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Sarkar∗

Computer Science Department, CINVESTAV-IPN
2508 Av. IPN, San Pedro Zacatenco

Mexico City 07360, Mexico

∗Applied Statistics Unit
Indian Statistical Institute,

203 B.T Road, Kolkata 700108,
India

Abstract. A new class of polynomials was introduced by Bernstein (Bernstein 2007) which
were later named by Sarkar as Bernstein-Rabin-Winograd (BRW) polynomials (Sarkar 2009).
For the purpose of authentication, BRW polynomials offer considerable computational advan-
tage over usual polynomials: (m− 1) multiplications for usual polynomial hashing versus bm

2
c

multiplications and dlog2 me squarings for BRW hashing, where m is the number of message
blocks to be authenticated. In this paper, we develop an efficient pipelined hardware architec-
ture for computing BRW polynomials. The BRW polynomials have a nice recursive structure
which is amenable to parallelization. While exploring efficient ways to exploit the inherent
parallelism in BRW polynomials we discover some interesting combinatorial structural prop-
erties of such polynomials. These are used to design an algorithm to decide the order of the
multiplications which minimizes pipeline delays. Using the nice structural properties of the
BRW polynomials we present a hardware architecture for efficient computation of BRW poly-
nomials. Finally we provide implementations of tweakable enciphering schemes proposed in
Sarkar 2009 which uses BRW polynomials. This leads to the fastest known implementation of
disk encryption systems.

1 Introduction

Polynomial hashes are an important part of many cryptographic protocols like message authentica-
tion codes, authenticated encryption, tweakable enciphering schemes (TES), etcetera. These schemes
generally involve the computation of an univariate polynomial of degree m− 1 defined over a finite
field Fq as,

Polyh(X) = x1h
m−1 + x2h

m−2 + · · ·+ xm−1h + xm, (1)

where X = (x1, . . . , xm) ∈ Fm
q and h ∈ Fq. Traditionally, the evaluation of Polyh(X) has been done

using Horner’s rule, which requires (m− 1) multiplications and m− 1 additions in Fq. In the rest of
this paper, we will refer to Polyh() as a normal polynomial.

Recently, Bernstein [1] introduced a new class of polynomials which were later named in [22]
as Bernstein-Rabin-Winograd (BRW) polynomials. BRW polynomials on m message blocks defined
over Fq have the interesting property that they can be used to provide authentication, but, unlike
the normal polynomial they can be evaluated using only bm

2 c multiplications in Fq and dlog2 me
squarings. Thus, these polynomials potentially offer a computational advantage over the normal
ones.



The use of BRW polynomials in hardware has not been addressed till date. As will be clear from
discussions later, the structure of a BRW polynomial is fundamentally different from the normal
ones, and there are some subtleties associated to their efficient implementation that are worth of
further analysis.

In particular, the recursive definition of a BRW polynomial gives it a certain structure which
is amenable to parallelization. It turns out that to take advantage of this parallel structure one
needs to carefully schedule the order of multiplications involved in the polynomial evaluation. The
scheduling is determined by the dependencies in the multiplications and also by the desired level of
parallelization and hardware resources available.

The contributions of this paper are twofold. Firstly, we present a hardware architecture for
efficient evaluation of BRW polynomials. The hardware design heavily depends on the careful analysis
of the inherent parallelism in the structure of a BRW polynomial. This leads to a method to determine
the order in which the different multiplications are to be performed.

We present an algorithm that schedules in an efficient fashion, all the bm
2 cmultiplications required

for the evaluation of a BRW polynomial keeping in mind the amount of parallelism desired. This
algorithm leads to a hardware architecture that can perform an optimal computation of BRW
polynomials in the sense that the evaluation is achieved using a minimum number of clock cycles.

As our second contribution, we present efficient hardware implementations of two TESs which
use BRW polynomials. Comparisons are made with various other existing constructions which make
use of normal polynomials. One of the most important applications of a TES is disk encryption. As
a consequence of our implementation and comparative study, we conclude that TES schemes using
BRW polynomials provide the fastest options for disk encryption.

Computing BRW polynomials in hardware: From the point of view of hardware realizations,
the most crucial building block of a polynomial hash function is a field multiplier. Digit-serial multi-
pliers yield compact designs in terms of area and enjoy short critical paths but they require several
clock cycles in order to compute a single field multiplication. In contrast, fully-parallel multipliers
are able to compute one field multiplication every clock cycle. However, due to their large critical
path, these multipliers seriously compromise the design’s maximum achievable clock frequency.

Since polynomial hash blocks require the batch computation of a relatively large number of
products, it makes sense to utilize pipelined multiplier architectures. In this work, we decided to
utilize a k-stage pipeline multiplier with k = 2, 3. After a latency period required to fill up the pipe,
these architectures are able to perform one field multiplication every clock cycle. The advantage is
a much shorter critical path than the one associated with fully parallel multiplier schemes [2].

In using a pipelined multiplier, our main concern is to find a proper ordering of the multipli-
cations which would minimize the delay in the pipeline. In the ideal case there should always be
multiplications ready to be done at every clock cycle. Another objective is to reduce the need to
store the intermediate results so that one can minimize the extra storage locations utilized in the
circuit.

To achieve this we analyze the structure of the BRW polynomial. Our analysis views the polyno-
mial as a tree where addition and multiplication nodes are interconnected with each other. Viewing
the BRW polynomial as a tree immediately gives us information about the dependence of the various
operations required for its computation.

We discover some interesting properties of the tree, and use these properties to design a scheduling
algorithm. The scheduling algorithm takes as input a BRW polynomial and the desired number of
pipeline stages and outputs the schedule (or order) in which the different multiplications are to be
performed. This schedule has several attractive features.



1. For pipeline structures with two or three stages, we give a full characterization of the number of
clock cycles that is required for computing the polynomial.

2. The schedule ensures that the pipeline delays would be minimal.
3. The scheduling algorithm greedily attempts to minimize the storage. We show that the require-

ment of extra storage grows very slowly with the increase in the number of blocks.

Utilizing the schedule produced by the scheduling algorithm we came out with a hardware archi-
tecture that is meant for computing BRW polynomials with a fixed number of message blocks. We
show-case a specific architecture which uses 31 blocks of messages and a 3-stage pipelined Karatsuba
multiplier. Two variants of the architecture are discussed. In the first one, the field squaring opera-
tions are computed on the fly, whereas in the second variant the field squarings are pre-computed.
Advantages and disadvantages of the two approaches are compared. Finally, we show that the de-
sign philosophy is scalable and can be utilized for different pipeline stages and different number of
message blocks.

Tweakable enciphering schemes using BRW polynomials: In the second contribution of
this paper, we use BRW polynomials for efficient hardware implementation of TESs. These are
length preserving block-cipher modes of operations which provide security in the sense of strong
pseudorandom permutations. A fully defined TES for arbitrary length messages using a block cipher
was first presented in [12]. In [12] it was also first stated that a possible and important application
area for such type of encryption schemes is low level disk encryption.

Since then, there has been a lot of activity towards constructions and analysis of such schemes,
producing so far more than ten proposals and the hardware and software implementation of most
of them.

Most TES proposals fall into three basic categories: Encrypt-Mask-Encrypt type, Hash-ECB-
Hash type and Hash-Counter-Hash type. The schemes which fall within the first category use two
layers of encryption with a light weight masking layer in-between. Examples are the modes CMC [12],
EME [13], EME∗ [10].

The constructions of the other two categories use two layers of hashing with a single layer of
encryption between the two hash layers. In the Hash-ECB-Hash type constructions an electronic
code book mode forms the encryption layer whereas in the case of Hash-Counter-Hash constructions
a counter mode of operation is used for the encryption layer. Some modes of Hash-ECB-Hash type
are PEP [5], TET [11], HEH [21], whereas the modes XCB [18], HCTR [24], HCH [6], ABL [19] fall
under the Hash-Counter-Hash type.

The main component of Encrypt-Mask-Encrypt type constructions are block-ciphers, and to
encrypt an m block message these constructions require about 2m block cipher calls. On the other
hand, the constructions of the type Hash-ECB-Hash and Hash-Counter-Hash require computation
of two polynomial hash functions in addition to the block cipher calls. These constructions require
about m block-cipher calls along with additional finite field multiplications to encrypt an m block
message.

The modes that have been mentioned above use a normal polynomial evaluation, i.e., they com-
pute the function Polyh(). The modes PEP, TET, HEH, HCH, HCTR, XCB all require the evaluation
of two such polynomials each of them on about m blocks, thus these modes require 2m finite field
multiplications and about m block-cipher calls. 1

In a recent work [22], a class of new TESs was reported, which can be instantiated either by a
normal polynomial or a BRW polynomial. The usage of BRW polynomial has the advantage that
it can hash m blocks using about m/2 multiplications whereas normal polynomial evaluation would

1 Note that the operations counts given here are approximate for the ease of discussion, see Table 1 of [17]
for the exact operation counts.



require m multiplications. This decreases the computation cost significantly over the previously
known modes.

Almost all known TES schemes known before [22] were implemented in various hardware plat-
forms in [17]. In [17], a careful analysis of the possible parallelism for all the modes was done and
the designs tried to exploit the schemes’ parallelism to their fullest extent. The designs were tar-
geted towards Virtex 4 family of FPGAs and the main design goal was speed. The design used a
ten-stage pipelined AES encryption/decryption core. For hashing a fully parallel Karatsuba multi-
plier was employed for performing the field multiplications. In those modes where both block-cipher
and multiplier blocks were required, the critical path was decided by the later block. The obtained
throughput figures were satisfactory with the design goal which was meant to match the speed of
the modern day disk controllers (the interested reader can see [17] for a detailed discussion of the
design decisions and the results obtained in that work). In [17], the constructions reported in [22]
were not included as these constructions are more recent.

In this work we provide efficient hardware implementations of some of the most efficient schemes
reported in [22]. The fundamental difference of the schemes reported in [22] from the previous
schemes is in the use of the BRW polynomials which are significantly different in structure from
the normal polynomials. Using our analysis and implementation of BRW polynomials significantly
brings down the length of the critical path. Further, due to the drastic reduction in the required
number of field multiplications, the latency of the whole circuit also goes down. The combined effect
is to provide significantly higher throughput compared to the designs studied in [17].

The constructions in [22] can also be instantiated using a normal polynomial. We compare the
performance of the different instantiations. For a TES using normal polynomials we also use a
pipelined multiplier and run parallel instances of the Horner’s rule. Our strategy of computing a
normal polynomial using pipelined multipliers is similar to the strategy used in [23].

The organization of the rest of the paper is as follows. In Section 2, we define the BRW polyno-
mials and present a tree based analysis of such polynomials. Using the tree structure of the BRW
polynomials we develop a scheduling algorithm and provide analysis of the scheduling algorithm.
Finally, based on the scheduling algorithm we present the hardware architecture for computing BRW
polynomials. In Section 3 we provide implementation details of the hardware architecture used for
evaluating a BRW polynomial.

In Section 4, we describe the algorithms HEH and HMCH, which are the two new tweakable
enciphering schemes proposed in [22]. These algorithms are analyzed from the perspective of efficient
hardware implementation and specific design decisions are formulated. In Section 5, we discuss the
experimental results obtained from our hardware realizations. The paper is concluded in Section 6.

2 BRW Polynomials

A special class of polynomials was introduced in [1] for fast polynomial hashing and subsequent use
in message authentication codes. In [1] the origin of these polynomials were traced back to Rabin
and Winograd [20], but the construction presented in [1] has subtle differences compared to the
construction in [20]. The modifications were made keeping an eye to the issue of computational
efficiency. Later in [22] these polynomials were used in the construction of tweakable enciphering
schemes and the class of polynomials were named as Bernstein-Rabin-Winograd (BRW) polynomials.

Let X1, X2, . . . , Xm, h ∈ Fq, then the BRW polynomial Hh(X1, . . . , Xm) is defined recursively as
follows.

– Hh() = 0



– Hh(X1) = X1

– Hh(X1, X2) = X2h + X1

– Hh(X1, X2, X3) = (h + X1)(h2 + X2) + X3

– Hh(X1, X2, . . . , Xm) = Hh(X1, . . . , Xt−1)(ht + Xt)⊕Hh(Xt+1, . . . , Xm), if t ∈ {4, 8, 16, 32, . . .}
and t ≤ m < 2t.

Computationally the most important property is that for m ≥ 2, Hh(X1, . . . , Xm) can be computed
using bm/2c multiplications and dlg me squarings. In the rest of the paper, we will use either Hh()
or BRWh() to denote a BRW polynomial.

2.1 A Tree Based Analysis

A BRW polynomial Hh(X1, . . . , Xm) can be represented as a tree Tm which contains three types
of nodes, namely, multiplication nodes, addition nodes and leaf nodes. The tree Tm will be called a
BRW tree and can be recursively constructed using the following rules:

1. For m = 2, 3 it is easy to construct Tm directly as shown in Fig. 1.
2. If m = 2s, for some s ≥ 2, the root of Tm is a multiplication node. The left subtree of the root

consists of a single addition node which in turn has the leaf nodes hm and Xm as its left and
right child, respectively. The right subtree of the root is the tree Tm−1.

3. If 2s < m < 2s+1 for some s ≥ 2, the root is an addition node with its left subtree as T2s and
the right subtree as Tm−2s .

(a) (b)

Fig. 1. Trees corresponding to m = 2, 3. The nodes labeled with ¯ and ⊕ represent a multiplication
node and an addition node respectively. (a) Tree corresponding to Hh(X1, X2). (b) Tree corresponding
to Hh(X1, X2, X3).

A construction of the BRW tree T16 corresponding to the polynomial Hh(X1, . . . , X16) is shown
in Fig. 2. According to this construction, the following two properties hold.

– Any leaf node is either a message block Xj or it is hk, for some j, k.
– For a multiplication node, either, its left child is labeled by a message block Xj and the right

child is labeled by h; or, its left child is an addition node which in turn has a message block Xj

and hk as its children for some j and k. As a consequence, for a multiplication node, there is
exactly one leaf node in its left subtree which is labeled by a message block.



As we are only interested in multiplications, we can ignore the addition nodes and thus simplify the
BRW tree by deleting the addition nodes from it. We shall address the issue of addition later when
we describe our specific design in Section 3, and we would then see that ignoring the additions as
we do now will not have any significant consequences from the efficient implementation perspective.
We reduce the tree Tm corresponding to the polynomial Hh(X1, . . . , Xm) to a new tree by applying
the following steps in sequence.

1. Label each multiplication node v by j where Xj is the leaf node of the left subtree rooted at v.
2. Remove all nodes and edges in the tree Tm other than the multiplication nodes.
3. If u and v are two multiplication nodes, then add an edge between u and v if u is the most recent

ancestor of v in Tm.

The procedure above will delete all the addition nodes from the tree Tm. We shall call the
resulting structure a collapsed forest (as the new structure may not be always connected, but its
connected components would be trees) and denote it by Fm. Note that for every m, there is a unique
BRW tree Tm and hence a unique collapsed forest Fm.

The collapsed forests corresponding to polynomials Hh(X1, . . . , X16) and Hh(X1, . . . , X30) are
shown in Fig. 3.

By construction, the number of nodes in a collapsed forest Fm is equal to the number of multi-
plication nodes in Tm. The nodes of Fm are labeled with integers. Label j of a node in Fm signifies
that either the multiplicands are Xj and h; or, one of the multiplicands is (Xj + hk) for some k. As
a result, there is a unique multiplication associated with each node of a collapsed forest.

For example, the multiplication (X2 +h2)∗ (X1 +h) is associated to the node labeled 2 in Fig. 3.
Refer to Fig. 1 to see this. Similarly, if the outputs of nodes labeled 4 and 6 are A and B respectively,
then the multiplication associated with the node labeled 8 is (X8 + h8) ∗ (A + B + X7).

This procedure easily generalizes and it is possible to explicitly write down the unique multiplica-
tion associated with any node of a collapsed forest. So, the problem of scheduling the multiplication
in Tm reduces to obtaining an appropriate sequencing (linear ordering) of the nodes of Fm.

Fig. 2. The BRW tree representing Hh(X1, . . . , X16).



(a) (b)

Fig. 3. (a) Collapsed forest corresponding to Hh(X1, . . . X16). (b) Collapsed forest corresponding to
Hh(X1, . . . X30).

The structure of the collapsed forest corresponding to a polynomial Hh(·) helps us to visualize
the dependencies of the various multiplications involved in the computation of Hh(·). The following
definitions would help us to characterize dependencies among those operations.

Definition 1. Let v be a node in a collapsed forest F , the level of v in F denoted by levelF (v) is
the number of nodes present in the longest path from v to a leaf node. A node v in F such that
levelF (v) = 0 is said to be independent. Any node v with levelF (v) > 0 is said to be dependent.

Definition 2. Suppose u, v are nodes in a collapsed forest F such that levelF (u) > levelF (v) and u
is an ancestor of v in F , then we say that u is dependent on v.

In the following proposition, we state some important properties of collapsed forests. The proofs
are a bit tedious and are obtained from the recursive structure of Fm which is in turn, inherited
from the recursive structure of Tm.

Proposition 1. Let Fm be a collapsed forest corresponding to the BRW polynomial Hh(X1, . . . , Xm).

1. The number of nodes in Fm is bm
2 c.

2. The nodes in Fm are labeled by integers 2i, 1 ≤ i ≤ bm
2 c.

3. If m is even then Fm and Fm+1 are same.
4. The number of connected components in Fm is equal to the hamming weight of bm

2 c.
5. Let p = bm/2c and biti(p) denote the ith bit of p where 0 ≤ i ≤ len(p). If biti(p) = 1 then Fm

contains a tree of size 2i.
6. If x is a label of a node and x ≡ 2 mod 4 then the node is an independent node.
7. If x is a label of a node and x ≡ 0 mod 8 then x has at least x− 2 and x− 4 as its children.
8. If x is the label of a node and x ≡ 4 mod 8, then x− 2 is the only child of x.

2.2 Scheduling of Multiplications

Our goal, as stated earlier, is to design a circuit for computing BRW polynomials using a pipelined
multiplier. If we use a pipelined multiplier with N stages, then N clock cycles would be required to
complete one multiplication, but in each clock cycle N different multiplications can be processed,
as long as these N multiplications happen to be independent of each other, i.e., none of these N
multiplications should depend on the results of the others. Thus, if it can be guaranteed that N
independent multiplications are available in each clock then the circuit will require m + N clock



cycles to complete m multiplications (there would be an initial latency of N clocks for filling the
pipe and thereafter the result of one multiplication would be produced in each subsequent clock
cycle).

A collapsed forest is a convenient way to view the dependencies among the various multiplications
which are required to compute a BRW polynomial. In this section, we propose an algorithm Schedule
which uses a collapsed forest to output a multiplication schedule. The aim of the algorithm is to
minimize the number of clock cycles.

For designing the scheduling algorithm we require two lists L1 and L2. For a list L and an element
x of L, we shall require the following operations.

1. Pop(L): returns the first element in L; or, returns NULL if L is empty.
2. Delete(L): deletes the first element in L.
3. Insert(x, L): inserts x in L and x becomes the last element in L.

Note that Pop(L) does not delete the first element from L. Two successive pop operations from L
without any intermediate delete operation will result in the same element.

Each node in the collapsed forest is given two fields NC and ST associated with it. If x is a node
in the collapsed forest then x.NC represents the number of children of node x, and x.ST denotes the
time at which the node x was inserted into the list L2 (the requirement of ST will become evident
soon). Let Parent(x) denote the parent of node x in the collapsed forest.

The algorithm for scheduling is described in Fig.4. The algorithm uses a function Process which
is also depicted in Fig. 4. The inputs to the algorithm are m and a variable NS which represents the
number of pipeline stages. The outputs from Step 103 of Process form a sequence of integers. This
provides the desired sequence of multiplications.

Before the main while loop begins (in line 11) the list L1 contains all the independent nodes
in the collapsed forest corresponding to the given polynomial and L2 is empty. Within the while
loop no nodes are inserted in L1, but new nodes are inserted into and gets deleted from L2. L2 is
a queue, i.e., the nodes gets deleted from L2 in the same order as they enter it. The way we define
the operations Pop(),Delete() and Insert() guarantee this.

At any given clock-cycle, the nodes in the forest can be in four possible states: unready, ready,
scheduled and completed. A node x is unready if there exist a node y on which x is dependent but y
has not been completed yet. A node becomes ready if all nodes on which it depends are completed.
A node can only be scheduled after it is ready. Once a node is scheduled it takes NS clock cycles to
get completed.

In the beginning, the nodes with level zero, i.e., the independent nodes are the only nodes in the
ready state all others being in the unready state. These independent nodes are listed in L1 at the
beginning, no more nodes are further added to L1. Thus, the nodes in L1 can be scheduled at any
time. As the algorithm proceeds, nodes gets scheduled in line 102 of the function Process.

After a node is scheduled the algorithm updates the field NC (number of children) of its parent.
When the last child of a given node x is scheduled then x is inserted into the list L2, and in the field
ST of x a record of the time when its last child was scheduled is kept.

If a node is in L2 then it is sure that all its children have been scheduled but not necessarily
completed. The condition in line 12 checks if the last child of a given node in L2 has already been
completed and if a node x passes this check then it is ready to be scheduled.

For each execution of the while loop (lines 10 to 20) at most one node gets scheduled and once
a node is scheduled it is deleted from the corresponding list. The condition on the while loop (line



Algorithm Schedule(m,NS)
1. Construct the collapsed forest Fm;
2. for each node x in Fm

3. x.NC ← number of children of x;
4. x.ST ← undefined;
5. if levelFm(x) = 0,
6. Insert(x, L1);
7. end for
8. L2 ← Empty;
9. clock ← 1;
10. while (L1 and L2 are both not empty)
11. x ← Pop(L2);
12. if (x 6= NULL and clock− x.ST > NS)
13. Process(x, L2, clock);
14. else
15. x ← Pop(L1);
16. if (x 6= NULL))
17. Process(x, L1, clock);
18. end if;
19. clock ← clock + 1;
20. end while

Function Process(x, L,clock)
101. Delete(L);
102. y ← Parent(x);
103. Output x;
104. if y 6= NULL
105. y.NC ← y.NC− 1;
106. if (y.NC = 0)
107. y.ST = clock;
108. Insert(y, L2);
109. end if;
110. end if;
111. return

Fig. 4. The algorithm Schedule



10) checks whether both the lists are empty and the condition on line 12 checks whether the first
element of L2 is ready, in the next two propositions we state why these checks would be sufficient.

Proposition 2. If L1 and L2 are both empty then there are no nodes left to be scheduled. Further,
the algorithm terminates, i.e., the condition that L1 and L2 are both empty is eventually attained.

Proof. Suppose both L1 and L2 are empty but there is a node v which is left to be scheduled. As
L1 contains all independent nodes in the beginning and it is empty thus v is not an independent
node. As v has not been scheduled and it is not in L2 thus there must be a child of v which has not
been scheduled. As there must exist a path from v to some independent node x, applying the same
argument repeatedly we would conclude that there exist some independent node x which has not
been scheduled. This give rise to a contradiction as L1 is empty.

For the second statement, note that as long as L1 is non-empty, each iteration of the while loop
results in exactly one node of Fm been added to the schedule. This node is either a node in L2 (if
there is one such node), or, it is a node of L1.

Once L1 becomes empty, if L2 is also empty, then by the first part, the scheduling is complete.
If L2 is non-empty, then let v be the first element of L2. It may be possible that an iteration of
the while loop does not add a node to the existing schedule. This happens if clock − v.ST ≤ NS.
But, the value of v.ST does not change while the value of clock increases. So, at some iteration,
the condition clock − v.ST > NS will be reached and the node v will be output as part of the call
Process(v, L, clock). ut

Proposition 3. If the first element of L2 is not ready to be scheduled then no other elements in L2

would be ready.

Proof. Let v be the first element in L2, as v is not ready to be scheduled, hence clock− v.ST ≤ NS.
Let u be any other node in L2, as u was added to L2 later than v thus u.ST > v.ST and so
clock− u.ST < clock− v.ST < NS. Thus, u is also not ready to be scheduled. ut

Example 1. We give an example of the running the algorithm for m = 16 and NS = 2. The collapsed
tree corresponding to the BRW polynomial Hh(X1, X2, . . . , X16) is shown in Fig. 3(a). The inde-
pendent nodes in the tree are 2 , 6 , 10 , 14 and according to line 6 of the algorithm Schedule these
nodes are inserted in the list L1, and initially L2 is empty. The contents of the two lists along with
the output in each clock is shown in Fig. 5. The entries in the list L2 are listed as x(y), where x
is the label of the node and x.ST = y. Figure 5 shows that after clock 9 both the lists L1 and L2

become empty and thus the algorithm stops. There is no output produced in clock 8 as in clock 8 L1

is empty and the only node in L2 is not ready as its start time is 7, which means that its ultimate
child got scheduled in clock 7 and thus is yet to be completed. The following sequence of nodes is
produced as output of Schedule.

2 , 6 , 4 , 10 , 8 , 12 , 14 , 16 .

We describe the scheduling of multiplications corresponding to this sequence. Again refer to
Fig. 2.

M1: R1 = (X2 + h2)(X1 + h);
M2: R2 = (X6 + h2)(X5 + h);
M3: R3 = (X4 + h4)(X3 + R1);
M4: R4 = (X10 + h2)(X9 + h);
M5: R5 = (X8 + h8)(R3 + R2 + X7);
M6: R6 = (X12 + h4)(X11 + R4);
M7: R7 = (X14 + h2)(X13 + h);
M8: R8 = (X16 + h16)(R5 + R6 + R7 + X15).



The 8 multiplications are M1, . . . ,M8. In this example, we have not tried to minimize the number
of intermediate storage registers that are required. A method for doing this will be discussed later.
Note the following points.

1. In each of the multiplications, the subscript of X in the first multiplicand is the label of the
corresponding node in F16.

2. The scheduling is compatible with NS = 2, i.e., a 2-stage pipeline: M3 and M4 depend on the
output of M1 and so start 2 clocks after M1 starts; M5 depends on the output of M2 and M3

and starts 2 clocks after M3; and so on.

Fig. 5. The states of the lists L1 and L2 when Schedule(16, 2) is run. The entries in the list are denoted as
x(y) where x is the label of a node and y = x.ST

The output of the algorithm Schedule for various number of blocks for NS = 2 and 3 are shown in
Table 1. The entries − in Table 1 means that no multiplication was scheduled in the corresponding
clock. The last column (total clocks) is the clock when the last multiplication was scheduled.



Table 1. The output of Schedule for NS = 2, 3 for small number of blocks

Number of pipeline stages NS=2

Blocks Clock Total
(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 clocks

2 2 1

4 2 − 4 3

6 2 6 4 3

8 2 6 4 − 8 5

10 2 6 4 10 8 5

12 2 6 4 10 8 12 6

14 2 6 4 10 8 12 14 7

16 2 6 4 10 8 12 14 − 16 9

18 2 6 4 10 8 12 14 18 16 9

20 2 6 4 10 8 12 14 18 16 20 10

22 2 6 4 10 8 12 14 18 16 20 22 11

24 2 6 4 10 8 12 14 18 16 20 22 − 24 13

26 2 6 4 10 8 12 14 18 16 20 22 26 24 13

28 2 6 4 10 8 12 14 18 16 20 22 26 24 28 14

30 2 6 4 10 8 12 14 18 16 20 22 26 24 28 30 15

Number of pipeline stages NS=3

Blocks
Clock Total

(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 clocks

2 2 1

4 2 − − 4 4

6 2 6 − 4 4

8 2 6 − 4 − − 8 7

10 2 6 10 4 − − 8 7

12 2 6 10 4 − 12 8 7

14 2 6 10 4 14 12 8 7

16 2 6 10 4 14 12 8 − − 16 10

18 2 6 10 4 14 12 8 18 − 16 10

20 2 6 10 4 14 12 8 18 − 16 20 11

22 2 6 10 4 14 12 8 18 22 16 20 11

24 2 6 10 4 14 12 8 18 22 16 20 − − 24 14

26 2 6 10 4 14 12 8 18 22 16 20 26 − 24 14

28 2 6 10 4 14 12 8 18 22 16 20 26 − 24 28 15

30 2 6 10 4 14 12 8 18 22 16 20 26 30 24 28 15

2.3 Optimal Scheduling

Given a BRW polynomial on m message blocks, the number of nodes in the corresponding collapsed
tree is p = bm/2c. The scheduling of these nodes is said to be optimal if one node can be scheduled
in each clock-cycle thus requiring p clock-cycles to schedule all the nodes. If such a scheduling is
possible for a given value of the number of stages (NS) we say that the scheduling admits a full
pipeline, as such a scheduling will not give rise to any pipeline delays.

An optimal scheduling will not exist for all values of m and NS. Existence of an optimal scheduling
for NS stages means that in each clock cycle NS independent nodes are available.

If m is a power of two then it is easy to see that the collapsed forest would contain a single tree
and the root would be dependent on all other nodes (as is the case in Fig. 3(a)), thus no scheduling
procedure can yield an optimal scheduling for such an m for any NS > 1.

Also, as the number of pipeline stages increases, for an optimal scheduling to be possible, more
independent multiplications are required. For small values of NS, however, the following theorem
gives the conditions for which Schedule gives an optimal scheduling for NS = 2 and 3.

Theorem 1. Let Hh(X1, X2, . . . , Xm) be a BRW polynomial and let p = bm/2c be the number of
nodes in the corresponding collapsed forest. Let clks be the number of clock cycles taken by Schedule
to schedule all nodes, then,

1. If NS = 2, and p ≥ 3, then

clks =
{

p + 1 if p ≡ 0 mod 4;
p otherwise.

2. If NS = 3 and p ≥ 7, then

clks =





p + 2 if p ≡ 0 mod 4;
p + 1 if p ≡ 1 mod 4;
p + 1 if p ≡ 2 mod 4;
p if p ≡ 3 mod 4.



Proof. Both the proofs are by induction. We present the proof only for NS = 2 as the other case is
similar. For p = 3 (i.e. m = 6) the explicit output of the algorithm is shown in Table 1, which proves
that the base case is true. Suppose the results hold for some p ≥ 3 and we wish to show the results
for p + 1. There are the following cases to consider:

1. p + 1 ≡ 1 mod 4. Then p ≡ 0 mod 4, hence by induction hypothesis the p nodes were scheduled
in p + 1 cycles, signifying that there was one cycle when no node was scheduled. The last node
in this case has label 2(p + 1) and as 2(p + 1) ≡ 2 mod 4, hence the last node is an independent
node (from Proposition 1), hence the last node can be scheduled in the missed cycle, thus the
total clocks required for p + 1 nodes would be p + 1.

2. p + 1 ≡ 2 mod 4. Then, p ≡ 1 mod 4, hence by induction hypothesis p nodes were scheduled in
p cycles, the last node to be scheduled has label 2(p + 1) and 2(p + 1) ≡ 4 mod 8 and hence
by Proposition 1, has only one child and the label of the child is 2p. Considering the previous
case, 2p was not the last node to be scheduled; hence, the node 2(p + 1) can be scheduled in the
p + 1-th cycle.

3. p + 1 ≡ 3 mod 4. Then, p ≡ 1 mod 4, hence p nodes were scheduled in p cycles, the last node
to be scheduled has label 2(p + 1) and 2(p + 1) ≡ 2 mod 4 and hence by following the same
arguments as in case 1 the nodes can be scheduled in p + 1 cycles.

4. p+1 ≡ 0 mod 4. Then, p ≡ 3 mod 4, hence by induction hypothesis p nodes were scheduled in p
cycles. Considering cases 2 and 3 if p nodes are scheduled then the last node to be scheduled has
label 2(p− 2) which is a child of the node 2(p + 1), hence the node 2(p + 1) cannot be scheduled
in the p + 1-th cycle. Thus the number of cycles required would be p + 2.

This completes the proof. ut

From the proof above one can obtain a recursive description of the output of the scheduling algo-
rithm for NS = 2. Let p ≥ 4, and x1, . . . , xp be the sequence for p, where x1, . . . , xp ∈ {2, 4, . . . , 2p}.
Then, the following is the construction of the sequence for p + 1:

If p + 1 ≡ 0 mod 2 then output the sequence x1, . . . , xp, 2(p + 1);
If p + 1 ≡ 3 mod 4, then output the sequence x1, . . . , xp, 2(p + 1);
If p + 1 ≡ 1 mod 4, then output the sequence x1, . . . , xp−1, 2(p + 1), xp.

Similarly if NS = 3, and if x1, . . . , xp be the sequence for p ≥ 6, then the following is the
construction of the sequence for p + 1:

If p + 1 ≡ 0 mod 2, then output the sequence x1, . . . , xp, 2(p + 1);
if p + 1 ≡ 1 mod 4, then output the sequence x1, . . . , xp−2, xp−1, 2(p + 1), xp;
if p + 1 ≡ 3 mod 4, then output the sequence x1, . . . , xp−2, 2(p + 1), xp−1, xp.

2.4 The Issue of Extra Storage

Optimizing the number of clock cycles should not be the only goal for a scheduling algorithm. An
important resource associated with a pipelined architecture is the requirement of extra storages for
storing the intermediate results. The issue of storage in the case of computing BRW polynomials is
simple, we illustrate the issue with an example. Refer to the diagram of the collapsed tree in Fig.
3(b), suppose for a two-stage pipeline we schedule the multiplications in the following order:

2 , 6 , 10 , 14 , 18 , 22 , 26 , 30 , 4 , 12 , 20 , 28 , 8 , 24 , 16 (2)

This schedule requires 15 clock cycles and is thus optimal, but this is very different from the order
of the multiplications given by the algorithm Schedule. This ordering, though it is optimal in the



terms of number of clock cycles required, requires more extra storage for storing the intermediate
results. Recall that the dependence of the nodes in the BRW tree shows that multiplication operation
represented by a node x may be started when all its children have been completed. In each clock
cycle at most one multiplication gets completed, thus the intermediate results computed for the
children of x have to be stored, as they will be required for the computing of x. If the scheduling is
done as in Eq. (2) then the starting times and finishing times (in clocks) of the nodes would be as
below.

Nodes 2 6 10 14 18 22 26 30 4 12 20 28 8 24 16
Starting Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Finishing Time 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Note that the results of the multiplications in nodes 2, 10, 18, 26 which are completed in the clocks
3, 5, 7 and 9, are further used to compute the multiplications in the nodes 4, 12, 20 and 28 which
are started in the clocks 9, 10, 11 and 12 respectively. Hence, the results obtained in the clocks 3, 5,
7 and 9 are all needed to be stored. If we continue in this manner we shall see that the scheduling
in Eq. (2) would require a significant amount of extra storage for storing the intermediate results.

In contrast to the scheduling in Eq. 2, if we follow the algorithm Schedule, then the starting and
the finishing time of the nodes would be as:

Nodes 2 6 4 10 8 12 14 18 16 20 22 26 24 28 30
Starting Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Finishing Time 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of intermediate storages for this schedule is just one and can be seen from the following
considerations.

– Node 2 is completed in clock 3 and in the same clock node 4 gets started which requires the
result of the multiplication in clock 3 thus the result of node 2 is not required to be stored.

– In clock 4 node 6 is completed and 10 is started, as 10 does not depend on 6, hence the result
of node 6 needs to be stored.

– Continuing in this way we see that only the results of nodes 6, 8, 12 and 20 are needed to be
stored (they are underlined in the table above).

– But, this does not mean that four distinct storage locations are required, as the storage locations
can be reused.

– Note that node 8 is ready in clock 7 and it is required to be stored. Node 6 was stored previously,
and the result was already utilized when node 8 started in clock 5. Thus the location used for
storing 6 can be used to store 8.

– Arguing in this manner the total number of storage locations required in this case is just 1.

Determining the number of intermediate storage locations required by Schedule. The
design of the algorithm Schedule tries to minimize the requirement of extra storage by trying to use
the intermediate results as quickly as possible. For any given input, the extra storage requirements
of Schedule can be easily determined from the following two simple principles.

1. A result x is required to be stored if it is completed in a certain clock t and the node y which
starts at t is not a parent of x.

2. If there exists a storage location which stores results that have been already used, then the
location can be reused, otherwise a new storage location must be defined.

The extra storage requirement for Schedule grows very slowly with the increase in the number of
message blocks. Figure 6 shows the number of storage for various number of message blocks for
NS = 3.
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3 A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials

Utilizing the nice properties of the BRW polynomials as discussed in the previous sections we propose
a hardware architecture for computing such polynomials. We “show-case” our architecture for 31
blocks of messages using a three-stage pipelined multiplier. The number of message blocks of the
polynomial and the pipeline stages of the multiplier can be varied without hampering the design
philosophy. This issue of scalability is discussed later.

Each block is 128 bits long, and so the multiplication, addition and squaring operations take
place in the field F2128 generated by the irreducible polynomial τ(x) = x128 + x7 + x2 + x + 1. This
specific design would be also useful for the designing of tweakable enciphering schemes which are
discussed in Section 4.

3-stages

pipelined

KOM

1

0
128

h

inMa

inMb

C

inB   inA

1

2

Fig. 7. Architecture for computing the BRW polynomial.



The schematic diagram of the proposed architecture is shown in Fig. 7, where the principal
component is a three-stage pipelined Karatsuba multiplier denoted as KOM. (We postpone the
detailed design of the multiplier to Appendix A). At the output of the multiplier, we placed two
accumulators, ACC1 and ACC2, which are used to accumulate intermediate results.

Figure 7 also includes two blocks for computing squares in the field F2128 . These circuits are
depicted in the diagram as squaring1 and squaring2. Computing squares in binary extension fields
are much easier than multiplications. The strategy used for computing squares is as follows.

Let α ∈ F2128 . Then, α can be seen as a polynomial α =
∑127

i=0 bix
i, where each bi ∈ {0, 1}. Then

α2 =

(
127∑

i=0

bix
i

)2

mod τ(x) =
127∑

i=0

bix
2i mod τ(x).

Both squaring blocks in Fig. 7 are equipped with output registers that allow to save the last field
squaring computation. The multiplier block KOM has two inputs designated as inMa and inMb.

The first multiplier input (inMa) is the field addition of three values. Explanations of these values
are as follows.

1. The first of these values is the output of a multiplexer block MUX1 that selects between the key
h or any one of the two accumulators.

2. The second value is the output of another multiplexer that selects between the last output
produced by the multiplier or zero.

3. Finally, the third value is the input signal inA.

The second multiplier input (inMb) consists of the field addition of two values. Explanations of these
values are as follows.

1. The first one is taken from the output of a multiplexer MUX2 that selects either the output of
squaring1, or squaring2 or the key h.

2. The second value is the input inB.

As was discussed in Section 2, the computation of a 31-block BRW polynomial denoted as,
Hh(P1, . . . , P31), requires the calculation of b 31

2 c = 15 multiplications. We give in Fig. 8 the time
diagram that specifies the way that these fifteen multiplications were scheduled. The final value of
the polynomial Hh(P1, . . . , P31) is obtained in just eighteen clock cycles.

The dataflow specifics of the architecture in Fig. 7 is shown in the time diagram of Fig. 8. This
figure shows the different data stored/produced in the various blocks at each clock cycle along with
the order in which the multiplications were performed. M1, . . . , M15 denote the fifteen multiplications
to be computed and the multiplicands are depicted in the rows designated inMa and inMb, which
are the two inputs of the KOM block.

The row designated C denotes the output of the multiplier. As a three-stage pipelined multiplier
is being used, a multiplication scheduled at clock i can be obtained at C in clock i + 3.

The rows ACC1 and ACC2 denote the values which are accumulated in the accumulators in the
various clock cycles. Note that an entry Mi in any of the rows representing the state of the two
accumulators signify that the value Mi gets xor-ed to the current value in the accumulator, and an
entry ∗Mi denotes that the accumulator gets initialized by Mi.

The rows squaring1 and squaring2 show the state of the squaring circuits output register. Each
of the circuits for squaring can compute the square of the current content of the output register in
one clock cycle, maintain its current state, or initialize its value with h2 taking h as a fresh input.



As depicted in Fig. 8, the computation of the polynomial Hh(X1, . . . , X31) can be completed in
18 clock cycles and the final value can be obtained from the accumulator ACC2.

The circuit shown in Fig. 7 uses the strategy of computing the squares as required on the fly. An
alternative strategy would be to pre-compute the required powers of h and store them in registers.
By using this strategy we can get rid of the squaring circuits at the cost of some extra storage, and
come up with a circuit which would be very similar to the circuit described in Fig. 7.

If the pre-computing strategy is adopted, then for computing Hh(P1, . . . , P31) we need to store
h2, h4, h8, h16 in registers. The multiplexer which feeds inMb in this case would be a five-input
multiplexed, where four of the inputs come from the registers where the squares were stored and the
fifth input is the input line h. As squaring in binary extension fields is easy, these two strategies do
not provide significantly different performances. This becomes evident from the experimental results.

Irrespective of the way in which squarings are performed, the construction of the circuit follows
the scheduling strategy as dictated by the algorithm Schedule. According to Theorem 1, if a three-
stage pipelined multiplier is used, then for computing Hh(P1, . . . , P31) the 15 multiplications can be
scheduled in 15 clock cycles without any pipeline bubbles.

Figure 8 shows that this is indeed the case as starting from clock 1 to 15, in each clock, a
multiplication gets scheduled without any pipeline delays. The extra storage required to store the
intermediate products is provided by the accumulator ACC1, which stores the products M2, M5,
M6 and M9.

ACC2 is used to accumulate the final result, note that the products M10, M13, M14 and M15 are
accumulated in order in the accumulator ACC2. These multiplications corresponds to the nodes 16,
30, 24, 28 of the collapsed forest (see Fig. 3(b)), which in turn are the roots of the trees.

Scalability. The architecture presented previously is meant for 31-block messages. But the same
design philosophy can be used for k-block messages for any fixed k.

Here we give a short description of how the circuit for computing Hh(P1, . . . , Pm) grows with
the growth of m. A 3-stage pipelined multiplier is assumed. For ease of exposition, we shall only
consider the case where the powers of h are pre-computed.

The main components of the circuit will be the two multiplexers which are connected to the inputs
of the multiplier, the accumulators and the registers to store the powers of h. If Hh(P1, . . . , Pm) is
to be computed, then we will require to store h2, h4, . . . , h2s

where 2s ≤ m < 2s+1. This will require
s registers.

MUX2 would thus be a (s+1)-input multiplexer. The number of accumulators required would be
at most one more than the number of extra storages required. For a given polynomial Hh(P1, . . . , Pm),
the number of extra storages required by Schedule can be determined using the procedure described
in Section 2.4.

If the number of accumulators required is α then MUX1 would be substituted by an (α+1)-input
multiplexer, where α inputs come from the accumulators and the last one is the input line h. The
dataflow specifics can be automatically obtained from the algorithm Schedule.
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4 TES constructions based on BRW Polynomials

We shall devote this section to study an application of BRW polynomial for construction of a
cryptographically useful object. As stated in the Introduction, in a recent work [22] it was suggested
that BRW polynomials can be used instead of normal polynomials to design tweakable enciphering
schemes of the hash-ECB-hash and hash-counter-hash family. Tweakable enciphering schemes are
known to be useful in design of in-place disk encryption scheme, and in the light of the present
standardizing activities of IEEE working group on security in storage the study of these schemes has
gained much importance in the current days. In [22] it was claimed that TES constructions using
BRW polynomials would be far more efficient than their counter parts which use normal polynomials.
The claim was justified using operation counts, as a BRW polynomial requires about half the amount
of multiplications than the normal polynomials. But, in [22] real design issues were not considered
and thus there exist no hard experimental data to demonstrate the amount of speedups which can be
achieved by the use of such polynomials. Here we concentrate on the real design issues for hardware
implementation of some of the schemes described in [22], and ultimately provide experimental results
which justifies that TES with BRW polynomials would have higher throughput than the ones using
the normal ones.

4.1 The Schemes

There are two basic schemes described in [22], which are named as HEH and HMCH. The schemes can
be instantiated in different ways for different applications. The encryption and decryption algorithms
for HEH and HMCH are described in Figures 9 and 10 respectively. The descriptions are for a specific
instantiation which is suitable for the purpose of disk encryption.

In the description of the algorithms we assume that EK : {0, 1}n → {0, 1}n is a block cipher,
whose inverse is E−1

K : {0, 1}n → {0, 1}n. The additions and multiplications are all in the field F2n

represented by a irreducible polynomial τ(x) of degree n which is primitive. For our implementations
we use the field F2128 and τ(x) = x128 + x7 + x2 + x + 1. An A ∈ {0, 1}n can be seen as a
polynomial a0 + a1x + · · · ⊕ anxn−1 where each ai ∈ {0, 1}, thus every n bit string A can be treated
as an element in F2n . By xA we mean the n bit binary string corresponding to the polynomial
x(a0 + a1x + · · · + anxn−1) mod τ(x). This operation can be performed easily by a shift and a
conditional xor. In the description ψh(.) can be instantiated in two different ways, it can either be
hPolyh(.) or hHh(.), where Hh(.) is a BRW polynomial. From now onwards to avoid confusion we
shall represent a BRW polynomial by BRWh(.), and for the two different instantiations we shall call
the schemes as HEH[BRW], HEH[Poly] and HMCH[BRW], HMCH[Poly].

4.2 Analysis of the Schemes and Design Decisions

We analyze here the schemes presented in Section 4 from the perspective of efficient hardware im-
plementations and thus come up with some basic strategies for designing them. The implementation
is targeted towards the disk encryption application, thus in the following discussions we shall only
consider messages of fixed lengths which are 512 byte long, i.e. 32 blocks of 128 bits. 2 Our primary
design goal is speed, but we shall try to keep the area metric reasonable. The basic components of
both schemes are a block cipher (which we chose to instantiate using AES-128) and the polynomial
hash (either Poly or BRW). Thus, in terms of hardware the basic components required would be an
AES (both encryption and decryption cores) and an efficient finite-field multiplier. As the focus of
2 512 byte is the current size of disc sectors, though there are proposals that in the coming days we would

have sector sizes 4096 bytes long, so the basic strategy of design that we shall present would have the
required scalability.



Fig. 9. Encryption and decryption using HEH.

Algorithm HEH.EncryptT
h,K(P1, . . . , Pm)

1. β1 ← EK(T ); β2 ← xβ1;
2. U ← Pm ⊕ ψh(P1, . . . , Pm−1);
3. PPm ← U ⊕ β1;
4. CCm ← EK(PPm); V ← CCm ⊕ β2;
5. for i ← 1 to m− 1,
6. PPi = Pi ⊕ U ⊕ xiβ1;
7. CCi ← EK(PPi);
8. Ci ← CCi ⊕ xiβ2 ⊕ V ;
9. end for
10. Cm ← V ⊕ ψh(C1, . . . , Cm−1);
11. return (C1, . . . , Cm);

Algorithm HEH.DecryptT
h,K(C1, . . . , Cm)

1. β1 ← EK(T ); β2 ← xβ1;
2. U ← Cm ⊕ ψh(C1, . . . , Cm−1);
3. CCm ← U ⊕ β2;
4. PPm ← E−1

K (CCm); V ← PPm ⊕ β1;
5. for i ← 1 to m− 1,
6. CCi = Ci ⊕ U ⊕ xiβ2;
7. PPi ← E−1

K (CCi);
8. Pi ← PPi ⊕ xiβ1 ⊕ V ;
9. end for
10. Pm ← V ⊕ ψ(P1, . . . , Pm−1);
11. return (P1, . . . , Pm);

Fig. 10. Encryption and decryption using HMCH.

Algorithm HMCH.EncryptT
h,K(P1, . . . , Pm)

1. β1 ← EK(T ); β2 ← xβ1;
2. M1 ← P1 ⊕ ψh(P2, . . . , Pm);
3. U1 ← EK(M1) ; S ← M1 ⊕ U1 ⊕ β1 ⊕ β2;
4. for i = 2 to m,
5. Ci ← Pi ⊕ EK(xi−2β1 ⊕ S) ;
6. end for
7. C1 ← U1 ⊕ ψh(C2, . . . , Cm);
8. return (C1, . . . , Cm);

Algorithm HMCH.DecryptT
h,K(C1, . . . , Cm)

1. β1 = EK(T ); β2 = xβ1;
2. U1 ← C1 ⊕ ψh(C2, . . . , Cm);
3. M1 ← E−1

K (U1) ; S ← M1 ⊕ U1 ⊕ β1 ⊕ β2;
4. for i = 2 to m,
5. Pi ← Ci ⊕ EK(xi−2β1 ⊕ S) ;
6. end for
7. P1 ← M1 ⊕ ψh(P2, . . . , Pm);
8. return (P1, P2, . . . , Pm);



this work is in BRW polynomials, in the rest of this Section we shall discuss about the instantiation
with only BRW polynomials here, the instantiation with Polyh() is briefly discussed in Section 4.5.

Referring to the algorithm HEH.EncryptT
h,K of Fig. 9, we see that irrespective of the choice of

ψh(.), (m+1) encryption calls to the block-cipher are required, whereas HEH.DecryptT
h,K requires one

encryption call and m decryption calls to the block cipher. The encryption/decryption calls in lines 4
and 7 of both HEH.Encrypt and HEH.Decrypt procedures are independent of each other and thus can
be suitably parallelized. Algorithm HMCH.EncryptT

h,K of Fig. 10, requires (m + 1) encryption calls
to the block-cipher, and for HMCH.DecryptT

h,K , m encryption calls and one decryption call to the
block-cipher are required. The (m−1) block-cipher calls required by both encryption and decryption
procedures of HMCH can be parallelized. Thus, for both modes the bulk amount of block-cipher
calls can be parallelized. This suggests that a pipelined implementation of AES would be useful for
implementing the ECB mode in HEH and the counter type mode in HMCH. Computation of the
BRWh(.) can also be suitably parallelized (as discussed in Section 3). Thus we also decided to use a
pipelined multiplier to compute the BRW hash.

Out of many possible AES designs reported in the literature [16, 9, 4, 14, 7] we decided to im-
plement a 10-stage pipelined AES core architecture with the counter mode and/or the electronic
code book functionalities. This decision was taken based on the fact that the structure of the AES
algorithm admits to a natural ten-stage pipeline design, where after 11 clock cycles one can get
an encrypted block in each subsequent clock-cycle. We refrain ourselves from using deeper pipeline
designs such as the ones reported in [15], because such designs would incur a higher latency, i.e., the
total delay before a single block of cipher-text can be produced would be higher with more pipeline
stages. As the message lengths in the target application are particularly small (512 bytes), such
pipeline designs are not suitable for a disk sector encryption application.

As a target device for the implementation we choose FPGAs of the Virtex 5 family. These are
one of the most efficient devices available in market. In [3] a highly optimized AES design suitable
for Virtex 5 FPGAs was reported. One important design decision taken in [3] was to implement the
byte substitution table using the LUT fabric, this is in contrast to previous AES designs where extra
block RAMs were used for the storage of the look up tables. This change has a positive impact both
in area and the length of the critical path, given rise to better performance. The design described
in [3] is sequential. The AES design implemented in this work closely follows the techniques used in
[3], but we suitably adapt and extend the techniques in [3] to a pipelined design. Moreover, another
important characteristic of our AES design is that we do not attempt to design a single core for
the encryption and decryption functionalities but instead, we chose to design separate cores for
encryption and decryption. This gives us better throughput and also provides some extra flexibility
in terms of optimization.

As it has been mentioned, in the case of the field multiplier we decided to use a three stage
pipelined Karatsuba multiplier. The number of stages was fixed keeping an eye to the critical path
of the circuit. Once we fixed our design for AES we selected the pipeline stages for the multiplier
in such a manner that it matches the critical path of the AES. As both components would be used
in the circuit, hence if a very high number of pipeline stages for the multiplier is selected then, the
critical path would be given by the AES but the latency for multiplication would increase. Several
exploratory experiments suggested that a three stage pipeline would be optimal as the critical path
of such a circuit would just match that of the AES circuit.

Both HEH[ψ] and HMCH[ψ] were proved to be secure as tweakable enciphering schemes in
[22]. The security proof requires ψh() to be a almost xor universal (AXU) hash function. Both
hBRW(X1, . . . , Xm−1) and hPoly(X1, . . . , Xm−1) are AXU. If π : {1, . . . ,m − 1} → {1, . . . , m − 1}
be a fixed permutation then it is easy to see that hBRW(Xπ(1), Xπ(2), . . . , Xπ(m−1)) would also be
AXU. Thus, using any fixed ordering of the messages for evaluating each of the BRW polynomials in
the modes will not hamper their security properties. This observation is important in the context of



hardware implementations of HEH[BRW] and HMCH[BRW]. As, for optimal computation of BRW
polynomials we require a different order of the messages than the normal order. In our case, the
permutation π() is dictated by the algorithm Schedule. If m = 31 and the number of pipeline stages
of the multiplier is 3 the permutation π as dictated by Schedule is shown below.

The permutation π(x)

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 1 2 7 8 3 4 13 14 5 6 11 12 9 10 19 20 15 16 21 22 17 18 27 28 23 24 29 30 25 26 31

Thus, for implementing HEH[BRW].Encrypt we replace ψh(P1, . . . , P31) in line 2 of Fig. 9 by
hBRW(Pπ(1), . . . , Pπ(31)). Similar change is done in line 10 of the encryption algorithm and lines 2
and 10 of the decryption algorithm. For implementing HMCH[BRW] we replace ψh(P2, . . . , P32) in
line 2 of Fig. 10 by hBRW(Pπ(1)+1, Pπ(2)+1, . . . , Pπ(31)+1). Similar change is done in line 10 of the
encryption algorithm and lines 2 and 10 of the decryption algorithm.

4.3 Analysis of the schemes

With these basic design decisions as described above, we shall analyze HEH and HMCH to exploit
the maximum parallelization possible. The following discussion assumes the use of hBRW(.) in place
of ψh(.) and the number of blocks to be 32 for both the schemes. First we analyze HEH which is
described in Fig. 9. In Line 2 of the encryption algorithm the computation of the BRW polynomial
on 31 blocks takes place. Using a 3 stage pipelined multiplier and the design described in Section
3, BRW(P1, . . . , P31) can be completed in 18 clock cycles and computation of hBRW(P1, . . . , P31)
would thus require 21 clock cycles for the extra multiplication with h. Thus the computation of U
(as in line 2) can be completed in 21 clock cycles. The computation of β1 and β2 (in line 1) can be
done in parallel with the computation of U .

Then in lines 4 to 9 the main operations required are 32 calls to AES. Following our design these
32 calls can be completed in 43 cycles, and after an initial delay of 11 cycles we shall obtain one
value of Ci (i < m) in each cycle. For computing Cm we again need to compute the BRW polynomial
which would take 21 cycles. The computation of the BRW polynomial can be parallelized with the
block cipher calls, as soon as we start getting outputs of the AES calls we can start computing the
BRW polynomial necessary in line 10. The specific architecture that we have designed for the BRW
polynomials requires the availability of two input blocks per each clock cycle. For this reason we
decided to have two AES cores running in parallel which can feed the circuit for computing the BRW
polynomials and thus can reduce the total latency of the circuit. Using this strategy, all values of
CCi would be produced in 27 cycles instead of 43. After 11 of these 27 cycles we can start computing
the BRW polynomial and would require a total of 21 cycles to complete. The total computation can
be completed in 55 cycles if two AES cores are used. Decryption would be similar, but we need to
implement two AES decryption cores for obtaining the same latency as encryption.

If we use a single AES core, then we would not be able to do the BRW computation in line 11
in 21 cycles as in each cycle we shall not be able to obtain two blocks of data as required, thus for
each multiplication we need to wait two cycles, and thus the total computation for the second hash
(in line 11) would require 35 cycles, and the total computation would require 69 cycles.

In case of HMCH also line 2 can be completed in 21 cycles and line 1 can be performed in
parallel with line 2. For computing line 3 which involves a single AES call we would need to wait
11 cycles. Again, using two ten staged pipelined AES encryption cores the computation in line 5,
which involves 31 calls to the AES in counter mode can be completed in 27 cycles. After 11 of these



27 cycles, the BRW hash can be started and it would require 21 cycles to compute. Thus, the total
computation could be done in 66 cycles. In case of decryption there is only one inverse call to the
AES as in line 3. Thus, for decryption there is no need to implement two AES decryption cores as
is required in case of HEH. Only one decryption core is sufficient in this case and also as there is
only one call, a pipelined design for this core is also un-necessary. Hence, we designed a sequential
decryption core which saved us some area. If a single AES core is used, as in the case of HEH in
HMCH also an additional 14 cycles would be required for computing the second hash.

Fig. 11. Architecture for performing the HMCH[BRW] Encryption Scheme in hardware

4.4 Architecture of HMCH[BRW]

We implemented the modes HEH[BRW] and HMCH[BRW]. For both the modes both encryption and
decryption functionality were implemented in a single chip. In this section we shall only describe
the architecture for HMCH[BRW] which uses two pipelined encryption cores and a single sequential
decryption core. The simplified architecture for HMCH[BRW] is depicted in Fig. 11. For ease of
exposition in Fig. 11 we only show the encryption part of the circuit, an additional component of
the circuit is the sequential decryption core which we omit for the sake of simplicity. The main
components of the general architecture depicted in Fig. 11 are the following: A BRW polynomial
hash block (which corresponds to the circuit shown in Fig. 7), two AES cores (equipped with both
electronic code book and counter mode functionalities), and two x2Times blocks. The x2Times
blocks compute x2A, where A ∈ F2128 . The architecture also includes five registers to store the
values M1, β1, β2, U1 and S, and makes use of six multiplexer blocks labeled 1 to 6 in the figure
and we shall refer to them as MUX1 to MUX6. When the x2Times block is first activated, it simply
outputs the value placed at its input (for the circuit of Fig. 11, this input value will correspond to
either β1 or β2). Thereafter, at each clock cycle the field element x2A will be produced as an output,
where A ∈ Fq is the last value computed by this block. The control unit of this architecture consists
of a ROM memory where a microprogram with sixty seven micro-instructions has been stored, each
microinstruction consisting of 28-bit control words. Additionally, the control unit uses a counter that
gives the address of the next instruction to be executed.

The general dataflow of Fig. 11 can be described as follows. First the parameter β1 is computed
as β1 = EK(T ). This is done by properly selecting MUX1 and MUX2 so that the tweak T gets
encrypted in single mode by the AESeven core. The value so obtained is stored in the register regβ1

and also β2 = xβ2 is computed and stored in regβ2. Then, the plaintext blocks P2, . . . , Pm are fed



into the BRW hash block through the inputs inA and inB and the proper selection of MUX4 and
MUX5. After 21 clock cycles, the hash of the plaintext blocks is available at outHash, allowing the
computation of the parameter M1 as, M1 = outHash⊕ P1, where P1 is taken from the input signal
inB. The parameter U1 is computed as EK(M1) by selecting the third input of MUX1 as the input
value for the AESeven core. The value so computed is stored in regU1. At this point the circuit of
Fig. 11 is ready to compute the encryption in counter mode of m−1 plaintext blocks (corresponding
to line 5 of the HMCH[BRW] encryption algorithm shown in Fig. 10) as,

AESeven : Ci ← Pi ⊕ EK(xi−2β ⊕ S), for i = 2, 4, . . . , 31.

AESodd : Ci ← Pi ⊕ EK(xi−2β ⊕ S), for i = 3, 5, . . . , 32.

It is noticed that this last computation is achieved in 28 clock cycles using the two AES cores in
parallel. The encryption blocks Ci for i = 2, . . . , m are simultaneously sent to circuit’s outputs outA
and outB, and to the BRW hash block through a proper selection of MUX4 and MUX5. After 21 clock
cycles, the cipher blocks’ hash is available at outHash, allowing the computation of the encryption
block C1 as, C1 = outHash⊕U1, where U1 was previously computed and stored as explained above.

4.5 HEH[Poly] and HMCH[Poly]

For the sake of comparison we also implemented HEH[Poly] and HMCH[Poly]. As stated in Section
4 these schemes can be obtained by replacing ψh() by Polyh() in the algorithms of Figures 9 and
10. When a normal polynomial is used for the constructions then the usual Horner’s rule is the
most efficient way to compute it. At first glance, the advantages of a pipelined multiplier cannot be
used due to the sequential nature of the Horner’s rule. In [23] A three way parallelization strategy
was proposed to evaluate a normal polynomial using three different multipliers and thus running
three different instances of the Horner’s rule in parallel. We adopt the strategy presented in [23] by
utilizing a three staged pipelined multiplier as a tool to evaluate a normal polynomial using Horner’s
rule.

As we are interested in encrypting 32 blocks of messages hence in case of both HEH[Poly] and
HMCH[Poly] the polynomial to be computed is

ψh(P1, . . . , P31) = hPolyh(P1, P2, . . . , P31)

= h

31∑

i=1

Pih
31−i

= h(p1 + p2 + p3)

where

p1 =
11∑

i=1

P3i−2(h3)11−i

p2 = h2
10∑

i=1

P3i−1(h3)10−i

p3 = h
10∑

i=1

P3i(h3)10−i.

Note that the multiplications in p1 does not depend on the multiplications in p2 and p3, etc.
Hence, a three staged pipelined multiplier can be used to compute hPolyh(P1, P2, . . . , P31). If h2 and
h3 are pre-computed then the computation of the polynomial can be completed in 35 clock cycles.



For HEH[BRW] we used two pipelined AES encryption and decryption cores and for HMCH[BRW]
we used two pipelined encryption core and a single sequential decryption core. The usage of two
AES cores gave us considerable savings in the number of clock cycles as discussed in Section 4.3, as
h.BRW(.) could be computed in only 21 cycles. But h.Poly(.) requires 35 clock cycles to complete, and
hence dedicating two cores for this task does not give rise to any savings. Hence, while implementing
HEH[Poly], we used one pipelined AES encryption core and one pipelined AES decryption core and
for HMCH[Poly] we used one pipelined AES encryption core and one sequential AES decryption
core.

5 Experimental Results

In this section we present the experimental results obtained form our implementations. All reported
results were obtained from place and route simulations, where the target device is XILINX Virtex
5 xc5vlx330-2ff1760. Table 2 shows the performance of the basic primitives. Table 2 clearly shows
that BRWh(.) is far better in performance than Polyh(.), but BRWh(.) occupies more slices than
Polyh(.). We note that only the pipelined AES decryption core achieved lower frequency than the
hash blocks. Thus in case of HMCH[BRW], which does not use the pipelined decryption core, the
critical path is given by the hash block and in case of HEH[BRW] the critical path is given by the
pipelined decryption core.

Table 2. Primitive operations on Virtex-5 device.

Core Slices Cycles Frequency Throughput
MHz Gbits/Sec

AES pipelined encryption (AES-PEC) 2859 1 300.56 38.471

AES pipelined decryption (AES-PDC) 3110 1 239.34 30.720

AES sequential decryption (AES-SDC) 1075 11 292.483 3.403

hPolyh(P1, . . . , P31) 1886 35 251.383 28.499

hBRWh(P1, . . . , P31) 2086 21 243.487 46.007

For both HEH[BRW] and HMCH[BRW ] we implemented three variants, we name these variants
as 1, 2 and 3. The naming conventions along with the performance of the variants are described in
Table 3. Table 3 also shows the variants using Poly. From the results shown in Table 3 we can infer
the following:

1. BRW versus Poly: The variants using BRW give better throughput but occupies more area than
the variants using Poly.

2. Single core versus double core: When two AES cores are used for HEH[BRW] and HMCH[BRW]
the throughput is much higher than the case when one AES core is used, as using two AES cores
we can accommodate more parallelization. In particular, the following observations can be made:
– For the two core implementations we gain 14 clock cycles against the one core implementa-

tions. The improvement in clock cycles (66 versus 80 in case of HMCH[BRW] ; or 55 versus
69 in case of HEH[BRW]) is not reflected to that extent in the throughput (13 versus 11 in
case of HMCH[BRW]; or 15 versus 13 in case of HEH[BRW])). This is due to operation at
lower frequencies for the double-core implementations.

– Increase in hardware for HMCH[BRW]-1 over HMCH[BRW]-3 is probably not significant,
but, for HEH[BRW] the increase is marked. The reason behind this is for HEH[BRW]-1 two
pipelined AES decryption cores are also necessary for achieving the desired parallelization.



3. Pre-computing squares versus computing squares on the fly: Pre-computing squares
for BRW polynomials gives a negligible improvement on throughput and the circuits using pre-
computation utilizes a few slices more than the circuits where squares are computed on the
fly.

4. HEH versus HMCH:
– HEH[BRW] gives better throughput than HMCH[BRW]. The reason being the increased la-

tency in case of HMCH[BRW]. HMCH[BRW] has an AES call (the one in line 3 of Fig.
10) which cannot be parallelized. This results in an additional latency of 11 cycles in
HMCH[BRW] compared to HEH[BRW].

– For the same reason HEH[Poly] gives better throughput than HMCH[Poly].
– HEH[BRW] requires pipelined AES decryption cores for the required parallelization in de-

cryption but for HMCH[BRW] decryption a sequential AES decryption core is sufficient.
Thus, HMCH[BRW] occupy lesser area than HEH[BRW].

– HEH[BRW]-3 is comparable to HMCH[BRW]-1 and HMCH[BRW]-2 both in terms of number
of slices and throughput.

5. Recommendation:
– For best speed performance, use double-core HEH[BRW]; in particular, HEH[BRW]-2.
– For smallest area, use HMCH[Poly].
– For best area-time measure, use single-core HMCH[BRW], i.e., HMCH[BRW]-3.

Table 3. Modes of operation on Virtex-5 device. AES-PEC: AES pipelined encryption core, AES-PDC:
AES pipelined decryption core, AES-SDC: AES sequential decryption core, SOF : squares computed on the
fly, SPC: squares pre-computed

Mode Implementation Details Slices Frequency Clock Time Throughput 1
(Slice∗Time)(MHz) Cycles (nS) (Gbits/Sec)

HMCH[BRW]-1 2 AES-PEC, 1 AES-SDC, SOF 8040 211.785 66 311.637 13.143 399.112
HMCH[BRW]-2 2 AES-PEC, 1 AES-SDC, SPC 8140 212.589 66 310.458 13.193 395.706
HMCH[BRW]-3 1 AES-PEC, 1 AES-SDC, SOF 6112 223.364 80 358.160 11.436 456.814

HEH[BRW]-1 2 AES-PEC, 2 AES-PDC, SOF 11850 202.856 55 271.128 15.170 311.248
HEH[BRW]-2 2 AES-PEC, 2 AES-PDC, SPC 12002 203.894 55 269.748 15.184 308.879
HEH[BRW]-3 1 AES-PEC, 1 AES-PDC, SOF 8012 218.384 69 315.957 12.964 395.020

HMCH[Poly] 1 AES-PEC, 1 AES-SDC 5345 225.485 94 416.879 9.825 448.789

HEH[Poly] 1 AES-PEC, 1 AES-PDC 6962 218.198 83 380.388 10.768 377.606

6 Conclusion

We studied BRW polynomials from a hardware implementation perspective and designed an efficient
architecture to evaluate BRW polynomials. The design of the architecture was based on a combina-
torial analysis of the structural properties of BRW polynomials. Our experiments show that BRW
polynomial to be an efficient alternative for normal polynomials. Moreover we explored constructions
of hardware architectures for tweakable enciphering schemes using BRW polynomials and the results
show that using BRW polynomials are a far better alternative to normal polynomials in terms of
speed for design of TES.
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Appendix A: Implementation Details

The Multiplier

A Karatsuba multiplier computes the polynomial product c = A · B, for A = AL + AHx64, and
B = BH + BHx64 ∈ F2128 as,

C = ALBL +
[
(AH + AL)(BL + BH)− (AHBH + ALBL))

]
x64 + AHBHx128.

With a computational cost of three 64-bit polynomial multiplications and 4 additions/subtractions.
By applying this strategy recursively, in each iteration each degree polynomial multiplication is trans-
formed into three polynomial multiplications with their degrees reduced to half of its previous value.
After 7 iterations of applying this recursive strategy, all the polynomial operands collapse into sin-
gle coefficients. However, it is common practice to stop the Karatsuba recursion earlier, performing
multiplications with small operands using alternative techniques that are more compact and/or
faster.

Both TES schemes discussed in this work, namely, MCTR[BRW] and HEH[BRW], require the
computation of two BRW polynomial hash functions. In this work we implemented that block using
a three-stage pipelined Karatsuba multiplier, whose architecture is shown in Fig. 12. Due to its re-
cursive formulation, Karatsuba multipliers proved to be especially suitable for pipelined architecture
constructions.

The multiplier shown in Fig. 12 uses three 64-bit Karatsuba multipliers, and in turn, each one
of them are composed by three 32-bit multipliers and successively we implemented 16-bit and 8-bit
multiplier blocks. We decided to stop the Karatsuba recursion at 4-bit level, where we used a school-
book multiplier. After a careful timing analysis we decided to place registers at the output of the
three 64-bit multipliers, at the output of the 8-bit multiplier and finally, after the 128-bit reduction
block. This gives us a three-stage pipelined multiplier with each one of its three stages balanced in
terms of their critical path. In fact, the critical path of the first stage is shorter than the other two
stages because we wanted to include the critical path associated to the input multiplexer block (see
Fig. 7) as a part of the critical path associated with the other two stages of our Karatsuba multiplier
architecture.

The AES

We designed the AES encryption and decryption cores separately. For HEH[BRW] we used two
pipelined AES encryption cores and two pipelined AES decryption cores and for HMCH[BRW] we
used two pipelined AES encryption core and one sequential decryption core. The AES design closely
follows the techniques used in [3]. In [3] the S-boxes were implemented as 256× 8 multiplexers. This
was possible due to special six input lookup tables (LUT) available in Virtex 5 devices. One S-box fits



Fig. 12. Architecture of the three-stage pipelined Karatsuba multiplier

in 32 six inputs LUTs available in Virtex 5 FPGA devices. In [3] the authors presented a sequential
core, we extended their idea to a 10 − stages pipelined core. Initially, both the encryption and
decryption cores take 10 clock cycles to produce a valid output, and produces one block as output
in subsequent cycles. In Fig. 13we show the basic strategy. AES encryption/decryption consist of 10
rounds, the rounds 1 to 9 has four transformations: SubBytes (BS), ShiftRows (SR), MixColumns
(MC) and AddRoundKey (ADDRK). The last round has only three transformations BS, SR and
ADDRK. The decryption core looks similar to figure 13, where each transformation is replaced by
its inverse and the order of rounds are inverted (i.e., the computation starts at round 10 and the
final output is given by the xor of initial key and output of round 1).
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Fig. 13. Architecture for 10-stages pipelined encryption AES core.

The sequential decryption core in HMCH[BRW] was implemented using the techniques in [8].
In [8] the operations BS and MC are combined in a substitution operation which the authors call
as T-boxes. In our implementation for the decryption core we used inverse T-boxes (iTbox) which
combines the operations inverse byte substitution (iBS) and inverse mixcolumn (iMC). We imple-
mented the T-boxes using large multiplexers and avoided the use of memories. As a sequential core



was only required hence we needed to implement only two rounds (see Fig. 14). Irrespective of the
number of cores used we used a single key generator and the S-boxes for the key generator were also
implemented using multiplexers.

Fig. 14. Architecture for sequential decryption AES core.


