
A FPGA pairing implementation using the Residue Number
System

Sylvain Duquesne, Nicolas Guillermin

IRMAR, UMR CNRS 6625
Université Rennes 1
Campus de Beaulieu

35042 Rennes cedex, France
sylvain.duquesne@univ-rennes1.fr, nicolas.guillermin@m4x.org

Abstract. Recently, a lot of progresses have been made in software implementations of pairings
at the 128-bit security level in large characteristic. In this work, we obtain analogous progresses
for hardware implementations. For this, we use the RNS representation of numbers which is
especially well suited for pairing computation in a hardware context. A FPGA implementation
is proposed, based on an adaptation of Guillermin’s architecture which computes a pairing in
1.07 ms. It is 2 times faster than all previous hardware implementations (including ASIC and
small characteristic implementations) and almost as fast as best software implementations.

Keywords: Elliptic curves, optimal pairing, Barreto-Naerigh curves, Residue Number System (RNS),
efficient hardware implementation.

1 Introduction

Bilinear pairings on elliptic curves have been introduced in cryptography in the middle of 90’s for
cryptanalysis. Indeed, they allow to transfer the discrete logarithm on an elliptic curve to a discrete
logarithm in the multiplicative group of a finite field, where subexponential algorithms are available
[16, 24]. In 2000, Joux introduces the first constructive use of pairings with a tripartite key exchange
protocol [20]. Since, it has been shown that pairings can be used to construct new protocols like identity
based cryptography [9] or short signature [10]. As a consequence, pairings became very popular in
asymmetric cryptography and computing them as fast as possible is very important. In this work, we
are interested by hardware implementation of pairing in the 128-bit security level in large characteristic.
Indeed, the recent introduction of Barreto-Naehrig curves [7] and optimal pairings [30] leads to very
efficient implementations, especially in software. We combine all the recent algorithmical improvements
of pairing in large characteristic and a FPGA architecture based on the Residue Number System to
obtain the fastest hardware implementation of pairing at the 128-bit security level. This paper is
organized as follows. Section 2 gives an overview of optimal Ate pairing computation over Barreto-
Naehrig (BN) curves. The Residue Number System (RNS) and the field arithmetic optimisations
used for pairing computations are presented in Section 3. In Section 4, we explain our choice of
curve and detail the algorithmic optimisations specific to these curves. Section 5 describes our pipeline
architecture and Section 6 summarizes cycle count and provides comparison of results with the previous
implementations in the literature. Section 7 concludes the paper.

2 Pairing on elliptic curves and their computation

Pairings on elliptic curves are bilinear maps from the curve to the multiplicative group of a finite
field Fpk where k is called the embedding degree. It is usually very large so that computing in Fpk is
not reasonable. This is reassuring regarding the destructive use of pairings but annoying for pairing
based cryptosystems. Small embedding degrees can be easily obtained by using supersingular curves.
However, it is too small (k ≤ 2) if large characteristic base fields are used as in this work. Thus, we
use ordinary curves with prescribed embedding degrees constructed via the complex multiplication
method as surveyed in [15]. We focused on the most popular one to date, namely the Barreto-Naehrig
curves having embedding degree equal to 12 [7]. The reason of their popularity it that if p is a 256-bit
prime number, such curves ensure a 128-bit security level both on the curve and on the finite field
Fp12 , assuming NIST recommendations [27].

2.1 Pairings on Barreto-Naehrig curves

Let u ∈ Z, p = 36u4 + 36u3 + 24u2 + 6u+ 1 a prime number and E an elliptic curve defined over Fp
by an equation

y2 = x3 + a6, (1)

such that E has prime cardinality ` = 36u4 + 36u3 + 18u2 + 6u+ 1. Such curves were introduced in [7]
and have 12 as an embedding degree. This means that ` divides p12 − 1 but not pk − 1 for 0 ≤ k < 12
and that the full `-torsion of the curve is defined on the field Fp12 .

Let m be an integer and Q a point on E. If Qm denotes the point mQ, f(m,Q) is the function on
the curve whose divisor is

div(f(m,Q)) = mQ−Qm − (m− 1)O.

This function is the core of all known pairings and is computed thanks to an adaptation of classical
scalar multiplication algorithm [25]. In this algorithm g(A,B) is the equation of the line passing through

Algorithm 1: Miller(m,Q,P)

Data: m ∈ Z with binary representation (ms−1, · · · ,m0)2, P and Q in E(Fp12).
Result: f(m,Q)(P) ∈ Fp12 .
begin

f ← 1 and T ← Q
for i from s− 2 downto 0 do

f ← f2.
g(T,T)(P)

v2T (P)
and T ← 2T

if mi = 1 then

f ← f.
g(T,Q)(P)

vT+Q(P)
and T ← T +Q

end if

end for
return f

end

the points A and B (or tangent to E in A if A = B) and vA is the equation of the vertical line passing

by A, so that
g(A,B)

vA+B
is the function on E involved in the addition of A and B.

In this paper, we are interested in the optimal Ate pairing [26] because it is the most efficient to date
for BN curves but the same work can be easily done with other pairings. If r = 6u+ 2, it is given by

eo : E(Fp12) ∩Ker(π − p)×E(Fp)[`] → F∗
p12/

(
F∗
p12

)`
(Q,P) 7→

(
f(r,Q)(P).g(rQ,π(Q))(P).g(rQ+π(Q),−π2(Q)(P)

) p12−1
`

where π is the Frobenius map on the curve (π : (x, y) 7→ (xp, yp)).

2.2 Efficient implementation of pairings

An other advantage of BN curves is their degree 6 twist. This means E is isomorphic over Fp12 to a

curve Ẽ defined by y2 = x3 + a6
ν , where ν is an element in Fp2 which is not a cube nor a square. Then

we can defined twisted versions of pairings on Ẽ(Fp2)×E(Fp)[`]. This means that the coordinates of Q

can be written as (xQν
1
3 , yQν

1
2) where xQ and yQ are in Fp2 . There are three important consequences

on the Miller loop.

– Computing g, v, 2T and T +Q requires only Fp2 arithmetic (but the result remains in Fp12).
– The denominators (v2T and vT+Q), and more generally all the factors of f lying in a proper subfield

of Fp12 , are wiped out by the final exponentiation. This is the famous denominator elimination
introduced in [6].

– The numerators (gT,T and gT,Q) have the particular form g0 + g2ν
1
2 + g3ν

1
3 where gi ∈ Fp2 which

contains only 6 coefficients instead of 12. Hence the multiplication by such an element during the
writing up of f is cheaper than a complete multiplication in Fp12 .

Finally, Koblitz and Menezes show in [23] that the cost of the final exponentiation can be reduced
thanks to the integer factorization

p12 − 1

`
=
(
p6 − 1

) (
p2 + 1

)(p4 − p2 + 1

`

)
Then the final exponentiation can be split in two steps

– Powering to the p6−1 and to the p2 +1. This is easily obtained via cheap Frobenius computations
and an inversion.

– Powering to the p4−p2+1
` which is called the hard part of the final exponentiation. As explained

in [17], there are efficient ways to compute it for BN curves and the cost is around three-quarters
of the cost of an exponentiation with an exponent having the same size than p. Moreover, as f
has been raised to the

(
p6 − 1

) (
p2 + 1

)
, it has order p4 − p2 + 1. Then, as noticed in [17], it is in

GΦ6
(Fp2) and squaring such an element (which is the most used operation in the hard part of the

exponentiation) is less expensive than a classical squaring in Fp12 .

As noticed in [12], choosing a RNS based architecture would be of great interest for hardware
implementation of pairings. This is due to the massive use of lazy reduction in extension fields. Let us
now recall this system for representing numbers and describe our architecture.

3 RNS

3.1 Notation

In all the paper, for a, b ∈ N, we denote by |a|b the result of a modulo b.

3.2 Introduction to Residue Number System

Let B = {m1, · · · ,mn} be a set of co-prime natural integers, and M =
∏n
i=1mi. Let 0 ≤ X < M . The

residue number system (RNS) representation {X}B is the set of positive integers {x1, · · · , xn} with
xi = |X|mi

. {x1, · · · , xn} are called the RNS digits of X. They are unique for each X, and X can be
recomputed from them using the following fomula :

X =

∣∣∣∣∣
n∑
i=1

|xi ×M−1
i |mi

×Mi

∣∣∣∣∣
M

where Mi =
M

mi
. (2)

The strongest advantage of a such system is that it distributes large integer operations on the
small residue values. The operations are performed independently on the residues. In particular, there
is no carry propagation over addition, and multiplication complexity is linear with n. M is called the
module of B.

3.3 RNS Montgomery reduction algorithm :

Using RNS representation in B ensures very efficient computation in Z/MZ. To efficiently compute
pairing over Fp we need to introduce a reduction by p algorithm.

The papers [5, 22] propose an adaptation of the well known Montgomery algorithm in the context of
RNS representation. We refer the reader to these papers for more details on RNS reduction algorithm.
Here we recall the useful results for pairing computation.

We define B and B̃ two RNS bases of the same size n, with their coprime modules M and M̃ . We
choose B and B̃ such that M > αp and M̃ > 3p (α being a parameter defining the maximal value
we are able to reduce thanks to this algorithm. See section 5 for the definition in our specific case).
For all input A < αp2 given in B and B̃, the RNS Montgomery algorithm computes S in B and B̃
such that S < 3p and |S|p = |a×M−1|p. This algorithm calls 2 times the Bext(X,B1, B2) subroutine
which computes {|X|M1}B2 from {X}B1 .

Algorithm 2: Red(X, p,B, B̃)

Data: B and B̃ RNS bases with module M > αp and M̃ > 3p,
p co-prime with M and M̃ ,
{X}B and {X}B̃ RNS representation of X < αp2 in B and B̃,
precalculations : {| − p−1|M}B ,{|M−1|M̃}B̃ and {p}B̃ ,
algorithm Bext(A,B1, B2) computing {|A|M2}B2 from {A}B1

Result: {S}B and {S}B̃ such that |S|p = |XM−1|p and S < 3p
begin

1 Q← X × | − p−1|M in B

2 Q̃← Bext(Q,B, B̃)

3 R̃← X + Q̃× p in B̃

4 S̃ ← R̃×M−1 in B̃

5 S ← Bext(S, B̃, B)

6 return S and S̃

end

There are many ways to realize the Bext algorithm. The asymptotically cheapest way being given
in [4] with the overall complexity 7

5n
2 + 8

5n RNS digit-products. Nevertheless this version is hardly
parallelizable and gives poor results while using it for cryptographic size over a hardware design.

We therefore will use the version of Kawamura et al. [22]. This algorithm has overall complexity
of 2n2 + 3n, but at each time every calculation can be made on n RNS digits in a row.

3.4 The Cox-Rower architecture

The Cox-Rower architecture was first proposed by Kawamura et al. in [22], for the purpose of RSA
multiplication. It was enhanced by Guillermin in [18], with support of full arithmetic operations in Fp,
and fast elliptic curve scalar multiplication. The main feature of Guillermin’s design is the use of n
parallel Rower achieving one RNS digit multiplication and accumulation per cycle. B and B̃ are chosen
such that ∀m ∈ {B, B̃}, 2w(1− 2−

w
2) < m ≤ 2w where w is the architecture word size, typically 18 or

36 on a FPGA (which embeds very efficient 18× 18 multipliers). n is chosen such that 2wn > p. Each
Rower is able to compute at every clock cycle |a× b|mi

or |a× b|m̃i
. It can also add it simultaneously

with the previous result. The entire design can therefore execute a full length multiplication in 2 cycles
(one cycle over B and one over B̃), an addition in 4 (using 2 accumulated multiplications by 1), a
subtraction in 6 (an addition with a multiple of p to keep the result positive is mandatory) and a
whole reduction in 2n+ 3 cycles.

An adaptation of Guillermin’s architecture is necessary to provide pairing support. As the number
of local variables and precalculations is much larger for pairing computation than for simple elliptic
curve scalar multiplication, we used a single triple port RAM of 256 words instead of the ROM and
the bunch of 16 registers to store precalculations and temporary results.

These RAMs are generated with the Altera Megawizard tool, and consume only 2 M9k on Stratix
III per Rower. Our design for 256-bit curves only requires 8% of the EP3SE50F484, the smallest FPGA
of the Stratix III series. We made this choice for the sake of simplicity, but it can be improved at the
price of classical register allocation techniques (for ASIC implementations, among other).

On figure 3 in appendix we present the adaptation of Guillermin’s architecture for pairing compu-
tation (with FPGA triple port RAM).

3.5 Finite field arithmetic

The most consuming operation in RNS is the reduction, while multiplication and addition over Fp
have a the same weak complexity. This leads to completely different choices compared to classical
multiprecision representation.

Lazy reduction : Let us consider any E =
∑l
i=0AiBi with Ai, Bi ∈ Fp. We call lazy reduction the

fact that this kind of expression only needs one reduction after the l multiplications. Whereas lazy
reduction can be used with classical multiprecision representation, as in [3], it is even more interesting
in RNS. Indeed the complexity of the arithmetic is concentrated on the reduction step. For example, a
Cox Rower with n Rowers (n being the size of the RNS bases B and B̃) needs 2l cycles to compute the
unreduced representation of E (l cycles over B and l over B̃), and eventually 2n+ 3 cycles to reduce
it. The only thing we need to take notice of is the α parameter : M must be up to max(E)/p with E
positive, unless the result of the Red algorithm is wrong. We observe that the most consuming part of
pairings are multiplications and squaring in extension fields of Fp. If the field extension representations
are well chosen, multiplication in these extensions are candidate to a massive use of lazy reduction.
The reduction part of any product in Fpk costs only k reductions, then 2kn+ 3k cycles.

Extension field optimizations : For considered field extensions (k ≤ 12), reductions are the most
consuming part. Nevertheless extension field optimizations may accelerate the overall pairing. In [12],
the author studied the complexities of both a RNS and a classical implementation of pairings assuming
that interpolation methods are used, such as Karatsuba or Toom-Cook. It spares a multiplication
compared to schoolbook at the price of 4 additions or subtractions. These techniques are only useful
when the relative cost of a multiplication is high compared to addition. In RNS multiplication has
a comparable price with addition, interpolation is therefore less attractive. We do not define in this
work any method to find the best way to implement tower field arithmetic for BN curves, but propose
specific optimisations for our chosen curves in section 4.1. We justify our choice in section 5.

4 Optimal pairing for BN curves

4.1 Choice of the curve

It is explain in [28] how to generate BN curves having nice properties. For this work we chose two
curves both with a6 = 2. The first one, called BN126 is defined by u = −(262+255+1) and has already
been used in [28, 3]. It ensures only 126 bits of security but allows to use lazy reduction techniques
without requiring an extra word in 32 or 64-bit architecture. Thanks to the size of the FPGA DSP
blocks (18×18), the architecture proposed here can have w up to 36 bits words so that we do not have
this restriction and we can consider a curve, called BN128 really ensuring 128 bits of security without
artificial extra cost. In both cases, our architecture requires n = 8 Rower and the word size w = 34
ensure sufficient margin for lazy reductions considering the algorithmic choices we made (see section
5 for details). This curve is defined by u = −(263 + 222 + 218 + 27 + 1). In both cases, Fp12 is defined
by the following tower of extensions

Fp2 = Fp[X]/(X2 + 1) = Fp[i]
Fp6 = Fp2 [Y]/(Y 3 − (1 + i)) = Fp2 [β]
Fp12 = Fp6 [Z]/(Z2 − β) = Fp6 [γ] (= Fp2 [γ]).

This tower of extensions has many advantages, the most important being an efficient multiplication
algorithm for the canonical polynomial base. The major difficulty is the apparition of the term 1+ i for
the definition of Fp6 . We used then some adaptations of the Guillermin’s architecture [18]. We refer the
reader to the section 5 for more details. The optimal Ate pairing on these curves can then be computed
thanks to the algorithm 3 where dbl, add and hard-part are given in appendix. Note that the line 4
is due to u < 0 and is potentially expensive (inversion) but thanks to the final exponentiation, f−1 can

be replaced by fp
6

[3] which is almost for free (conjugation). Moreover, since r = 6u+ 2 has Hamming
weight 5 (resp. 9) for BN126 (resp. BN128), add is used only 6 (resp. 10) times.

4.2 Formulas for Miller loop

Jacobian coordinates are usually used for pairing computations [8, 19, 26] but projective coordinates
are more interesting in our case [3, 11]. Let P = (xP , yP) ∈ E(Fp) and Q ∈ E(Fp12). Using the degree
6 twist on the curve, Q can be written (xQγ

2, yQγ
3) with xQ and yQ ∈ Fp2 . The ”doubling” step of

the Miller loop for optimal pairing is consisting in two stages:

– The doubling of a temporary projective point T in E(Fp12). As T is a multiple of Q, it has the
form (XTγ

2, YTγ
3, ZT) with XT , YT and ZT ∈ Fp2 .

Algorithm 3: optimal(P,Q)

Data: r = |6u+ 2|, P = (xP , yP) ∈ E(Fp)[`],
Q = (xQγ

2, yQγ
3) ∈ E(Fp12) ∩Ker(π − p) with xQ and yQ ∈ Fp2 .

Result: eo(P,Q) ∈ Fp12 .
begin

1 T = (XTγ
2, YTγ

3, ZT)← (xQγ
2, yQγ

3, 1) and f ← 1
for i from blog2(r)c − 2 downto 0 do

2 T, g ← dbl(T, P) and f ← f2.g
if mi = 1 then

3 T, g ← add(T,Q, P) and f ← f.g
end if

end for
4 T ← −T , f ← f−1

5 Q1 ← π(Q)
6 T, g ← add(T,Q1, P) and f ← f.g
7 Q2 ← −π(Q1)
8 T, g ← add(T,Q2, P) and f ← f.g

9 f ←
(
fp6−1

)p2+1

10 f ← hard-part(f ,|u|).
11 return f

end
.

– The evaluation in P of the tangent line in T to the curve. As recalled in Section 2.2, we do not
need to take into account the multiplicative factors lying in a proper subfield of Fpk (they are
cancelled by the final exponentiation).

It is given by algorithm 4 in appendix. The classical formulae are rearranged to highlight the reductions
(every temporary results need a reduction except F,G,H and t3), and the inherent parallelism in the
local variables (Each line can be implemented in a random order). This is important for avoiding idle
state in Cox-Rower (see section 5 for more details). The total cost of this step is 4 multiplications, 5
squaring, 8 reductions in Fp2 and 2 modular multiplications of an element of Fp2 by an element of Fp.
Note that multiplications like 2XTYT can be transformed into squaring but at the cost of some extra
additions [3, 11] so that it is not interesting for our design.

In the same way, the addition step is consisting in the sum of T and Q followed by the evaluation
in P of the line passing through T and Q and is given by algorithm 5. The total cost of this step is 11
multiplications, 2 squaring, 10 reductions in Fp2 and 2 modular multiplications of an element of Fp2
by an element of Fp.

4.3 Final exponentiation

The line 9 requires a conjugation, an inversion in Fp12 , a Frobenius computation and a multiplication
in Fp12 . In this ”easy” part of the final exponentiation, the inversion is in fact very expensive. It can
be done with only one inversion, 97 multiplications and 35 reductions in Fp [12, 19], but the remaining
inversion in Fp is done via an exponentiation to the p − 2 on our design. For this operation, we use
a simple square and multiply algorithm with least significant bit first. It is more memory consuming,

but presents more independence between the local variables. Due to pipeline idle steps, this operation
only needs blog(p) − 1c multiplications for the calculation of X2i (with X the value to inverse), the
other operations are executed during the necessary pipeline idle states. Then, there is no need to
find more efficient ways to execute the exponentiation here. Hence this step will be very expensive
compared to the others or compared to a software implementation. On the contrary, the Frobenius
only costs 5 multiplications in Fp2 and 10 reductions, thanks to the definition of the tower of extensions.

To date, the fastest way for computing the hard part (line 10 of algorithm 3) of the final expo-
nentiation involved a multi-addition chain [29]. The corresponding algorithm hard-part is given in
Appendix in a way using less temporary variables than in [29]. Moreover, as noticed in [17], f is in
GΦ6(Fp2) and squaring such an element is less expensive than a classical squaring in Fp12 . In our

context, if a =
∑5
i=0 aiγ

i with ai ∈ Fp2 , the coefficient of A = a2 are given by

A0 = 3a20 + 3(1 + i)a23 − 2a0 A1 = 6(1 + i)a2a5 + 2a1
A2 = 3a21 + 3(1 + i)a24 − 2a2 A3 = 6a0a3 + 2a3
A4 = 3a22 + 3(1 + i)a25 − 2a4 A5 = 6a1a4 + 2a5

More recently, Karabina introduced a compressed form for elements in Fp12 which requires less opera-
tions to be squared [3, 21]. Unfortunately, this method involves extra inversions so that it is unsuited
for our design.

5 Pipeline architecture and extension field arithmetic

In this section we start from the definition of Guillermin’s pipeline [18], and show how to construct
efficient hardware for the chosen curve in 4.1. Subsection 5.1 describes constraints we followed during
the pipeline architecture process. In subsection 5.2 and 5.3, we justify these optimizations regarding
operations in pairing and evaluate their cost in Stratix II ALM. Eventually in subsection 5.4, we
evaluate the overall gain in clock cycle brought by these optimizations. Figure 1 recalls the one used
by [18] and compares it to ours.

5.1 Pipeline depth

Our goal is to keep the maximal frequency already available in [18]. Additive hardware must be
carefully introduced, to keep the critical path under control. On the other hand, we can easily raise
the pipeline depth without a lot of cycle loss. Indeed pairing computation provides less dependency
between local variables than classical elliptic curve scalar multiplication over Fp. We can use this
parallelism to avoid idle states due to the pipeline effect. Algorithm dbl and add show this inherent
parallelism during the Miller loop. On each line, every value are independent with one another. The
order in the line is then not important. Operations in Fp12 also present such inherent parallelism.

If πd is the pipeline depth, a result of an operation is available πd + 1 cycles after the computation
began, and so πd independent instructions must be inserted before reusing the result. In [22], πd = 2,
while in [18], πd = 5. During our implementation we found that πd could be up to 8 and still avoid
idle states in the whole pairing, except for Fp inversion (see subsection 4.3).

We note i1, i2 the two input of the ALU of figure 3 and εi = 2r −mi, the modulus of B or B̃.

5.2 Additive hardware for multiplication and squaring in Fp2

Using Guillermin architecture, a Fp2 multiplication over the chosen extension costs 12 cycles using
naive schoolbook multiplication. Among them, 4 cycles are lost to compute the subtraction due to
i2 = −1. If we add the ability to get the opposite of the result before accumulating it in a pipeline
stage, we spare 4 cycles for every computation. As i1 and i2 are in fact less than 3p (they are reduced
values), the opposite hardware module computes |9p2 − x|mi

from x the output of the pipeline (the
result of the operation needs to remain positive). This module only costs 55 ALM per Rower, and has
a critical path suitable with the rest of the design.

Karatsuba optimization for Fp2/Fp is here not efficient. Using Guillermin’s pipeline, no less than
18 cycles is needed. The cost of an adder is around 42 ALM. No way has been found to add hardware
to make multiplication fall under 8 cycles while preserving correct pipeline depth and critical path.

The opposite hardware module also spares 4 cycles per Fp2 squaring. Another important optimiza-
tion for squaring is the capacity to compute |2i1×i2|mi in one cycle. Squaring in Fp2 falls from 8 cycles
to 6. This optimization only costs 2 muxes per Rower (see figure 1). A side effect of this optimization
is the need of the precomputed value 18p2 instead of 9p2 in the opposite module.

5.3 Squaring and Multiplication over Fp12/Fp2 :

Schoolbook multiplication and squaring : Let A = {a1, · · · , a12}, B = {b1, · · · , b12} and C =
AB ∈ Fp12 . To optimize schoolbook multiplication and squaring with a Cox-Rower, we aim to execute
only once i1 = ai and i2 = bj , for all {i, j} ∈ {1, · · · , 12}2. As i2 = −1 and γ6 = (1+i), the result |ai×bj |
is either added or subtracted on at most two components of C. Two selectable accumulators combined
with opposite calculations are then of great interest. These hardware modules (a combination of an
opposite module and an accumulator) cost 150 ALM per Rower. 4 different types of multiplications
and squaring are needed during pairing (cycle counts are given excluding the reduction step, which is
exactly the same).

– Squaring in the doubling part of the Miller loop : using schoolbook squaring together with the
proposed extra hardware costs 156 cycles. In Guillermin’s pipeline, the same operation is computed
in 210 cycles.

– Multiplication by the line in the Miller loop : half the values of B are equal to 0. Using our extra
hardware, this costs 144 cycles instead of 177 cycles.

– Squaring in GΦ6
(Fp2). We use the formulae of subsection 4.3. With our extra hardware, we need

84 cycles instead of 160.
– Whole multiplications in the final exponentiation : no specific optimization is proposed. We spend

here 288 cycles instead of 382 in Guillermin’s architecture.

Interpolation techniques : As interpolation needs a lot of additions, it may be interesting to put an
addition capability in our pipeline. But we need to evaluate if they are useful. We start from Karatsuba
for arithmetic in Fp12 over Fp6 , which is the best case for these techniques (interpolation at other levels
Fp12/Fp4 , Fp6/Fp2 or Fp4/Fp2 would give poorer results). Once again we consider 4 cases seen above :

– multiplication of f by the line g at line 2 and 3 of algorithm 3 (g having half its term set to 0):
the schoolbook multiplication costs 144 cycles, with no need of addition while Karatsuba costs 180
cycles with additional hardware.

– squaring in the miller loop : the schoolbook squaring costs 156 cycles, but could be replaced
through : (A+ γB)2 =

(
(A+B)(A+ γ2B)− (1 + γ2)AB

)
+ γ(2AB). This time with a total cost

of 180 cycles.

– squaring in the cyclotomic subgroup : here we use algorithm of subsection 4.3. The total cost of it
is 84 cycles not considering the reduction step. Karatsuba is not of any help here.

– general multiplication in Fp12 . Here Karatsuba could be of some help, replacing the 288 cycles
schoolbook multiplication by 264 cycles if we can use an additive instruction (there are 48 such
addition instructions, an addition hardware module is then mandatory to make Karatsuba effi-
cient). Nevertheless only 20 such general multiplications are needed for pairing over BN126, and
only 26 for BN128 , leading to a spare of respectively 480 and 624 cycles (less than 0.4% of the
total number of instruction).

Finally, adding an addition module to our architecture for interpolation techniques seems to be glob-
ally not interesting. Moreover the addition has to be integrated in the pipeline by using muxes and
additional registers, and may degrade the maximal frequency. We decided not to implement it.

5.4 final pipeline and cycle spare count

The optimized pipeline definition is given in figure 1. It compares it with original Guillermin’s pipeline.
Our different proposed optimizations allows us to spare 25500 cycles for a whole pairing (∼ 15%). A
schematic is given in appendix (figure 7). The final pipeline depth πd is 8. Because of our chosen
arithmetic, the value α defined in subsection 3.2 reaches 378. The worst case is reached during the
schoolbook multiplication. Therefore the word length w is set to 34 in the Cox-Rower.

Fig. 1. Pipeline description and comparison with [18]

Guillermin [18] Ours

stage 1 MSB1||LSB1 = i1 × i2 MSB1||LSB1 = i1 × i2
stage 2 MSB2||LSB2 = MSB1 × εi (MSB1||LSB1 = i1 × i2

and (SR2 = |LSB1 + 0|mi and (SR2 = |LSB1 + 0|mi

or SR2 = |LSB1 +ROMcox|mi) or SR2 = |LSB1 +ROMcox|mi))
or (MSB2||LSB2 = MSB1 × 2εi
and SR2 = |LSB1 + LSB1|mi)

stage 3 LSB3 = MSB2 × εi LSB3 = MSB2 × εi
and SR3 = |LSB2 + SR2|mi and SR3 = |LSB2 + SR2|mi

stage 4 (acc1 = |acc1 + LSB3|mi SR4 = |SR3 + LSB3|mi

or acc1 = LSB3)
and (acc2 = |acc2 + SR3|mi

or acc1 = SR3)

stage 5 o = |acc1 + acc2|mi (SR51 = |18p2 − SR4|mi

or SR51 = SR4)
and (SR52 = |18p2 − SR4|mi

or SR52 = SR4)

stage 6 (acc1 = |acc1 + SR51|mi

or acc1 = SR51)
and (acc2 = |acc2 − SR52|mi

or acc22 = SR52)

stage 7 o = acc1 or o = acc2

6 Results and comparison

In this section we give our results and compare it to the state of art designs and software implemen-
tations.

6.1 Intermediary operations cycle count

At this point the fastest known hardware implementation of pairing on BN curves is given by Fan
et al. in [14]. In this paper they used the Hybrid Modular Multiplication technique to improve Fp
arithmetic, and compute a full R-Ate pairing over a BN curve of security level 128. This work divides
the number of necessary cycles to compute a full pairing by a factor of around 3. Here we give the
operation details for curves BN126 and BN128. f2 stands for squaring in Fp12 in the doubling part of
the Miller loop, and f.g stands for the line multiplication (including the reduction step).

Op dbl add f2 f.g Miller f
pk−1

` eO
[14] 996 1260 1541 1239 311418 281558 592976
BN126 507 581 384 372 86530 89581 176111
BN128 507 581 384 372 92480 94101 192502

We see that we spare cycles at each step of the calculation, mostly thanks to RNS. Other implemen-
tation also exist, but we cannot compare their cycle count with us since they use small characteristic
[13, 2] or high speed processors ([3, 8, 26]).

6.2 Overall results and comparison

We synthesized our design on 3 target technologies : Altera Cyclone III, Stratix II and Stratix III. The
first one, the EP2C35, is a low cost FPGA used for bigger series. Its public price is less than $100 for 1
chip on [1], for the one we used. The second one is proposed for a comparison point with [13, 2] which
used a comparable technology with same technological node (Xilinx Virtex IV). We point out the fact
that size comparison is not fair, since we do not take in account DSP blocks, and they use none. Our
DSP block consumption is important (2 36×36 DSP blocks and 1 9×9 per Rower) and force us to use
the second smallest size Stratix II device (the EP2S30). For the Stratix III generation (65nm node),
Altera has made a substantial effort to increase the number of DSP blocks. This lets us synthesize
the design in the smallest Stratix III of the series (the EPS3SE50). Other point of comparison are
given in array 2, for high speed implementations targeting 128-bit security, but on other technologies :
ASIC [14], and x86 CPU [26, 3]. We only give the results for BN126. Results for BN128 can be deduced
from it, since hardware remains the same (only precomputed values and microcode in the sequencer
change).

6.3 Beyond 128 bits

In this section we propose the first high speed implementations of pairing with 192-bit security, ac-
cording to the NIST recommendations [27]. We use BN curves, even it is not clear that this is the best
choice (we are indeed handicapped by the too small embedding degree of BN, and therefore forced to

Fig. 2. Overall results and comparison

curve device chip freq size time(ms)

BN126 Cyclone II EP2C35 91 14274 LC 1.94
Ours BN126 Stratix II EP2S30 154 4227 A 1.14

BN126 Stratix III EP3S50 165 4233 A 1.07

[13] supersingular over F3 Virtex IV xc4vlx25 192 4755 sl. 2.22
[2] genus 2 supersingular over F2 Virtex IV xc4vlx25 220 4646 sl. 3.5

[14] Barreto-Naehrig ASIC 130 nm 204 113 kG 2.91

[26] Barreto-Naehrig Core 2 duo - 2400 - 1.87
[3] Barreto-Naehrig Core 2 duo - 2400 - 0.94

use too large curves). We propose here one curve, named BN192, whose Fp12 relying tower field is con-
structed the same way as BN126 or BN128. Its parametrization is given by u = −(2160 +274 +212 +1).
Here are the implementation results :

curve FPGA Rowers area cycle count time
BN192 EP3SE50 19 9910 ALM 790010 6.02 ms

7 Conclusion

In this work we demonstrated that RNS is really competitive for pairing computations over FPGA.
Thanks to the presence of high speed DSP blocks, we can compute our pairing in almost half the
time of the best known FPGA implementations in small characteristic (2 or 3). If we cannot reach
the speed of the best software implementations over actual CPU, we have bridged a huge part of the
gap between the two approaches. The loss of speed can be advantageously exchanged with a gain in
security and power consumption.

Appendix

Algorithm 4: dbl, doubling step

Data: T = (XTγ
2, YTγ

3, ZT) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 , P = (xP , yP) ∈ E(Fp).
Result: The point 2T and the evaluation in P of the equation of the tangent line in T to the

curve up to multiplicative factors in Fp2 .
begin

1 B = Y 2
T , C = 3Z2

T , D = 2XTYT
2 F = iB−3C, G = iB+3C, H = 3C, t3 = B+4iC, A = X2

T , E = 2YTZY
3 X2T = DF, Y2T = −iG2 + 2HC, Z2T = 4BE, t0 = FyP , t1 = −3AxP
4 return (X2Tγ

2, Y2Tγ
3, Z2T), t0 + t1γ + t3γ

3

end

Algorithm 5: add, addition step

Data: T = (XTγ
2, YTγ

3, ZT) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 ,
Q = (xQγ

2, yQγ
3) ∈ E(Fp12), P = (xP , yP) ∈ E(Fp).

Result: The point T +Q and the evaluation in P of the equation of the line passing through T
and Q up to multiplicative factors in Fp2 .

begin
1 E = xQZT −XT , F = yQZT − YT
2 E2 = E2, F2 = F 2

3 A = F2ZT − 2XTE2 − EE2, B = XTE2, E3 = EE2

4 XT+Q = AE, ZT+Q = ZTE3, t3 = FxQ − EyQ
5 YT+Q = F (B −XT+Q)− yQE3, t0 = EyP , t1 = −FxP
6 return (XT+Qγ

2, YT+Qγ
3, ZT+Q), t0 + t1γ + t3γ

3

end

Algorithm 6: hard-part, hard part of the final exponentiation according [29]

Data: f ∈ Fp12 of order p4 − p2 + 1 , x = |u|
Result: f (p

4−p2+1)/` with p and ` as in 2.1.
begin

computation of the yi

1 y0 ← fpfp
2

fp
3

, y1 ← fx, y3 ← yx1 , y5 ← yx3 , y4 ← yp5 , y6 ← y4y5

(
= fx

3
(
fx

3
)p)

2 y5 ← yp3 , y2 ← y−1
5 , y4 ← y1y2

(
= fx/

(
fx

2
)p)

3 y2 ← yp5

(
=
(
fx

2
)p2)

, y5 ← y−1
3

(
= 1/fx

2
)

, y3 ← yp1 ((mx)
p
), y1 ← f−1

multi-addition chain for computing y0.y
2
1 .y

6
2 .y

12
3 .y

18
4 .y

30
5 .y

36
6

4 t0 ← y26 , t0 ← t0y4, t0 ← t0y5, t1 ← y3y5, t1 ← t1t0, t0 ← t0y2, t1 ← t21
5 t1 ← t1t0, t1 ← t21, t0 ← t1y1, t1 ← t1y0, t0 ← t20, t0 ← t0t1

return t0
end

Fig. 3. General architecture of a Cox Rower with the triple port RAM

cox

cox

main bus

ALU

main bus

sequencer

Triple port RAM

out

cox row1 row2

sequencer

command

in
out

main bus

rown

Fig. 4. design of the pipeline

RAM

18p2

mi

RAM

RAM

coxi

References

1. Altera web site. http://www.altera.com.
2. Diego F. Aranha, Jean-Luc Beuchat, Jérémie Detrey, and Nicolas Estibals. Optimal eta pairing on

supersingular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report 2010/559, 2010.
http://eprint.iacr.org/.

3. Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio Lpez. Faster explicit
formulas for computing pairings over ordinary curves. Cryptology ePrint Archive, Report 2010/526, 2010.
http://eprint.iacr.org/.

4. J.C. Bajard, S. Duquesne, and M. Ercegovac. Combining leak–resistant arithmetic for elliptic curves defined
over Fp and rns representation. Cryptology ePrint Archive, Report 2010/311, 2010. http://eprint.iacr.org/.

5. Jean-Claude Bajard, Laurent-Stéphane Didier, and Peter Kornerup. An rns montgomery modular multi-
plication algorithm. IEEE Transactions on Computers, 47(7):766–776, 1998.

6. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. volume
2442 of Lecture Notes in Computer Science, pages 354–369. Springer, 2002.

7. P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected areas in cryptography–
SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer, 2006.

8. J.L. Beuchat, J.E. González-Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-Henŕıquez, and T. Teruya.
High-speed software implementation of the optimal ate pairing over barreto-naehrig curves.

9. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Advances in Cryptology–
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

10. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of Cryptology,
17(4):297–319, 2004.

11. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves with high-degree twists. In
Public Key Cryptography–PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages 224–242.
Springer, 2010.

12. S. Duquesne. Rns arithmetic in fpk and application to fast pairing computation. Cryptology ePrint
Archive, Report 2010/555, 2010. http://eprint.iacr.org/, to appear in Journal of Mathematical Cryptology.

13. Nicolas Estibals. Compact hardware for computing the tate pairing over 128-bit-security supersingular
curves. In Pairing, volume 6487 of Lecture Notes in Computer Science, pages 397–416, 2010.

14. Junfeng Fan, Frederik Vercauteren, and Ingrid Verbauwhede. Faster-arithmetic for cryptographic pairings
on barreto-naehrig curves. In Cryptographic Hardware and Embedded Systems–CHES 2009, pages 240–253,
2009.

15. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology,
23(2):224–280, 2010.

16. G. Frey and H.G. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor class
group of curves. Mathematics of computation, 62(206):865–874, 1994.

17. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth degree extensions. Public
Key Cryptography–PKC 2010, 6056:209–223, 2010.

18. Nicolas Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over {F}p.
19. D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings, volume 2 of Cryptology

and Information Security Series, pages 188–206. IOS Press, m. joye and g. neven edition, 2009.
20. A. Joux. A one round protocol for tripartite Diffie–Hellman. Journal of Cryptology, 17(4):263–276, 2004.
21. K. Karabina. Squaring in cyclotomic subgroups. 2010. http://eprint.iacr.org/.
22. Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo. Cox-rower architecture for

fast parallel montgomery multiplication. In Advances in Cryptology EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 523–538. Springer Berlin / Heidelberg, 2000.

23. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. Cryptography and coding,
3796:13–36, 2005.

24. A.J. Menezes, T. Okamoto, and S.A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. Information Theory, IEEE Transactions on, 39(5):1639–1646, 1993.

25. V.S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4):235–261, 2004.
26. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed records for cryptographic

pairings. In LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages 109–123, 2010.
27. National Institute of Standard and technology. Key management, 2007.

http://csrc.nist.gov/groups/ST/toolkit/key management.html.
28. G.C.C.F. Pereira, M.A.S. Jr, M. Naehrig, and P.S.L.M. Barreto. A Family of Implementation-Friendly

BN Elliptic Curves.
29. M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez, and E. Kachisa. On the final exponentiation

for calculating pairings on ordinary elliptic curves. Pairing-Based Cryptography–Pairing 2009, 5671:78–88,
2009.

30. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory, 56(1):455–461, 2010.

