and s1−b 6= ⊥ then A receives (s0, s1). If sb = ⊥ and
s1−b 6= ⊥ then A receives (⊥, ǫ). If sb 6= ⊥ and s1−b = ⊥, then A receives (ǫ,⊥). If sb = ⊥ and s1−b = ⊥,
then A receives (⊥,⊥). Finally, A outputs its guess bit b′. We define A’s advantage in the above game as
|Pr[b′ = b]− 1/2|.

4 Preliminaries

4.1 Notation

Let {0, 1}l denote the set of integers of maximum length l, i.e. the set [0, 2l − 1] of integers. we employ the
security parameters lφ, lH where lφ (80) is the security parameter controlling the statistical zero-knowledge
property, lH (160) is the output length of the hash function used for the Fiat-Shamir heuristic. H(·) and
H′(·) denote two distinct hash function. We use Enchompk and Dechomsk to denote homomorphic encryption
and decryption (respectively) under public key pk (or secret key sk). We use Encsymk and Decsymk to denote

symmetric encryption and decryption under key k. We define Lagrange Coefficient as ∆i,S =
∏

j∈S,j 6=i
j

j−i .

Let Ω denote attributes index set, i.e. Ω = {1, · · · , w}. DO’s private and public keys are skDO and pkDO,
respectively. server’s master key is mskDO. CA’s private and public keys are skCA and pkCA.

4.2 Access Tree

We use T to denote a tree representing an access structure. T represents a combination of ’AND/OR’ of
attribute names without specifying their values, as shown in Fig. 2. An access structure Tγ defined over a set
γ of attributes, coupled with a set of values vγ defined over the same set, completely defines a conditional
expression (See Sec. 3.1 for example). We use Tγ(vγ ,v) to test whether another set of values v satisfies the
condition defined by Tγ and vγ . Each non-leaf node represents a threshold gate, described by its children
and a threshold value. Let numx be the number of children of a node x. The threshold value associated with
node x is denoted by kx that is either 1 or numx, depending on the threshold gate. In case of an OR gate,
kx = 1; in case of an AND gate, kx = numx. Each leaf node x is described by an attribute with a threshold
kx = 1. Standard tree data structures can be used to represent and store T . Since Tγ is exposed to S in
Test, to prevent S from learning database schema, each leaf node can store an attribute index instead of the
attribute name.

To facilitate working with the access trees, we define a few functions. We denote the parent of the node
x as parent(x). node(αi) returns the leaf node corresponding to attribute αi. attr(x) is defined only if x is
a leaf node; it returns the attribute index i of αi associated with x. Access tree T also defines an ordering
between the children of every node, i.e. each child y of a node x are numbered from 1 to numx. index(y)
returns this number associated with the node y. Let Sx denote a set [1, . . . , numx]. Finally, let childi(x)
return the ith child of node x.

We also define ΓTγ
as a set of minimum subsets of γ that satisfies Tγ . By “minimum”, we mean the

subset cannot become smaller while still satisfying Tγ . For example, in Fig. 2, ΓTγ
= {{1, 2}, {3}} where

6

1, 2, 3 is the index of attribute last name, birth date, blood type respectively. Here ΓTγ
means that either

{last name, birth date} or {blood type} can satisfy Tγ . We can determine ΓTγ
in a down-top manner. For

each leaf node, define Sx = {attr(x)}. For any other node x, Sx = ∪i∈Sx
Schildi(x) if kx = 1. Otherwise if

kx > 1, Sx = {x′ : x′ = ∪1≤i≤kx
x′i, ∀x

′
i ∈ Schildi(x)}. And the resulting Sr at root node r is ΓTγ

. For γ′ ∈ ΓTγ
,

we define Tγ′ as a subgraph of Tγ with only attributes in γ′ as leaves. For example, in Fig. 2, if γ′ = {1, 2},
then Tγ′ would be the left-hand subtree of the root node. Note in Tγ′ each non-leaf node x’s kx should be
its number of children, i.e., a conjunctive gate, since γ′ is a minimum satisfiable subset.

4.3 Homomorphic Encryption

There are several additively homomorphic public key encryption schemes [22, 23]. We elect to use Paillier
encryption [23] due to its easy implementation and amenability to proofs of knowledge. Let n denote an
RSA modulus, h = n + 1 and g be an element of order φ(n) mod n2. Let sk = {φ(n)} and pk = {g, n}.
Encryption is defined as c = Enchompk (m) = hmgr mod n2 where r ∈R Zφ(n). Corresponding decryption is

defined as: Dechomsk (c) =

[

(cφ(n) mod n
2)−1

n
· φ(n)−1 mod N

]

. Note that, to encrypt, we use hmgr instead of

standard hmrn. If the order of g has no factor of n and is greater than 2, gr is a random element from the
same subgroup as rn. Therefore hmgr has the same distribution as hmrn. The purpose of using the former is
to facilitate zero-knowledge proofs.

4.4 Zero-Knowledge Proof

Our scheme uses various protocols to prove knowledge of, and relations among, discrete logarithms. To
describe these protocols, we use the notation introduced by Camenisch and Stadler [24]. For instance,
PK{(a, b, c) : y = gahb ∧ y = gahc ∧ s ≤ b ≤ t} denotes a zero-knowledge proof of knowledge of inte-
gers a, b, c such that y = gahb and y = gahc holds and s ≤ b ≤ t. The convention is that everything inside
parentheses is only known to the prover, while all other parameters are known to both prover and verifier.

The technique for a proof of knowledge of a representation of an element y ∈ G with respect to several
bases z1, . . . , zv ∈ G, i.e., PK{(a1, · · · , av) : y = za1

1 · · · z
av
v }, is presented in [25]. A proof of equality

of discrete logarithms of two group elements y1, y2 ∈ G to bases g ∈ G and h ∈ G, respectively, i.e.,
PK{(a) : y1 = ga ∧ y2 = ha}, is given in [26]. Generalizations to proving equalities among representations
of elements y1, . . . , yv ∈ G to bases g1, . . . , gv ∈ G are straightforward [24]. Boudot [27] demonstrates proof
of knowledge of a discrete logarithm of y ∈ G with respect to g ∈ G such that logg y lies in integer interval
[s, t], i.e., PK{(a) : y = ga∧a ∈ [s, t]} under the strong RSA assumption and the assumption that the prover
does not know the factorization of the RSA modulus.

4.5 Bilinear map

We now review some general notions about efficiently computable bilinear maps.
Let G1 and G2 be two multiplicative cyclic groups of prime order q. Let g be a generator of G1 and ê be

a bilinear map, ê : G1 ×G1 → G2. The bilinear map ê has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab

2. Non-degeneracy: ê(g, g) 6= 1.

We say that G1 is a bilinear group if the group operation in G1 and the bilinear map ê : G1 ×G1 → G2

are both efficiently computable.

4.6 Cryptographic Assumption

Our scheme’s security is based on the decisional bilinear Diffie-Hellman (BDH) assumption [28] and Boneh-
Boyen Hidden Strong Diffie-Hellman (BB-HSDH) assumption [29].

7

Assumption 1 (Decisional Bilinear Diffie-Hellman (BDH) assumption.) Let a, b, c, z ∈ Zq be chosen
at random and g be a generator of G1. We say that the BDH problem is hard if for all p.p.t. adversaries A
there exists a negligible function negl such that |Pr[A(ga, gb, gc, ê(g, g)abc) = 1] − Pr[A(ga, gb, gc, ê(g, g)z) =
1]| ≤ negl(n) where in each case the probabilities are taken over the random choice of the generator g, the
random choice of a, b, c, z in Zq and the random bits consumed by A.

Assumption 2 (Boneh-Boyen Hidden Strong Diffie-Hellman (BB-HSDH)). Let x, c1, · · · ct ∈R Zq.
On input g, gx, u ∈ G1, h, h

x ∈ G2 and the tuple {g1/(x+cl), cl}l=1...t, it is computationally infeasible to output
a new tuple (g1/(x+c), hc, uc).

5 Scheme

We present our scheme Π which consists of following algorithms. The full security proof is given in Ap-
pendix A.

Setup(1k): Run G(1k) to obtain (q,G1,G2, ê, n, g, n, g, h). n is an RSA modulus larger than 2kq2 with
generator g. Let skDO = φ(n) and pkDO = {g, n}. In other words, only DO knows the factors of n. n
is another RSA modulus with generator g and h. Note neither factors of n nor log

g
h is known to any

party. Pick secret parameters t, t′, y, y′ which are only known to DO. Make Y = ê(g, g)y, Y ′ = ê(g, g)y
′

,
T = gt, T ′ = gt

′

, et = EnchompkDO
(t), et′ = EnchompkDO

(t′), and πs proving et and et′ are well formed. Output
params← (Y, Y ′, T, T ′, et, et′ , π

s, pkDO, pkCA, n, g, h), mskDO ← (t, t′, y, y′, skDO).

Encrypt(DO(params,mskDO,m)): To encrypt a record m = vΩ = {v1, . . . , vw}, DO chooses random
values s, s′ ∈R Zq and outputs the ciphertext as:

C = (E,E′, {Ei, E
′
i}i∈Ω) .

where E = EncsymY s (m), E′ = Y ′s
′

, Ei = gs·(t+H(i,vi)) and E′
i = gs

′·(t′+H′(i,vi)).

Extract(U(params, Tγ ,vγ),DO(params,mskDO)): This is an interactive protocol between U and DO.

1. U chooses an attribute set γ and constructs Tγ and vγ to fully define a conditional expression it wants
to query. Then it submits Tγ and vγ to DO.

2. DO defines a polynomial Qx(·) of degree kx−1 for each node x in Tγ in a top-down manner. For the root
node r, it sets Qr(0) = y and kr−1 other points of Qr randomly to fully define Qr(·). For any other node
x, it sets Qx(0) = Qparent(x)(index(x)) and chooses kx − 1 other points randomly to completely define

Qx(·). Then it outputs decryption key sk(Tγ ,vγ) = {{ski}i∈γ , Tγ ,vγ} where ski = gQnode(αi)
(0)/(t+H(i,vi)).

DO defines Q′
x(·) in the same way as Qx(·) except that Q′

r(0) = y′. And it outputs search token

tk(Tγ ,vγ) = {{tki}i∈γ , Tγ} where tki = gQ
′
node(αi)

(0)/(t′+H′(i,vi)). Last, DO sends tk(Tγ ,vγ) and sk(Tγ ,vγ) to
U .

Test(S(params, tk(Tγ ,vγ), C)): To test whether an encrypted record C = Encrypt(mskDO,v
′
Ω) matches a

search token tk(Tγ ,vγ) = {{tki = gQ
′
node(αi)

(0)/(t′+H′(i,vi))}i∈γ , Tγ}, it first calculates ΓTγ
from Tγ . The search

operation starts from the first γ′ ∈ ΓTγ
. Let i = attr(x). For each node x in Tγ′ , it computes a value zx in

a down-top manner. For each leaf node x in Tγ′ , S computes zx = ê(tki, E
′
i). We use v′i to denote the value

embedded in E′
i. Note if vi = v′i, zx = ê(gQ

′
x(0)/(t

′+H′(i,vi)), gs
′·(t′+H′(i,v′

i))) = ê(g, g)s
′·Q′

x(0). For each non-

leaf node x, it sets zx =
∏

i∈Sx
(zchildi(x))

∆i,Sx . Note if {vi = v′i}i∈γ′ , zx =
∏

i∈Sx
(ê(g, g))s

′·Q′
childi(x)(0)·∆i,Sx

=
∏

i∈Sx
(ê(g, g))s

′·Q′
x(i)·∆i,Sx = ê(g, g)s

′·Q′
x(0). The procedure continues until it reaches the root node r. If

zr = E′, S outputs ’yes’. Otherwise, it continues to test the next γ′. If all γ′s do not meet the criteria, it
outputs ’no’.

8

1. Setup algorithm picks r, r′ ∈R Zφn
, computes et = htgr, et′ = ht

′

gr
′

and

πs = PK

{

(

t, t′, r, r′, r, r′
)

:
et = htgr mod n2 ∧ ct = gthr mod n ∧ t ∈ {0, 1}lq+lφ+lH+2∧

et′ = ht
′

gr
′

mod n2 ∧ ct′ = gt
′

hr
′

mod n ∧ t′ ∈ {0, 1}lq+lφ+lH+2

}

which is instantiated as follows:
(a) Pick random rt, rt′ ∈R {0, 1}lq+lφ+lH , rr, rr′ ∈R Zφ(n), rr, rr′ ∈R {0, 1}lr+lφ+lH and compute

ẽt = hrtgrr mod n2, c̃t = grthrr mod n, ẽt′ = hrt′ grr′ mod n2, c̃t′ = grt′ hrr′ mod n

(b) Compute c = H(g||h||g||h||et||ct||ẽt||c̃t||et′ ||ct′ ||ẽt′ ||c̃t′).
(c) Make πs = (c, st, sr, sr, st′ , sr′ , sr′) where st = rt+c ·t, sr = rr+c ·r, sr = rr+c ·r, st′ = rt′ +c ·t′,

sr′ = rr′ + c · r′, sr′ = rr′ + c · r′.
Setup publishes et, et′ , π

s.
2. U verifies πs by

(a) computing êt = e−c
t hstgsr , ĉt = c−c

t gsthsr , êt′ = e−c
t′ hst′ gsr′ , ĉt′ = c−c

t′ gst′ hsr′ .

(b) checking if c
?
= H((g||h||g||h||et||ct||êt||ĉt||et′ ||ct′ ||êt′ ||ĉt′)

(c) and checking if st, st′
?
∈ {0, 1}lq+lφ+lH+1

U receives {{rvi , r
′
vi , cvi , c

′
vi}i∈γ , σ} from CA.

U chooses ri,1, r
′
i,1 ∈R Zq, rH, rH′ ∈R Zφ(n) and ri,2, r

′
i,2 ∈R {0, 1, . . . , 2lq+lφ},

computes ei = ((et · h
H(i,vi)grH)ri,1) · hri,2qgrq,i mod n2, e′i = ((et′ · h

H
′(i,vi)grH′)r

′
i,1) · hr

′
i,2qgr

′
q,i mod

n2, ∀i ∈ γ and

πc = PK







































{H(i, vi),H
′(i, vi), H̄i, H̄

′
i}i∈γ

{ri,1, r
′
i,1, ri,2, r

′
i,2}i∈γ

{r̄i, r̄
′
i, rvi , ui, u

′
i}i∈γ



 :

{ei = e
ri,1
t · hH̄i · (hq)ri,2 · gr̄i mod n2

∧e′i = e
r′i,1
t′ · hH̄

′
i · (hq)r

′
i,2 · gr̄

′
i mod n2

∧cvi = gH(i,vi)hrvi mod n ∧ 1 = c
ri,1
vi g−H̄ihui mod n

∧c′vi = gH
′(i,vi)h

r′vi mod n ∧ 1 = c′vi
r′i,1g−H̄

′
ihu

′
i mod n

∧ri,1, r
′
i,1 ∈ {0, 1}lq+lφ+lH+2

∧ri,2, r
′
i,2 ∈ {0, 1}lq+2lφ+lH+2}i∈γ



































which is instantiated as follows:
(a) U picks random {rri,1 , rr′i,1 ∈R {0, 1}lq+lφ+lH , rri,2 , rr′i,2 ∈R {0, 1}lq+2lφ+lH ,

rH̄i
, rH̄′

i
∈R {0, 1}lq+lφ+2lH , rH(i,vi), rH′(i,vi) ∈R {0, 1}lφ+2lH , rr̄i ∈R {0, 1}lr̄i+lφ+lH

rr̄′
i

∈R {0, 1}
l
r̄′
i
+lφ+lH

, rrvi , rr′vi
∈R {0, 1}

lrvi
+lφ+lH , rui ∈R {0, 1}lui

+lφ+lH , ru′
i

∈R

{0, 1}
l
u′
i
+lφ+lH

}i∈γ

and computes {ẽi = e
rri,1
t · h

rH̄i · (hq)
rri,2 · grr̄i mod n2, ẽ′i = e

r
r′
i,1

t′ · h
r
H̄′

i · (hq)
r
r′
i,2 · g

r
r̄′
i mod n2,

c̃vi = g
rH(i,vi)h

rrvi mod n, c̃′vi = g
rH′(i,vi)h

rr′vi mod n, Õi,1 = c
rri,1
vi (1/g)

rH̄i hrui mod n, Õi,2 =

c′vi
r
r′
i,1 (1/g)

rH̄′
i h

r
u′
i mod n}i∈γ

(b) Compute c = H(g||h||g||h||V(ei)||V(e
′
i)||V(cvi)||V(ẽi)||V(ẽ

′
i)||V(c̃vi)||V(c̃

′
vi)||V(Õi,1)||V(Õi,2))

where V(xi) = xk1 || · · · ||xkj
|| · · · ||xk|γ|

in which kj ∈ γ
(c) Make πc = (c, {sri,1 , sr′i,1 , sri,2 , sr′i,2 , sH̄i

, sH̄′
i
, sH(i,vi), sH′(i,vi), sr̄i , sr̄′i , srvi , sr

′
vi
, sui , su′

i
}i∈γ)

where
{sri,1 = rri,1 + c · ri,1, sr′

i,1
= rr′

i,1
+ c · r′i,1, sri,2 = rri,2 + c · ri,2, sr′

i,2
= rr′

i,2
+ c · r′i,2, sH̄i

=

rH̄i
+c·H̄i, sH̄′

i
= rH̄′

i
+c·H̄′

i, sH(i,vi) = rH(i,vi)+c·H(i, vi), sH′(i,vi) = rH′(i,vi)+c·H′(i, vi), sr̄i =

rr̄i+c·r̄i, sr̄′
i
= rr̄′

i
+c·r̄′i, srvi = rrvi+c·rvi , sr′vi

= rr′vi
+c·r′vi , sui = rui+c·ui, su′

i
= ru′

i
+c·u′

i}i∈γ .

U forwards {ei, e
′
i}i∈γ , Tγ , π

c, σ to DO

Fig. 3. The AuthorizedBlindExtract protocol

Decrypt(U(params, tk(Tγ ,vγ), sk(Tγ ,vγ), C)): The decryption algorithm first identifies γ′ satisfying tk(Tγ ,vγ)

as Test algorithm does. Note this step can be omitted if γ′ is provided as input after it is identified by
Test. Then it follows a down-top manner in Tγ′ . Let i = attr(x). Then for each leaf node x ∈ Tγ′ , it

computes zx = ê(ski, Ei). Note since vi equals to v′i, zx = ê(gQx(0)/(ti+t·vi), gs(ti+t·v′
i)) = ê(g, g)s·Qx(0).

9

3. DO verifies σ on Tγ using pkCA and verifies πc by

(a) computing {êi = e−c
i e

sri,1
t · h

sH̄i (hq)
sri,2 · gsr̄i , ê′i = e′i

−c
e
s
r′
i,1

t′
i

· h
sH̄′

i · (hq)
s
r′
i,2 · g

s
r̄′
i , ĉvi =

c−c
vi g

sH(i,vi)h
srvi ,

ĉ′vi = c′vi
−c

g
sH′(i,vi)h

sr′vi , Ôi,1 = O−c
i,1 c

sri,1
vi (1/g)

sH̄i hsui , Ôi,2 = O−c
i,2 c

′
vi

s
r′
i,1 (1/g)

sH̄′
i h

s
u′
i }i∈γ

(b) checking if c
?
= H(g||h||g||h||V(ei)||V(e

′
i)||V(cvi)||V(c

′
vi)||V(êi)||V(ê

′
i)||V(ĉvi)||V(Ôi,1)||V(Ôi,2))

where V(xi) = xk1 || · · · ||xkj
|| · · · ||xk|γ|

in which kj ∈ γ.

(c) and checking if {sri,1 , sr′i,1
?
∈ {0, 1}lq+lφ+lH+1}i∈γ , {sri,2 , sr′i,2

?
∈ {0, 1}lq+2lφ+lH+1}i∈γ

DO starts to define a polynomial Qx(·) of degree kx − 1 for each node x in Tγ in a top-down manner.
For the root node r, it sets Qr(0) = y and kr−1 other points ofQr randomly to fully defineQr. For any
other node x, set Qx(0) = Qparent(x)(index(x)) and choose kx−1 other points randomly to completely
define Qx. DO defines another polynomial Q′

x(·) in the same way as Qx(·) except that Q′
x(0) = y′.

For each i ∈ γ, DO decrypts di = DechomskDO
(ei), d

′
i = DechomskDO

(e′i) and sends ai = gQnode(αi)
(0)/di and

a′
i = g

Q′
node(αi)

(0)/di to U .

4. U computes decryption key ski = ai
ri,1 = gQnode(αi)

(0)/(t+H(i,vi)) and search token tki = a′
i
r′i,1 =

g
Q′

node(αi)
(0)/(t+H(i,vi)) for i ∈ γ.

U verifies ski-s as follows
(a) compute pi = e(ski, T · gH(i,vi)) = e(g, g)Qnode(αi)

(0) for all i ∈ γ.
(b) it starts to compute a value qx for each node x in Tγ in a down-top manner starting from leaves.

For each leaf node x in Tγ , its qx is set to pattr(x). For a non-leaf node x, qx is dependent on
kx. If kx = 1, user first verifies that each qchildi(x), for all i ∈ Sx, is the same. Then it sets
qx = qchildi(x), for arbitrary i ∈ Sx. If kx > 1, it sets qx =

∏

i∈Sx
(qchildi(x))

∆i,Sx .

(c) The procedure continues until it reaches the root node r. Finally, the user checks whether qr
?
= Y .

U verifies tki as it does ski except that qr should be equal to Y ′ this time.

Fig. 3 cont.. The AuthorizedBlindExtract protocol

For non-leaf node x ∈ Tγ′ , it computes zx =
∏

i∈Sx
(zchildi(x))

∆i,Sx =
∏

i∈Sx
(ê(g, g))s·Qchildi(x)(0)·∆i,Sx =

∏

i∈Sx
(ê(g, g))s·Qx(i)·∆i,Sx = ê(g, g)s·Qx(0). The procedure continues until it reaches root r and zr = ê(g, g)s·Qr(0) =

ê(g, g)s·y = Y s is computed. Then user recovers m = Decsym
H(Y s)(E).

BlindExtract(U(params, Tγ ,vγ),DO(params,mskDO)):

1. U first verifies πs. If πs passes verification, then the user chooses ri,1, r
′
i,1 ∈R Zq and ri,2, r

′
i,2 ∈R

[0, . . . , 2kq] and computes

ei = ((et ⊕ Enchompks
(H(i, vi)))⊗ ri,1)⊕ Enchompks

(ri,2 · q), ∀i ∈ γ

e′i = ((et′ ⊕ Enchompks
(H′(i, vi)))⊗ r

′
i,1)⊕ Enchompks

(r′i,2 · q), ∀i ∈ γ

It also computes a zero-knowledge proof πc proving ei, e
′
i are well formed and ri,1, ri,2, r

′
i,1, r

′
i,2 are in

appropriate interval. Then it sends {ei, e
′
i}i∈γ , Tγ , π

c to DO.
2. DO verifies πc to make sure ei, e

′
i, ri,1, r

′
i,1, ri,2, r

′
i,2 are correctly embedded. Then DO starts to define a

polynomial Qx(·) of degree kx − 1 for each node x in Tγ in a top-down manner. For the root node r, it
sets Qr(0) = y and kr − 1 other points of Qr randomly to fully define Qr. For any other node x, set
Qx(0) = Qparent(x)(index(x)) and choose kx − 1 other points randomly to completely define Qx. DO
defines another polynomial Q′

x(·) in the same way as Qx(·) except that Q
′
x(0) = y′. Next, for each i ∈ γ,

DO decrypts di = DechomskDO
(ei), d

′
i = DechomskDO

(e′i) and sends ai = gQnode(αi)
(0)/di and a′i = gQ

′
node(αi)

(0)/d′
i

to U .
3. U computes ski = ai

ri,1 = gQnode(αi)
(0)/(t+H(i,vi)) and tki = a′i

r′i,1 = gQ
′
node(αi)

(0)/(t′+H′(i,vi)) for i ∈ γ.
Then U checks the validity of skis. To do that, it computes pi = e(ski, T · g

H(i,vi)) = e(g, g)Qnode(αi)
(0)

for all i ∈ γ. After that, it starts to compute a value qx for each node x in Tγ in a down-top manner

10

starting from leaves. For each leaf node x in Tγ , its qx is set to pattr(x). For a non-leaf node x, qx is
dependent on kx. If kx = 1, user first verifies that each qchildi(x), for all i ∈ Sx, is the same. Then it sets
qx = qchildi(x), for arbitrary i ∈ Sx. If kx > 1, it sets qx =

∏

i∈Sx
(qchildi(x))

∆i,Sx . The procedure continues

until it reaches the root node r. Finally, the user checks whether qr
?
= Y . If any above verification fails,

U quits. U checks tki in the same way as it does ski except that qr should be equal to Y ′ this time. U
outputs decryption key sk(Tγ ,vγ) = {{ski}i∈γ , Tγ ,vγ} and search token tk(Tγ ,vγ) = {{tki}i∈γ , Tγ}.

Authorize(U(params, Tγ ,vγ), CA(params, skCA)): U submits Tγ ,vγ to CA. CA verifies that U has the
right to search for the conditional expression defined by (Tγ ,vγ). If it approves user request, then CA, on U ’s

behalf, makes pedersen commitments cvi
, c′vi

on each vi ∈ vγ , i.e. cvi
= gH(i,vi)hrvi and c′vi

= gH
′(i,vi)h

r′vi .
Next, CA maps Tγ to a Merkle hash tree. Specifically, it computes a hash value for each node x in Tγ . For each
leaf node x, its hash value is hx = H(kx). For non-leaf node, its hash value is defined as the hash of concate-
nations of its kx and its children’s hash values, i.e. hx = H(kx||hchild1(x)|| · · · ||hchildnumx (x)

). Let hr denote
the hash value for the root node r. CA issues a signature σ on hr and {cvi

, c′vi
}i∈γ , i.e. σ = SignskCA

(hr,
{cvi

, c′vi
}i∈γ), and send {{rvi

, cvi
, r′vi

, c′vi
}i∈γ , σ} back to U .

AuthorizedBlindExtract(U(params, Tγ ,vγ , ψ, open, σ),
DO(params,mskDO)): This protocol is detailed in Fig. 3. Here ψ = {cvi

, c′vi
}i∈γ and open = {rvi

, r′vi
}i∈γ .

The protocol basically follows the BlindExtract protocol except that U needs to prove statements about
commitments using zero-knowledge proof.

6 Performance Analysis

Before presenting performance analysis, we point out two possible improvements to the scheme. First, in
Test algorithm, if the identified matching set γ′ is sent to U , then Decrypt algorithm does not need search
token to seek γ′ again. Second, as pointed out in [1], instead of exponentiating at each level during the
computation of zx in Decrypt, for each leaf node in γ′, we can keep track of which Lagrange coefficient is
multiplied with each other. Using this, we can compute the final exponent fx for each leaf node x ∈ Tγ′ by
doing multiplication in Zq. Now zr is simply

∏

i∈γ′ ê(ski, Ei)
fnode(αi) . The same optimization applies to Test

algorithm.
We now consider the efficiency of the scheme. The Encrypt algorithm takes 2n group exponentiations in

G1. The Extract algorithm takes 2 · |γ| group exponentiations in G1. In BlindExtract algorithm, DO spends
20 · |γ| group exponentiations in G1. U spends 28 · |γ| group exponentiations in G1 plus some verification time
dependent on access tree. The Test algorithm’s performance depends on the access tree Tγ . In conjunction-
only case, it involves 1 test of |γ| pairing and |γ| exponentiation in G2. In disjunction-only case, it involves |γ|
tests of 1 pairing operation. Compared to |γ| pairing overhead in [16,18,19], our scheme has similar overhead
while supporting more flexible queries. The optimized Decrypt algorithm takes |γ′| pairing and |γ′| group
exponentiations in G2.

7 Performance Evaluation

We implemented the proposed scheme in C++ using PBC (ver. 0.57) [30] and OpenSSL (ver. 1.0.0) [31]
library. This section discusses the performance of each function in our scheme. All benchmarks were performed
on a Ubuntu 9.10 desktop platform with Intel Core i7-920 (2.66GHz and 8MB cache) and 6GB RAM.

Since performance of each function only depends on the access tree, we do not consider the performance
impact of the contents associated with leaf nodes. We use a random access tree (in all tests) that is generated
as follows. First we fix the number of leaves, nleaves. Then a random tree height nheight between 1 and 5 is

chosen. The node degree is computed as ndegree = ⌈n
1/nleaves

leaves ⌉. After nleaves, nheight, ndegree is determined,
the random tree is constructed in a down-top manner. At depth l, one parent node is constructed for every
ndegree nodes at depth l+1. If less than ndegree nodes are left at depth l+1, one parent node is constructed

11

1

10

100

1000

10000

100000

 1 10 100 1000

T
im

e
(m

s)

|γ|

Encryption Speed
Extraction (Data Owner)

Decryption Speed
Blind Extraction (Data Owner)

Blind Extraction (User)
Conjunction-only Test
Disjunction-only Test

Fig. 4. Performance of Encryp, Extract, Decrypt vs.
number of attributes.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Data size (MB)

128-bit RC4
128-bit AES CBC

Fig. 5. Symmetric encryption overhead.

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

T
im

e
(m

s)

|γ| X nheight X ndegree

Decryption preparing overhead

Fig. 6. Decryption preparing time.

 0

 50

 100

 150

 200

1 20 40 60 80 100

T
im

e
(m

s)

Test case number

Test overhead

Fig. 7. Performance of Test when |γ| = 10.

for these remaining nodes. The procedure continues until only one parent (root) can be constructed. For
simplicity, we assume the total number of attributes w = |γ| = nleaves.

First we test the speed of Encrypt. Fig. 4 (Encryption Speed line) shows the overhead to compute
Y s, E′, {Ei, E

′
i}i∈Ω versus the number of attributes |γ|. As we can see, its overhead increases linearly with

|γ|. Fig. 5 shows the performance of symmetric encryption, which is needed to compute E = Encsym
H(Y s)(m).

Extract and BlindExtract performance is also shown in Fig. 4. In this test, the threshold gates in the access
tree are chosen randomly. The overhead of Extract (Extraction (Data Owner) line) is solely at DO side and
it increases linearly with |γ|. The overhead of BlindExtract is at both U side and DO side. The overhead at
DO side (Blind Extraction (Data Owner) line) is almost nine times that of normal extraction. The overhead
at U side (Blind Extraction (User) line) doubles that at DO side.

To test Decrypt, we assume γ′ = γ, i.e., all attributes should be involved in the decryption. Since all
threshold gates in Tγ′ should be conjunctive gates, we make them conjunctive in the random access tree
Tγ as well. Fig. 4 (Decryption Speed line) shows the speed to recover Y s. We find that decryption overhead
increases linearly with |γ| and it is even cheaper than extraction. The reason is because pairing operation and

12

exponentiation in G2 is faster than exponentiation in G1
1. Fig. 6 shows the speed of computing fx for all

leaf node x, which is necessary for the optimization of decryption. Its speed is almost linear with the product
of |γ|, tree height and tree degree. Note this part of operation can be conducted offline and only needs to
be computed once for one type of access tree. The performance of Decsym

H(Y s)(E) is same as Encsym
H(Y s)(m) as

shown in Fig. 5.
As to Test performance, it highly depends on the access tree. During the following test, the performance

is recorded in the worst case, i.e. all possible subtrees Tγ′ of Tγ are tried. Fig. 4 shows the conjunction-
only Test and disjunction-only Test performance. As we can see, they all increases linearly with |γ|. The
reason why they are almost the same is because conjunction-only Test has 1 test involving |γ| pairing and
|γ| exponentiation in G2 while disjunction-only Test has |γ| tests involving 1 pairing. To further test Test
operation, we use random access tree. We restrict |γ| to be 10, which is usually enough for normal query,
and set each threshold gate in the tree randomly. Fig. 7 shows the results of 100 test cases. As we can see
the maximum Test time is 170ms and the average Test time is 85ms. In cloud computing scenario, multiple
Test operations can run simultaneously and therefore spending average 85ms on each record is acceptable.

8 Limitation

The proposed scheme has some limitation and it should be considered in future work. First it only supports
equality testing. Practical privacy-preserving comparison is not available yet. Second, it only hides concrete
value in the conditional expression and the structure Tγ is revealed to the adversary. Third, join operations
between two tables are not supported. Fourth, if the set of possible attribute values in γ is small, the
adversary can always try to encrypt something under all possible values and run Test over the encryptions
to see if there is a match. This would reveal vγ within tk(Tγ ,vγ). However, the complexity of such brute force
attacks against this intrinsic weakness of public key-based searchable encryption, grows exponentially with
|γ|. Fifth, DO is required to be online to help U extract search tokens and decryption keys. However, we
expect that this functionality can be finished by some secure hardware that can be safely installed at U side
without compromising mskDO.

9 Conclusion

This paper provides an overview of privacy challenges facing cloud storage and develops a novel encryption
scheme for coping with these challenges. The scheme hides the plaintext of database and user’s query content
from the cloud server. It allows data owner to do content-level fine-grained access control by issuing users
appropriate search tokens and decryption keys. The scheme also supports blind retrieval of search tokens
and decryption keys in the sense neither data owner nor cloud server learns the query content. Additional
feature of user input authorization by CA can also be supported. Our evaluation shows that its performance
falls within the acceptable range.

References

1. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of
encrypted data,” in ACM CCS’06, 2006.

2. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham, “Randomizable proofs
and delegatable anonymous credentials,” in CRYPTO’09, 2009.

3. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM
(JACM), vol. 45, no. 6, pp. 965–981, 1998.

4. M. Rabin, “How to exchange secrets by oblivious transfer,” Harvard Aiken Computation Lab, Tech. Rep. TR-81,
1981.

1 In our benchmark of Type A pairing family in [30], one exponentiation in G1 takes 1.9 ms, one exponentiation in
G2 takes 0.18 ms while one group pairing takes 1.4 ms.

13

5. J. Reardon, J. Pound, and I. Goldberg, “Relational-complete private information retrieval,” University of Wa-
terloo, Tech. Rep. CACR 2007-34, 2007.

6. F. Olumofin and I. Goldberg, “Privacy-preserving queries over relational databases,” in PETS’10, 2010.
7. D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in S&P’00, 2000.
8. Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted data,” in

ACNS’05, 2005.
9. Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving queries on encrypted data,” in ESORICS, 2006.

10. P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted data,” in ACNS’04,
2004.

11. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword search,” in
Eurocrypt’04, 2004.

12. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Eurocrypt’05, 2005.
13. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in S&P’07, 2007.
14. R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with non-monotonic access structures,” in

CCS’07, 2007.
15. B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an encrypted and searchable audit log,” in

NDSS’04, 2004.
16. E. Shi and B. Waters, “Delegating capabilities in predicate encryption systems,” in ICALP’08, 2008.
17. E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig, “Multi-dimensional range query over encrypted

data,” in S&P’07, 2007.
18. D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,” in TCC’07, 2007.
19. J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting disjunctions, polynomial equations, and inner

products,” in Eurocrypt’08, 2008.
20. M. Green and S. Hohenberger, “Blind identity-based encryption and simulatable oblivious transfer,” in ASI-

ACRYPT’07, 2007.
21. J. Camenisch, G. Neven, and abhi shelat, “Simulatable adaptive oblivious transfer,” in EUROCRYPT’07, 2007.
22. N. Koblitz, “Elliptic curve cryptosystems,” in Mathematics of Computation, 1987.
23. P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in EUROCRYPT’99, 1999.
24. J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups,” in CRYPTO’97, 1997.
25. D. Chaum, J.-H. Evertse, and J. Van De Graaf, “An improved protocol for demonstrating possession of discrete

logarithms and some generalizations,” in EUROCRYPT’87, 1988.
26. D. Chaum, “Zero-knowledge undeniable signatures,” in EUROCRYPT’90, 1990.
27. F. Boudot, “Efficient proofs that a committed number lies in an interval,” in EUROCRYPT’00, 2000.
28. D. Boneh and X. Boyen, “Efficient selective-id secure identity based encryption without random oracles,” in

EUROCRYPT’04, 2004.
29. ——, “Short signatures without random oracles,” in EUROCRYPT’04, 2004.
30. B. Lynn, “PBC: The Pairing-Based Cryptography Library,” http://crypto.stanford.edu/pbc/.
31. “OpenSSL,” http://www.openssl.org/.

A Security Proof

The following theorem establishes the security of our scheme.

Lemma 1. The scheme Π is Selective-Set Secure (Def. 1) under the BDH assumption.

Proof. We prove our scheme is Selective-Set Secure through a series of game reductions. Suppose (E,E′, {Ei, E
′
i}i∈Ω)

is an encryption of messagem. We use Game0 to denote the original scheme. In Game1, we replace t+H(i, vi)
with a random number. InGame2, we replace E and each Ei with independent random numbers fromGame1.
In Game3, we replace E′ and each E′

i with independent random numbers from Game2. We use symbol
Gamei ≈ Gamei+1 to denote that the view to A in Gamei and Gamei+1 are indistinguishable. Our goal is
to show that Game0 ≈ Game1 ≈ Game2 ≈ Game3 if A never queries OExtract(params,mskDO, Tγ ,vγ) such
that Tγ(vγ ,m) = 1. The following argument establishes the indistinguishability between each two immediate
games.

Game0 ≈ Game1 : It is obvious that Game0 and Game1 are indistinguishable because H(i, vi) can always
return random values for each random oracle query.

14

http://crypto.stanford.edu/pbc/
http://www.openssl.org/

Game1 ≈ Game2 : In order to show that Game1 and Game2 are indistinguishable, we need to rely on BDH
assumption. Given a BDH challenge (A,B,C,Z), the reducation algorithm sets Y = ê(A,B) = ê(g, g)ab

and E = EncsymZ (m). For each i ∈ Ω, it picks ri and sets Ei = Cri . Let s = c so we have Y s =
(ê(g, g)ab)c = ê(g, g)abc. When (A,B,C,Z) = (ga, gb, gc, ê(g, g)abc), we have Y s = Z and Ei = (gri)s.
Therefore the view to A in this case is equivalent to Game1. When (A,B,C,Z) = (ga, gb, gc, ê(g, g)z),
E and Ei becomes independent random values. Therefore the view to A in this case is equivalent to
Game2.
One remaining part for the above argument is to show that the reducation algorithm is able to answer
OExtract(params,mskDO, Tγ ,vγ) when Tγ(vγ ,m) 6= 1. Since E′, {E′

i}i∈Ω are not replaced in Game1,
tkTγ ,vγ

can still be generated following normal operations in Extract(U(params, Tγ ,vγ),DO(params,mskDO)).
To generate skTγ ,vγ

, reduction needs to assign a polynomial Qx of degree dx = kx − 1 for every node in
Tγ such that Qr(0) = y = ab. We make Qx(·) = b · qx(·) and start to define qx(·) instead. Note qr(0) = a.
We first define the following two procedures: CoKnown and CoUnknown.
CoKnown(x, λx) This procedure sets up the polynomial for the nodes of an access subtree with root

node x and qx(0) = λx. Note, in this procedure, λx is known.
It first sets up a polynomial qx of degree dx for the root node x. It sets qx(0) = λx and then sets rest
of the points randomly to completely fix qx. Now it sets polynomials for each child node x′ of x by
calling the procedure CoKnown(x′, qx(index(x

′))). Notice that in this way, qx′(0) = qx(index(x
′))

for each child node x′ of x.
CoUnknown(x, λx) This procedure sets up the polynomials for the nodes of an access subtree with root

node x. Note, in this procedure, λx is unknown but gλx is known. Therefore this procedure makes
gqx(0) = gλx .
It first defines a polynomial qx of degree dx for the root node x such that gqx(0) = gλx . Because the
access subtree is unsatisfied, no more than dx children of x are satisfied. Let hx ≤ dx be the number
of satisfied children of x. For each satisfied child x′ of x, the procedure chooses a random point
λx′ ∈ Zp and sets qx(index(x

′)) = λx′ . It then fixes the remaining dx − hx points of qx randomly to
completely define qx. Now the algorithm recursively defines polynomials for the rest of the nodes in
the tree as follows. For each child node x′ of x, the algorithm calls:
CoKnown(x′, qx(index(x

′))) if x′ is a satisfied node. Notice that qx(index(x
′)) is known in this case.

CoUnknown(x′, qx(index(x
′)) if x′ is not a satisfied node. Notice that only gqx(index(x

′)) can be
obtained by interpolation as only gqx(0) is known in this case.

To define qx(·) for each node x of Tγ , reduction runs CoUnknown(r, a) where r is the root node of
Tγ and ga = A. Note, for each leaf node x, qx(0) is known if x is satisfied and gqx(0) is known if x
is unsatisfied. Now we define Qx(·) = b · qx(·). Therefore, The key corresponding to a satisfied node is

Dx = g
Qx(0)

ri = g
bqx(0)

ri = B
qx(0)

ri . For unsatisfied node, we choose a random number βi ∈ Zp and make

ri = bβi. Then the key corresponding to an unsatisfied node is Dx = g
Qx(0)

ri = g
bqx(0)
bβi = g

qx(0)
βi . This

finishes the procedure for answering OExtract(params,mskDO, Tγ ,vγ).
In sum, differentiating Game1 from Game2 is equivalent to breaking BDH assumption and thus we have
Game1 and Game2 are indistinguishable.

Game2 ≈ Game3 : This reduction is similar to the reduction from Game1 to Game2 except that E′, {E′
i}

are replaced this time.

Going back to the Def. 1, since c∗ can be replaced with random values without presenting distinguishable
views toA as long asA not queryingOExtract(params,mskDO, Tγ ,vγ) with Tγ(vγ ,m1) = 1 or Tγ(vγ ,m2) = 1.
Therefore the advantage of A in winning the Selective-Set Secure game is negligible.

Lemma 2. BlindExtract is a leak-free (Def. 2) protocol.

Proof. To show that BlindExtract is leak-free. We should construct a simulator that talks to a trusted party
to obtain {ski, tki}i∈γ and simulates to the malicious user. The simulator is constructed as follows:

1. Simulator runs Setup(1k) and publishes et as Enc
hom
pkDO

(0), et′ as Enc
hom
pkDO

(0).

15

2. Simulator receives {ei, e
′
i}i∈γ , Tγ , π

c from A and verifies πc to ensure {ei, e
′
i}i∈γ are computed correctly.

3. Simulator runs the zero-knowledge proof extraction algorithm and extracts {H(i, vi),H
′(i, vi), ri,1, r

′
i,1}i∈γ

from πc.
4. Simulator submits Tγ , {H(i, vi),H

′(i, vi)}i∈γ to a trusted party which honestly computes and returns
{ski, tki}i∈γ to the simulator.

5. Simulator returns {sk
1/ri,1
i , tk

1/r′i,1
i }i∈γ to A.

Now we need to show that the view to A when talking to this simulator is indistinguishable from the view
in the real game. We prove this through a series of games.

Game0 : This is essentially the real game.
Game1 : In this game, A interacts with a simulator S′ that behaves the same as the final simulator from

step 3 and behaves as the real protocol in step 1 and 2.
Game2 : This is essentially the final simulator. It only differs from the Game1 in that et, et′ are generated

by encrypting 0.

Game0 is indistinguishable from Game1 due to the soundness and extraction property of the zero-knowledge
proof system. Game1 is indistinguishable from Game2 due to the semantic security of the encryption scheme.
Therefore the probability that A can differentiate Game0 from Game2 is negligible.

Lemma 3. BlindExtract is a selective-failure (Def. 3) blind protocol.

Proof. To show that BlindExtract is selective-failure blind, we first show that malicious server cannot learn
useful information during the interaction with the user. we construct a simulator that simulates to the
malicious server. The simulator is constructed as follows:

1. Simulator receives et and et′ from A and extracts t, t′ from πs.
2. Simulator chooses a random value {ri, r

′
i ∈R [0, 2kq2]}i∈γ . It computes {ei = EnchompkS

(ri), e
′
i = EnchompkS

(r′i)}i∈γ

and sends {ei, e
′
i}i∈γ to A.

3. Simulator simulates the zero knowledge proof to A.

Now we need to show that the view to A when talking to this simulator is indistinguishable from the view
in the real game. We prove this through a series of games.

Game0 : This is essentially the real game.
Game1 : It is the same as Game0 except that we use zero-knowledge simulation to do the proof in step 3.
Game2 : This is essentially the final simulator. It only differs from the Game1 in that ei, e

′
i are generated

by computing {ei = EnchompkS
(ri), e

′
i = EnchompkS

(r′i)}i∈γ instead of ei = ((et ⊕ Enchompks
(H(i, vi))) ⊗ ri,1) ⊕

Enchompks
(ri,2 · q), e

′
i = ((et′ ⊕ Enchompks

(H′(i, vi)))⊗ r
′
i,1)⊕ Enchompks

(r′i,2 · q).

Game1 is indistinguishable from Game0 due to the property of zero-knowledge proof system. Game2
is indistinguishable from Game1 because (t +H(i, vi)) · ri,1 + ri,2 · q is uniformly distributed over [0, 2kq2],
therefore indistinguishable from ri. Similarly, (t′+H′(i, vi))·r

′
i,1+r

′
i,2 ·q is indistinguishable from r′i. Therefore

the probability that A can differentiate Game0 from Game2 is negligible.
Going back to the Def. 3, A can run one or both of the oracles up to the point {ei, e

′
i}i∈γ are received.

Based on above argument, ei, e
′
i is indistinguishable from an encryption of random value distributed over

[0, 2kq2], and therefore the distribution of the two oracles are computationally indistinguishable. Now we
show that A can predict the output s0, s1 without further interaction with the oracles:

1. A does the verification of step 3 in BlindExtract. If the verification fails, it records s0 = ⊥. Otherwise, A
records s0 = Extract(U(params, T ,v0),S(params,mskS)).

2. In turn, A records s1 as it does for s0.
3. Finally A predicts (s0, s1), if both s0 6= ⊥ and s1 6= ⊥; A predicts (ǫ,⊥) if only s1 = ⊥; A predicts (⊥, ǫ)

if only s0 = ⊥; and A predicts (⊥,⊥) if s0 = s1 = ⊥.

These predictions result in the same distributioins as that returned by the oracle, as the same checks are
preformed.

16

	Enhancing Data Privacy in the Cloud
	 Yanbin Lu and Gene Tsudik

