
Designated Confirmer Signatures With Unified Verification

Guilin Wang 1, Fubiao Xia 2, and Yunlei Zhao 3

1 University of Wollongong, Australia (guilin@uow.edu.au)
2 University of Birmingham, UK (F.Xia@cs.bham.ac.uk)

3 Fudan University, China (yunleizhao@gmail.com)

March 2011

Abstract

After the introduction of designated confirmer signatures (DCS) by Chaum in 1994, consid-
erable researches have been done to build generic schemes from standard digital signatures and
construct efficient concrete solutions. In DCS schemes, a signature cannot be verified without the
help of either the signer or a semi-trusted third party, called the designated confirmer. If necessary,
the confirmer can further convert a DCS into an ordinary signature that is publicly verifiable.
However, there is one limit in most existing schemes: the signer is not given the ability to dis-
avow invalid DCS signatures. Motivated by this observation, in this paper we first propose a new
variant of DCS model, called designated confirmer signatures with unified verification, in which
both the signer and the designated confirmer can run the same protocols to confirm a valid DCS
or disavow an invalid signature. Then, we present the first DCS scheme with unified verification
and prove its security in the random oracle (RO) model and under a new computational assump-
tion, called Decisional Co-efficient Linear (D-co-L) assumption, whose intractability in pairing
settings is shown to be equivalent to the well-known Decisional Bilinear Diffie-Hellman (DBDH)
assumption. The proposed scheme is constructed by encrypting Boneh, Lynn and Shacham’s
pairing based short signatures with signed ElGamal encryption. The resulting solution is efficient
in both aspects of computation and communication. In addition, we point out that the proposed
concept can be generalized by allowing the signer to run different protocols for confirming and
disavowing signatures.

Keywords: Designated Confirmer Signature, Digital Signatures, Unified Verification.

1 Introduction

Background. Digital signatures introduced by Diffie and Hellman [10] are employed to achieve the
integrity and authenticity of electronic documents. However, the signer may hope the recipient of a
signature would not be able to show its validity to other parties. Hence, how to control the public
verifiability of signatures is an important issue in both paper world and digital world. Chaum and
van Antwerpen [7] introduced the concept of undeniable signatures to solve this problem. Unlike the
ordinary signature’s verification, in an undeniable signature scheme a verifier needs the help of the
signer to verify an undeniable signature. Consequently, if the signer is unavailable or unwilling to
help a verifier due to any possible reasons, this approach does not work in that situation either.

To overcome the above weakness in undeniable signatures, Chaum and van Antwerpen [8] intro-
duced the concept of designated confirmer signatures (DCS). In a DCS scheme, both the signer and
a semi-trusted third party called the designated confirmer can confirm the validity of a signature
by running some interactive protocols with a verifier. However, such a verifier cannot further con-
vince other parties of the same fact. Moreover, the confirmer can selectively convert a designated
confirmer signature into an ordinary signature so that it is publicly verifiable. A number of DCS
schemes [19, 16, 22, 24, 27, 30] have been presented, though most of them are either insecure or
inefficient.

Previous Work. Many investigations on DCS have been targeted to construct efficient and secure
generic schemes. Okamoto [24] provided the first formal definition of a DCS scheme and construc-
tively proved that a DCS scheme is equivalent to public key encryption with respect to their existence.

1

But Michels and Stadler [22] pointed out that the confirmer can forge valid signatures on behalf of
the signer in Okamoto’s concrete schemes, and they also proposed a new security model and efficient
schemes secure in their model. In 2000, however, Camenisch and Michels [5] identified an attack to
link the validity of two signatures issued by different signers, when multiple signers in [22] share the
same confirmer. Meanwhile, they proposed a new model which covers this attack and also suggested a
generic DCS construction by encrypting a basic signature with the confirmer’s public encryption key.
This construction is actually straightforward but very inefficient, because no efficient zero knowledge
proofs have been found for the assertion that the plaintext corresponding to a given ciphertext does
contain a valid ordinary signature of some message. In 2004, Goldwasser and Waisbard [19] proposed
a relaxed formal security model (referred to as GW model), and presented several DCS schemes via
applying a generic transformation that relies on neither random oracles nor generic zero knowledge
proofs. Their main idea is to weaken the security requirements of Okamoto by exploiting strong
witness hiding proofs of knowledge (SWHPOK), rather than zero knowledge proofs. In Asiacrypt
2005, Gentry, Molnar and Ramzan [16] presented a generic DCS scheme by brilliantly introducing
an indirect layer via using commitment schemes. That is, the signer generates a DCS by first issuing
a basic signature on the commitment of a message and then encrypting the randomness used for the
commitment separately. After that, Wang et al. [27] detected two security flaws in Gentry et al.’s
scheme and repaired it by exploiting encryption with labels. In addition, a new general construction
without explicit public key encryption was also given in [27].

In contrast, only a few concrete DCS schemes have been proposed. In 2008, Zhang et al. proposed
an efficient DCS scheme based on bilinear pairings [30] but their scheme fails to meet invisibility,
a crucial security requirement of DCS, as shown by Xia et al. [29]. Intuitively, invisibility requires
that the validity or invalidity of an DCS must be invisible to any verifier, who can be an adaptive
chosen-message attacker. Partially inspired by our preliminary work [28], Huang et al. presented
another practical DCS scheme [20], which is proved to be secure in the standard model and also
supports unified verification. In [20], it was not discussed how to adjust the verification protocol in
the concurrent execution environment, though this is required for preventing possible attacks in the
setting of DCS [16, 27]. In addition, the scheme in [20] suffers from the additional computational
and communication costs incurred by the concurrent zero-knowledge transformation in the common
reference string model (to be addressed later).

Motivation and Contribution. However, there is one limit in most existing DCS schemes: A
signer is not given the ability to disavow invalid DCS signatures. Therefore, the current concept of
DCS has not yet fully extended that of undeniable signatures, as the latter does grant the signer
the ability of disavowal. Moreover, in many applications it seems more sensible to enable the signer
having the same ability as the confirmer to confirm any valid DCS and deny any invalid DCS. In fact,
this additional ability will not only alleviate the burden of the confirmer, but effectively prevents
the signer from viciously claiming: “This alleged DCS is not valid, but I am not able to show this”.
Galbraith and Mao [13] first pointed out DCS schemes should allow a signer to be able to deny
invalid signatures but they did not present any construction with this property. Motivated by this
observation, in this paper we propose the concept of DCS with unified verification, together with a
formal security model and a concrete construction. Simply speaking, in DCS scheme with unified
verification both the signer and the designated confirmer can run the same protocol to confirm valid
signatures, and another same protocol to disavow invalid signatures. Based on the security models
in [5, 13], we first present a new security model for DCS with unified verification to capture all
desirable security requirements (Section 3). We also point out that the proposed model can be easily
generalized to accommodate DCS with full verification, in which the signer and the confirmer do not
necessarily run the same protocols to confirm or disavow signatures.

Then, we consider how to construct a DCS with unified verification. This is a challenge, as
simply revising the existing constructions does not work. The reason is that almost all previous
DCS schemes [19, 16, 22, 24, 27] follow the approach of encrypting the signer’s signature under the

2

confirmer’s public key. So, without the confirmer’s private key the signer is not able to show that
a CCA2 ciphertext is not a proper encryption of his/her signature for a given message. In fact, it
seems that even Wang et al.’s DCS [27] without using public encryption cannot be converted into
a scheme supporting the signer’s disavowal, since an alleged DCS may contain a non Diffie-Hellman
tuple, for which the signer does not know a witness to prove this fact at all.

However, this does not mean that it is impossible to construct DCS schemes with unified veri-
fication or with full verification. Due to the amazing property of bilinear pairings, we constructed
the first concrete DCS scheme which supports unified verification in the preliminary version of this
work [28], though that scheme only achieves weak invisibility. By making a simple enhancement
to our previous work [28], we get a new and secure DCS scheme with unified verification in this
paper (Section 4) and prove its security in the random oracle model (Section 5). Specifically, the
new scheme is constructed by encrypting the BLS pairing based short signature [3] under the signed
ElGamal encryption [26]. Note that directly exploiting plain ElGamal encryption [12] cannot guar-
antee the invisibility, due to ElGamal’s malleability (See more discussion in Section 4). Moreover,
compared to the existing DCS schemes [19, 16, 27, 20], the proposed solution has a conceptual sim-
pler structure and a short signature size, though the computational overhead is a little higher due
to pairing evaluation. Another interesting observation about our construction is that the underlying
signed ElGamal encryption is actually not CPA secure due to the fact that the DDH (Decisional
Deffie-Hellman) problem is easy in pairing setting, though signed ElGamal encryption is proved to be
CCA2-secure in the random oracle model and in the generic group model by Schnorr and Jakobsson
[26]. This is seemingly contradictory to the result by Okamoto [24]. The likely reason for this is that
our definitions on the security of DCS are different from Okamoto’s, but we are not very sure at this
moment. So, here we would like to promote this issue as an open problem.

2 Preliminaries

2.1 Bilinear Pairings and the BLS Signature

Basically, a pairing is a function that takes two points on an elliptic curve as input, and outputs
an element of some multiplicative group. Weil pairing and Tate pairing are two known symmetric
pairings, while some other pairings, e.g., Eta pairing and Ate Pairing [14], have been given more and
more attentions.

Definition 1 Suppose that G and Gt be two multiplicative cyclic groups of prime order q, while g
is a generators of G. A bilinear pairing on (G,Gt) is a map e : G × G → Gt, which satisfies the
following properties:

Bilinearity: For all u, v ∈ G, and for all a, b ∈ Zq, e(ua, vb) = e(u, v)ab.
Non-degeneracy: e(g, g) 6= 1, where 1 is the multiplicative identity of group Gt.
Computability: e can be efficiently computed.

We now review the BLS short signature scheme of Boneh, Lynn and Shacham [3]. In general, the
scheme has three algorithms, Key Generation, Sign, and Verify. In addition, it needs a full-domain
hash function H: {0, 1}∗ → G.

Key Generation: A user randomly selects x ∈ Z∗q as his private key, and computes y = gx as
the corresponding public key.

Sign: To sign a message m ∈ {0, 1}∗, the signer with private key x computes h = H(m) ∈ G,
and the signature σ = hx ∈ G.

Verify: Given a public key y and a message-signature pair (m,σ), a verifier first computes
h = H(m), and then checks if e(g, σ) = e(y, h) holds or not. If it holds, he accepts the validity of
(m,σ).

Note that the BLS signature is only one single element of G, so it is very short (for example,
171 bits) for some elliptic curves. In [3], it is proved that the security of the BLS signature scheme

3

follows the hardness of Computational Diffie-Hellman (CDH) problem in the random oracle model.
In fact, the original BLS signature [3] is described in the setting of asymmetric pairing e, i.e., e is a
bilinear map from G1 ×G2 to Gt, while G1, G2, and Gt are all multiplicative cyclic groups of prime
order q. Here, for simplicity we just use symmetric pairing by letting G = G1 = G2. We note that
to extend our DCS scheme for the asymmetric pairing is straightforward.

2.2 Complexity Assumptions

We introduce some complexity assumptions required in our proposal as below. Let negl(n) de-
note any negligible function that grows slower than n−v for any positive integer v and for all suffi-
ciently large integer n. x ∈R X denotes an random element x is picked from set X uniformly, and

x1, x2, ..., xn
R
← X denotes x1, x2, ..., xn are random elements picked from set X uniformly. All the

other alphabets and symbols follow the previous meanings.

Computational Diffie-Hellman Assumption (CDH). Given g, ga, gb ∈ G, no probabilistic
polynomial-time (PPT) algorithm can output gab ∈ G with non-negligible probability, where a, b ∈R
Z∗q.

Decisional Bilinear Diffie-Hellman Assumption (DBDH) [1]. With g ∈ G described as above,

Given g, ga, gb, gc, where a, b, c
R← Z∗q, no PPT (Probablistic Polynomial Time) algorithm can distin-

guish between e(g, g)abc and a random element Z in Gt. Formally, for any PPT algorithm A, given

g, ga, gb, gc, where a, b, c
R← Z∗q, and Z ∈R Gt, the following defined advantage should be negligible:

AdvDBDH
A (n) =| Pr[A(t, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(t, ga, gb, gc, Z) = 1] |

Now we propose a new assumption, called “Decisional-coefficient-Linear (D-co-L, in short) as-
sumption”, to serve our security analysis in Theorem 3. We shall show that the D-co-L assumption
and the DBDH assumption are equivalent in the generic bilinear groups.

Decisional-coefficient-Linear Assumption (D-co-L): With g ∈ G and a pairing e described as

above,given a tuple (g, ga, gb, gw, gby, gwa+y, gz), where a, b, w, y, z
R← Z∗q, no PPT algorithm A can

distinguish between gwa+y and a random element gz in G. Formally, for any PPT algorithm A, given

(g, ga, gb, gw, gby, gwa+y, gz), where a, b, y, w, z
R← Z∗q, we define the advantage of A:

AdvD−co−LA (n) =| Pr[A(t, ga, gb, gw, gby, gwa+y) = 1]− Pr[A(t, ga, gb, gw, gby, gz) = 1] |

The probability is over the uniform random choice of the parameters to A, and over the coin
tosses of A. We say the decisional-coefficient-linear assumption (T, ε)-holds, if there is no such A,
which runs in time at most T and AdvD−co−LA (n) is at least ε.

More clearly, the above assumption can be called D-co-L assumption in G. So, we can get the
D-co-L assumption in Gt similarly. Due to the existence of bilinear mapping e : G × G → Gt,
however, it is obvious to see that D-co-L assumption in G implies D-co-L assumption in Gt. In the
proof of the following theorem, we actually use both of the assumptions, but for simplicity we just
call them D-co-L assumption.

Theorem 1 Decisional-coefficient-Linear Problem is equivalent to Decisional Bilinear Diffie-Hellman
Problem in the generic bilinear groups.

Proof: First we prove D-co-L assumption implies DBDH assumption, i.e., D-co-L assumption ⇒
DBDH assumption. A D-co-L attacker A is given a challenge query (g, ga, gb, gw, gby, gwa+y, gz),

where y, z, a, b, w
R← Z∗q , g is a generator of a generic bilinear group G. A can only perform group

operations in G and Gt, and the bilinear map e : G × G → Gt, by interacting with an oracle

4

O. All group elements are encoded as random strings, and only the equality can be tested by the
adversary. Suppose that an DBDH attacking algorithm B, with access related oracles in O which
provides group actions (G and Gt) and pairings, can solve the DBDH problem in polynomial time
T . We now use B as a subroutine to construct A solving D-co-L problem in polynomial time. A
first computes e(gwa+y, gb)/e(g, gby) = e(gwa, gb) = e(g, g)abw, sets Z = e(gz, gb)/e(g, gby), and then
outputs a DBDH challenge as (g, ga, gb, gw, e(g, g)abw, Z) with other public parameters for B. Note
that, in B’s view, this is a uniformly selected DBDH challenge. Finally, A outputs 1, i.e, gwa+y = gz,
if B outputs 1, i.e., e(g, g)abw = Z; Otherwise, A answers 0 for gwa+y 6= gz. It is easy to check that,
as long as B solves DBDH problem in polynomial time T , with making at most l queries, A can
solve D-co-L problem in at most polynomial time T plus the time for evaluating two pairings and
makes at most l queries.

Next we prove DBDH assumption implies D-co-L assumption, i.e., DBDH assumption ⇒ D-co-L
assumption. Suppose a DBDH attacker B is given a challenge query (g, ga, gb, gw, e(g, g)abw, Z) with
all parameters having the same meanings as in the above description. Now we will construct such
an algorithm B who uses a subroutine A that solves a D-co-L instance.

B chooses y randomly from Z∗p, and computes gy and gby. We denote Z = e(g, g)z for some

(unknown) z, and e(g, gb) = gt ∈ Gt. Then, B computes
e(g, gb)a = e(ga, gb), e(g, gb)b = e(gb, gb),
e(g, gb)w = e(gw, gb), e(g, gb)by = e(gby, gb),
e(g, gb)wa+y = e(gwa+y, gb) = e(gwa, gb) · e(gy, gb) = e(g, g)abw · e(g, gb)y,
e(g, gb)z

′
= e(g, g)z · e(g, gb)y = Z · e(g, gb)y, i.e., z′ = z/b+ y.

The output D-co-L tuple is (gt,g
a
t , g

b
t , g

w
t , g

by
t , g

wa+y
t , gz

′
t). In A’s view, this is a uniformly selected

D-co-L challenge.
As long as A outputs 1, i.e., gwa+y

t = gz
′

t , which implies e(g, g)abw = e(g, g)z, B outputs 1.
Otherwise, B outputs 0. Note, z′ = z/b + y means b−1 is the inverse of b in Z∗q , and thus z′ always
exists in Z∗q . So, B can solve DBDH problem in the same polynomial time as a successful D-co-L
attacker with the same numbers of oracle queries. Hence, the hardness of these two problems are
equivalent. �

2.3 Concurrent Zero Knowledge From Honest-Verifier Zero-Knowledge

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a verifier without giving away
any other knowledge other than the theorems being true (i.e., existing witnesses) [18]. Traditional
notion of ZK considers the security in a stand-alone (or sequential) execution of the protocol. Moti-
vated by the use of such protocols in an asynchronous network like the Internet where many protocols
are run concurrently at the same time, studying security properties of ZK protocols in such concur-
rent settings has attracted extensive research efforts in recent years [11]. Informally, a ZK protocol
is called concurrent zero-knowledge (CZK) if the ZK related simulatability property holds in the
concurrent settings, namely, when a malicious verifier concurrently interacts with a polynomial num-
ber of honest prover instances and schedules message exchanges as it wishes. We note, in DCS
schemes, we require CZK protocols, because an adversary in DCS schemes may act as arbitrary
cheating verifiers during the concurrent execution of protocols that confirm or deny all alleged DCS
signatures.1

In this work, for presentation simplicity, we describe the Confirm and Disavow protocols with Σ-
protocols (i.e., 3-round public-coin special honest verifier interactive zero-knowledge (HVIZK) with
special soundness) directly.

Definition 2 A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for a relation R if the
following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.
1We note that the CZK issue was not realized in [20], where only stand-alone 4-round ZK is mentioned.

5

Common input. An element x ∈ L of length n, where L is an NP-language that admits Σ-
protocols.

P ’s private input. A witness w for x ∈ L.

Random oracle. An unprogrammable random oracle denoted O.

Round-1. The verifier V takes e ∈ {0, 1}k uniformly at random, and sends c = O(e) to P .

Round-2. The prover P sends a (i.e., the first-round of the underlying Σ-protocol by running the
underlying PL) to V .

Round-3. V sends e to P .

Round-4. After receiving e from V , P first checks whether c = O(e). If not, P simply aborts;
otherwise (i.e, c = O(e)), P sends z (i.e., the last-round of the underlying Σ-protocol by
running the underlying PL) to V .

V ’s decision. V checks, by running the underlying VL, whether (a, c, z) is an accepting conversation
of the underlying Σ-protocol for showing x ∈ L.

Figure-1. Straight-line CZK protocol with unprogrammable RO

• Special soundness. From any common input x of length n and any pair of accepting conversa-
tions on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently computes w such that
(x,w) ∈ R. Here a, e, z stand for the first, the second and the third message respectively and
e is assumed to be a string of length t (that is polynomially related to n) selected uniformly at
random in {0, 1}t.
• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time

(PPT) simulator S, which on input x and a random challenge string e, outputs an accepting
conversation of the form (a, e, z), with the same probability distribution as the real conversation
between the honest P , V on input x.

Σ-protocols have been proved to be a very powerful cryptographic tool and are widely used.
Transformation methodologies from Σ-protocols to CZK protocols, in the common reference string
(CRS) model, are known (e.g., [9, 15]), but usually incurs much additional computational and com-
munication complexity. Moreover, for CZK transformation in the CRS model, the CRS should be
included as a part in the public-key of the confirmer, which additionally increases the public-key
length of the confirmer. The transformation methodology proposed in [9] is recalled in Appendix A,
which is among the most efficient transformations.

As we aim for DCS in the RO model, in this work we develop a highly efficient transformation
from Σ-protocols to straight-line CZK in the unprogrammable RO model, where straight-line CZK
means that the CZK simulator works in a straight-line way (without rewinding the underlying ad-
versary). Given access to a random oracle O, we can transform a Σ-protocol into a non-interactive
zero-knowledge (NIZK) protocol via the Fiat-Shamir heuristics. But, the NIZK got this way loses
deniability [23, 25], which is however required for DCS schemes. The deniability loss is due to the
programmability of RO in the security analysis [23, 25]. To overcome the deniability loss of simu-
lation with programmable RO, the works of [23, 25] proposed the unprogrammable RO model, and
showed that ZK with unprogrammable RO reserves the deniability property. We remark that, in this
work, unprogrammable RO is used only for achieving highly practical CZK, other parts of security
analysis still rely on regular (programmable) random oracle.

Roughly speaking, before running the Σ-protocol (a, e, z), we require the verifier to first commit
to its random challenge e by sending c = H(e) on the top, where H is a hash function that is
modeled as an unprogrammable RO in the analysis. The protocol is depicted in Figure-1. Note that

6

the additional computational complexity and communication complexity, incurred by this approach of
transformation with unprogrammable RO, is minimal: only a hash value is incurred. Due to space
limitation, the reader is referred to Appendix A for proof details.

3 Security Model

In this section, we present a new security model for designated confirmer signatures with unified
verification. Essentially, we update Gentry et al’s model [16] for DCS schemes with unified verifica-
tion, also having consideration to the models given in [19, 5, 13]. After the model is described, we
shall explain the difference between this model and the original models. In addition, we shall briefly
mention how this new model can be modified to accommodate DCS with full verification.

Definition 3 (Syntax). A correct designated confirmer signature scheme with unified verification
involves three roles of parties, i.e., a signer S, a designated confirmer C, and a verifier V, and
consists of the following components:

Key Generation (Gs, Gc): Given the security parameter n, denoted by 1n, as input, probabilistic
polynomial time (PPT) algorithm Gs outputs a pair of strings (skS, pkS) as the signer’s private key
and public key, respectively. Similarly, PPT algorithm Gc that takes on input 1n, outputs a pair of
strings (skC , pkC) as the designated confirmer’s private key and public key, respectively.

Sign: Given a message m and a signer’s private key skS, algorithm Sign produces a (standard)
signature σ for message m. Namely, σ = Sign(m, skS).

Verify: Given a public key pkS, a message m, and a signature σ, algorithm Verify outputs Accept
or Reject. For any key pair (skS , pkS), any message m, V erify(m,Sign(m, skS), pkS) =Accept.

DCSSign: Given a message m, a signer’s private key skS and the confirmer’s public key pkC ,
algorithm DCSSign outputs σ′ as a designated confirmer signature on message m. Namely, σ′ =
DCSSign(m, skS , pkC).

Extract: Given (m,σ′, skC , pkC , pkS) as input, algorithm Extract outputs a string σ such that
Verify(m, σ, pkS) = Accept or ⊥. In the case Extract can successfully extract a valid standard
signature σ from σ′, we say that σ′ is extractable w.r.t. message m. Otherwise, σ′ is unextractable.

Confirm: As an interactive protocol, either the signer S with private input skS or the designated
confirmer C with private input skC can run Confirm protocol with a verifier V to confirm that an
alleged DCS σ′ for a message m is extractable. The common input for the protocol is (m, σ′, pkS,
pkC). After the protocol is run, the verifier outputs b ∈ {Accept, ⊥}. We say σ′ is valid w.r.t.
message m, if the verifier’s output is Accept. Otherwise, the validity of σ′ is undetermined. The
Confirm protocol should be complete and sound.

a) Completeness: For all honest C, S, and V , if Verify(m, Extract(m, σ′, skC , pkC , pkS), pkS)
=Accept, then Confirm(C,V)(m, σ′, pkS,pkC) =Accept, and Confirm(S,V)(m, σ′, pkS, pkC)=Accept.

b) Soundness: For any potentially cheating confirmer C ′, any potentially cheating signer S′, and
any honest verifier V, if Verify(m, Extract(m,σ′, skC , pkC , pkS), pkS) =⊥, then

Pr[Confirm(C′,V)(m,σ
′, pkS , pkC) = Accept] < negl(n), and

Pr[Confirm(S′,V)(m,σ
′, pkS , pkC) = Accept] < negl(n).

The probability is taken over all possible coins tossed by C ′, S′, V , Gs, Gc, and Extract. This
means, neither a cheating confirmer C ′ nor a cheating signer S′ can convince an honest verifier
V that an un-extractable designated confirmer signature σ′ is valid. In other words, all valid DCS
signatures are extractable.

Disavow: As an interactive protocol, either the signer S with private input skS or the designated
confirmer C with private input skC can run Disavow protocol with a verifier V to convince that an
alleged DCS σ′ is unextractable. The common input to the protocol is (m, σ′, pkS, pkC), while
the verifier output is b ∈ {Accept, ⊥}. If the verifier’s output is Accept, we say σ′ is invalid w.r.t.

7

message m. Otherwise, the invalidity of σ′ is undetermined. The Disavow protocol should be complete
and sound.

a) Completeness: For all honest C, S, and V , if Verify(m, Extract(m, σ′, skC , pkC , pkS), pkS)
= ⊥, then Disavow(C,V)(m, σ′, pkS, pkC) =Accept, and Disavow(S,V)(m, σ′, pkS, pkC) =Accept.

b) Soundness: For any potentially cheating confirmer C ′, any potentially cheating signer S′, and
any honest verifier V, if Verify(m, Extract(m, σ′, skC , pkC , pkS), pkS) =Accept, then

Pr [Disavow(C′,V)(m,σ
′, pkS , pkC) = Accept] < negl(n), and

Pr [Disavow(S′,V)(m,σ
′, pkS , pkC) = Accept] < negl(n).

The probability is taken over all possible coins tossed by C ′, S′, V , Gs, Gc, and Extract. This
means, neither a cheating confirmer C ′ nor a cheating signer S′ can convince an honest verifier V
that an extractable designated confirmer signature σ′ is invalid. In other words, all invalid DCS must
be unextractable. �

Remark 1. In contrast to the models given in [5, 19, 16, 27], there are three main differences
in the above syntax definition. Firstly, we include the basic signature generation and verification
algorithms to make the syntax more complete. Secondly, an algorithm DCSSign is now used to
produce a DCS instead of an interactive protocol ConfirmSign in [19, 16, 27] to allow the signer
generating a valid DCS and confirming it when it is just generated. The reason for this is that the
signer will use the same Confirm protocol to show the validity of a DCS as does by the confirmer.
Finally, in our model the signer is also able to use the Disavow protocol to show the invalidity of an
alleged DCS. This is definitely necessary, as our DCS model targets to support unified verification.

Due to the above changes in syntax, we accordingly update the security definitions by including
all necessary oracle accesses. Security for the signer or unforgeability requires that no adaptive
PPT adversary can forge a valid DCS on a fresh message on behalf of a specific signer, even he
compromises the secret keys of the confirmer and other signers. This means that forgeability for
DCS should be fulfilled in multi-signer settings, i.e., in the scenario of multiple signers sharing the
same confirmer. In our definition of unforgeability given below, the forging algorithm is not given
oracle accesses for which the confirmer is the prover, since it already holds the confirmer’s private
key skC . Due to a similar reason, the Sign oracle for underlying signatures is not provided as the
attacker can simulate this oracle by asking DCSSign queries and then running Extract to get basic
signatures for any messages.

Definition 4. Security for the signer (Unforgeability): Let F be a PPT forging algorithm,
which on input 1n, pkS, pkC and skC , can request oracle access in OF={DCSSign, Confirm(S,F),
Disavow(S,F)} for polynomially many times for adaptively chosen inputs of its choice; and then
outputs a DCS message-signature pair (m, σ′) in which message m is not previously asked in DCSSign
queries. We say a DCS scheme is secure for the signer or existentially unforgeable, if any such F ,

Pr[V erify(m,Extract(m,σ′, skC , pkC , pkS), pkS) = Accept] < negl(n).

The probability is taken over all possible coins used by F , S, and key generation algorithm Gs,
Gc.

Intuitively, security for the confirmer or invisibility means that no adaptive PPT adversary D
can distinguish between a valid DCS and an invalid DCS for a given message (or two designated
confirmer signatures).

Definition 5. Security for the confirmer (Invisibility): Firstly, Key Generation algorithms
are run for the signer and the confirmer on input 1n. D is given pkS and pkC , which are the
public keys of the signer and the confirmer. As a training purpose, D is allowed to create signature-
key pairs (skD, pkD) (not necessarily via Key Generations) and to interact with the confirmer with
respect to these keys. Furthermore, D can make arbitrary oracle queries in OD = {Sign, DCSSign,

8

Confirm(S,D), Confirm(C,D), Disavow(S,D), Disavow(C,D), Extract}. Then, the distinguisher has
to present one message m. After a fair coin is flipped, the adversary is given a corresponding DCS
σ′ = DCSSign(m, skS , pkC), where b = 0, or a fake DCS signature chosen uniformly at random
from the signature space where b = 1. Now D is again allowed to access the above oracles except
that he can not enquire for σ′ via any of these oracles. Finally, the distinguisher must output one
bit information b′ to guess the value of b. We say a DCS scheme with unified verification is secure
for the confirmer or invisible, if for any PPT distinguisher D:

Pr[b′ = b] ≤ 1/2 + negl(n).

The above probability is taken over the coin tosses of the signer, the confirmer, key generation
algorithms and the oracles.

Remark 2. Note we adopt the definition of invisibility by Galbraith and Mao [13], which in turn
is slightly different from the model by Camenisch and Michels [5]. What we defined here is actually to
require that the adversary cannot decide a given DCS’ validity with respect to the message he chose,
without the help of the signer or the confirmer. However, the security requirement in [5], requires
that the adversary should be unable to relate a valid DCS to a signed message and a message with
a fake signature. Galbraith and Mao have proved that these two type of invisibility are actually
equivalent in the standard model of computation. In addition, we disallow the adversary to have
skS . Otherwise, it will be trivial for him to distinguish signatures via unified verification protocols.

Compared to GMR model [16], where another property “transcript simulatability” was proposed,
it is hard to say which security requirement for the confirmer is better. We believe that transcript
simulatability and invisibility are two different approaches for studying DCS schemes, as it is not
known if one of these two properties implies the other or not [29]. In addition, note that the
scheme in [20] is also analyzed for invisibility, not transcript simulatability. The main obstacle to
prove transcript-simulatability in our scheme is that the signed ElGamal, our underlying encryption
scheme, is even not CPA-secure. However, the generic DCS proposed in [16, 27] both rely on CCA2-
secure public key encryption.

Definition 6 (Security). We say a correct designated confirmer signature scheme is secure, if it
satisfies security for the signer and for the confirmer. Namely, it is existentially unforgeable and
invisible.

In fact, [16, 27] also studies security for verifier or unfoolability, which requires that any DCS
confirmed by running Confirm protocol must be extractable, and that every alleged DCS confirmed
by running Disavow protocol must be unextractable. As this property follows the soundness of
Confirm and Disavow protocols [16, 27], we do not separately specify it here.

Finally, from the above description we can see that by introducing additional Confirm and Dis-
avow protocols for the signer, the formal model for DCS with unified verification can be directly
generalized to accommodate DCS with full verification, in which the signer can also confirm and
disavow a signature, but not necessarily runs the same protocols as the confirmer.

4 The Proposed Scheme

Based on BLS signature scheme [3], which has been reviewed in Section 2.1, we now present a
designated confirmer signature scheme with unified verification. Basically, a DCS in our scheme is
just the signed ElGamal encryption [26] of a BLS signature. After the scheme description, we shall
give more explanations on the construction.

We use a symmetric bilinear map e : G × G → Gt, where G is a multiplicative cyclic group
of prime order q and g is a generator of G. H : {0, 1}∗ → G is a full-domain hash function, and
H ′ : {0, 1}∗ → Z∗q is a cryptographic hash function.

9

Key Generation: The signer picks xs ∈R Z∗q as his private key, and computes ys = gxs as his
public key. Similarly, the confirmer sets its private/public key pair as (xc, yc = gxc), where xc ∈R Z∗q .

Sign: Given a signer’s private key xs and a message m, output the signature σ= hxs ∈ G, where
h= H(m) ∈ G.

Verify: Given (m,σ), check whether e(g, σ) = e(ys, h) holds, where h = H(m) ∈ G.
DCSSign: After generating a basic signature σ= H(m)xs for message m by using the signer’s

private key xs, output DCS for message m as σ′ = (σ1, σ2, s, t) by computing:

σ1 = yrc , σ2 = σgr, where r ∈R Z∗q ; and

s = H ′(ykc , σ1, σ2), t = k + sr mod q, where k ∈R Z∗q .

It is easy to see that σ′ is exactly the signed ElGamal encryption [26] under the private/public key

pair (x−1c , g = yx
−1
c

c), which is equivalent to the confirmer’s key pair (xc, yc = gxc). Namely, (σ1, σ2)

is the naive ElGamal ciphertext of basic signature σ = H(m)xs under the key pair (x−1c , g = yx
−1
c

c),
while (s, t) is a Schnorr signature on message (σ1, σ2) under the temporary private/public key pair
(r, σ1 = yrc).

Extract: Given a message m and an alleged DCS σ′ = (σ1, σ2, s, t), which satisfies s ≡
H ′(ytcσ

−s
1 , σ1, σ2), the confirmer extracts the basic signature σ = σ2/σ

x−1
c

1 if e(σ2, yc)/e(σ1, g) =
e(h, ys)

xc , where h = H(m). Otherwise, ⊥ is output.
Confirm: Given common input (m,σ′, ys, yc), where σ′ = (σ1, σ2, s, t) is an alleged DCS,

the confirmer C with the private key xc can check the validity of the DCS by verifying whether
e(σ2, yc)/e(σ1, g) = e(h, ys)

xc holds or not, where h = H(m). As e(h, ys)
xc ≡ e(h, yc)xs , the signer S

with the private key xs can similarly know the validity of σ′ by checking e(σ2, yc)/e(σ1, g) = e(h, yc)
xs .

If σ′ is valid, either the confirmer C or the signer S can run the following interactive zero knowledge
protocol with a verifier V to convince this fact:

PK{(xc∨xs) : [e(σ2, yc)/e(σ1, g) = e(h, ys)
xc ∧yc = gxc]∨ [e(σ2, yc)/e(σ1, g) = e(h, yc)

xs ∧ys = gxs]}.

Disavow: On input (m,σ′, ys, yc), where σ′ = (σ1, σ2, s, t) is an alleged DCS, if e(σ2, yc)/e(σ1, g) 6=
e(h, ys)

xc or e(σ2, yc)/e(σ1, g) 6= e(h, yc)
xs , where h = H(m), this means that σ′ is an invalid DCS

for message m. Then, either the confirmer C or the signer S can run the following interactive zero
knowledge protocol with a verifier V to convince this fact:

PK{(xc∨xs) : [e(σ2, yc)/e(σ1, g) 6= e(h, ys)
xc ∧yc = gxc]∨ [e(σ2, yc)/e(σ1, g) 6= e(h, yc)

xs ∧ys = gxs]}.

Note that the above PKs are for “the (in)equality of two discrete logarithms” ∨ “the (in)equality of
another two discrete logarithms”, and each part can be proved easily by using the standard techniques
[6, 4, 21]. The implementation details of these zero knowledge proofs are given in Appendix B.

Remark 3. First, note that the idea of building a DCS here is inspired by the Boneh et al’s
verifiably encrypted signature (VES) scheme [2], which encrypts a basic BLS signature using ElGamal
encryption with the adjudicator’s key (xc, yc = gxc). The adjudicator in VES plays a similar role as
the confirmer in DCS. Here, we exploit the same idea but change the format of the ciphtertext via
effectively setting the confirmer’s key pair (x−1c , g = yx

−1
c

c). The result is very interesting, as we get a
DCS scheme in which the validity of a hidden signature (i.e. DCS) is not publicly visible any more,
compared to Boneh et al.’s hidden but publicly verifiable VES.

However, the above resulting scheme is actually not a secure DCS, as it fails to meet invisibility,
due to the malleability of naive ElGamal encryption. That is, given a target DCS (σ1 = yrc , σ2 = σgr)
for a message m, an adaptive attacker can simply derive the validity of (σ1, σ2) by inquiring the
validity of (σ′1 = σ1y

r′
c , σ

′
2 = σ2g

r′) w.r.t. the same message m by selecting a random number
r′. Note that such an attack is allowed in the security definition of invisibility. To address this
issue, signed ElGamal encryption [26] is exploited to add one Schnorr signature (s, t) showing that
the creator of ciphertext (σ1, σ2) indeed knows the secret value of r which is used for encryption.

10

Equivalently, this implies that in the proposed scheme the issuer of a DCS (σ1, σ2, s, t) knows the
corresponding basic signature σ, as σ = σ2/g

r. Hence, the above attack does not work any more,
since such a DCS has a fixed format and is not malleable.

Remark 4. Note that the proposed DCS scheme is not strongly unforgeable (but is existentially
unforgeable) for an attacker who has comprised the confirmer’s private key xc as explained below.
Since a valid DCS for a message m has the form of σ′ = (σ1, σ2, s, t) = (yrc , σg

r, s, t) satisfying
s ≡ H ′(ytcσ

−s
1 , σ1, σ2), the attacker with xc can first extract the basic signature by computing σ =

σ2/σ1
x−1
c . Then, the attacker can trivially forge another valid DCS σ̄′ = (σ̄1, σ̄2, s̄, t̄) for the same

message m. Nevertheless, this does not violate our definition of unforgeability specified in Definition
3, as a successful forger is required to produce a valid DCS on a new message, not a previously signed
message.

Remark 5. According to Remark 2, both the signer and the confirmer can check a designated
confirmer signature’s validity or invalidity of an alleged DCS by using their own private keys. Then,
either of them can run the same Confirm or Disavow interactive zero knowledge protocol with a
verifier to show whether σ′ is valid or not. Hence, to check the validity of a signature the verifier can
interact with either the signer or the designated confirmer. Due to this reason, we call our scheme
a DCS with unified verification. In particular, in our scheme the signer is granted the ability to
disavow any invalid designated confirmer signature. This new feature is interesting, as our scheme
serves a better extension of undeniable signatures [8], in which there is a disavow protocol for the
signer; nevertheless no current DCS schemes except [20], which inspired by our prototype in [28] of
this scheme, offer Disavow protocol for the signer.

Generalized Version. As discussed in Section 1, our unified verification DCS can be simply
generalized to an full verification version. The idea is to get rid of the ”OR” relation in the interactive
zero-knowledge (IZK) protocols. For Confirm(S,V), the signer initially checks the validity of a given
DCS, then runs a zero-knowledge protocol PK{xs : e(σ2, yc)/e(σ1, g) = e(h, yc)

xs ∧ ys = gxs}.
For Confirm(C,V), the IZK protocol will be PK{xc : e(σ2, yc)/e(σ1, g) = e(h, ys)

xc ∧ yc = gxc}.
To disavow an invalid signature, either the signer or the verifier can first the invalidity of a given
DCS using their own secret key, and then runs PK{xs : e(σ2, yc)/e(σ1, g) 6= e(h, yc)

xs ∧ ys = gxs}
or PK{xc : e(σ2, yc)/e(σ1, g) 6= e(h, ys)

xc ∧ yc = gxc}, respectively. Hence, the above extension
accommodates the generalized DCS model, where the signer and the confirmer can confirm (or
disavow) signatures via different protocols.

Comparison. We give a brief comparison between our DCS scheme and the DCS schemes in
[27, 20]. In comparison, our scheme has a smaller signature size over the DCS scheme of [27], which
is also DCS scheme secure in the random oracle model. Comparing to Huang et al’s scheme [20],
our Confirm and Disavow protocols are much more efficient in both aspects of computation and
communications, and the confirmer in our DCS scheme has shorter public-key, since their HVIZK
requires more computational and communication costs when transformed into CZK in the common
reference string (CRS) model (where the CRS needs to be included as a part in the public-key of
confirmer). Moreover, our scheme is also conceptual simpler. A detailed comparison will be provided
in full version of this work.

5 Security Proofs

Under the standard CDH assumption, the BLS signature scheme [3] is provably secure in the random
oracle model. The unforgeability of our DCS relies upon the security of BLS scheme, without direct
use of random oracles. The new D-co-L assumption, proposed in this work, gives rise to the invisibility
of our DCS scheme in the random oracle model.

Theorem 2 If the BLS signature scheme is (t′,q′H ,q′S,ε′)-secure against existential forgery, then the
proposed DCS scheme is (t,qH ,qS,ε)-secure against existential forgery w.r.t. Definition 4, where

11

q′H = qH , q′S = qS, ε′ = ε, t′ ≤ t + 6c · (qS + qC + qD), where c is a constant, denoting the time to
compute one pairing evaluation, one exponentiation in G, and one exponentiation in Gt.

The proof of Theorem is given in Appendix C.

Theorem 3 Under the D-co-L assumption, the proposed DCS scheme is invisible in the RO model.

Proof: Suppose a challenger algorithm C is given the D-co-LA challenge, i.e., to distinguish two
tuples, (g, ga, gb, gw, gby, gwa+y) and (g, ga, gb, gw, gby, gz) where g is a generator in a multiplicative
cyclic group G with prime order q. A pairing is constructed as e : G × G → Gt where Gt is
another multiplicative cyclic group with the same order q. Consider the invisibility game modeled
in Definition 5, C needs to simulate a DCS environment for some PPT distinguisher D, in which
D tries to distinguish two pairs: (m, sig) and (m, sigR), where sig = DCSSign(m, skS , pkC) and
sigR is chosen uniformly at random from the signature space. D can access the hash oracle, Sign,
DCSSign, Confirm, Disavow oracles before and after the challenge request phase. So, C can
setup a DCS scheme instance and simulate the game for D as below.

First, C sets pkC = gb, and pkS = gw. Then, C simulates all the oracles for D as follows:
Hash query by D: Upon receiving D’s queried message m, C picks u randomly and sets H(m) =

gu. Then, add (m,u) to a H list, which is initially empty.
Sign query by D: For a queried message m, C first checks if (m,u) ∈ H for some u. If yes,

outputs basic signature σ = gwu. Otherwise, selects u randomly, adds (m,u) to the H list, and
outputs σ = gwu.

DCSSign query by D: For a queried message m, similarly C can get a unique tuple (m,u) ∈ H
for some u. Then, C computes basic signature σ = gwu. By picking a random r, C computes
σ1 = pkrC = gbr and σ2 = σ ·gr = gwu+r. Since r as ‘the signing key’, C can simply produce a Schnorr
signature (s, t) for message (σ1, σ2). Finally, C outputs (σ1, σ2, s, t) to D.

Extract query by D: For given an alleged DCS (σ1, σ2, s, t) for message m, C outputs ⊥ if it
cannot find m in the H list. Otherwise, retrieves (m,u) from the H list and computes σ = gwu.
Then, if e(σ2, g

b) 6= e(σ1, g) · e(σ, gb), C outputs ⊥. Otherwise, C knows that the queried DCS
signature-message pair is valid, so it outputs the basic signature σ = gwu.

Confirm/Disavow query by D: Similar with the Extract oracle, C can check the queried
DCS’s validity easily. To convince D the validity of queried DCS, C just needs to straightforwardly
run the underlying CZK simulator (refer to Appendixes A and B).

For the challenge message m′ submitted by D, C computes the DCS signature sig, in case the
coin toss is head, as follows. Let H(m′) = ga, which implicitly sets the underlying BLS signature
for m′ as H(m′)skS = gwa. Then, C sets σ1 = gby, where y is treated as the randomness used in the
original DCSSign phase, and σ2 = gwa+y. For the Schnorr signature part, i.e., constructing (s, t), we
assume C also controls H ′(·) oracle. Thus it can simply selects s, t randomly, and let gbk = gbtg−brs

mod q. Note that here the public key for the internal Schnorr signature is gbr, the secret key is r and
the base of logarithm is gb. Finally, C outputs the challenge DCS for message m as sig = (σ1, σ2, s, t),
which is a valid DCS on message m.

In case the coin toss is tail, C outputs a fake DCS sigR = (σ1, σ2, s, t) for message m′, where
σ1 = gby, σ2 = gz, and (s, t) is a simulated Schnorr signature showing that (σ1 = gby, σ2 = gz) is a
well formed ElGamal encryption.

After that, C can continuously answer D’s oracle queries as simulated above. Finally, if D can
distinguish the two signatures sig and sigR by outputting a correct guess bit b′, w.r.t. m′ with a
non-negligible advantage, it is straightforward to see that C can output the same bit b′ to solve the
given challenge also with a non-negligible advantage. �

6 Conclusion and Future Work

In this paper, based on BLS short signature [3] we presented a new efficient designated confirmer
signature (DCS) scheme that additionally enables the signer to disavow any invalid signatures. We

12

call such a scheme as a DCS with full verification. As DCS has been considered for the extension of
undeniable signatures, we believe this new feature is attracting in potential applications of DCS, like
fair exchange of digital commitments between two users over the Internet. Moreover, our scheme
achieves the unified verification, as both the signer and confirmer just use the same Confirm or
Disavow protocol to convince a verifier that an alleged DCS is valid or invalid, respectively. Based
on security models given in [5, 13], we have proposed a new security model to accommodate a DCS
with unified verification, and showed the security of the proposed scheme in the random oracle
model under a newly introduced computational assumption, which is independent of interest. In
addition, we have proposed a very efficient way that transforms Σ-protocols into concurrent zero
knowledge protocols. As the future work, it would be very interesting to explore the relations
between invisibility and transcript-simulatability [16], and build new efficient DCS schemes with
unified or full verification.

References

[1] Boneh, D. and Boyen, X. Efficient selective-id secure identity-based encryption without random
oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pages 223–238, 2004.

[2] Boneh, D. and Gentry, C. and Lynn, B. and Shacham, H. aggregate and verifiably encrypted
signatures from bilinear maps. Proc. Advances in Cryptology - Eurocrypt 2003, LNCS 2656,
page 641, 2003.

[3] Boneh, D. and Lynn, B. and Shacham, H. Short signatures from the weil pairing. Proceedings
of Asiacrypt 2001, LNCS 2248, pages 514–532, 2001.

[4] Boudot, F. and Traore, J. Efficient publicly verifiable secret sharing schemes with fast or delayed
recovery. ICICS 1999, LNCS 1726, pages 87–102, 1999.

[5] Camenisch, J. and Michels, M. Confirmer signature schemes secure against adaptive adversaries.
Proc. of Advances in Cryptology - EUROCRYPT ’00, LNCS 1870, pages 243–258, 2000.

[6] Chaum, D. and Pederson, T. P. Wallet databases with observers. In proceedings of Crypto 1992,
LNCS 740, pages 89–105, 1992.

[7] Chaum, D. and van Antwerpen, H. Undeniable signatures. In Proceedings of Crypto 1989,
LNCS 435, pages 212–216, 1989.

[8] Chaum, D. and van Antwerpen, H. Designated confirmer signatures. In Proceedings of Eurocrypt
1994, LNCS 950, pages 86–91, 1994.

[9] Damgard, I. Efficient concurrent zero-knowledge in the auxiliary string model. Proc. of Advances
in Cryptology - EUROCRYPT ’00, pages 418–430, 2000.

[10] Diffie, W. and Hellman, M. E. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6), pages 644–654, 1976.

[11] Dwork, C. and Naor, M. and Sahai, A. Concurrent zero-knowledge. ACM STOC, pages 409–418,
1998.

[12] ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Tran. on Information Theory, 31(4):469–472, 1985.

[13] Galbraith, S.D. and Mao, W. Invisibility and anonymity of undeniable and confirmer signatures.
Proceedings of the 2003 RSA conference on The cryptographers’ track, pages 80–97, 2003.

13

[14] Galbraith, S.D. and Paterson, K.G. and Smart, N.P. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

[15] Gennaro, R. Multi-trapdoor commitments and their applications to proofs of knowledgee secure
under concurrent man-in-the-middle attacks. Advances in Cryptology - CRYPTO ’04, LNCS
3152, pages 220–236, 2004.

[16] Gentry, C. and Molnar, D. and Ramzan, Z. Efficient designated confirmer signatures without
random oracles or general zero-knowledge proofs. Advances in Cryptology - ASIACRYPT 2005,
LCNS 3788, pages 662–681, 2005.

[17] Goldreich, O. and Micali, S. and Wigderson, A. Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. Journal of ACM, 38(1):691–792, 1991.

[18] Goldwasser, S. and Micali, S. and Rackoff, C. The knowledge complexity of interactive proof-
systems. SIAM Journal on Computing, volume 18, (1):186–208, 1984.

[19] Goldwasser, S. and Waisbard, E. Transformation of digital signature schemes into designated
confirmer signature schemes. In Proceedings of TCC 2004, LCNS 2951, pages 77–100, 2004.

[20] Huang, Q. and Wong, D. S. and Susilo, W. A new construction of designated confirmer signature
and its application to optimistic fair exchange. Pairing 2010, Springer-Verlag, LNCS 6487, pages
41–64, 2010.

[21] Kurosawa, K. and Heng, S. H. 3-move undeniable signature scheme. Proc. of Advances in
Cryptology - EUROCRYPT ’05, LNCS 3494, pages 181–197, 2005.

[22] Michels, M. and Stadler, M. Generic constructions for secure and efficient confirmer signature
schemes. In Proceedings of Eurocrypt 1998, LNCS 473, pages 458–464, 1998.

[23] Nielsen, J. Separating random oracle proofs from complexity theoretic proofs: the non-
committing encryption case. Proc. of Crypto 2002, pages 111–126, 2002.

[24] Okamoto, T. Designated confirmer signatures and public-key encryption are equivalent. Proc.
of Crypto 1994, LNCS 2894, pages 61–74, 1994.

[25] Pass, R. On deniability in the common reference string and random oracle models. Proc. of
Crypto 2003, pages 316–337, 2003.

[26] C.P Schnorr and M. Jakobsson. Security of signed elgamal encryption. Proc. of ASIACRYPT
’00, LNCS 1976, pages 73–89, 2000.

[27] Wang, G. and Baek, J. and Wong, D. S. and Bao, F. On the generic and efficient constructions of
secure designated confirmer signatures. In Proceedings of PKC 2007, LNCS 4450, pages 43–60,
2007.

[28] Wang, G. and Xia, F. A pairing based designated confirmer signature scheme with unified
verification. Technical Report 29, School of Computer Science, Univerisity of Birmingham, Dec.
2009. ISSN: 0962-3671.

[29] Xia, F. and Wang, G. and Xue, R. On the invisibility of designated confirmer signatures. Proc.
of Aisaccs 2011, to appear.

[30] Zhang, F. and Chen, X. and Wei, B. Efficient designated confirmer signature from bilinear pair-
ings. Proceedings of the 2008 ACM symposium on Information, computer and communications
security, pages 363–368, 2008.

14

A CZK Transformation From Σ-Protocols

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a verifier without giving away
any other knowledge other than the theorems being true (i.e., existing witnesses). This notion was
introduced by Goldwasser, Micali and Rackoff [18] and its generality was demonstrated by Goldreich,
Micali and Wigderson [17]. Since its introduction ZK has found numerous and extremely useful
applications, and by now has been playing the central role in modern cryptography.

Traditional notion of ZK considers the security in a stand-alone (or sequential) execution of the
protocol. Motivated by the use of such protocols in an asynchronous network like the Internet where
many protocols are run concurrently at the same time, studying security properties of ZK protocols in
such concurrent settings has attracted extensive research efforts in recent years, initiated by Dwork,
Naor and Sahai [11]. Informally, a ZK protocol is called concurrent zero-knowledge (CZK) if the ZK
related simulatability property holds in the concurrent settings, namely, when a malicious verifier
concurrently interacts with a polynomial number of honest prover instances and schedules message
exchanges as it wishes.

We note, in DCS schemes, we require CZK protocols, because an adversary in DCS schemes may
act as arbitrary cheating verifiers during the concurrent execution of protocols that confirm or deny
all alleged DCS signatures. In this work, for presentation simplicity, we describe the Confirm and
Disavow protocols with Σ-protocols (i.e., 3-round public-coin special honest verifier zero-knowledge
with special soundness) directly. We then discuss transformation methodologies from Σ-protocols
to CZK protocols in the common reference string (CRS) model or in the unprogrammable random
oracle model.

A.1 Transformation from Σ-Protocol into CZK in the CRS Model

There are several general methodologies that transform Σ-protocols into CZK arguments in the CRS
model (e.g., [9, 15]). To our knowledge, the approach proposed in [9] is the most efficient and has
conceptual simple structure, which is suggested to use in this work.

For the transformation proposed in [9], the CRS consists of the public-key for a trapdoor com-
mitment scheme. In this work, we use the DL-based trapdoor commitment, where the public-key
is h = gx, and the commitment to a value v ∈ Zq is c = grhv, where r is randomly taken from
Zq and is served as the decommitment information. Note that for this concrete implementation,
to commit to a value in Zq, the committer needs to perform about 1.5 exponentiations, and the
receiver needs to perform also about 1.5 exponentiations. The communication complexity, besides
the transmission of the committed value v (that is sent in the decommitment stage), is about 2|q|
(suppose the commitment c is of about |q| bits).

To transform a Σ-protocol (a, e, z) into CZK, the key idea of [9] is to send C(a), rather then the
plain a, at the first-round of the transformed protocol, where C denotes the trapdoor commitment
scheme; in the third-round, the prover opens the value a and computes the third-round message z.

Moreover, for the general transformation in the CRS model, the CRS should be included as a part
in the public-key of the confirmer, which additionally increases the public-key length of the confirmer.

A.2 CZK from Σ-protocols with unprogrammable RO

Given access to a random oracle (RO) O, we can transform a Σ-protocol into a non-interactive
zero-knowledge (NIZK) protocol via the Fiat-Shamir heuristic. But, the NIZK got this way loses
deniability [23, 25], which is however required for DCS schemes. The deniability loss is due to the
programmability of RO in the security analysis [23, 25]. To overcome the deniability loss of simulation
with programmable RO, the works of [23, 25] proposed the unprogrammable RO model where all
parties have access to an unprogrammable (fixed) RO, where ZK with unprogrammable RO reserves
the deniability property.

15

In this section, we give a general yet simple method of transforming Σ-protocols into straight-line
CZK with unprogrammable RO, where straight-line CZK means that the CZK simulator works in a
straight-line way (without rewinding the underlying adversary).

Given a Σ-protocol 〈PL, VL〉(x) which consists of three rounds (a, e, z) for an NP-language L,
the transformed protocol, denoted 〈P, V 〉 is presented in Figure-1 (page 6).

Roughly speaking, before running the Σ-protocol (a, e, z), we require the verifier to first commit
to its random challenge e by sending c = h(e) on the top, where h is a hash function that is modeled
as RO in the analysis.

Note that the additional computational complexity and communication complexity, incurred by
this approach of transformation with unprogrammable RO, is minimal: only a hash value is incurred.

Theorem 4 The protocol depicted in Figure-1 is a straight-line CZK proof with unprogrammable
RO for any language admitting Σ-protocol.

Proof (outline). The completeness of the protocol 〈P, V 〉 can be directly checked.
Perfect soundness. The perfect soundness of 〈P, V 〉 is from the observations: the commitment

c perfectly hides e in the RO model; Then, the perfect soundness of 〈P, V 〉 is inherited from the
special soundness of the underlying Σ-protocol 〈PL, VL〉. That is, the transformed protocol 〈P, V 〉 is
a proof rather than an argument (i.e., computationally sound protocol).

Straight-line CZK with unprogrammable RO. For any concurrent malicious verifier V ∗, the
simulator S runs V ∗ as a subroutine and works as follows, with oracle access to a unprogrammable
RO O:

• For any oracle query made by V ∗ on input e, S makes the same query to the unprogrammable
RO O. S returns back the answer, denoted c, from O to V ∗, and records (c, r) into a list LO.

• Whenever V ∗ starts a new concurrent session, on a common input x ∈ L, by sending c (as the
first-round message) to S, S works as follows:

– S firstly checks whether c ∈ LO. If not, S simply aborts the simulation, and outputs
“failure”. This failure is called “Case-1 failure” for presentation simplicity.

– If c ∈ LO, S retrieves the record (c, e) in LO and works as follows: S runs the underlying
SHVZK simulator SL (guaranteed for the underlying Σ-protocol 〈PL, VL〉) on the input
(x, e), denoted SL(x, e), to get a simulate transcript (a, e, z) of the underlying Σ-protocol
〈PL, VL〉. Then S sends a to V ∗ as the second-round message of the current session. If
V ∗ returns back e to S in the third-round, S returns back z in the fourth-round and
successfully completes the simulation of the current session; If V ∗ returns back e′ 6= e in
the third-round, S simply aborts the simulation, and outputs “failure”. This failure is
called “Case-2 failure” for presentation simplicity.

It is easy to check that S outputs “failure” (either Case-1 failure or Case-2 failure) with negligi-
ble probability in the RO model. Specifically, for Case-1 failure, with overwhelming probability
V ∗ cannot guess the correct value c without querying the RO O with e; For Case-2 failure, with
overwhelming probability V ∗ cannot get two different values e, e′ such that c = O(e) = O(e′).

Conditioned on S does not output “failure”, the simulation of S is identical to the real view
of V ∗, which establishes the CZK property. Furthermore, S works in the unprogrammable
RO model, as S never programs the RO O by itself. Specifically, S only accesses the unpro-
grammable RO O to see the queries made by the underlying V ∗. Moreover, the simulation of
S with restricted RO is straight-line, as S never rewinds the underlying V ∗. �

16

B HVIZKs on Confirm and Disavow Protocols

In this section, we show how to run honest verifier interactive zero-knowledge proof (HVIZK), actually
Σ-protocols, to complete the Confirm and Disavow protocols. To this end, we directly adapt the
protocols given in [21], and depict the implementation details as below.

In the Confirm protocol, the knowledge statement is PK{(xc ∨ xs)) : [e(σ2, yc)/e(σ1, g) =
e(h, ys)

xc ∧ yc = gxc] ∨ [e(σ2, yc)/e(σ1, g) = e(h, yc)
xs ∧ ys = gxs]}. So, once the prover (either

the signer or the confirmer) and a verifier pre-compute A1 = A2 = e(σ2, yc)/e(σ1, g), B1 = e(h, ys),
B2 = e(h, yc), C1 = yc, C2 = ys, and D1 = D2 = g, they can run the Confirm protocol as shown in
Figures 2 and 3 to prove “(A1 = Bxc

1 ∧ C1 = Dxc
1) ∨A2 = Bxs

2 ∧C2 = Dxs
2)”.

In the Disavow protocol, the knowledge statement is PK{(xc ∨ xs)) : [e(σ2, yc)/e(σ1, g) 6=
e(h, ys)

xc ∧ yc = gxc] ∨ [e(σ2, yc)/e(σ1, g) 6= e(h, yc)
xs ∧ ys = gxs]}. So, once the prover (either

the signer or the confirmer) and a verifier pre-compute A1 = A2 = e(σ2, yc)/e(σ1, g), B1 = e(h, ys),
B2 = e(h, yc), C1 = yc, C2 = ys, and D1 = D2 = g, they can run the Disavow protocol as shown in
Figures 4 and 5 to prove “(A1 6= Bxc

1 ∧ C1 = Dxc
1) ∨A2 6= Bxs

2 ∧ C2 = Dxs
2)”.

As mentioned in Section 2.3, both the above Confirm and Disavow HVIZK protocols should be
converted into CZK so that they can be executed with multiple verifiers concurrently.

C Proof of Theorem 2

Proof. Given a forgery algorithm F for the proposed DCS scheme, we shall construct a forgery
algorithm F ′ for the underlying BLS signature scheme. For presentation simplicity, we assume F
behaves well in the random oracle model, i.e., F always requests the hash of a message m before
requesting a designated confirmer signature.

The BLS forger F ′ is given the signer’s public key ys for which the private key is unknown to
F ′ and has access to the Sign and hash oracles. As the challenger for F , F ′ simulates and runs
interactions with F as follows.

Setup. F ′ generates a key-pair (xc, yc) randomly by running Gc, which serves as the confirmer’s
key pair. Then F ′ runs F , providing him as input the public keys ys and yc, and also the confirmer’s
private key xc.

Hash Queries. When F requests a hash on m, F ′ makes a query for m to its own hash oracle,
and receives some value h ∈ G, then it responds h to F .

DCSSign Queries. When F requests a DCS on some m (it would have already queried the
hash oracle on m), F ′ queries its own Sign oracle on message m, obtaining σ ∈ G. Then F ′ selects
two random numbers r, k ∈ Z∗q , generates a DCS σ′ = (σ1, σ2, s, t) according to Eq. (5) and returns
it to F .

Confirm and Disavow Queries. Whenever F asks to run either Confirm(S,F) orDisavow(S,F)
protocol w.r.t. a DCS message-signature pair (m,σ′), F ′ can first checks the validity of σ′ by using
the secret xc and then convinces F by running Confirm(C,F), Disavow(C,F) respectively in the role of
the confirmer C. Note that in the view of point of algorithm F , such interactions are indistinguishable
from those running in the role of the signer S. Note that for the proof of unforgeability, we actually
need the witness indistinguishability property of Confirm and Disavow protocols, which does hold
for the HVIZK protocols presented in Appendix B (without the need of transforming them into CZK
with unprogrammable RO).

Output. Finally, if F halts declaring failure, F ′ declares failure too. Otherwise, F provides a
valid and nontrivial DCS σ′∗ = (σ∗1, σ

∗
2, s
∗, t∗) to F ′ on a message m∗. Then, F ′ computes σ∗ =

σ∗2/(σ
∗
1)x
−1
c , which is a valid BLS signature on m∗ under signer’s public key ys. A nontrivial forgery

means that F did not query the DCSSign oracle on m∗, for which F ′ did not query its Sign oracle
on m∗. Hence, (m∗, σ∗) forms a nontrivial BLS forgery.

Now we analyze the success probability and the running time of F ′. Algorithm F ′ succeeds
whenever F does, so the success probability of F equals to that of F ′, i.e., ε = ε′. The running

17

time of F ′ is the running time of F plus the time it takes to respond qH hash queries and qS
DCSSign queries, to run qC Confirm queries and qD Disavow queries, together the time to transform
the final forged DCS into a BLS signature. Hash queries impose no overhead. Each DCSSign
query requires F ′ to perform three exponentiations in G. For each Confirm query, F ′ will evaluate
four paring computations and five exponentiations in Gt, while each Disavow query requires five
paring computations and six exponentiations in Gt. The final signature transformation needs one
exponentiation in G. Denote the time for pairing computation by pr, the time for exponentiation in
G by exG, and the time for exponentiation in Gt by ex. We get that the total running time t′ for F ′

is at most t+ (3qS + 1) · exG + 5(qC + qD) · pr + (5qC + 6qD) · ex.
In a summary, if F can (t, qH , qS , qC , qD, ε)-forges a DCS in the proposed DCS scheme, then F ′ can

(t′, q′H , q
′
S , ε
′)-forges a BLS signature, where q′H = qH , q′S = qS , ε′ = ε, and t′ ≤ t+6c · (qS +qC +qD),

where c = pr + exG + ex is a constant. �

18

Common Input:

A1, A2, B1, B2, C1, C2, D1, D2

Signer S Verifier V

(with private input xs)

a, b1, c1 ∈R Zq,
z1 = B1

b1 ·A1
c1 ,

z2 = D1
b1 · C1

c1 ,

z3 = B2
a, z4 = D2

a; (1)
(z1, z2, z3, z4)−−−−−−−−−−→ c ∈R Zq

c2= c - c1 mod q, (2)
c←−−−−−−−−−−

b2 = a - c2xs mod q. (3)
(b1, b2, c1, c2)−−−−−−−−−−→ Output Accept iff

c1+ c2≡ c mod q,
z1 = B1

b1 ·A1
c1 , z2 = D1

b1 ·C1
c1 ,

z3 = B2
b2 ·A2

c2 , z4 = D2
b2 ·C2

c2 .

Figure 2. The Confirm(S,V) Protocol

Common Input:

A1, A2, B1, B2, C1, C2, D1, D2

Confirmer C Verifier V
(with private input xc)

a, b2, c2 ∈R Zq,
z1 = B1

a, z2 = D1
a,

z3 = B2
b2 ·A2

c2 ,

z4 = D2
b2 · C2

c2 ; (1)
(z1, z2, z3, z4)−−−−−−−−−−→ c ∈R Zq

c1= c - c2 mod q, (2)
c←−−−−−−−−−−

b1 = a - c1xc mod q; (3)
(b1, b2, c1, c2)−−−−−−−−−−→ Output Accept iff

c1+ c2≡ c mod q,
z1 = B1

b1 ·A1
c1 , z2 = D1

b1 ·C1
c1 ,

z3 = B2
b2 ·A2

c2 , z4 = D2
b2 ·C2

c2 .

Figure 3. The Confirm(C,V) Protocol

19

Common Input:

A1, A2, B1, B2,
C1, C2, D1, D2.

Signer S Verifier V

(with private input xs)
a, b1, b2, c1, e, e

′, β ∈R Zq/{1},
β′ = (D2

xs/C2)
a,

z′1 = D2
e/C2

e′ , z′2 = B2
e/A2

e′ ,
z1 = βc1D1

b1/C1
b2 ,

z2 = B1
b1/A1

b2 ; (1)
(β, β′, z1, z2, z

′
1, z
′
2)−−−−−−−−−−−−−−→ Iff β 6= 1 and β′ 6= 1,

(2)
c←−−−−−−−−−−−−−− c ∈R Zq

c2= c - c1 mod q,

b′1 = e - c2xsa mod q, (3)
(b1, b2, b

′
1, b
′
2, c1, c2)−−−−−−−−−−−−−−→ Output Accept iff

b′2 = e′ - c2a mod q; c1+ c2≡ c mod q,
z1 = βc1D1

b1/C1
b2 , z2 = B1

b1/A1
b2 ,

z′1 = β′c2D2
b′1/C2

b′2 , z′2 = B2
b′1/A2

b′2 .

Figure 4. Disavow(S,V) Protocol

Common Input:

A1, A2, B1, B2,
C1, C2, D1, D2

Confirmer C Verifier V
(with private input xc)

a, b′1, b
′
2, c2, e, e

′, β′ ∈R Zq/{1},
β = (D1

xc/C1)
a,

z1 = D1
e/C1

e′ , z2 = B1
e/A1

e′ ,

z′1 = β′c2D2
b′1/C2

b′2 ,

z′2 = B2
b′1/A2

b′2 ; (1)
(β, β′, z1, z2, z

′
1, z
′
2)−−−−−−−−−−−−−−→ Iff β 6= 1 and β′ 6= 1,

(2)
c←−−−−−−−−−−−−−− c ∈R Zq

c1= c - c2 mod q,

b1 = e - c1xca mod q, (3)
(b1, b2, b

′
1, b
′
2, c1, c2)−−−−−−−−−−−−−−→ Output Accept iff

b2 = e′ - c1a mod q; c1+ c2≡ c mod q,
z1 = βc1D1

b1/C1
b2 , z2 = B1

b1/A1
b2 ,

z′1 = β′c2D2
b′1/C2

b′2 , z′2 = B2
b′1/A2

b′2 .

Figure 5. The Disavow(C,V) Protocol

20

