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Abstract

We introduce a pre-computation technique that drastically reduces the online
computational complexity of mix-nets based on homomorphic cryptosystems. More
precisely, we show that there is a permutation commitment scheme that allows a
mix-server to: (1) commit to a permutation and efficiently prove knowledge of doing
so correctly in the offline phase, and (2) shuffle its input and give an extremely
efficient commitment-consistent proof of a shuffle in the online phase.

We prove our result for a general class of shuffle maps that generalize all known
types of shuffles, and even allows shuffling ciphertexts of different cryptosystems in
parallel.

1 Introduction

Consider a situation where N senders S1, . . . , SN each have some input and wish to
compute the sorted list of their inputs without revealing who submitted which message.
A trusted party can do this by waiting until all senders have submitted some input,
and then sort and output the list of all inputs. A protocol that emulates the trusted
party is called a mix-net and the parties M1, . . . ,Mk that execute the protocol are
referred to as mix-servers. As long as a certain fraction of the mix-servers are honest,
the result should be correct and nobody should learn the correspondence between input
ciphertexts and output messages. The obvious application for mix-nets is to conduct
electronic elections, and this is also one of the applications Chaum [6] had in mind when
he introduced mix-nets.

Many constructions of mix-nets are proposed in the literature, but few have provable
security properties and many are actually flawed. The basic approach of all mix-nets
with provable properties are based on ideas of Sako and Kilian [27]. The first rigorous
definition of security was given by Abe and Imai [1], but they did not construct a scheme
satisfying their construction. Wikström [29] gives the first definition of a universally
composable (UC) mix-net, the first UC-secure construction, and also a more efficient
UC-secure scheme [30]. An important building block in the construction of a mix-net is

∗A conference version of this paper was presented at ACISP 2009.
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a so called proof of a shuffle that allows the mix-servers to prove that they follow the
protocol. The first efficient proofs of shuffles were given by Neff [21] and Furukawa and
Sako [14].

1.1 Mix-Nets Based On Homomorphic Cryptosystems

Recall the mix-net of Sako and Kilian [27]. They present their scheme in terms of the
El Gamal cryptosystem [15], but the idea works for any homomorphic cryptosystem.

A homomorphic cryptosystem CS = (Kg,E,D) that allows threshold decryption is
employed. A cryptosystem is said to be homomorphic if for every public key pk ∈ PK,
the plaintext space Mpk , the randomness space Rpk , and the ciphertext space Cpk are
groups, and for every m0,m1 ∈ Mpk and r0, r1 ∈ Mpk : Epk (m0, r0)Epk (m1, r1) =
Epk (m0m1, r0r1). A joint public key pk is generated somehow such that each mix-
server holds a secret share of the corresponding secret key sk . Each sender Si, holding
a message mi, computes a ciphertext c0,i = Epk (mi), and then somehow submits it
to the mix-servers. The mix-servers then take turns at re-encrypting and permuting
these ciphertexts. Let L0 = (c0,1, . . . , c0,N ) be the list of submitted ciphertexts. For
j = 1, . . . , k, Mj chooses a permutation π and rj,i ∈ Rpk randomly, computes cj,i =
cj−1,π(i)Epk (1, rj,π(i)) for i = 1, . . . , N , and then publishes Lj = (cj,1, . . . , cj,N ). In
other words, each mix-server randomly re-encrypts each ciphertext and then outputs the
resulting ciphertexts in random order. Then it proves, using a proof of a shuffle, that
it formed Lj from Lj−1 in this way. Finally, the mix-servers jointly threshold-decrypt
Lk and output the resulting list of plaintexts. The idea is that since all mix-servers
have randomly permuted the ciphertexts and the cryptosystem is assumed secure, it is
infeasible to tell which plaintext corresponds to which original ciphertext in L0.

The above description is simplified in that the senders submit homomorphic cipher-
texts directly, which is not secure [25]. In a provably secure construction, the plaintexts
of corrupted senders must be extractable by the simulator without the secret key of the
cryptosystem. Until recently, all known submission schemes were either only heuristi-
cally secure, or involved costly interaction, but there is now a provably secure solution
to this problem for several well known homomorphic cryptosystems [31].

Alternative Constructions. In the scheme of Furukawa et al. [13], each mix-server
not only re-encrypts and permutes its input, but also partially decrypts it. As a result,
the final list Lk essentially contains the plaintexts and no joint decryption step is needed.
In the scheme of Wikström [30], re-encryption is also eliminated entirely, i.e., each mix-
server only partially decrypts and permutes its input. In a preliminary unpublished
version of Neff [21] a proof of a shuffle for the first type of mix-net is described as well
[22]. These schemes have special advantages over the above, but do not lend themselves
well to pre-computation, since partial decryption must be done sequentially.

Very few other approaches to constructing mix-nets have any provable security prop-
erties [19] and several are actually flawed [1, 10, 28].
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1.2 Previous Work On Improving Efficiency

There are more or less obvious techniques that can be used to reduce the computational
complexity of a mix-net. If a threshold below k is used for the decryption key, then
all mix-servers do not need to take part in the mixing process. In the execution of a
public-coin honest verifier proof of knowledge the random challenge of the honest verifier
must be generated jointly by the mix-servers, which is costly. But if unpredictability
suffices, then longer challenges can be extracted from a random seed using a PRG. Pre-
computation can also be used in the coin-flipping protocols. The re-encryption factors
can also be pre-computed and batch proof techniques [4] can be used to reduce the
complexity of the proofs of correctness needed during joint decryption.

If such optimizations and pre-computations are used, the main computational cost
lies in the proofs of shuffles. Thus, most previous work on reducing the complexity, e.g.
[21, 14, 18, 13, 30], focus on reducing the complexity of a particular proof of a shuffle.
Some parts of these proofs can easily be pre-computed as well.

An alternative approach is used by Adida and Wikström [3], who show that when
the number of senders is relatively small, ideas from homomorphic election schemes [5]
can be used to construct a mix-net where the online phase only requires decryption of
a single ciphertext. The public-key obfuscated shuffle of Adida and Wikström [2] may
also be viewed as a form of pre-computation, but their goal is not improved efficiency.
In fact, their scheme is quite inefficient.

1.3 Our Contribution

We show how to split a proof of a shuffle into two protocols. The first protocol is used
by a mix-server in the offline phase to prove knowledge of how to open a commitment
to a permutation. The second protocol is used by a mix-server in the online phase to
prove that it uses the permutation it committed to also during shuffling.

The first protocol is almost as efficient as the known proofs of shuffles; in fact it can
be constructed from these, e.g., [21, 14, 18, 30]. Even without any standard optimization
techniques such as simultaneous exponentiations, the computational complexity of the
second protocol is half an exponentiation per sender in the El Gamal case and has similar
properties for other cryptosystems. Thus, our pre-computation technique reduces the
online computational complexity of virtually all mix-nets.

We also show that all known types of shuffles are instances of a generalized shuffle,
where some homomorphic map φpk : Cpk × Rpk → Cpk is applied to each ciphertext
and randomizer pair, and the resulting ciphertexts are permuted. In fact, we prove our
results for this generalized shuffle. The generality of our result immediately gives that
ciphertexts can be shuffled in parallel. Even ciphertexts of different cryptosystems can
be shuffled in parallel, and distinct homomorphic maps can be used for ciphertexts of
different cryptosystems.

The inspiration of this work comes from both Neff [21] and Furukawa and Sako [14].
Neff writes as follows about his “simple shuffle”: “A single instance of this proof can
be constructed to essentially ‘commit’ a particular permutation”, but we are unable to
derive our results starting from his “commitment”. On the other hand, the Pedersen
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permutation commitment scheme used implicitly in the proof of a shuffle of Furukawa
and Sako is perfectly suitable for constructing a fast commitment-consistent proof of a
shuffle.

1.4 Notation

Natural numbers and integers are denoted by N and Z respectively. The ring of integers
modulo n is denoted by Zn, Z∗n denotes its multiplicative group, and SQn denotes the
subgroup of squares in Z∗n. We use κ as the main security parameter, but also introduce
several related parameters, e.g., the bit-size of challenges κc. We identify the set of κ-bit
strings and the set of positive integers in [0, 2κ − 1] when convenient. A function ε(κ)
is negligible if for every constant c and sufficiently large κ it holds that ε(κ) < κ−c.
A function f(κ) is overwhelming if 1 − f(κ) is negligible. We denote the set of N -
permutations by SN . We denote the set {1, . . . , l} by [l] and sometimes denote a list of
elements (a1, . . . , al) by a[l].

The Discrete Logarithm (DL) assumption for a group Gq with generator g states
that given a random element y ∈ Gq, it is infeasible to compute x such that y = gx. The
decision Diffie-Hellman (DDH) assumption states that when x, y, r ∈ Zq are randomly
chosen, then it is infeasible to distinguish the distributions of (gx, gy, gxy) and (gx, gy, gr).
See Appendix F for formal definitions.

We view a commitment scheme as consisting of a parameter generation algorithm Gen
and a deterministic commitment algorithm Com. On input 1κ, Gen outputs a parameter
ck which defines a message setMck , a polynomially sampleable randomness space Rck ,
and a commitment space Kck . We write CK for the set of commitment parameters.
On input ck ∈ CK, m ∈ Mck , and r ∈ Rck , Com outputs a commitment. To open a
commitment the message and randomness is revealed.

We write CS = (Kg,E,D) for a homomorphic cryptosystem and Mpk , Rpk , and Cpk
for the abealian groups of messages, randomness, and ciphertexts defined by a public
key pk . We let PK denote the set of all public keys. A homomorphic cryptosystem
satisfies Epk (m1, r1)Epk (m2, r2) = Epk (m1m2, r1r2) for every pk ∈ PK, m1,m2 ∈ Mpk ,
and r1, r2 ∈ Rpk .

Throughout we assume that the order of the largest cyclic subgroup of Cpk , and the
order of any groups on which we base our commitment schemes, are bounded by 2κ.

2 Background and Informal Description

Before we give details, it is worthwhile to recall some properties of batch proofs of
discrete logarithms and proofs of shuffles. We also give a brief informal description of
our commitment-consistent proof of a shuffle.

Batch Proofs. Consider a setting where many group elements y1, . . . , yN in some
prime order group Gp with generator g are given, and the prover knows xi ∈ Zp such
that yi = gxii . It is expensive to prove knowledge of each logarithm xi independently,
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but the use of batching [4] decreases this cost substantially as the following example
shows, where P and V denotes the prover and verifier.

1. V picks e1, . . . , eN ∈ Zp randomly and hands them to prover.

2. Both parties compute y =
∏N
i=1 y

ei
i .

3. P shows that it knows the logarithm w such that y = gw using a standard honest
verifier zero-knowledge proof of knowledge.

The reason that this is a proof of knowledge is that the extractor may rewind the
prover to the first step several times until it has found N linearly independent vectors
ej = (ej,1, . . . , ej,N ) in ZNp for j = 1, . . . , N and extracted logarithms w1, . . . , wN such

that
∏N
i=1 y

ej,i
i = gwj . Note that linear independence imply that for every l = 1, . . . , N

there are dl,j such that
∑N

j=1 dl,jej is the lth standard unit vector in ZNp . This gives

yl =
∏N

j=1

(∏N

i=1
y
ej,i
i

)dl,j
=
∏N

j=1
(gwj )dj,i = g

∑N
j=1 dl,jwj ,

which means that the logarithm of every individual element yl can be computed as xl =∑N
j=1 dl,jwj . We remark that the components of the vectors can be chosen randomly in

{0, 1}κe for a κe much smaller than κ. From now on we use κe to denote the bit-size of
components of random vectors as the above. Another important observation, used to
reduce the need for jointly generated randomness when the honest verifier is implemented
jointly by several parties, is that it suffices that the vectors are unpredictable, e.g., the
verifier may instead choose a random seed z for a PRG, hand it to the prover, and define
(e1, . . . , eN ) = PRG(z).

Proofs of Shuffles. We do not go into the details of any particular proof of a shuffle,
but we explain one of the ideas that appear in different forms in all known efficient
schemes.

Consider a homomorphic cryptosystem such that the order of every non-trivial el-
ement in Cpk equals a prime p. Given are a public key pk and ciphertexts (c1, . . . , cN )
and (c′1, . . . , c

′
N ) that are related by c′i = cπ(i)Epk (1, rπ(i)) for some permutation π and

randomness r1, . . . , rN .
A key observation, first made by Neff [21] and Furukawa and Sako [14], is that

batch proofs are in some sense invariant under permutation and that this means that
we can use batch techniques to construct an efficient proof of a shuffle. The idea can
be described as follows, where we use a PRG to expand a seed into an unpredictable
vector.

1. V picks a seed z ∈ {0, 1}κ randomly and hands it to P.

2. Both compute c =
∏N
i=1 c

ei
i , where (e1, . . . , eN ) = PRG(z) and ei ∈ [0, 2κe − 1].
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3. P computes c′ =
∏N
i=1(c

′
i)
eπ(i) , hands it to V, and convinces V that it is formed

correctly.

4. P proves knowledge of r ∈ Rpk such that c′ = cEpk (1, r).

Note that the linear independence argument used in the basic batch proof above carries
over to the shuffle setting, despite that some of the exponents are permuted (see Propo-
sition 17 in Section A for details). The above description is simplified in that the prover
must blind c′ to avoid leaking knowledge. The problem of convincing the verifier that
the original exponents, re-ordered using a fixed permutation π, are used to form c′ is
non-trivial, and solved differently in the various proofs of shuffles. If we ignore the cost
of Step 3, then the above protocol is very efficient.

2.1 Commitment-Consistent Proofs of Shuffles

We observe that we can design Step 3 in such a way that almost all of it can be moved
to the offline phase. Generators g1, . . . , gN of a group Gp of prime order p are given as
part of the setup of the proof of a shuffle, and it is assumed to be infeasible to compute
any non-trivial relations among these (this follows from the DL assumption).

Suppose that each mix-server commits to a permutation π using Pedersen commit-
ments [24] (a1, . . . , aN ) = (gr1gπ−1(1), . . . , g

rN gπ−1(N)) for random r1, . . . , rN ∈ Zp, and
also proves knowledge of the ri and π such that (a1, . . . , aN ) was formed in this way.
Then in the online phase the verifier can choose, and hand to the prover, a random seed
z ∈ {0, 1}κ, set (e1, . . . , eN ) = PRG(z), and compute

a =
∏N

i=1
aeii =

∏N

i=1
grieigei

π−1(i)
= gr

∏N

i=1
g
eπ(i)
i ,

where r =
∑N

i=1 riei. Note that a is of a perfect form for executing a standard proof of
knowledge of equal exponents. More precisely, we may now replace Step 3 above in the
online phase by:

• Prover computes c′ =
∏N
i=1(c

′
i)
eπ(i) and hands it to the verifier.

• Prover proves knowledge of r′ ∈ Zp and e′1, . . . , e
′
N ∈ {0, 1}κe with

a = gr
′∏N

i=1
g
e′i
i and c′ =

∏N

i=1
(c′i)

e′i .

The above is simplified in that some blinding factors are missing. The proof of
knowledge of the exponents r′, e′1, . . . , e

′
N , combined with the computational binding

property of multi-base Pedersen commitments implies that e′i = eπ(i) for some permuta-
tion π(i). The computational complexity of the above protocol is very low, since almost
all exponents have very few bits also in the proof of knowledge of equal exponents.
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3 A Commitment-Consistent Proof of a Shuffle

In this section we first give more details of the commitment scheme and explain how
any of the known proofs of shuffles can be used to prove knowledge of an opening of the
commitment to a permutation. Then we present the commitment-consistent proof of a
shuffle.

3.1 Permutation Commitments

We formalize the property we need from the Pedersen commitments above. A permuta-
tion commitment should allow the committer to compute a commitment Com?(π) of a
permutation π, but obviously any string commitment can be used to commit to a permu-
tation. The special property of a permutation commitment is that if the receiver holds
a list (e1, . . . , eN ), it can transform the permutation commitment into a commitment
Come(eπ(1), . . . , eπ(N)), of another type, of the the list elements, but in order defined by
π. Here κcom denotes the maximal bit size of each component of a list commitment.

Definition 1. Let (Gen?,Com?) be a commitment scheme for SN and let (Gene,Come)
be a commitment scheme for [0, 2κcom − 1]N . The former is a κcom-permutation com-
mitment scheme of the latter if Gen? = Gene and there exist deterministic polyno-
mial time algorithms Map and Rand s.t. for every ck ∈ CK, r? ∈ R?ck , π ∈ SN and
e = (e1, . . . , eN ) ∈ [0, 2κcom − 1]N

Mapck (Com?
ck (π, r?), e) = Come

ck ((eπ(1), . . . , eπ(N)),Rand(r?, e)) .

Construction 2 (Pedersen Commitment). The generation algorithm Gen? outputs ran-
dom generators g1, . . . , gN ∈ Gq, where Gq is a cyclic group of known order q =

∏t
i=1 pi

with pi ≥ 2κcom . On input π ∈ SN and r1, . . . , rN ∈ Zq, the commitment algorithm Com?

computes ai = grigπ−1(i), and outputs (a1, . . . , aN ). The parameter algorithm Gene is

identical to Gen?. On input (e1, . . . , eN ) ∈ [0, 2κcom − 1]N and r ∈ Zq, the algorithm

Come computes a = gr
∏N
i=1 g

ei
i , and outputs a.

The idea of using (generalized) Pedersen commitments [24] to commit to permuta-
tions is not novel, e.g., it is used implicitly in [14], but the observation that a commitment
of the first kind can be transformed into a commitment of the second kind seems new.

Proposition 3. Both (Gen?,Com?) and (Gene,Come) of Construction 2 are perfectly
hiding and computationally binding under the DL assumption. The former is a permu-
tation commitment of the latter.

The proof of the binding property is well known for prime order groups. A proof is
given in Appendix A.

We will later make use of the following relation that corresponds to breaking a
commitment scheme, i.e., finding two different ways to open a commitment.

Definition 4. The relation Rtwin
ck consists of all pairs

(
ck , (s[l], s0, s

′
[l], s

′
0)
)

such that

s[l] 6= s′[l] and Come
ck (s[l], s0) = Come

ck (s′[l], s
′
0).
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Suppose a committer produces a permutation commitment a? and the verifier com-
putes a = Mapck (a?, (e1, . . . , eN )). Then we expect that the committer only can open
a as (eπ(1), . . . , eπ(N)) for a fixed permutation π, i.e., if we repeat this procedure with
different lists (e1, . . . , eN ) the same permutation must be used by the committer every
time. We can not prove this, but it is easy to see that if it also can open a? to a permu-
tation π, then it must use this permutation every time. Recall that in our application,
each mix-server proves knowledge of how to open a? during the offline phase. Thus,
if a witness for the following relation can be extracted in the online phase we reach a
contradiction. This suffices to prove the overall security of a mix-net.

Definition 5. The relation Rperm

ck consists of all pairs
(
ck , (a?, s[N ], s0, s

′
[N ], s

′
0)
)

such
that

Mapck (a?, s[N ]) = Come
ck ((sπ(1), . . . , sπ(N)), s0) ,

Mapck (a?, s′[N ]) = Come
ck ((s′π′(1), . . . , s

′
π′(N)), s

′
0) ,

π 6= π′, and si 6= sj and s′i 6= s′j for all i 6= j.

3.2 Proof of Knowledge of Opening

We now explain how we can construct, from any proof of a shuffle of El Gamal cipher-
texts over a prime order group Gp, a proof of knowledge that a Pedersen permutation
commitment indeed is a commitment to a permutation.

Definition 6. The relation Ropen

ck consists of all pairs
(
(ck , a?), (π, r?)

)
such that a? =

Com?
ck (π, r?).

Protocol 7 (Proof of Knowledge of Correct Opening).
Common Input: Pedersen commitment parameters g, g1, . . . , gN ∈ Gp and a commitment
(a1, . . . , aN ) ∈ GNp .
Private Input: Permutation π ∈ SN and exponents r1, . . . , rN ∈ Zp such that ai = grigπ−1(i).

1. P chooses r′i ∈ Zp and h ∈ Gp randomly, computes a′i = gr
′
iai and bi = hri+r

′
i , and

hands (a′1, . . . , a
′
N ) and (h, b1, . . . , bN ) to V.

2. P proves to V that it knows r′i such that a′i = gr
′
iai.

3. P and V view (h, g) as an El Gamal public key, and P uses its random commitment
exponents r1+r′1, . . . , rN+r′N to give a proof of a shuffle that the list (b1, a

′
1), . . . , (bN , a

′
N )

is a re-encryption and permutation of the list of trivial ciphertexts (1, g1), . . . , (1, gN )
using the public key (h, g), i.e., it proves that it knows some r′′i such that (bi, ai) =

(hr
′′
i , gr

′′
i gπ−1(i)).

Proposition 8. The protocol inherits properties of the proof of a shuffle.

1. If the proof of a shuffle is public-coin, overwhelmingly (computationally) sound,
and a proof of knowledge, then so is the protocol above.
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2. If the proof of a shuffle is honest verifier (computationally under assumption A)
zero-knowledge, then the above protocol is computationally zero-knowledge under
the DDH assumption (and assumption A).

A proof is given in Appendix A. Without the blinding exponent r′i the protocol is
not even computationally zero-knowledge, since the adversary could in principle know
ri. Some proofs of shuffles do not satisfy the standard computational versions of sound-
ness, proof of knowledge, and zero-knowledge. In those cases the correspondingly more
complicated security properties are also inherited, but we use the above proposition for
simplicity. Readers with deeper understanding of proofs of shuffles should note that the
basic principles of any proof of a shuffle can be used directly to construct a more effi-
cient protocol, but this is not our focus here. We stress that the above simple solution
is presented for completeness and ease of presentation. It is non-trivial to extend the
above result to groups of composite order such as those considered in Construction 2.

3.3 Proof of Knowledge of Equal Exponents

Recall from our sketch in Section 2.1 that in our commitment-consistent proof of a
shuffle, the prover essentially hands the product

∏N
i=1(c

′
i)
eπ(i) to the verifier and shows

that the exponents used are those committed to in a commitment Come(eπ(1), . . . , eπ(N)).
More precisely, we assume that: {h1, . . . , hk} is a generator set of the group Cpk of

ciphertexts, ck is a commitment parameter, and that the prover hands
∏N
i=1(c

′
i)
eπ(i) to

the verifier in blinded form, i.e., it hands
(
Come

ck (s[k], s0),
∏k
i=1 h

si
i

∏N
i=1(c

′
i)
eπ(i)

)
to the

verifier for random exponents s[k] (and s0 ∈ Rck ), and then proves that it knows all
of these exponents and that they are consistent with the exponents committed to in
Come

ck ((eπ(1), . . . , eπ(N)), e0) for some e0 ∈ Rck . Thus, we construct a protocol for the
following relation.

Definition 9. From a scheme (Gene,Come) for [0, 2κcom − 1]N , a commitment pa-
rameter ck output by Gene, and a public key pk ∈ PK we define Req

ck ,pk to con-

sist of all
(
(pk , ck, h[k], c[N ], a, b1, b2), (e0, e[N ], s0, s[N ])

)
satisfying a = Come

ck (e[N ], e0),

b1 = Come
ck (s[k], s0), and b2 =

∏k
i=1 h

si
i

∏N
i=1 c

ei
i .

If the largest cyclic subgroup of Cpk has order q =
∏t
i=1 pi with pi ≥ 2κc , and a group

Gq of order q is available for which the DL problem is hard, then a sigma protocol with
the challenge chosen from [0, 2κc−1], can be constructed using fairly standard methods.
For completeness we give such a protocol in Appendix B.

Otherwise, we can either use Pedersen commitments over some prime order group
Gp and use a proof of equal exponents over groups of different orders using a Fujisaki-
Okamoto commitment [12] as a “bridge”, or we can replace the permutation commitment
by a corresponding Fujisaki-Okamoto commitment directly. It is not hard to derive
a shuffle of such commitments from Wikström’s shuffle [30]. The drawback of using
Fujisaki-Okamoto commitments is that they are based on the use of an RSA modulus,
and such moduli are costly to generate in a distributed setting. We detail both solutions
in the appendix.
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3.4 Shuffle-Friendly Maps

To randomly shuffle a list of homomorphic ciphertexts (c1, . . . , cN ) usually means that
each ciphertext is randomly re-encrypted and the resulting ciphertexts randomly per-
muted, but there are other possible shuffles. For the El Gamal cryptosystem, one can
also partially decrypt during shuffling [13], or if a special key set-up is used one can
avoid random re-encryption entirely [30]. There are also at least two types of shuffles of
(variants of) Paillier [23] ciphertexts. A careful look at these shuffles reveal that they
are all defined by evaluating a homomorphic map and permuting the result.

Definition 10. A map φpk is shuffle-friendly for a public key pk ∈ PK of a homomorphic
cryptosystem if it defines a homomorphic map φpk : Cpk ×Rpk → Cpk .

Example 11. Using the El Gamal cryptosystem over a group Gp with public key
pk = (g, y), where y = gx and x is the secret key, we have Mpk = Gp, Rpk = Zp,
and Cpk = Gp × Gp. Then φ(g,y)((u, v), r) = (gru, yrv) describes re-encryption when
r ∈ Zp is randomly chosen. If yi = gxi , y = y1y2y3, and x = x1 + x2 + x3, then
φx1(g,y)((u, v), r) = (gru, (y/y1)

ru−x1v) denotes partial decryption and re-encryption using

the secret share x1 and randomness r. The decryption shuffle in [30] can be described
similarly.

Example 12. Using the Paillier cryptosystem with a public key pk = n consisting
of a random RSA modulus, we have Mpk = Zn, Rpk = Z∗n, and Cpk = Z∗n2 with
encryption defined by Epk (m, r) = (1 +n)mrn mod n2. Re-encryption is then defined by
φn(c, r) = crn mod n2.

Suppose we wish to prove that a ciphertext c′ is the result of invoking a particular
shuffle-friendly map φpk on another ciphertext c. If the shuffle-friendly map φpk is public,
e.g., it represents re-encryption, then what is needed is a proof that there exists some
randomness r such that φpk (c, r) = c′. If the shuffle-friendly map itself is not public,
e.g., re-encryption and partial decryption, then the map φpk must then be defined by
some hidden parameters. Without loss we assume that the map is defined by some
relation to the public key. In the typical cases, the public key defines a secret key and
the shuffle-friendly map is defined by the secret key. We consider a situation where the
output ciphertext c′ is committed to as (Come

ck ((s1, . . . , sk), s0), c
′∏k

i=1 h
si
i ), and define

a relation for a shuffle-friendly map as follows.

Definition 13 (Shuffle-Friendly Relation). Let pk ∈ PK, let φpk be a shuffle-friendly
map for pk and let ck be a commitment parameter. We define Rmap

φpk
to consist of

all pairs
(
(pk , ck , h[k], c, b1, b2), (r, s0, s[k])

)
such that b1 = Come

ck (s[k], s0) and b2 =

φpk (c, r)
∏k
i=1 h

si
i .

Example 14 (Example 11 continued). Note that Cpk = Gp × Gp is generated by
h1 = (g, 1) and h2 = (1, g) with component-wise multiplication. If we consider a
re-encryption and permutation shuffle and use Pedersen commitments over the group
Gp with commitment parameter ck = (g1, g2), then the relation consists of all pairs
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of the form
(
((g, y), (g1, g2), (u, v), b1, b2), (r, s0, s1, s2)

)
such that b1 = gs0gs11 g

s2
2 and

b2 = hs11 h
s2
2 (gru, yrv).

For the typical shuffle-friendly maps of the El Gamal and Paillier cryptosystems, it
is well known how to construct sigma protocols [7] for the corresponding shuffle-friendly
relation using standard methods. We give some examples in Appendix E.

3.5 Details of the Commitment-Consistent Proof of a Shuffle

Next we give a detailed description of the protocol that allows a mix-server to prove in
the online phase that it re-encrypted and permuted its input and that the permutation
used is the same permutation it committed to in the offline phase. We denote by κr a
parameter that decides how well the commitments hide the committed values.

The two subprotocols can be executed in parallel and the second step of the protocol
can be combined with the first move of the combined subprotocols.

Protocol 15 (Commitment-Consistent Proof of a Shuffle).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk} of Cpk ,
a commitment parameter ck , a permutation commitment a? ∈ Kπck , ciphertexts (c1, . . . , cN ) ∈
CNpk , and (c′1, . . . , c

′
N ) ∈ CNpk .

Private Input: Permutation π ∈ SN , s? ∈ R?ck and r1, . . . , rN ∈ Rpk such that a? =
Com?

ck (π, s?), and c′i = φpk (cπ(i), rπ(i)).

1. V chooses a seed z ∈ {0, 1}κ randomly and hands it to P. Then both parties set
(e1, . . . , eN ) = PRG(z), where ei ∈ {0, 1}κe , and computes a = Mapck (a?, (e1, . . . , eN )).

2. P chooses t0 ∈ Rck and t1, . . . , tk ∈ [0, 2κ+κr − 1] randomly, and computes and hands
to V

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
htii
∏N

i=1
(c′i)

eπ(i) .

3. P proves, using a proof of equal exponents, that it knows exponents
t0, . . . , tk, (e′1, . . . , e

′
N ) (computed as (eπ(1), . . . , eπ(N))), and e0 (computed as

Rand(s?, (e1, . . . , eN ))) such that

b1 = Come
ck ((t1, . . . , tk), t0) , b2 =

∏k

i=1
htii
∏N

i=1
(c′i)

e′i , and

a = Come
ck ((e′1, . . . , e

′
N ), e0) .

4. P proves, using a proof of a shuffle map, that it knows exponents t0, . . . , tk and r
(computed as

∏N
i=1 r

ei
i ) such that

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
htii φpk

(∏N

i=1
ceii , r

)
.

Note that the protocol and the proposition below are quite general; they apply for all
the usual homomorphic cryptosystems, any shuffle-friendly map, and any number of
ciphertexts shuffled in parallel (this is considered as a separate case in [21]). It even
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applies to mixed settings where ciphertexts from different cryptosystems are shuffled in
parallel. To state the security properties of the protocol we need to define a relation
that captures a shuffle.

Definition 16. Let pk ∈ PK, let φpk be a shuffle-friendly map for pk . Then we define
the shuffle relation Rshuf

φpk
to consist of all pairs of the form

(
(pk , c[N ], c

′
[N ]), (π, r[N ])

)
with

c′i = φpk (cπ(i), rπ(i)).

In the proposition we consider the relation Rshuf

φpk
∨Rtwin

ck ∨Rperm

ck . In general, for two

relations R1 and R2, the relation R1 ∨ R2 denotes the relation consisting of all pairs
((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.

Proposition 17. Let the subprotocols be overwhelmingly complete sigma protocols for
the relations Req

ck ,pk ∨ Rtwin
ck and Rmap

φpk
respectively, and let the commitment scheme be

statistically hiding.
Then for every pk ∈ PK and ck ∈ CK, the protocol is a public-coin honest veri-

fier statistical zero-knowledge proof of the relation Rshuf

φpk
∨ Rtwin

ck ∨ Rperm

ck with negligible

soundness error, and it is overwhelmingly complete for witnesses of Rshuf

φpk
.

It is a proof of knowledge with negligible knowledge error of a string w such that
Rshuf

φpk

(
(pk , c[N ], c

′
[N ]), (w, r[N ])

)
= 1, Rtwin

ck (ck , w) = 1, or Rperm

ck (ck , w) = 1, is satisfied

for some randomness r[N ] ∈ Rpk , where we use the notation for inputs to the protocol
as defined above.

Remark 18. It is observed in [30] that it does not suffice that a proof of a re-encryption
and permutation shuffle is sound to be used in a provably secure mix-net. The permu-
tation used by the mix-server to shuffle must also be extractable. However, extracting
the permutation suffices.

A proof of the proposition is given in Appendix A. The basic idea is explained
already in Section 2.1, except that in the general case the order q of the maximal cyclic
subgroup of Cpk may not be prime or may even be unknown. Note that if q is not
prime, then the “random vectors” are in fact defined over a ring and not over a field,
and consequently they are not vectors at all. Thus, not all elements are invertible,
which potentially is a problem when trying to find a linear combination of the “random
vectors” equal to any standard unit vector, which is needed to extract a witness. Since
we assume that all factors of the order of Cpk are large and all elements that must be
inverted are random, this is not a problem and a witness can be extracted. However, if
it is infeasible to compute the factorization of the order of Cpk , or if the order itself is
unknown, then this seems difficult. Fortunately, it suffices for the overall security of the
mix-net that only the permutation can be extracted.

4 Application To Mix-Nets

At this point the reader should be comfortable with the idea that a proof of a shuffle
can be split into a relatively costly offline part (Protocol 7) and a very efficient online
part (Protocol 15), but how exactly do they fit into a mix-net?
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Below we give a brief informal description of a mix-net based on the El Gamal
cryptosystem over a group Gp of prime order p. This illustrates how our protocols are
used and gives an idea of the complexity of a complete mix-net using our approach.

Offline Phase.

1. The mix-servers, M1, . . . ,Mk, run a distributed key generation protocol to generate
a joint public key (g, y) such that the corresponding secret key x, with y = gx, is
secret shared among the mix-servers.

2. Mj chooses rj,i ∈ Zp randomly and computes (grj,i , yrj,i) for i = 1, . . . , N .

3. Mj chooses a random permutation πj ∈ SN , publishes a permutation commit-
ment a?j = Com?(πj), and proves knowledge of the committed permutation using
Protocol 7 (and verifies the proofs of knowledge of all other mix-servers).

Online Phase.

4. Si chooses ri ∈ Zp randomly, computes (u0,i, v0,i) = E(g,y)(mi, ri), where mi ∈ Zp
is its message, and publishes this ciphertext.

5. Let L0 = (u0,i, v0,i)
N
i=1 be the input ciphertexts. For l = 1, . . . , k:

(a) If l = j, then Mj computes (uj,i, vj,i) = (grj,iuj−1,πj(i), y
rj,ivj−1,πj(i)), pub-

lishes Lj = (uj,i, vj,i)
N
i=1, and proves using Protocol 15 that Lj−1 and Lj are

consistent with a?j .

(b) If l 6= j, then Mj verifies the proof of Ml, i.e., that Ll−1 and Ll are consistent
with a?l .

6. The mix-servers perform a threshold decryption of Lk using their shares of x and
output the list of plaintexts (mπ(1), . . . ,mπ(N)), where π = πk · · ·π1.

The random challenges needed in the subprotocols are generated jointly using a coin-
flipping protocol over a broadcast channel or bulletin board. Thus, all verifiers jointly
either accept or reject proofs. It is natural to ask why the security property of our
commitment-consistent proof suffices, since it is sound for Rshuf

φpk
∨Rtwin

ck ∨Rperm

ck and not

for Rshuf

φpk
. This follows from the proof of knowledge property. For any successful prover

there exists an extractor that outputs: a valid permutation π used to shuffle, a witness
for Rtwin

ck , or a witness for Rperm

ck . The second type of output directly contradicts the
security of the commitment scheme. The third type of output combined with knowledge
of how to open a?j (such an opening can be extracted during the offline phase), also
contradicts the security of the commitment scheme. Thus, in a simulation the extractor
outputs the permutation with overwhelming probability, which suffices to prove the
overall security of the mix-net.

Depending on the secret sharing threshold, all mix-servers may not need to shuffle the
ciphertexts, and there are obvious ways to avoid the assumption that all senders submit
an input. Many details are of course missing from the above description, but in the
El Gamal case all subprotocols missing from the description are available. Distributed
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key generation can be done using Feldman and Pedersen secret sharing [11, 24]. The
submission of inputs must allow extraction of the plaintexts of corrupt senders without
using the secret key of the cryptosystem. This can be done [31] based on the Cramer-
Shoup cryptosystem [8] in such a way that each mix-server essentially pays the cost of
checking the validity of N Cramer-Shoup ciphertexts. Batch techniques [4] can be used
to reduce this further if most ciphertexts are expected to be valid, and validity checks
can be done concurrently with receiving new ciphertexts. Random challenges can be
generated using Pedersen verifiable secret sharing [24]. The sharing phase of many coins
can be pre-computed, but since we only need a small number of bits in each challenge
this type of optimization does not give much. Finally, during threshold decryption each
mix-server must exponentiate N group elements to decrypt, but proving that this was
done correctly can be done using batch proofs [4]. To summarize, the online running
time of the mix-net is roughly the time to: validate N Cramer-Shoup ciphertexts, run
the prover or verifier of k commitment-consistent proofs of shuffles of lists of ciphertexts
of length N , decrypt N El Gamal ciphertexts, and prove or verify correctness of joint
decryption, which is done using a batch proof.

Recall that κe denotes the bit-size of elements in random “vectors”, κc denotes the
bit-size of challenges, and κr decides the statistical error in simulations and also the
completeness of our subprotocols. For practical security parameters, e.g., κ = 1024,
κe = κc = 80 and κr = 20, we estimate the complexity of our protocol to N/2 square-
and-multiply exponentiations. This can be reduced by a factor of 1/5 if simultaneous ex-
ponentation [20] is used, giving a complexity corresponding to N/10 square-and-multiply
exponentations (see Appendix C for details).

Thus, our commitment-consistent proof of a shuffle is several times faster in the
online phase than any of the known proofs of shuffles. As far as we know this makes our
mix-net faster in the online phase than any previous mix-net.
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A Omitted Proofs

Proof of Proposition 3. In both schemes, if two distinct valid openings can be computed,
then we can write gb

∏N
i=1 g

bi
i = 1 for some b, b1, . . . , bN ∈ Zp, where not all are zero. It

is well known and easy to see that this contradicts the DL assumption.
For a commitment (a1, . . . , aN ) = Com?

ck (π, (r1, . . . , rN )), where ck = (g1, . . . , gN ),

we have
∏N
i=1 a

ei
i = g

∑N
i=1 riei

∏N
i=1 g

eπ(i)
i which equals a commitment computed as

Come
ck ((eπ(1), . . . , eπ(N)),

∑N
i=1 riei). This proves the second claim.

Proof of Proposition 8. The first claim is obvious. The zero-knowledge simulator picks
b1, . . . , bN ∈ Gp randomly and then invokes the simulators of the batch proof and the
proof of a shuffle. A standard hybrid argument shows that the resulting distribution
is polynomially indistinguishable from the distribution of a real interaction, under the
DDH assumption.

Proof of Proposition 17. The zero-knowledge simulator chooses z randomly as in the
protocol, chooses t0 ∈ Reck and b1 ∈ Cpk randomly, computes b1 = Come

ck ((0, . . . , 0), t0),
and then invokes the statistical zero-knowledge simulators of the subprotocols. Due to
the statistical zero-knowledge of the commitment scheme the resulting distribution is
statistically close to the distribution of a real interaction.

Suppose that we, by repeatedly invoking the extractors of the subprotocols, manage
to extract N different ej = (ej,1, . . . , ej,N ) with distinct components and exponents
tj,0, . . . , tj,k, and e′j,0, . . . , e

′
j,N , satisfying

bj,1 = Come
ck ((tj,1, . . . , tj,k), tj,0) , bj,2 =

∏k

i=1
h
tj,i
i

∏N

i=1
(c′i)

e′j,i , and

aj = Come
ck ((e′j,1, . . . , e

′
j,N ), e′j,0) ,

where aj = Mapck (a?, (ej,1, . . . , ej,N )), and exponents t′j,0, . . . , t
′
j,k, and rj satisfying

bj,1 = Come
ck ((t′j,1, . . . , t

′
j,k), t

′
j,0) and

bj,2 =
∏k

i=1
h
t′j,i
i φpk

(∏N

i=1
c
ej,i
i , rj

)
,

for j = 1, . . . , N . The witness extracted from a subprotocol may be a witness of Rtwin
ck ,

in which case we are done. From now on we assume that this is not the case.
If it is not the case that (tj,1, . . . , tj,k) = (t′j,1, . . . , t

′
j,k) for all j = 1, . . . , N , then

we have found two distinct openings of a commitment bj,1, i.e., a witness for ck with
respect to the relation Rtwin

ck . Thus, we may drop the prime symbol and simply write
(tj,1, . . . , tj,k).

If it is not the case that e′j,i = ej,π(i) for some fixed permutation π and all j = 1, . . . , N
and i = 1, . . . , N , then we have found a witness for ck with respect to the relation Rperm

ck .
Thus, we assume that the same permutation π appears for every list and simply write
(ej,π(1), . . . , ej,π(N)) instead of (e′j,1, . . . , e

′
j,N ).
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We conclude that ∏N

i=1
(c′i)

ej,π(i) = φpk

(∏N

i=1
c
ej,i
i , rj

)
for j = 1, . . . , N . We have now extracted a permutation π (the extractor only needs
to extract a single list (ej,π(1), . . . , ej,π(N)) to find π). It remains to prove that with
overwhelming probability there exists (r1, . . . , rN ) such that (π, r1, . . . , rN ) is a witness
for Rshuf

φpk
.

Suppose that for every l = 1, . . . , N , there exist xl,1, . . . , xl,N ∈ Zq, where q is the

order of the maximal cyclic subgroup of Cpk , such that
∑N

j=1 xl,jej is the lth standard

unit “vector” in ZNq (since Zq is not a field, this is not a vector space). We conclude
that

c′π−1(l) =
∏t

j=1

(∏N

i=1
(c′i)

ej,π(i)

)xl,j
=
∏t

j=1

(
φpk

(∏N

i=1
c
ej,i
i , rj

))xl,j
= φpk

(∏t

j=1

(∏N

i=1
c
ej,i
i

)xl,j
,
∏t

j=1
r
xl,j
j

)
= φpk

(
cl,
∏t

j=1
r
xl,j
j

)
,

where the third equality follows from the linearity of the shuffle map φpk . Thus, we
have c′l = φpk (cπ(l), r

′
π(l)) for some r′π(l), l = 1, . . . , N as expected. We stress that we do

not claim that the xl,i values can be computed. In fact, when the order q of the largest
cyclic subgroup of Cpk is not known, then it seems very hard to compute such values.

To prove soundness and that the knowledge error is negligible, it remains to show that
we can extract the values described at the beginning of the proof with high probability.
First we note that without loss we can combine the two subprotocols into a single
protocol by exploiting their special soundness and zero-knowledge properties, i.e., we
may use the same challenge for both protocols.

Consider the following thought experiment. For any prover P∗, we construct a new
prover P+ that honestly chooses (e1, . . . , eN ) instead of the verifier, and then invokes
P∗. The new prover obviously takes part in a different protocol, but we can still consider
the problem of extracting two accepting interactions with distinct challenges from P+.
A standard rewinding argument (see for example Lemma 8 in [26]), shows that there
exists a polynomial T (κ) and an extractor X0 such that if the success probability of
P∗ is at least δ(κ), then X0 outputs, in expected time O(T (κ)/(δ(κ) − 2−κc)), a list
(ej,1, . . . , ej,N ), tj,0, . . . , tj,k, and rj , satisfying our requirements for j = 1, . . . , N .

We let the extractor X1 invoke the extractor X0 exactly N times and output the
extracted set of values. It is clear that X1 runs in expected time O(N · T (κ)/(δ(κ) −
2−κc)). We claim that if δ(κ) is not too small, then with positive probability the lists
(ej,1, . . . , ej,N ) output by X0 determines a witness of Rmap

φpk
. We remind the reader that

we do not claim that such a witness can be extracted efficiently, only that it exists, and
we prove that it exists by showing that there exists a non-efficient extraction procedure
that outputs it with high probability.
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In the protocol, the list (e1, . . . , eN ) is derived from a small random seed z using a
PRG. We first analyze an idealized setting where the output from the PRG is perfectly
random and then show that using a PRG is almost as good.

If a list (e1, . . . , eN ) satisfies ei 6= ei′ for all i 6= i′, then we say that it is internally
unique. It is easy to see that a randomly chosen list (e1, . . . , eN ) ∈ [0, 2κe − 1]N is not
internally unique with probability at most N22−κe .

We say that some lists e1, . . . , ej are in general position, if the set of linear combina-
tions of these lists with coefficients in Zq contains lists of the following form

e′1 = (1, 0, 0, . . . , 0, e′1,j+1, . . . , e
′
1,N )

e′2 = (0, 1, 0, . . . , 0, e′2,j+1, . . . , e
′
2,N )

...
...

...

e′j = (0, 0, 0, . . . , 1, e′j,j+1, . . . , e
′
2,N ) .

Suppose that some lists e1, . . . , ej in general position are given and consider the proba-
bility that a randomly chosen list ej+1 can be used to extend the set of lists in general
position. By construction, ej+1,j+1 is randomly chosen in [0, 2κe−1], where 2κe is smaller
than any factor of q (the maximal order of any cyclic subgroup of Cpk ), and there are
obviously at most κ/κe factors in q. Thus, from independence we conclude that the
probability that ej+1,j+1 −

∑j
l=1 el,j+1ej+1,l is not invertible modulo q is bounded by

κ
κe

2−κe . Thus, the probability that a randomly chosen list can not be used to extend
the sequence of lists in general position is bounded by κ

κe
2−κe . In the protocol, the

list (e1, . . . , eN ) is derived from a random seed. If this would change the probabilities
derived above more than by a negligible amount, then we could obviously break the
PRG. Thus, using a PRG, the probability that the list ej+1 is not internally unique or
does not extend the set of lists in general position is bounded by N(N + κ

κe
)2−κe + ε0(κ)

for some negligible function ε0(·).
Suppose now that the first j calls to X0 resulted in internally unique lists in general

position. Then during the next call to the extractor X0, the expected number of sampled
lists is bounded by X0’s expected running time O(T (κ)/(δ(κ)−2−κc)), which means that
the expected number of generated lists that are either not internally unique or does not
extend the already existing set of lists in general position is bounded by

O((N(N + κ/κe)2
−κe + ε0(κ))T (κ)/(δ(κ)− 2−κc)) .

Thus, the probability that some list output by X1 is not internally unique, or that the
lists are not in general position is upper bounded by

O((N(N + κ/κe)2
−κe + ε0(κ))2−κeT (κ)/(δ(κ)− 2−κc)) .

This is negligible for a negligible δ(κ), which concludes the proof of soundness.

B Proof of Equal Exponents For Pedersen Commitments

We provide a detailed description and analysis of the proof of equal exponents for the
solution based on Pedersen commitments.
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Protocol 19 (Proof of Equal Exponents).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk} of Cpk ,
a cyclic group Gq that has the same order q as the largest cyclic subgroup of Cpk , generators
g, g1, . . . , gN of Gq, a commitment of exponents a ∈ Gq, ciphertexts (c1, . . . , cN ) ∈ Cpk , a
commitment (b1, b2), where b1 ∈ Gq and b2 ∈ Cpk .
Private Input: Exponents e1, . . . , eN ∈ [0, 2κe − 1], s0, . . . , sk, e0 ∈ Zq such that: a =

ge0
∏N
i=1 g

ei
i , b1 = gs0

∏k
i=1 g

si
i , and b2 =

∏k
i=1 h

si
i

∏N
i=1 c

ei
i .

1. P chooses t1, . . . , tN ∈ [0, 2κe+κc+κr −1] and t0, l0, . . . , lk ∈ Zq, randomly, and computes
and hands to V the following elements

α = gt0
∏N

i=1
gtii , β1 = gl0

∏k

i=1
glii , and β2 =

∏k

i=1
hlii
∏N

i=1
ctii .

2. V chooses a challenge c ∈ [0, 2κc − 1] randomly and hands it to P.

3. P computes and hands to V the following replies

d0 = ce0 + t0 mod q ,

di = cei + ti mod 2κe+κc+κr , for i = 1, . . . , N , and

fi = csi + li mod q , for i = 0, . . . , k

4. V checks that

gd0
∏N

i=1
gdii = acα , gf0

∏k

i=1
gfii = bc1β1 , and

∏k

i=1
hfii
∏N

i=1
cdii = bc2β2 . (1)

Note that the prover can pre-compute α and the cost of computing β1 may be ignored
when N is much larger than k. Thus, the prover must essentially compute β2 in the
online phase. The verifier on the other hand must perform its verifications for both α
and β2 in the online phase.

Proposition 20. Suppose that q =
∏t
i=1 pi with pi ≥ 2κc. Then the protocol is an

overwhelmingly complete sigma protocol for Req

ck ,pk .

Proof. The zero-knowledge simulator chooses c ∈ [0, 2κc−1], d0, fi ∈ Zq for i = 1, . . . , k,
and di ∈ [0, 2κe+κc+κr − 1] for i = 1, . . . , N randomly and defines α, β1 and β2 by Equa-
tion (1). The resulting simulation is perfectly distributed, but due to the reduction mod-
ulo 2κe+κc+κr the protocol only has overwhelming completeness. Suppose that accepting
interactions: (α, β1, β2, c, d0, . . . , dN , f0, . . . , fk) and (α, β1, β2, c

′, d′0, . . . , d
′
N , f

′
0, . . . , f

′
k)

with c 6= c′ are given. By construction |c − c′| ≤ 2κc ≤ p for each factor p of q. Thus,
c − c′ is invertible modulo q. Furthermore, since q is the order of the largest cyclic
subgroup of Cq, the orders qa, qb1 , and qb1 of a, b1, and b2 respectively divide q. Thus,
((c−c′)−1 mod q) = (c−c′)−1 mod qa and correspondingly for qb1 , and qb1 . This implies
that we may set ei = (c − c′)−1(di − d′i) mod q and si = (c − c′)−1(fi − f ′i) mod q, and

conclude that a = ge0
∏N
i=1 g

ei
i , b1 = gs0

∏k
i=1 g

si
i , and b2 =

∏k
i=1 h

si
i

∏N
i=1 c

ei
i .
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B.1 A Special Pre-computation Trick For El Gamal

When we use the El Gamal cryptosystem the ciphertext space equals Gq ×Gq. In this
case the verifier can use the following pre-computation technique based on batch proofs.

Let us write ci = (ui, vi). The verifier chooses x ∈ [0, 2κe−1] randomly and computes
wi = uig

x
i . When it receives the reply to its challenge c it performs the verification as

follows

gf0
∏k

i=1
gfii = bc1β1 , and

(gd0 , 1)
∏k

i=1
hfii
∏N

i=1
(wi, vi)

di = (b2(a, 1)x)cβ2(α, 1)x .

The reason for doing this is that the verifier can pre-compute all gxi , and that this reduces
the online complexity by a factor of 2/3. A standard batch-proof argument implies that
the above verification is essentially as sound as the original.

C Online Complexity Estimate In the El Gamal Case

In this section it is understood that we consider the online complexity of the protocol.
For each of the prover and verifier, the complexity of the main part of Protocol 15 is
roughly 2κeκ N square-and-multiply exponentiations, and the complexity of Protocol 19
(the proof of knowledge of equal exponents in Appendix B) is roughly 2κe+κc+κrκ N and
for both the prover and verifier, using the special trick outlined above. Thus, the total
complexity is 4κe+2κc+2κr

κ N . For practical values, e.g., κ = 1024, κe = κc = 80 and
κr = 20, this gives ≈ N/2 exponentiations.

Essentially all exponentiations in the protocols are of the form
∏N
i=1 u

ei
i for some

elements ui and κ′-bit exponents ei for some κ′ < κ, which means that simultaneous
exponentation [20] is directly applicable. The complexity of one square-and-multiply ex-
ponentiation with a κ′-bit exponent corresponds to κ′ squarings and κ′/2 multiplications
on average.

There are two ways the complexity is reduced in simultaneous exponentiation. Firstly,
the squarings are done for all N elements at the same time, i.e., the cost for squaring is
negligible when N is large. Secondly, the number of multiplications is reduced by pre-
computing products of subsets of the elements ui. One can only compute all possible
combinations for a small number of elements at a time. Thus, the idea is to divide the
elements into groups of w elements for some width w. For each such group u1, . . . , uw
of elements and every I ⊂ {1, . . . , w} the product

∏
i∈I u

ei
i is then computed. These

products can be computed using 2w multiplications. Given all such products, multipli-
cation by any combination of the elements u1, . . . , uw can be done at the cost of a single
multiplication.

Thus, the average cost of computing
∏N
i=1 u

ei
i is roughly N

w ·2
w+ N

w κ
′ multiplications,

where κ′ is the bitsize of the exponents. We conclude that the complexity of Protocol 15,
using the parameters above, corresponds to 2(2

3

3 + 80
3 )N = 59N multiplications if we set

w = 3. Similarly, the complexity of Protocol 15 corresponds to 2(2
4

4 + 80+80+20
4 )N = 98N

if we set w = 4. This sums to 157N multiplications.
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We may estimate the number of multiplications computed using square-and-multiply
exponentiations by 1.5(4 · 80 + 2 · 80 + 2 · 20)N ≤ 780N . Thus, if simultaneous exponen-
tiation is used the complexity can be reduced by a factor of 154/780 ≈ 1/5. This gives
a total complexity corresponding to N/10 square-and-multiply exponentiations.

However, optimized code such as GMP [16] already uses other tricks, such as sliding
window exponentiation, which are to some extent in conflict with using simultaneous
exponentiation [17]. Thus, one can not expect a reduction in complexity by a factor of
1/5 starting from an optimized implementation.

D Solution Based On Fujisaki-Okamoto Commitments

An alternative to using Pedersen commitments is to use Fujisaki-Okamoto commitments
[12]. This is less practical, since such commitments assume the availability of an RSA
modulus (which is costly to generate jointly), but it allows construction of commitment-
consistent proofs of shuffles for cryptosystems where the order of the group of ciphertexts
is unknown.

D.1 Permutation Commitment

Construction 21 (Fujisaki-Okamoto Commitment). The parameter generation algo-
rithm Gen? outputs a random RSA modulus n = pq, where p and q are random κ/2-
bit safe primes, and random generators g, g1, . . . , gN ∈ SQn. On input π ∈ SN and
r1, . . . , rN ∈ [0, 2κ+κr − 1], the commitment algorithm Com? computes ai = grigπ−1(i),
and outputs (a1, . . . , aN ). The parameter algorithm Gene is identical to Gen?. On in-
put (e1, . . . , eN ) ∈ [0, 2κe − 1] and r ∈ [0, 2κ+κr − 1] the commitment algorithm Come

computes a = gr
∏N
i=1 g

ei
i , and outputs (a1, . . . , aN ).

It is technically convenient to consider a non-zero tuple (n0, . . . , nN ) as an open-
ing of any message if gn0

∏N
i=1 g

ni
i = 1. Similarly, a tuple (β, η, n0, . . . , nN ) such that

gn0
∏N
i=1 g

ni
i = βη, η 6= 0, and η - ni for some i, is also viewed as a valid opening of any

message.

Proposition 22. Both (Gen?,Com?) and (Gene,Come) of Construction 21 are statisti-
cally hiding and computationally binding under the strong RSA-assumption. The former
is a permutation commitment of the latter.

Proof. The statistical hiding property follows since the random exponents ri and r are
chosen randomly in [0, 2κ+κr − 1] and all generators generate the group of squares with
overwhelming probability, where κ is an upper bound on the orders of g and gi. In both
schemes it holds that if two distinct valid openings can be computed, then we can write
gn0
∏N
i=1 g

n0
i = 1 for some n0, . . . , nN ∈ Z, where not all are zero. In Corollary 34 we

extend known results [9] and show that this contradicts the strong RSA assumption.
For any Fujisaki-Okamoto commitment (a1, . . . , aN ) = Com?

ck (π, r[N ]) we have
∏N
i=1 a

ei
i =

g
∑N
i=1 riei

∏N
i=1 g

eπ(i)
i which equals a commitment Come

ck (eπ(1), . . . , eπ(N),
∑N

i=1 riei), which

proves the second claim. The only potential issue is that the bit-size of
∑N

i=1 riei is larger
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than the bit-size of any individual ri. Thus, formally speaking we need to consider two
variants of the cryptosystem with different randomness spaces, but we do not make this
explicit.

The above forms of (generalized) Fujisaki-Okamoto commitments are used implicitly
in Wikström [30].

D.2 Proof of Equal Exponents For Fujisaki-Okamoto Commitments

The next protocol can be used to provide a proof of equal exponents both in the case
where Pedersen commitments are used and when Fujisaki-Okamoto commitments are
used. In the first case it is useful as a “bridge”, when the order of Cpk is unknown or if
it is infeasible to construct a group Gq for which the DL assumption holds, where q is
the order of the largest cyclic subgroup of Cpk . In the second case it is used directly in
the natural way.

Protocol 23 (Generic Proof of Equal Exponents).
Common Input: Fujisaki-Okamoto parameters n and hi ∈ SQn for i = 1, . . . , n0, z1, z2 ∈ Z∗n,
and group elements yj ∈ Gj , gj,i ∈ Gj for i = 0, . . . , nj and j = 1, 2, 3 and with n3 = n1 + n2.
Private Input: Exponents w1, w2, x1,0, x2,0 ∈ [0, 2κ+κr − 1] and xj,i ∈ [0, 2κj − 1] for
i = 1, . . . , nj and j = 1, 2 such that y1 =

∏n1

i=0 g
x1,i

1,i , y2 =
∏n2

i=0 g
x2,i

2,i , and y3 =∏n1

i=1 g
x1,i

3,i

∏n1+n2

i=n1+1 g
x2,i

3,i , z1 = hw1
0

∏n1

i=1 h
x1,i

i , and z2 = hw2
0

∏n2

i=1 h
x2,i

i .

1. P chooses s1, s2, r1,0, r2,0 ∈ [0, 2κ+2κr+κc − 1], rj,i ∈ [0, 2κj+κc+κr − 1] randomly and
computes and hands to V the following elements

γ1 =

n1∏
i=0

g
r1,i
1,i , γ2 =

n2∏
i=0

g
r2,i
2,i , γ3 =

n1∏
i=1

g
r1,i
3,i

n1+n2∏
i=n1+1

g
r2,i
3,i

ζ1 = hs10

n1∏
i=1

h
x1,i

i , and ζ2 = hs20

n2∏
i=1

h
x2,i

i .

2. V chooses a challenge c ∈ [0, 2κc − 1] randomly and hands it to P.

3. P computes and hands to V the following replies

dj,0 = cxj,i + rj,i mod 2κ+2κr+κc ,

dj,i = cxj,i + rj,i mod 2κj+κc+κr for i = 1, . . . , N

fj = cwj + sj mod 2κ+2κr+κc for j = 1, 2 .

4. V checks that

n1∏
i=0

g
d1,i
1,i = yc1γ1 ,

n2∏
i=0

g
d2,i
2,i = yc2γ2 ,

n1∏
i=1

g
d1,i
3,i

n1+n2∏
i=n1+1

g
d2,i
3,i = yc3γ3 , (2)

hf10

n1∏
i=1

h
d1,i
i = zc1ζ1 , and hf20

n2∏
i=1

h
d2,i
i = zc2ζ2 . (3)
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Definition 24. Let ck = (n, (hi)
n0
i=1) be defined as in the protocol. Then we define the

relation Rgeq
ck to consist of all(

(ck , z0, z1, y1, y2, y3, (g1,i)
n1
i=1, (g2,i)

n2
i=1, (g3,i)

n3
i=1), (w1, w2, (x1,i)

N
i=0, (x2,i)

N
i=0)

)
,

such that

y1 =

n1∏
i=0

g
x1,i
1,i , y2 =

n2∏
i=0

g
x2,i
2,i , y3 =

n1∏
i=1

g
x1,i
3,i

n1+n2∏
i=n1+1

g
x2,i
3,i

z1 = hy10

n1∏
i=1

h
x1,i
i , and z2 = hy20

n2∏
i=1

h
x2,i
i .

Proposition 25. For every pk ∈ PK and ck ∈ CK, the protocol is a sigma protocol
with overwhelming completeness for the relation Rgeq

ck ,pk ∨Rtwin
ck .

Proof. The zero-knowledge simulator chooses c ∈ [0, 2κc − 1],
dj,0 ∈ [0, 2κ+2κr+κc − 1], dj,i ∈ [0, 2κj+κc+κr − 1], and fj ∈ [0, 2κ+2κr+κc − 1], randomly
and defines γ1, γ2, γ3, ζ1, and ζ2 by Equations (2)-(3). This gives a perfectly distributed
interaction.

Suppose have accepting interactions

(γ1, γ2, γ3, ζ1, ζ2, c, (d1,i)
N
i=0, (d2,i)

N
i=0, f1, f2) and

(γ1, γ2, γ3, ζ1, ζ2, c
′, (d′1,i)

N
i=0, (d

′
2,i)

N
i=0, f

′
1, f
′
2) ,

with c 6= c′. If c− c′ divides fj − f ′j and dj,i − d′j,i for i = 0, . . . , N , then we may define
sj = (fj − f ′j)/(c − c′) and rj,i = (dj,i − d′j,i)/(c − c′), which gives a witness for Rgeq

ck ,pk .
Otherwise we have found a witness of Rtwin

ck .

Below we show how a proof of equal exponents for Req

ck ,pk ∨Rtwin
ck can be derived from

the above protocol when Pedersen commitments are used by the mix-servers to commit
to their permutations.

Protocol 26 (Proof of Equal Exponents).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk} of
Cpk , generators g, g1, . . . , gN of a group Gq of order q, a commitment of exponents a ∈ Gq,
ciphertexts (c1, . . . , cN ) ∈ Cpk , a commitment (b1, b2), where b1 ∈ Gq and b2 ∈ Cpk .
Private Input: Exponents e1, . . . , eN ∈ [0, 2κe − 1], s0, . . . , sk, e0 ∈ Zq such that: a =

ge0
∏N
i=1 g

ei
i , b1 = gs0

∏k
i=1 g

si
i , and b2 =

∏k
i=1 h

si
i

∏N
i=1 c

ei
i .

1. P chooses y1, y2 ∈ [0, 2κ+κr − 1] randomly and computes and hands to V

z1 = gy10

N∏
i=1

geii and z2 = gy20

k∏
i=1

gsii .

2. Invoke Protocol 23 on the above elements and exponents.
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Finally, we show how Protocol 23 can be invoked directly, when Fujisaki-Okamoto com-
mitments are used by the mix-servers to commit to their permutations.

Protocol 27 (Proof of Equal Exponents).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk} of Cpk ,
Fujisaki-Okamoto parameters n, g, g1, . . . , gN , a commitment of exponents a ∈ Z∗n, ciphertexts
(c1, . . . , cN ) ∈ Cpk , a commitment (b1, b2), where b1 ∈ Z∗n and b2 ∈ Cpk .
Private Input: Exponents e1, . . . , eN ∈ [0, 2κe − 1], s0, . . . , sk, e0 ∈ [0, 2κ+κr − 1] such that:

a = ge0
∏N
i=1 g

ei
i , b1 = gs0

∏k
i=1 g

si
i , and b2 =

∏k
i=1 h

si
i

∏N
i=1 c

ei
i .

Invoke Protocol 23 on the above elements and exponents (some of the elements are simply
eliminated).

E Proofs of Knowledge of Shuffle-Friendly Maps

Protocol 28 (Proof of Re-encryption For El Gamal).

Common Input: Prime order group Gp, El Gamal public key (y, g), and ciphertexts (u, v)
and (u′, v′).
Private Input: Exponent r ∈ Zp such that (u′, v′) = (gru, yrv).

1. P chooses s ∈ Zp randomly, computes (µ, ν) = (gs, ys), and hands (µ, ν) to V.

2. V chooses a challenge c ∈ Zp randomly and hands it to P.

3. P computes d = cr + s and hands d to V.

4. V verifies that (gd, yd) =
(
(u′/u)cµ, (v′/v)cν

)
.

Protocol 29 (Proof of Partial Decryption and Re-encryption For El Gamal).

Common Input: Prime order group Gp, El Gamal public keys (y, g) and z, and ciphertexts
(u, v) and (u′, v′).
Private Input: Exponents w ∈ Zp and r ∈ Zp such that z = gw and (u′, v′) =
(gru, (y/z)ru−wv).

1. P chooses s, t ∈ Zp randomly, computes (ζ, µ, ν) = (gt, gs, (y/z)su−t), and hands
(ζ, µ, ν) to V.

2. V chooses a challenge c ∈ Zp randomly and hands it to P.

3. P computes d = cr + s and f = cw + t and hands (d, f) to V.

4. V verifies that (gf , gd, (y/z)du−f ) =
(
zcζ, (u′/u)cµ, (v′/v)cν

)
.
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F Assumptions

F.1 Discrete Logarithm Assumptions

Definition 30. The discrete logarithm assumption for a cyclic group Gq of order q,
with generator g, states that if x ∈ Zq is randomly chosen, then for every polynomial
time adversary A, Pr[A(g, gx) = x] is negligible.

Definition 31. The decision Diffie-Hellman assumption for a cyclic group Gq of order
q, with generator g, states that if x, y, r ∈ Zq are randomly chosen, then for every
polynomial time adversary A: |Pr[A(g, gx, gy, gxy) = 1] − Pr[A(g, gx, gy, gr) = 1]| is
negligible.

F.2 Strong RSA Assumption

Definition 32. The strong RSA assumption states that if p and q are randomly chosen
κ/2-bit safe primes, n = pq, and g ∈ SQn is randomly chosen, then for every polynomial
time adversary A, Pr[A(n, g) = (β, η) ∧ η 6= ±1 ∧ βη = g mod n] is negligible.

The following lemma is proved in [9].

Lemma 33. Let (n, g) be randomly chosen RSA parameters as defined in Definition 32,
and let h ∈ SQn be randomly chosen. Then for every polynomial time adversary A

Pr[A(n, g, h) = (β, η0, η1, η2) ∧ |η0| ∈ [1, 2κ/2−1]

∧ (η0 - η1 ∨ η0 - η2) ∧ βη0 = gη1hη2 mod n]

Pr[A(n, g, h) = (β, η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod n]

are negligible in κ under the strong RSA assumption.

Corollary 34. Let (n, g) be randomly chosen RSA parameters as defined in Definition
32, and let g1, . . . , gN ∈ SQn be randomly chosen. Then for every polynomial N and
polynomial time adversary A

Pr

[
A(n, (gi)

N
i=1) = (β, (ηi)

N
i=0) ∧ |η0| ∈ [1, 2κ/2−1] ∧ (∃i > 0 : η0 - ηi)

∧ βη0 =
∏N

i=1
gηii mod n

]
Pr

[
A(n, (gi)

N
i=1) = (ηi)

N
i=1 ∧ (∃i : ηi 6= 0) ∧

∏N

i=1
gηii = 1 mod n

]
are negligible in κ under the strong RSA assumption.

Proof. Suppose that A contradicts the first claim. Then we can construct an adversary
A′ that contradicts the first claim of Lemma 33 as follows. It chooses an index t ∈ [1, N ]
randomly and defines gt = h and gi = gri for i 6= t, where ri ∈ [0, 2κ+κr − 1] is chosen
randomly for i 6= t. Then it invokes A on n and these generators. When it returns
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(β, (ηi)
N
i=0), A

′ defines β′ = β, η′0 = η0, η
′
2 = ηt, and η′1 =

∑
i 6=t ηiri, and returns

(β′, η′0, η
′
1, η
′
2). Conditioned on (β, (ηi)

N
i=0) satisfying the requirements in the lemma, the

probability that η0 - ηt is 1/N , and by construction we have βη0 = gη1hη2 mod n. Thus,
A′ contradicts the first claim of Lemma 33.

Suppose that A contradicts the second claim. Then the following adversary A′′

contradicts the second claim of Lemma 33. It defines gi = gri for randomly chosen
ri ∈ [0, 2κ+κr − 1] and invokes A on n and these generators. When A returns (ηi)

N
i=1,

it defines η′1 =
∑N

i=1 riηi and η′2 = 0. Then it returns (η′1, η
′
2). It is easy to see that

conditioned on ηi 6= 0 for some i, η′1 is non-zero with overwhelming probability, since
there are exponentially many ri consistent with gi for every i = 1, . . . , N .
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