
Security of Prime Field Pairing Cryptoprocessor

Against Differential Power Attack

Santosh Ghosh, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury

Department of Computer Science and Engineering,
Indian Institute of Technology,

Kharagpur, India
{santosh, debdeep, drc}@cse.iitkgp.ernet.in

Abstract. This paper deals with the differential power attack on a pair-
ing cryptoprocessor. The cryptoprocessor is designed for pairing com-
putations on elliptic curves defined over finite fields with large prime
characteristic. The work pinpoints the vulnerabilities of such pairing
computations against side-channel attacks. By exploiting the power con-
sumptions, the paper experimentally demonstrates such vulnerability on
FPGA platform. A suitable counteracting technique is also suggested to
overcome such vulnerability.

Key words: Pairing Based Cryptography, Side-channel Analysis, Power
Analysis Attack, DPA Attack, Prime Fields.

1 Introduction

Bilinear pairing or pairing is a new and increasingly popular way of constructing
cryptographic protocols. This has resulted in the development of pairing based
schemes such as identity based encryption (IBE) which are ideally used in iden-
tity aware devices. The security of such devices leads to the security of pairing
computations. In the last decade, an increasingly popular form of attack known
as side-channel attack (SCA) [3, 4], which exploits the weakness in implementa-
tions, have developed. SCA breaks a cryptosystems by analyzing the information
that could be measured through some covert channel of a cryptoprocessor like :
power consumption, time, electromagnetic radiation, fault, etc.

Pairing can be computed on different characteristic fields like binary (F2m),
trinary (F3m), and large prime (Fp). The security of pairing computations over
first two fields against differential power analysis (DPA) attack have been de-
scribed in [9] and [5], respectively. However, security analysis of pairing com-
putations on prime fields against side-channel attack has not been considered
before.

This paper explores the side-channel vulnerability of pairing computations
on FPGA platform. One of the popular pairing friendly elliptic curves defined
over Fp is the Barreto-Naehrig curve (BN curve) [11]. A dual-core pairing cryp-
toprocessor for BN curves has been developed on FPGA platform. The paper
proposes an optimized parallel scheduling of underlying finite field operations



2 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

for Tate pairing computations by the cryptoprocessor. It further observes the
mathematical formula of different steps of the pairing computation and pin-
points the vulnerability against side-channel attacks. The paper then describes
a differential power analysis (DPA) technique based on such vulnerability. The
actual DPA attack has been mounted on FPGA platforms which ascertains the
secret parameter of pairing computation. The paper then proposes a suitable
computation technique for counteracting the above vulnerability.

The paper is organized as follows: section 2 provides a mathematical back-
ground of pairing computation technique. The description of pairing cryptopro-
cessor over prime field is given in section 3. The vulnerability of pairing compu-
tation over prime fields is pointed out in section 4. The proposed DPA attack
and its counteracting technique is described in section 5. The paper is concluded
in section 6.

2 Mathematical Background

Pairing is a bilinear map which is performed on a pair of elements of a group
(say G1) to an element of another group (say G3). Pairings for cryptographic
applications use an additive group defined over elliptic or hyperelliptic curves as
G1 and a multiplicative group defined over an integer field as G2 [7]. The map-
ping also follow two important properties called bilinearity and non-degeneracy.
Sometimes the pairing is computed on two elements from two different additive
groups (say G1 and G2) and it maps to an element of a multiplicative group
G3. The groups G1 and G2 are in general formed by an elliptic curve over Fq

and Fqk , where k is also known as embedding degree of the elliptic curve. The
security of a pairing is based on the difficulty to solve the discrete logarithm
problem in G1, G2, and G3.

The computation efficiency of such bilinear map is also an important factor
for cryptographic applications. Cryptographic pairings are efficiently computed
by Miller’s algorithm [1, 2] which is shown in Alg. 1. More specifically this al-
gorithm shows the computation of Tate pairing. Several optimizations of this
algorithm have been presented in [8]. The resulting algorithm proposed in [8]
is called BKLS algorithm for Tate pairing computation. Other pairings like ate,
R-ate are computed by similar way using different parameters other than r and
by interchanging the input points [13].

The underlying elliptic curve plays an important role for achieving compu-
tation efficiency and security of a pairing computation. Active research is go-
ing on for finding out such a pairing-friendly elliptic curves. One of the most
popular pairing-friendly elliptic curves is known as Barreto-Naehrig curves (BN
curves) [11]. The BN curve is defined over a large prime field with embedding
degree 12. Thus G1 and G2 in Alg. 1 are additive elliptic curve groups defined
over Fp and Fp12 , respectively. The pairing value tr(P,Q) = f ∈ G3, where G3 is
a multiplicative integer group defined over Fp12 . For achieving 128-bit security
the BN curve is defined over a 256-bit prime field.



Security of Prime Field Pairing Cryptoprocessor Against DPA 3

Input: P ∈ G1 and Q ∈ G2.

Output: tr(P,Q).

Write r in binary : r =
∑L−1

i=0 ri2
i.

T ← P , f ← 1.
for i from L− 2 downto 0 do

T ← 2T .
f ← f2 · lT,T (Q).
if ri = 1 and i 6= 0 then

T ← T + P .
f ← f · lT,P (Q).

end

end

return f (qk−1)/r.

Algorithm 1: Computing the Tate pairing.

The BN curves also admit a sextic twist [13], which means that the point Q
in Alg. 1) is mapped on a point Q′ defined over Fp2 . Thus, the line functions
lT,T (Q) and lT,P (Q) is computed over Fp2 instead of Fp12 . Value of the line
functions are represented as : l0 + l1W

2 + l2W
3, with l0 ∈ Fp, l1, l2 ∈ Fp2 , and

a quadratic non-residue W over Fp2 . The Miller function f is computed over
Fp12 , which is represented as : f0 + f1W + f2W

2 + f3W
3 + f4W

4 + f5W
5, with

fi ∈ Fp2 . So in the Tate pairing computation f2, f · lT,T (Q), and f · lT,P (Q) are
performed on Fp12 . Whereas all other computations are performed on Fp and
Fp2 .

The detailed procedure of pairing computation including the final exponenti-
ation on BN curve is described in [13] and [14]. Another efficient way of comput-
ing final exponentiation is described in [15]. We use Jacobian coordinate systems
for performing elliptic curve operations, where a point (X,Y, Z) corresponds to
the point (x, y) in affine coordinates with x = X/Z2 and y = Y/Z3.

3 Pairing Crytoprocessor (PCP)

The major operations for a pairing computation are point doubling (PD), point
addition (PA), line computation (l(Q)), f2, and f · l(Q). In case of Tate pairing
on BN curve, the PA and PD are performed in Fp. Similarly, the operation
l(Q) is performed in Fp2 while the other two operations are performed in Fp12 .
However, the operations in these extension fields consist of a set of operations
in underlying Fp.

The current work explores the side-channel vulnerabilities of a pairing cryp-
toprocessor (PCP). Therefore, instead of designing a new architecture from the
scratch, we implement the pairing cryptoprocessor that was proposed in [16] on
FPGA platform. The work first implement a programmable core for comput-
ing all necessary Fp operations. Based on this programmable core we design a



4 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

cryptoprocessor for pairing computation on FPGA platform. The proposed de-
sign consists two programmable cores which exploit the parallelism of Miller’s
algorithm. Each of the programmable cores can perform operations on Fp and
Fp2 .

We follow the formula and algorithms for the computation of asymmetric
Tate pairing that are given in [13]. The major steps in pairing algorithm (Alg. 1)
are the Miller function and the final exponentiation. The Miller function consists
of two major steps, namely : doubling step and addition step. Here, we discuss
the computation of above steps for Tate pairing over BN curve on our dual-core
PCP.

The Tate pairing (tr) over BN curve takes input points P and Q over Fp

and Fp2 , respectively. The parameter r is a 256-bit prime of Hamming weight
91. Thus, the Miller algorithm runs for 255 iterations having 255 doubling steps
and 90 addition steps. There are sufficient independent operations within the
doubling and addition steps which can be performed in parallel. Our dual-core
PCP consists of a fixed number of functional units. Therefore, an optimization
can be done based on the available functional units and the operations. In the
following subsections, we describe an optimized scheduling of above steps on
proposed PCP.

3.1 Computation of Doubling Step

The doubling step consists of the following computations.

• The point doubling (2T ) operation.
• The computation of tangent line at point T (lT,T (Q)).
• The squaring of Miller function (f2).
• The multiplication of Miller function with line function (f2 · lT,T (Q)).

The computation of 2T , lT,T (Q), and f2 are performed in parallel on our PCP.
In Jacobian coordinates the formulae for doubling a point T = (X,Y, Z) are
2T = (X3, Y3, Z3) where X3 = 9X4 − 8XY 2, Y3 = (3X2)(4XY 2 − X3) − 8Y 4

and Z3 = 2Y Z. The tangent line at T , after clearing denominators, is l(x, y) =
3X3 − 2Y 2 − 3X2Z2x+ Z3Z

2y [12].
In case of Tate pairing computation on BN curves, the parameters {x, y} ∈

Fp2 and {X,Y, Z,X3, Y3, Z3} ∈ Fp. Let us assume that x and y are represented
as x0+x1U and y0+y1U , where {x0, x1, y0, y1} ∈ Fp and U is an indeterminant.
The above operations are performed by one of the programmable cores in the
dual-core PCP by following way.

1. t0 ← X2, t1 ← Y 2, t2 ← Y · Z
2. t3 ← (t0)

2, t4 ← X · t1, t5 ← (t1)
2

3. t4 ← 2t4, t6 ← 2t3, Z3 ← 2t2
4. t4 ← 2t4, t6 ← 2t6, t5 ← 2t5
5. t3 ← t3 + t6, t5 ← 2t5
6. X3 ← t3 − t2, t5 ← 2t5
7. t3 ← t4 −X3, t7 ← t7 + t0



Security of Prime Field Pairing Cryptoprocessor Against DPA 5

8. t7 ← t7 · t3, t4 ← Z2, t2 ← X · t0
9. Y3 ← t7 − t5, t1 ← 2t1, t5 ← 2t2

10. t4 ← t4 · t0, t0 ← t4 · Z3

11. t2 ← 2t4, t5 ← t2 + t5
12. t4 ← t4 + t2, l0 ← t5 − t1
13. l10 ← t4 · x0, l11 ← t4 · x1

14. l20 ← t0 · y0, l21 ← t0 · y1

In the above scheduling nonlinear Fp operations are performed in the instruc-
tions 1, 2, 8, 10, 13, and 14. If we assume that Fp squaring (s) ≈ Fp multiplica-
tion (m) then the cost of above operations is 6m on a programmable core in our
dual-core PCP. At the same time other core starts the computation of f2. We
represent the Miller function f ∈ F((p2)3)2 as : (f0,0 + f0,1V + f0,2V

2) + (f0,0 +
f0,1V + f0,2V

2)W , where fi,j ∈ Fp2 . The equivalent representations of f are :

f = f0 + f1W , wheref0, f1 ∈ Fp6 ; f ∈ F(p6)2 .

= (f0,0 + f0,1V + f0,2V
2) + (f1,0 + f1,1V + f1,2V

2)W ,

wherefi,j ∈ Fp2 ; f ∈ F((p2)3)2 .

= f0,0 + f1,0W + f0,1W
2 + f1,1W

3 + f0,2W
4 + f1,2W

5

wherefi,j ∈ Fp2 ; f ∈ F(p2)6 .

The computation of c = f2 is performed in Fp12 using complex method by
following way.

v = f0 · f1,

c0 = (f0 + f1)(f0 + βf1)− v − βv,

c1 = 2v,

where v, c0, c1 are in Fp6 and β is a quadratic non-residue in Fp6 . It requires two
Fp6 multiplications. Now, one Fp6 multiplication is performed in the tower field
F(p2)3 using Karatsuba technique by six multiplications in Fp2 . Let us consider
that an element ai ∈ Fp2 is represented as : ai0+ai1U , aij ∈ Fp. The computation
of v = f0 · f1 on a programmable core is as follows:

1. ṽ0 ← f00 · f10, where f00, f10 ∈ Fp2

2. ṽ1 ← f01 · f11, where f01, f11 ∈ Fp2

3. ṽ2 ← f02 · f12, where f02, f12 ∈ Fp2

4. t10 ← f010 + f020, t11 ← f011 + f021
5. t20 ← f110 + f120, t21 ← f111 + f121
6. t3 ← t1 · t2, where t1, t2 ∈ Fp2

7. t10 ← ṽ10 + ṽ20, t11 ← ṽ11 − ṽ21
8. t30 ← t30 − t10, t31 ← t31 − t11
9. t31 ← t31 + t31

10. v00 ← ṽ00 − t31, v01 ← ṽ01 + t30



6 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

11. t10 ← f000 + f010, t11 ← f001 + f011
12. t20 ← f100 + f110, t21 ← f101 + f111.
13. t3 ← t1 · t2, where t1, t2 ∈ Fp2

14. t10 ← ṽ00 + ṽ10, t11 ← ṽ01 − ṽ11
15. t20 ← ṽ21 + ṽ21
16. t10 ← t10 + t20, t11 ← ṽ20 − t11
17. v10 ← t30 − t10, v11 ← t31 + t11
18. t10 ← f000 + f020, t11 ← f001 + f021
19. t20 ← f100 + f120, t21 ← f101 + f121
20. t3 ← t1 · t2, where t1, t2 ∈ Fp2

21. t10 ← ṽ00 + ṽ20, t11 ← ṽ01 + ṽ21
22. t10 ← ṽ10 − t10, t11 ← ṽ11 − t11
23. v20 ← t30 + t10, v21 ← t31 + t11

The result v ∈ Fp6 is represented as : (v00 + v01U) + (v10 + v11U)V + (v20 +
v21U)V

2, where vij ∈ Fp. In the above computation, steps 1, 2, 3, 6, 13, 20
perform multiplications in Fp2 . Thus the cost of v = f0 · f1 is 6m, which is
computed in parallel with 2T , lT,T (Q) by the proposed PCP.

The second Fp6 multiplication, i.e., the computation of (f0 + f1)(f0 + βf1)
is performed by both the programmable cores, which costs only 3m in the PCP.
Therefore, the total cost of computing 2T , lT,T (Q), and f2 by the PCP is 9m.

The l(Q) is represented as : (l0 + l1V) + (l2V)W , where l0 ∈ Fp, l1, l2 ∈ Fp2 ,
which is equivalent to l0+ l1W

2+ l2W
3. The computation of f ·l(Q) is performed

in the tower field F((p2)3)2 by following way.

f ′ = f · l(Q)

= ((f0,0 + f0,1V + f0,2V
2) + (f1,0 + f1,1V + f1,2V

2)W) ·

((l0 + l1V) + (l2V)W)

The top most extension is quadratic. Thus the computation of f · l(Q) is done
by three Fp6 multiplications, which are identified as :

t11 = (l0 + l1V) · (f0,0 + f0,1V + f0,2V
2)

t12 = (l2V) · (f1,0 + f1,1V + f1,2V
2)

t13 = (l0 + (l1 + l2)V) · (((f0,0 + f1,0) + (f0,1 + f1,1)V +

(f0,2 + f1,2)V
2)

One multiplication in Fp6 using Karatsuba method requires 18 Fp multipli-
cations. However, due to the sparse representation of l(Q) the cost of computing
t1i , 1 ≤ i ≤ 3 is lesser than the actual costs of three Fp6 multiplications. Both
the equations for t11 and t13 require only 14 Fp multiplications. In our parallel
cryptoprocessor the above two equations are computed in parallel on two pro-
grammable cores, which costs 5m. The computation of t12 requires only nine
Fp multiplications, which is performed on both the cores and it costs only 2m.



Security of Prime Field Pairing Cryptoprocessor Against DPA 7

Therefore, the computation of f · l(Q) requires 37 Fp multiplications, which costs
only 7m in our PCP. Therefore, the total cost for computing the doubling step
(the computation of 2T, lT,T (Q), f2, and f ·l(Q)) of the Miller algorithm for Tate
pairing on BN curve is 9m+ 7m = 16m.

3.2 Computation of Addition Step

The addition step consists of the computations of T + P , lT,P (Q), and f ·
lT,P (Q). The formulae for mixed Jacobian-affine addition are the following: if
T = (X1, Y1, Z1) is in Jacobian coordinates and P = (X2, Y2) is in affine co-
ordinates, then T + P = (X3, Y3, Z3) where X3 = (Y2Z

3
1 − Y1)

2 − (X2Z
2
1 −

X1)
2(X1+X2Z

2
1 ), Y3 = (Y2Z

3
1−Y1)(X1(X2Z

2
1−X1)

2−X3)−Y1(X2Z
2
1−X1)

3,
Z3 = Z1(X2Z

2
1 −X1). The line through T and P is l(x, y) = (X2(Y2Z

3
1 − Y1)−

Y2Z3) − (Y2Z
3
1 − Y1)x + Z3 · y. During the addition step of Miller algorithm

we compute the above operations in parallel on both cores. There are limited
independent operations in this step. Therefore, there are scopes for optimizing
the scheduling of operations on Fp arithmetic units for reducing the additional
registers and related wiring. The respective scheduling is shown here.

1. t0 ← Y2 · Z1, t0 ← (Z1)
2

2. t0 ← t1 · t0, t1 ← t1 ·X2

3. t4 ← t1 +X1, t0 ← t0 − Y1, t5 ← t1 −X1

4. t3 ← (t0)
2, Z3 ← t5 · Z1, t7 ← (t5)

2; l10 ← t0 · x0,
l11 ← t0 · x1

5. t2 ← t7 ·X1, t4 ← t4 · t7, t5 ← t5 · t7; t10 ← t0 ·X2

6. X3 ← t3 − t4
7. t2 ← t2 −X3

8. t2 ← t2 · t0, t4 ← Y2 · Z3, t5 ← t5 · Y1; l20 ← Z3 · y0,
l21 ← Z3 · y1

9. Y3 ← t2 − t5; l0 ← t10 − t4

In the above scheduling, the nonlinear operations (multiplication and squar-
ing) in Fp are performed in steps 1, 2, 4, 5, and 8. Thus, the cost of computing
T +P , lT,P (Q) is 5m in the PCP. This computation is followed by f · l(Q), which
costs 7m. Therefore, the cost for evaluating the addition step is 5m+7m = 12m
in the PCP.

3.3 Computation of Final Exponentiation

The final exponentiation is computed by following way. It follows the optimiza-
tion to factor (p12 − 1)/r into three parts [14] and compute f (p12

−1)/r as :

f
p12−1

r = f
(p6

−1)× p6+1

p4−p2+1
×

p4−p2+1

r

= ((fp6
−1)p

2+1)
p4−p2+1

r .



8 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

The computation is done by following way:

1. f ← fp6
−1.

2. f ← fp2+1.

3. a← f−(6z+5), b← ap, b← a · b.

4. Compute fp, fp2

, fp3

.

5. f ← fp3

·
[

b · (fp)2 · fp2
]6z2+1

· b · (fp · f)9 · a · f4,

where z is a BN parameter and we choose z = 6000000000001F2D (in hexadec-
imal). Table 1 lists the operation costs of final exponentiation on the PCP. The
power of (p6 − 1) in F(p

6)2 is an easy exponentiation, which is performed by a

conjugation (Frobenius) and a division [15, 10]. The operation fp6

= f0 − f1W .

Thus, fp6
−1 is performed by one inversion and one multiplication in Fp12 , which

costs 29m on our dual-core PCP.

Table 1. Operation costs for the final exponentiation on our PCP.

Operation cost on PCP

fp6−1 29m

fp2+1 12m

f−(6z+5) 480m

ap, a · b, fp, fp2 , fp3 21m

T ← b · (fp)2 · fp2 24m

T ← T 6z2+1 951m

fp3 · T · b · (fp · f)9 · f4 93m

The exponentiations f6z+5, T z and (T z)6z are performed by repeated square-
and-multiply. Note that 6z + 5 and 6z have bitlength 66 and Hamming weight
11, while z has bitlength 63 and Hamming weight 11.

3.4 Cost for Computing Tate Pairing

In case of BN curve, r has bitlength 256 and Hamming weight 91. Thus the total
cost for evaluating iterative Miller function of the Tate pairing computation is
5176m on our PCP. The cost for computing the final exponentiation is 1610m.
Hence, the total cost for computing a Tate pairing over BN curves by our crypto-
processor is 6786m, which takes 1, 764, 360 cycles. The cryptoprocessor finishes
one Tate pairing computation over BN curve in 35.3ms on a Virtex-4 FPGA
platform. It consumes 52k slices and runs at 50 MHz clock frequency.



Security of Prime Field Pairing Cryptoprocessor Against DPA 9

4 Side-channel Vulnerability

Page and Vercauteren [5] presented SPA and DPA attacks on the pairing compu-
tations performed by the Duursma-Lee algorithm [6] and the BLKS algorithm [8]
over F3m . The power consumption attack on ηT pairing computation over F2m

is described by Kim et al. in [9]. However, the same in case of Fp has not been
studied so far. This section investigates the security of pairing computations over
Fp against power consumption attacks.

4.1 Weakness of Pairing Computations in Fp

In the decryption step of identity-based encryption schemes, a dominant op-
eration is e(U, SID), where SID is the fixed secret key, and U is a part of a
ciphertext [17]. In this case side-channel attacks may try to extract the secret
key from the pairing computation by repeatedly manipulating U . The Tate pair-
ing over Fp consists of elliptic curve group operations (ECD and ECA), the line
functions, and the Miller function [13]. The line functions as per the definition
provided by Chatterjee et al. [12] use both the public point U and private point
SID. The formula of line functions are based on the underlying Fp primitives.

During the addition step of Tate pairing computation the formula of the line
function is l(x, y) = (y − Y2)Z3 − (x − X2)(Y2Z

3
1 − Y1) [12]. In pairing based

cryptographic schemes, the point T = (X1, Y1, Z1) is an intermediate resultant
point of current point doubling operation, the point U = (X2, Y2) is used as a
public parameter (it could be the plain texts or messages), and SID = (x, y) is
used as the private key. The resultant point (T+U) is represented by (X3, Y3, Z3).
Therefore, in such a scheme the operations (x − X2) and (y − Y2) could be
exploited through side-channel attacks for finding out the x and y-coordinates
of the secret point.

5 Proposed DPA Attack

In this section, we investigate differential power analysis (or DPA) attack against
the subtraction (x−X2) used in the Tate pairing on elliptic curves in Fp, where
x is secret and X2 is public and known to, or even chosen by, the attacker. The
subtraction (x−X2) in Fp is computed by first computing S = x−X2 and then
the result is reduced (if required) by adding p with S. Let us assume that all
operations are performed on 2’s complement numbers. Therefore, the subtraction
S = x−X2 could be performed as: S =

∑k
i=0 2

isi =
∑k−1

i=0 2ixi+
∑k−1

i=0 2iX̄2i+1,
where k represents the bit length of operands (x,X2) and X̄2i corresponds to
the 1’s complement of X2i . The subtraction is started from the least significant
bit (or LSB) by computing sum and carry bits iteratively. The formula for i-th
carry bit is: ci = xiX̄2i ⊕ xici−1 ⊕ X̄2ici−1. Similarly, the i-th sum bit is
computed as: si = xi ⊕ X̄2i ⊕ ci−1 for k − 1 ≤ i ≤ 0 with c−1 = 1.

The proposed DPA attack works by following way. The attacker first collects
the power consumption traces of n number of randomly chosen public point U .



10 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

We consider the simplified Hamming weight model for power leakage [18]. In this
model, power consumption depends on the Hamming weight of the data being
processed. Thus, we can express the power consumption W as:

W = εH + η (1)

where H , ε, and η represent the Hamming weight of the intermediate data, the
incremental amount of power for each extra 1 in the Hamming weight, and the
noise, respectively. We assume that the average of noise η is zero.

Let W be the power consumption associated with the subtraction operation
(x−X2). We start from the LSB and iteratively find all bits of the x-coordinate
of the secret point SID = (x, y). To recover the i-th bit of x, we guess that xi = 0
and divide power consumptions into two sets by X̄2i ⊕ ci−1.

Pk = { W | X̄2i ⊕ ci−1 = k} with k = {0, 1}

Thus, the differential power consumption is:

∆ = < P1 − P0 > .

If the guess is correct, then the averages of P1 and P0 are, ε(M + 1)/2 and
ε(M − 1)/2, where M corresponds to the bit length of S. Thus, if ∆ > 0, we
know that xi = 0; otherwise, the averages of P1 and P0 is ε(M − 1)/2 and
ε(M + 1)/2. Thus, if ∆ < 0 then xi = 1. There should be a positive peak when
xi = 0 and a negative peak when xi = 1.

In summary, since the subtraction operation (x − X2) of line function in
pairing computation is vulnerable to the proposed attack, we can recover x.
Next, we can obtain the value of y-coordinate of the secret point SID by solving
the curve equation.

5.1 Mounting the DPA on FPGA Platform

We perform the actual DPA attack on aforementioned pairing cryptoprocessor
(or PCP). The PCP is implemented on a customized FPGA board for power
analysis. We put an one ohm resistor between the VCCint pin of the FPGA
chip and the on board voltage regulator. We measure the current drawn through
that resistor during pairing computation by a current probe. The specification
of the probe is Tektronix current probe (serial number B014316). We use the
probe with a TCPA300 power amplifier in standby mode. The measured power is
displayed and stored in a Tektronix TDS5032B Digital Phosphor Oscilloscope.
We develop software tools to automate the whole process for varying inputs.
The power consumptions are measured in terms of mV which is varying around
±5mV . The power signal is sampled at 12.5MS/s.

We choose an x with x0 = 0 and perform (x−X2) for 2000 times with 2000
different randomly chosen X2. The respective power consumptions are stored in
2000 one dimensional vectors. Now we differentiate the the power vectors in two
sets namely P1 and P0. A vector will be in set P1 if X̄20 ⊕ c−1 = 1; i.e., X20 = 1.



Security of Prime Field Pairing Cryptoprocessor Against DPA 11

Otherwise, the vector will be in set P0. For computing the differential power
consumption we subtract the average of P0 vectors (means) from the average of
P1 vectors. We say this differential power consumption vector as difference-of-
means which is represented by ∆. Then we accumulate the samples of ∆ and
plot it. The respective difference-of-means is depicted in Fig. 1(a), which shows
a positive peak as expected for x0 = 0.

50 100 150 200
0

2

4

6

8

x 10
−3

samples

di
ffe

re
nc

e−
of

−
m

ea
ns

(a)

50 100 150 200

−8

−6

−4

−2

0
x 10

−3

samples

di
ffe

re
nc

e−
of

−
m

ea
ns

(b)

Fig. 1. The correlation between LSB and corresponding average power differences of
an addition in Fp. (a) for x0 = 0 and (b) for x0 = 1.

The same experiment has been repeated for another x with x0 = 1. The
difference-of-means in this case is plotted in Fig. 1(b). In this case the expectation
of < P1 − P0 > is negative and we got the result as expected with 2000 random
X2.

Above experimental result ensures that an attacker can easily mount the
DPA attack on pairing computation over Fp. After finding out the LSB, DPA
can be performed for second LSB, and so on. The same power traces could be
utilized for finding out all secret bits. The differentiation of power vectors into
two sets depending on the current value of (X̄2i ⊕ ci−1) upto the generation
of the difference-of-means will be repeated for finding out each of the secret
bits. Thus, above DPA attack iteratively finds out all bits of the x-coordinate of
secret SID. After obtaining the x-coordinate, the value of y-coordinate could be
obtained easily by solving the underlying elliptic curve equation.

5.2 Proposed Counteracting Technique

In the pairing computation, the secret point is only used for computing the line
functions. The formula of the line function during doubling step of the Miller
algorithm over Fp is as follows:

lT,T (x, y) = Z3Z
2y − 2Y 2 − 3X2(Z2x−X),



12 S. Ghosh, D. Mukhopadhyay, D. Roychowdhury

where T = (X,Y, Z) be the intermediate resultant point of Miller algorithm
while 2T = (X3, Y3, Z3) [12].

The formula of lT,T (x, y) is using the secret point SID = (x, y) of identity
based encryption (IBE) [17]. But, it does not use the public point U = (X2, Y2).
Therefore, this function could not be exploited by any side-channel attacks.

The second line function lT,P (x, y) is computed during the addition step of
the Miller algorithm. In IBE scheme P is replaced by U . The formula of lT,P (x, y)
is:

lT,U (x, y) = (y − Y2)Z3 − (x−X2)(Y2Z
3
1 − Y1),

where T (X1, Y1, Z1) is the intermediate result of doubling step and (X3, Y3, Z3)
represents the addition result of T + U . In this line computation formula both
public point U = (X2, Y2) and private point SID = (x, y) are used. The compu-
tation of lT,U (x, y) is the main weakness of pairing computation over Fp against
side-channel attacks. The DPA attack described above can easily find out the x
and y-coordinates of private point SID by exploiting the above formula.

The main drawback of the above formula is that the public and private
parameters are directly involved to perform an Fp operation. The side-channel
attack thus exploit the respective Fp operation for finding out the secret bits by
manipulating public parameter U . To counter act on such computation against
side-channel attacks it could be computed by following way.

lT,P (x, y) = (X2(Y2Z
3
1 − Y1)− Y2Z3)− (Y2Z

3
1 − Y1)x+ Z3 · y.

The above computation technique does not have any Fp primitive which is
performed on one public parameter and one private parameter. The attacker may
try to exploit the power consumption of the cryptoprocessor during the compu-
tation of lT,P (x, y). The private parameter x in the above formula is multiplied
with an unknown parameter (Y2Z

3
1 − Y1). Therefore, no difference-of-mean can

be computed for identifying the secret bits of x.
The second secret parameter y is multiplied with Z3 in the modified com-

putation of lT,P (x, y). The parameter Z3 is computed by executing the formula
Z3 = Z1(X2Z

2
1 − X1) which ensures Z3 is unknown due to the unknown tem-

porary point T (X1, Y1, Z1). Therefore, no difference-of-mean value can be com-
puted based on the specific bits of Z3 for identifying the secret bits of y. Thus,
the proposed counteracting technique protects both x and y coordinates of se-
cret point SID, which ensures the security of pairing computation against DPA
attack.

6 Conclusion

This paper has demonstrated an optimized scheduling of Tate pairing computa-
tion over BN curve on a dualcore pairing cryptoprocessor. The computation cost
for One Tate pairing achieving 128-bit security on FPGA platform is 35.3ms.
The paper further analyzes the effect of covert power channel of the pairing cryp-
toprocessor against physical security. The paper has pinpointed the vulnerability



Security of Prime Field Pairing Cryptoprocessor Against DPA 13

of such pairing computation against DPA attack. The actual DPA has been per-
formed on FPGA platform and respective vulnerability has been demonstrated.
Finally, the paper has proposed a suitable counteract to protect secret point of
pairing computation against DPA attack.

References

1. V.S. Miller. Short Programs for Functions on Curves. unpublished manuscript,
1986.

2. V.S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
Vol. 17, pp. 235–261, 2004.

3. P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS
and other systems. Advances in Cryptology - CRYPTO’96, USA, LNCS 1109, pp.
104–113, Springer, 1996.

4. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. Advances in Cryp-
tology - CRYPTO’99, USA, LNCS 1666, pp. 388–397, 1999.

5. D. Page and F. Vercauteren. Fault and side-channel attacks on pairing based cryp-
tography. Cryptology ePrint Archive, Report 2004/283. http://eprint.iacr.org/.

6. I. Duursma and H. Lee. Tate pairing implementation for hyperelliptic curves y2 =
xp − x+ d. ASIACRYPT 2003, LNCS 2894, pp. 111–123, Springer, 2003.

7. J. Hoffstein, J. Pipher, and J.H. Silverman. An introduction to mathmatical cryp-
tography. Springer, 2008.

8. P.S.L.M. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. CRYPTO 2002, LNCS 2442, pp. 354–368, 2002.

9. T.H. Kim, T. Takagi, D.G. Han, H. Kim, and J. Lim. Power analysis attacks and
countermeasures on ηT pairing over binary fields. ETRI Journal, Vol. 30, No. 1,
pp. 68–80, 2008.

10. M. Naehrig, P.S.L.M. Barreto, and P. Schwabe. On compressible pairings and their
computation. AFRICACRYPT’08, LNCS 5023, pp. 371–388, 2008.

11. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
SAC ’05. LNCS 3897, pp. 319–331, Springer, Heidelberg, 2006.

12. S. Chatterjee, P. Sarkar, and R. Barua. Efficient computation of Tate pairing in
projective coordinate over general characteristic fields. Information Security and
CryptologyICISC 2004, LNCS 3506, pp. 168–181, 2005.

13. D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings. In:
Joye, M., Neven, G. (eds.) Identity-Based Cryptography, 2008.

14. A.J. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over
Barreto-Naehrig curves. Pairing ’07. LNCS 4575, pp. 197–207, 2007.

15. M. Scott, N. Benger, M. Charlemagne, L.J.D. Perez, and E.J. Kachisa. On the
final exponentiation for calculating pairings on ordinary elliptic curves. Pairing
’09, LNCS 5671, pp. 78–88, 2009.

16. S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury. High speed flexible pairing
cryptoprocessor on FPGA Platform. Pairing’10, LNCS 6487, Japan, 2010.

17. D. Boneh and M.K. Franklin. Identity-based encryption from the Weil pairing.
CRYPTO 2001, LNCS 2139, pp. 213–229, Springer, Heidelberg, 2001.

18. T.S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. CHES 2000, LNCS 1965, pp. 238–251, Springer, Berlin, Germany, 2000.


