
Efficient and Secure Data Storage Operations for
Mobile Cloud Computing

Zhibin Zhou and Dijiang Huang
{zhibin.zhou,dijiang}@asu.edu

Arizona State University

Abstract—Cloud computing is a promising technology, which
is transforming the traditional Internet computing paradigm and
IT industry. With the development of wireless access technologies,
cloud computing is expected to expand to mobile environments,
where mobile devices and sensors are used as the information
collection nodes for the cloud. However, users’ concerns about
data security are the main obstacles that impede cloud computing
from being widely adopted. These concerns are originated from
the fact that sensitive data resides in public clouds, which are
operated by commercial service providers that are not trusted
by the data owner. Thus, new secure service architectures are
needed to address the security concerns of users for using cloud
computing techniques.

In this paper, we present a holistic security framework to
secure the data storage in public clouds with the special focus
on lightweight wireless devices store and retrieve data without
exposing the data content to the cloud service providers. To
achieve this goal, our solution focuses on the following two
research directions: First, we present a novel Privacy Preserv-
ing Cipher Policy Attribute-Based Encryption (PP-CP-ABE) to
protect users’ data. Using PP-CP-ABE, light-weight devices can
securely outsource heavy encryption and decryption operations
to cloud service providers, without revealing the data content
and used security keys. Second, we propose an Attribute Based
Data Storage (ABDS) system as a cryptographic access control
mechanism. ABDS achieves information theoretical optimality in
terms of minimizing computation, storage and communication
overheads. Especially, ABDS minimizes cloud service charges by
reducing communication overhead for data managements. Our
performance assessments demonstrate the security strength and
efficiency of the presented solution in terms of computation,
communication, and storage.

I. INTRODUCTION

Existing cloud provides two main services: storage and
computation. Users’ concerns about data security are the main
obstacles that prevent the public cloud from widely adopted.
These concerns origin from the fact that sensitive data are
stored and processed in public clouds, which are operated
by commercial service providers and shared by various other
customers. Along with the other customers who can be poten-
tial competitors or malicious attackers, these service providers,
esp., the storage and computing service providers, are usually
not trusted by the data owner. Moreover, the multi-tenant data
architecture directly results in the risk that a user’s data being
exposed to business competitors or malicious attackers, who
may compromise the data server shared among tenants.

Data confidentiality is a desired property when users out-
source their data storage to public cloud service providers.
To protect users’ data, encryption is used to secure the

data in the cloud. Recently, Ciphtertext Policy Attribute-
Based Encryption (CP-ABE) schemes [3], [10], [7], [20]
were proposed to facilitate key management and cryptographic
access control in an expressive and efficient way. Under the
construction of CP-ABE, an attribute is a descriptive string
assigned to (or associated with) a user and each user may
be tagged with multiple attributes. Multiple users may share
common attributes, which allow message encryptors to specify
a data access policy by composing multiple attributes through
logical operators such as “AND”, “OR”, etc. To decrypt the
message, the decryptor’s attributes need to satisfy the access
policy. These unique features of CP-ABE solutions make
them appealing in the cloud data storage system that requires
an efficient data access control for a large number of users
belonging to different organizations.

With the fast development of wireless technology, mobile
cloud has become an emerging cloud service model [18], in
which mobile devices and sensors are used as the information
collecting and processing nodes for the cloud infrastructure.
This new trend demands researchers and practitioners to con-
struct a trustworthy architecture for mobile cloud computing,
which includes a large numbers of lightweight, resource-
constrained mobile devices.

With the CP-ABE enabled cloud storage service, a new
challenge is how to incorporate wireless mobile devices,
especially lightweight devices such as cell phones and sen-
sors, into the cloud system. This new challenge is originated
from the fact that CP-ABE schemes always require intensive
computing resources to run the encryption and decryption
algorithms. To address this issue, an effective solution is to
outsource the heavy encryption and decryption computation
without exposing the sensitive data contents or keys to the
cloud service providers. Our research described in this paper
proposes such a solution for CP-ABE.

Another research challenge is how to share encrypted data
with a large number of users, in which the data sharing
group can be changed frequently. For example, when a user
is revoked from accessing a file, he/she is not authorized to
access any future updates of the file, i.e., the local copy (if
exists) will get outdated. To this end, the updated data need
to be encrypted by a new encryption key.

Furthermore, the third research challenge is how to up-
load/download and update encrypted data stored in the cloud
system. For example, when changing certain data fields of
an encrypted database, the encrypted data needs to be down-



loaded from cloud and then be decrypted. Upon finishing the
updates, the files need to be re-encrypted and uploaded to
the cloud system. Frequent upload/download operations will
cause tremendous overhead for resource constrained wireless
devices. Thus, it is desirable to design a secure and efficient
cloud data management scheme to balance the communication
and storage operational overhead incurred by managing the
encrypted data.

To address the above described research challenges, in
this paper, we present a holistic secure mobile cloud data
management framework that includes two major components:

1) A Privacy Preserving CP-ABE (PP-CP-ABE) scheme;
2) An Attribute-Based Data Storage (ABDS) scheme that

achieves information theoretical optimality.
Using PP-CP-ABE, users can securely outsource computa-

tion intensive CP-ABE encryption and decryption operations
to the cloud without revealing data content and secret keys.
In this way, lightweight and resource constrained devices can
access and manage data stored in the cloud data store.

The ABDS system achieves scalable and fine-grained data
access control, using public cloud services. Based on ABDS,
users’ attributes are organized in a carefully constructed hi-
erarchy so that the cost of membership revocation can be
minimized. Moreover, ABDS is suitable for mobile computing
to balance communication and storage overhead, and thus
reduces the cost of data management operations (such as
upload, updates, etc.) for both the mobile cloud nodes and
storage service providers.

The rest of this paper is organized as follows. Section II
presents system models used in this paper. We present detailed
PP-CP-ABE construction and ABDS design in Section III and
IV, respectively. In Section V, we analyzed the security and
discuss the performance of proposed schemes with comparison
to several related works. We describe related works in Section
VI. Finally, we conclude our work in Section VII.

II. SYSTEM AND MODELS

A. Notations

the notations used in this paper is listed in Table II-A:

TABLE I
NOTATIONS USED IN THIS PAPER.

Acronym Descriptions
DO Data Owner
ESP Encryption Service Provider
DSP Decryption Service Provider
SSP Storage Service Provider
TA Trust Authority
T Access Policy Tree

B. System Model

In our proposed system, we denote the Data Owner as
DO. A DO can be a mobile wireless device or a sensor that
can request and/or store information from/in the Cloud. The
data are secured by using our proposed PP-CP-ABE scheme.
Other than DO, there are many data receivers who subscribe
to the data owned by DO. The presented system model has
the following properties:

Fig. 1. System Architecture of Our Proposed Framework.

1) The data must be encrypted before sending to storage
service provider (SSP);

2) The encryption service provider (ESP) provides encryp-
tion service to the data owner without knowing the actual
data encryption key (DEK);

3) The decryption service provider (DSP) provides decryp-
tion service to users without knowing the data content;

4) Even ESP, DSP and SSP collude, the data content cannot
be revealed;

As shown in Figure 1, the SSP, ESP, and DSP form the core
components of the proposed system. ESP and DSP provide PP-
CP-ABE services and SSP, e.g., Amazon S3, provides storage
services. The cloud is semi-trusted, in which the cloud only
provides computing and storage services with the assistance
on data security; however, the data is blinded to the cloud. In
particular, more powerful PCs and Mobile Phones can works
as communication proxy for sensors that collect information.

C. Attacking Models

We assume that the symmetric encryption algorithm and
one-way hash function used in this paper is secure and the
Discrete Logarithm Problem (DL) on both groups G0 and G1

is hard. In addition, the Trust Authority (TA) is responsible
for distributing cryptographic keys, and it is well guarded
and trustable. We consider the cloud service providers are
honest but curious [12]. In other words, the service providers
will perform in accordance to our proposed protocols and
returns correct computation results. Misbehavior can be easily
detected and punished by the customers. However, service
providers will try to find out as much sensitive information
(e.g., personal data, keys, etc.) as possible and may collude
with malicious attackers.

The malicious attackers’ goal is to reveal data in the
cloud without authorization from DOs. Multiple attackers can
combine their secrets to perform collusion attacks, in which
they can try to decrypt the ciphertext and compromise the
decryption keys that they are not authorized to access. One

2



Fig. 2. Illustration of a sample access policy tree.

particular example of this collusion attack is that multiple users
are revoked from accessing a file, and they try to collude to
get updated files from the public cloud.

In particular, attackers want to break the Forward Secrecy,
which is defined as follows: After a user is revoked from
accessing a file, he/she may have a local copy of the file;
however, the revoked user must not get any future updates on
this file.

While data integrity and retrievability in the cloud are also
important security requirements, they are not the focuses of
this paper. Readers can refer to research works in the provable
data possession (PDP) [1], [13].

D. Access Policy Tree

In this section, we briefly describe the model of an access
policy tree used in PP-CP-ABE. The data access policy tree
of PP-CP-ABE is composed by leaf nodes and internal nodes.
Each leaf node represents an attribute, and each internal node
is a logical gate, such as “AND”, “OR”, “n-of-m”. Several
functions and terms are defined as follows to facilitate the
presentation of our solutions:

• parent(x): return the parent node of node x;
• att(x) denotes the attribute associated with the leaf node

x in the data access tree;
• The access tree T composed by a set of leaf nodes

(i.e., attributes) and internal nodes (i.e., logical gates)
defines the data access policies, i.e., if a user owns a
set of attributes that satisfy the logic operations of the
tree to reach the root, it can access the secret secured by
T . Here owns means that the user has the private keys
corresponding to the set of attributes. AND and OR are
the most frequently used logical gates.

• numx is the number of children of a node x. A child
y of node x is uniquely identified by an index integer
index(y) from 1 to numx.

• The threshold value kx = numx − 1 when x is an AND,
and kx = 0 when x is an OR gate or a leaf node. kx
is used as the polynomial degree for node x using the
threshold secret sharing scheme [26].

III. PRIVACY PRESERVING CP-ABE

In this section, we present the construction of PP-CP-ABE
algorithm. In PP-CP-ABE, DOs outsource intensive computa-
tion of CP-ABE encryption and decryption to powerful cloud
service providers (ESP and DSP) without disclosing their data
content and secret keys.

A. Overview of the Construction

Essentially, the basic idea of PP-CP-ABE to outsource
intensive but non-critical part of the encryption and decryption
algorithm to the service providers while retain critical secrets.
As we can prove later in this paper, the outsourcing of
computation does not reduce the security level compared
with original CP-ABE schemes, where all computations are
performed locally.

The encryption complexity of CP-ABE grows linearly on
the size of access policy. During the encryption, a master secret
is embedded into ciphertext according to the access policy tree
in a recursive procedure, where, at each level of the access
policy, the secret is split to all the subtree of the current root.
However, the security level is independent on the access policy
tree. In other words, even if the ESP possesses secrets of most
but not all parts of the access policy tree, the master secret is
still information theoretically secure given there at least one
secret that is unknown to ESP. Thus, we can safely outsource
most part of encryption complexity to ESP by just retaining a
small amount of secret information, which is processed locally.

As for the decryption, the CP-ABE decryption algorithm
is computationally expensive since bilinear pairing operations
over ciphertext and private key is a computational intensive
operation. PP-CP-ABE addresses this computation issue by
securely blinding the private key and outsourcing the expen-
sive Pairing operations to the DSP. Again, the outsourcing will
not expose the data content of the ciphertext to the DSP. This
is because the final step of decryption is performed by the
decryptors.

B. Background Information

Here, we present some preliminary knowledge about our
construction. Our proposed PP-CP-ABE is constructed using
bilinear pairing as well as secret sharing schemes, which are
briefly presented as below.

1) Bilinear Pairing: Pairing is a bilinear map function
e : G0 ×G0 → G1, where G0 and G1 are two multiplicative
cyclic groups with large prime order p. The Discrete Loga-
rithm Problem on both G0 and G1 are hard. Pairing has the
following properties:

• Bilinearity:

e(P a, Qb) = e(P,Q)ab, ∀P,Q ∈ G0,∀a, b ∈ Z∗
p.

• Nondegeneracy:
e(g, g) ̸= 1 where g is the generator of G0.

• Computability:
There exists an efficient algorithm to compute the pairing.

3



2) Secret Sharing: (t, n) secret sharing is used to divide
a secret into n shares and any t shares can reconstruct the
secret, while combining less than t shares will not disclose
any information about the secret. As introduced by Shamir
at el. in [26], in a t − 1 degree polynomial, any t points
on the polynomial be used to reconstruct the secret, i.e.,
the polynomial. We define the Lagrange coefficient ∆i,S for
i ∈ Zp and a set, S, of elements in Zp:

∆i,S(x) =
∏

(j∈S,j ̸=i)

x− j

i− j
.

C. System Setup and Key Generation

The TA first setups the PP-CP-ABE system by choose a
bilinear map: e : G0 ×G0 → G1 of prime order δP with the
generator g. Then, TA chooses two random α, β ∈ Zp. The
public parameters are published as:

PK = ⟨G0, g, h = gβ , f = g1/β , e(g, g)α⟩. (1)

The master key is MK = (β, gα), which is only known by
the TA.

Each user needs to register with the TA, who authenticates
the user’s attributes and generates proper private keys for the
user. An attribute can be any descriptive string that defines,
classifies, or annotates the user, to which it is assigned. The
key generation algorithm takes as input a set of attributes
S assigned to the user, and outputs a set of private key
components corresponds to each of attributes in S. The key
generation algorithm takes the following operations:

1) Chooses a random r ∈ Zp,
2) Chooses a random rj ∈ Zp for each attribute j ∈ S.
3) Computes the private key as:

SK =⟨D = g(α+r)/β ;

∀j ∈ S : Dj = gr ×H(j)rj ;D′
j = grj ⟩.

4) Sends SK to the DO through a secure channel.

D. PP-CP-ABE Encryption

To outsource the computation of Encryption and preserve
the data privacy, a DO needs to specify a policy tree T =
TESP

∧
TDO, where

∧
is an AND logic operator connecting

two subtrees TESP and TDO. TESP is the data access policy
that will be performed by the ESP and TDO is a DO controlled
data access policy. TDO usually has a small number of
attributes to reduce the computation overhead at the DO, in
which it can be a sub-tree with just one attribute (see the
example shown in Figure 3).

In practice, if TDO has one attribute, DO can randomly
specify an 1-degree polynomial qR(x) and sets s = qR(0),
s1 = qR(1), and s2 = qR(2). Then DO sends {s1, TESP } to
ESP, which is noted as:

DO
{s1,TESP }−−−−−−−→ ESP.

Here, we must note that sending s1 and TESP will not expose
any secret of our solution. We will prove this in Section V-A.

Fig. 3. Illustration of access policy T = TESP
∧

TDO .

ESP then runs the Encrypt(s1, TESP ) algorithm, which is
described below:

1) ∀x ∈ TESP , randomly chooses a polynomial qx with
degree dx = kx − 1, where kx is the secret sharing
threshold value:

a) For the root node of TESP , i.e., RESP , Chooses a
dRESP

-degree polynomial with qRESP
(0) = s1.

b) ∀x ∈ TESP \RESP sets dx-degree polynomial with
qx(0) = qparent(x)(index(x)).

2) Generates a temporal ciphertext:

CTESP = {∀y ∈ YESP : Cy = gqy(0), C ′
y = H(att(y))qy(0)},

where YESP is the set of leaf nodes in TESP .
At the meantime, the DO performs the following operations:
1) Performs Encrypt(s2, TDO) and derives:

CTDO = {∀y ∈ Y2 : Cy = gqy(0), C ′
y = H(att(y))qy(0)}.

2) Computes C̃ = Me(g, g)αs and C = hs, where M is
the message.

3) Sends CTDO, C̃, C to the ESP:

DO
{CTDO,C̃,C}−−−−−−−−→ ESP.

On receiving the message from the DO, ESP generates the
following ciphertext:

CT = ⟨T = TESP

∧
TDO; C̃ = Me(g, g)αs;C = hs;

∀y ∈ YESP

∪
YDO : Cy = gqy(0);C ′

y = H(att(y))qy(0)⟩.

Finally, the ESP sends CT to the SSP.

E. Outsourcing Decryption

CP-ABE decryption algorithm is computationally expensive
since bilinear pairing is an expensive operation. PP-CP-ABE
addresses this computation issue by outsourcing the expensive
Pairing operations to the DSP. Again, the outsourcing will not
expose the data content of the ciphertext to the DSP.

4



To protect the data content, the DO first blinds its private
key by choosing a random t ∈ Zp and then calculates D̃ =

Dt = gt(α+r)/β . We denote the blinded private key as S̃K:

S̃K = ⟨D̃ = gt(α+r)/β ,

∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj ⟩. (2)

Before invoking the DSP, the DO first checks whether its
owned attributes will satisfy the access policy T . If so, the
DO sends {S̃K} to the DSP, and requests the SSP to send
the ciphertext to the DSP. On receiving the request, the SSP
sends CT ′ = {T ;C = hs;∀y ∈ Y1

∪
Y2 : Cy = gqy(0);C ′

y =

H(att(y))qy(0)} and CT ′ ⊂ CT to the DSP:

SSP
{CT ′}−−−−→ DSP. (3)

Once the DSP receives both {S̃K} and CT ′, it then runs
the Decrypt(S̃K,CT ′) algorithm as follows:

1) ∀y ∈ Y = YESP

∪
YDO the DSP runs a recursive

function DecryptNode(CT′, S̃K,R), where R is the
root of T . The recursion function is the same as defined
in [3] and DecryptNode(CT ′, S̃K, y) is proceeded as
follows:

DecryptNode(CT ′, S̃K, y) =
e(Di, Cy)

e(D′
i, C

′
y)

=
e(gr ·H(i)ri , gqy(0))

e(gri ,H(i)qy(0))

= e(g, g)rqy(0)

= Fy.

The recursion is processed as follows: ∀y is the child
of x, it calls DecryptNode(CT ′; S̃K; y) and stores the
output as Fy . Let Sx be an arbitrary kx-sized set of child
nodes y, the DSP computes:

Fx =
∏
y∈Sx

F
∆i,S′

x(0)

y

=
∏
y∈Sx

(e(g; g)r·qy(0))∆i;S′
x
(0)

=
∏
y∈Sx

(e(g; g)r·qparent(y)(index(y)))∆i;S′
x
(0)

=
∏
y∈Sx

(e(g; g)r·qx(i)·∆i;S′
x
(0)

= e(g, g)rqx(0), (4)

where i = index(z) and S′
x = {index(z) : z ∈ Sx}.

Finally, the recursive algorithm returns A = e(g, g)rs.
2) Then, computes

e(C, D̃) = e(hs, gt(α+r)/β) = e(g, g)trs · e(g, g)tαs.

3) Sends {A = e(g, g)rs, B = e(C, D̃) = e(g, g)trs ·
e(g, g)tαs} to the DO:

DSP
{A,B}−−−−→ DO.

Fig. 4. Illustration a file organized into blocks with multiple control blocks.

On receiving {A,B}, DO calculates B′ = B1/t =
e(g, g)rs · e(g, g)αs and then it recovers the message:

M =
C̃

(B′/A)
=

Me(g, g)αs

(e(g, g)rs · e(g, g)αs)/e(g, g)rs
.

IV. ATTRIBUTE BASED DATA STORAGE

In this section, we present an Attribute Based Data Storage
(ABDS) scheme that is based on PP-CP-ABE to enable
efficient, scalable data management and sharing.

A. Data Management Overview

The frequent data updates will cause additional expense for
file managements. For example, to update existing files, e.g.,
changing certain data fields of an encrypted database, in which
the encrypted data need to be downloaded from SSP to DSP
for decryption. Upon finishing the updates, the ESP needs to
be re-encrypted and upload the data to the SSP. Thus, the
re-encrypted process requires downloading and uploading the
data, which may incur high communication and computation
overhead, and as a result, will cost more for DOs.

To address the described cost issue, it is reasonable to divide
a file into independent blocks that are encrypted independently.
To update files, the DO can simply download the particular
blocks to be updated. In this way, we can avoid re-encrypting
the entire data. Moreover, data access control can be enforced
on individual blocks using “lazy” re-encryption strategy. For
example, when the data access memberships to a particular
file are changed (i.e., the access tree is changed), this event
can be recorded but no file changes are invoked. Until the
data content needs to be updated, the re-encryption is then
performed using the proposed PP-CP-ABE scheme.

Partitioning the data into multiple small blocks also intro-
duces addition overhead. This is because the extra control
information needs to be attached for each data block for data
management. For example, the control message should include
a block ID and a pointer to its corresponding data access tree
T . In Figure 4, we depicted a sample file stored in SSP. As
shown in Figure 4, each file is divided into blocks. A block is
a tuple {BID, Ptr, Encrypted Data}, where BID is the unique
identification of the block; Ptr is the pointer to the control
block CT; and data is encrypted with a DEK. A control block
{CID, Encrypted DEK} has a control block ID, i.e., CID and
DEK encrypted by using PP-CP-ABE scheme.

The ABDS system should take into the considerations
the issues on what is the appropriate data block size to be

5



partitioned with a known file size. In this work, our goal is to
minimize the storage and communication overhead with the
considerations the following simple assumptions:

1) Every data update should only affect a small amount of
data, e.g., updating certain data fields in the Database;

2) In each unit time period, the number of blocks to be
updated is known;

3) Each data block has the same probability to be updated;
One exemplary application scenario that complies with those
assumptions is the traffic information collection, where
lightweight devices, such as cell phone and sensors, serves as
mobile or static data collection agents. Periodically, the devices
update the corresponding data fields in encrypted databases.

Based on the above discussions, we can model the total cost
C in a unit time period as follows:

C = 2nSbCc +
F

Sb
ScCs, (5)

where n is the number of updated blocks in a unit time period
and 2n stands for an update includes one encryption and one
decryption that require two transmissions; Sb is the size of
block; Cc is the cost rate of data transmission that is charged
by both cloud storage providers and wireless communication
service providers; F is the size of file; Sc is the size of control
data for each data block, and Cs is the charging rate of storage.
To minimize cost C, DO can minimize (5) and derive the
optimal block size:

Sb ≥ 2
√

2nCcFScCs.

B. Setup

PP-CP-ABE enables expressive policy with descriptive at-
tributes to enforce data access control to the stored data. For
example, if Alice wants to share a file to all CS students, she
can specify the descriptive policy “CS AND Student”. All the
users whose attributes satisfy this policy can decrypt the data.

Besides the set of descriptive attributes enabled in
the system, each user is assigned a unique binary ID:
b0b1 . . . bn−2bn−1. We can define the term “bit-assignment
attribute” that is represented as “Bi” or ”Bi” to indicate the
binary value at position i in the ID. Bi indicates the i’th bit of
an ID is 1; Bi indicates the i’th bit of an ID is 0. If the length
of an ID is n, then the total number of bit-assignment attributes
is 2n. This means that two binary values are mapped to one
bit position (one for value 0 and one for value 1). Thus, a DO
with ID u is uniquely identified by the set of bit-assignments
Su. Also, multiple DOs may have a common subset of bit-
assignments. For example, a DO u1’s ID is 000 and a DO
u2’s ID is 001, Su1 = {B0, B1, B2} and Su2 = {B0, B1, B2}
and Su1

∩
Su2 = {B0, B1}. Bit-assignment attributes can be

used when the DO wants to share data to any arbitrary set of
DOs. In this case, it may be hard to describe the set of DOs
efficiently using descriptive attributes.

C. Upload New Files

Before uploading new files to the SSP, the ESP and DO need
to determine the encryption parameters such as the block size.

DO then invokes ESP with an access policy TESP , which is
the access policy to be enforced on the uploaded files.

We first define some terms used in the following presenta-
tions:

• Literal: A variable or its complement, e.g., b1, b1, etc.
• Product Term: Literals connected by AND, e.g., b2b1b0.
• Sum-of-Product Expression (SOPE): Product terms con-

nected by OR, e.g., b2b1b0 + b2.
Given the set of shared data receivers S, the membership

functions fS(), which is in the form of SOPE, specifies the
list of receivers:

fS(b
u
1 , b

u
2 , . . . , b

u
n) =

{
0 iff u ∈ S,
1 iff u /∈ S.

For example, if the subgroup S = {000, 001, 011, 111}, then
fS = b0b1b2 + b0b1b2 + b0b1b2 + b0b1b2.

Then, the DO runs the Quine-McCluskey algorithm [21]
to reduce fS to minimal SOPE fmin

S . The reduction can
consider do not care values ∗ on those IDs that are not
currently assigned to any DO to further reduce number of
product terms in the membership function. For example, if
S = {000, 001, 011, 111}, fmin

S = b0b1 + b1b2.
Since fmin

S is in the form of SOPE, TESP can be formulated
in disjunctive normal form (DNF). That is, for each product
term E in fmin

S , the DO specifies an product term W using
the following rules:

1) For positive literal bi ∈ fmin
S , set B+

i in W .
2) For negative literal bi ∈ fmin

S , set B−
i in W .

In consequence, the access policy TESP is in the follow-
ing format: TESP = W1

∨
· · ·Wk. For example, if S =

{000, 001, 011, 111}, fmin
S = b0b1 + b1b2. We can find that

fmin
S contains 2 product terms and TESP contains 2 AND

gates connected by the root OR gate.
Finally, DO uploads the data blocks and the control block

to SSP, where each data block is encrypted by the DEK and
DEK is protected by the access policy in control block.

D. Data Updates

Now, we investigate into how to efficiently handle the data
updates, i.e., how to modify encrypted data with or without
changing data access control policy.

1) Data Updates With Access Policy Change: In Section
IV-A, we described the “lazy” re-encryption strategy adopted
by DOs. Using the “lazy” re-encryption scheme, the DO
continuously records the revoked data receivers. When there
is a need to modify the data, the DO will choose a new
data access tree that can revoke all previously recorded data
receivers.

When DO updates a data block with access policy change,
we need to consider the following cases:

• If there is no control block associated with the latest
access policy, i.e., no data updates occurred after the latest
access policy change event, the DO encrypt a new random
DEK associated with the latest access policy with PP-CP-
ABE and attach a new control block to the end of the file,
see Figure 4.

6



• If there exists a control block associated with the latest
access policy, i.e., at least one data block was encrypted
with the newest access policy, the DO can simply re-
direct the control block pointer, see Figure 4, to the
control block associated with the latest access policy.

• If a control block is not pointed by any data block, this
control block should be deleted.

2) Updates Without Access Policy Change:: If no change
is required to the access policy, DO can simply perform the
PP-CP-ABE scheme and upload the updated data block in the
SSP. The Block ID and the pointer to control the block are
not changed.

V. EVALUATION

In this section, we first present the security assessments
of the presented solution. Then, we present the computation,
communication, and storage performance evaluation.

A. Security Evaluation

The data structure of ciphertext and private key in PP-CP-
ABE is the same as the original BSW CP-ABE[3], thus PP-
CP-ABE can be viewed as a variation of CP-ABE. However,
in PP-CP-ABE, the access policy tree is constructed by two
sub-trees T = TESP

∧
TDO. In general, TDO contains a

single attribute to reduce the computation and communication
overhead. Thus, DO randomly specifies a 1-degree polynomial
q(x) and sets s = q(0), s1 = q(1) and s2 = q(2). The tuple
{s1, TESP } is sent to ESP. It is easy to prove that, based on
the threshold secret sharing scheme [26], for a given 1-degree
polynomial q(x), knowing s1, secrets s and s2 are information
theoretically secure.

Based on the security assumptions presented in Section II-C,
ESP, DSP and SSP are untrusted but honest service providers
that will perform according to protocol and returns correct
results. In order to compromise users’ secret information, the
ESP, DSP and SSP can perform collusion attacks. In this
scenario, an authorized user u′ who satisfies the access tree T
provides his blinded private key S̃K to the DSP for decryption.
Then, ESP and DSP can try to utilize the blinded private key of
u′ to derive M from Me(g, g)αs. ESP has s1, and thus it can
easily derive e(g, g)αs1 . This is because e(g, g)α is available
from the public parameters presented in (1). As the user u′

satisfies the access policy TDO, DSP can derive the following
values e(g, g)r

′s1 , e(g, g)r
′s2 , e(g, g)r

′s, and e(g, g)tαs+tr′s

through the Fx function (see (4)) without knowing alpha and
r′. In the following table, we listed all rational terms that are
available to ESP and DSP.

ESP s1 e(g, g)αs1 gβs1 gs1/β

DSP e(g, g)r
′s1 e(g, g)r

′s2 e(g, g)r
′s e(g, g)tαs+tr′s

As we can see, ESP has the values s1 and e(g, g)αs1 , but
it is unaware of values s2 or s. DSP possesses more terms as
well as the blinded private key S̃K of u′ (see (2)). We must
note that S̃K is not a valid CP-ABE private key, since the
D̃ = gt(α+r′)/β is embedded with tr′ and tα, and the rest of
all private key components {∀j ∈ S : Dj = gr

′ ·H(j)rj , D′
j =

grj} are embedded with r′. Essentially, this blinded private
key can be a valid CP-ABE private key when (i) the master
key is MK = {β, gtα}; (ii) a colluding user contributes D =
gt(α+r′)/β , which is a valid component embedded with tr′;
and (iii) a colluding user contributes {∀j ∈ S : Dj = gr

′ ·
H(j)rj , D′

j = grj}, which are binded by a random r′, which
is different from tr′ in D. Since the t is the exponent of the
generator g, deriving it is equivalent to solve the DLP problem,
which is considered to be hard. Thus, given the security of
secret sharing and hardness of DLP on G0 and G1, ESP and
DSP cannot derive e(g, g)αs2 or e(g, g)αs even if they collude.

B. Performance Evaluation

1) Computation Performance of PP-CP-ABE:: To evaluate
the performance of the presented PP-CP-ABE scheme, we
evaluate the computation overhead of service providers and
users based on both theoretical analysis and experimental
results.

Firstly, we analysis the number of expensive cryptographic
operations over G0 and G1, i.e., pairing, exponentiation, mul-
tiplication, performed by service providers and users’ devices.
In our analysis we assume that the access policy TESP has a1
attributes connected by an AND logical gate and TDO only
has 1 attribute. In addition, the root node is an AND gate.

In the following table, we compared the number of exponen-
tiations, multiplications and hash to G0 operations incurred on
ESP side and user side in the encryption outsourcing, where
a1 is the number of attributes in TESP :

Exp G0/G1 Mul G1 Hash to G0

ESP 2a1/0 0 a1
User 3/1 1 1

We also provide a comparison of the number of expo-
nentiations, multiplications, inversion, and pairing operations
incurred by decryption outsourcing on DSP side and user side
as shown in the following table, where a1 is the number of
attributes in TESP :

Exp G1 Mul G1 Inv G1 Pairing
DSP a1 2a1 a1 2a1 + 1
User 1 2 1 0

From the above analysis, we can see that the computation
overhead is linear for service providers (ESP and DSP) and
constant for the user. Among all operations, pairing is most
computationally intensive.

We also conduct the experimental evaluation of crypto-
graphic pairing and ECC operations on a wireless Mote sensor
(8 bit-7.37 MHZ ATMega128L, 4KB RAM). The testing
environments and results are listed in the following table:

Pairing Exp G0 Mul G0

Sensor 31250 ms 10720 ms 196 ms

Apart from the theoretical analysis, we also performed ex-
perimental measurements. Based on the CP-ABE open source
project [3], we implemented and evaluated the PP-CP-ABE
on a PC with 1.6GHz Intel Atom processor running Linux

7



2.6.32. The computation time is measured using clock ticks
returned by clock_t clock(void) function in standard
C library. To illustrate that most of the computation overhead
is outsourced to service providers, we run the user and server
on the same platform and recorded the number of clock
ticks are recorded. In the Figure 5, we compared computation
overhead incurred on service providers and users in encryption
and decryption outsourcing. The computation overhead is
calculated in terms of 10 based logarithms, i.e., log10, of
thousands (K) clocks ticks. As we can see from the figure,
more than 90% of encryption and more than 99% of decryption
computation are performed by the service providers.

Fig. 5. Performance evaluation of the encryption and decryption outsourcing.

2) Storage Performance of ABDS: We analyze the storage
performance of ABDS and compare it with several related
cryptographic access control solutions: broadcast encryption
schemes (Subset-Diff) [14], BGW broadcasting encryption [6],
access control polynomial (ACP) scheme [29].

The performance is assessed in terms of cipher-text storage
overhead, key storage overhead (system parameters and pub-
lic/private keys stored on the users and TA). We denote the
total number of users in the system with N and a user wants
to share a file to any given set of receivers in the system. The
comparative results are presented in Table II.
Ciphertext Storage Overhead In Subset-Diff scheme, the
size of ciphertext is O(t2 · log2t · logN), with t as maximum
number of colluding users to compromise the ciphertext. For
BGW scheme, the ciphertext size is O(1) or O(N

1
2 ) as

reported in [6]. In ACP scheme, the size of message depends
on the degree of access control polynomial, which equals to
the number of current receivers. Thus, the message size is
O(N). To control a set of receivers S using ABDS, the size
of ciphertext depends on the number of product terms in the
fmin
S (see IV-C). In [25], the authors derived an upper bound

and lower bound on the average number of product terms in
a minimized SOPE. Experimentally, the average number of
message required is ≈ log(N) [9].

We examine some cases when ciphertext storage overhead
is maximized.

Lemma 1 (multiple data receivers worst case): The worst
case of sharing a file with multiple data receivers happens
when both of following conditions hold: 1) The number of
distinct receivers is N/2; 2) the Hamming distance between
IDs of any two receivers is at least 2. In the worst case, the
number of key updating messages is N/2. �

Proof 1: Please refer to [8] for complete proof. �
In this case, the number of product terms is N − N/2 =
N/2 using ABDS. However, we can see that the worst cases
happens in extremely low probability.

Lemma 2 (worst case possibility): When sharing a file with
all data receivers in uniform probability, the worst case sce-
nario happens with probability 1

2N−1 . �
Proof 2: In the worst case, the Hamming distance of IDs of

N/2 receivers should be at least 2. As shown in the Karnaugh
table in Figure 6, each cell represents an ID. For any cell
marked 0 and any cell marked 1, the Hamming distance is
at least 2. Thus, the worst case happens in two cases: (i) the
encryptor wants to reach N/2 receivers marked 1 in Figure 6;
(ii) the encryptor wants to reach N/2 receivers marked 0 in
Figure 6 �.

Fig. 6. Worst cases of broadcast encryption to N/2 receivers

To investigate the average case, we simulated ABDS in a
system with 512 users and 1024 users, and the number of
messages required are shown in Figure 7(a) and Figure 7(b)
respectively. In the simulation, we consider the cases of 0%,
5%, 25%, 50% IDs are not assigned (i.e., do not care value).
For each case, different percentages of receivers are randomly
selected from the group. We repeat 100 times to average the
results. Experimentally, the message size in CP-ABE starts at
about 630 bytes, and each additional attribute adds about 300
bytes. Since the number of attributes in the access policy is
bounded by logN , we can conclude that the ciphertext storage
overhead of ABDS is in the order of O(log2 N).
Key Storage Overhead Compared with Broadcast Encryption
schemes, ABDS greatly reduced the Key Storage Overhead
of the TA and users’ devices. In ABDS, the PK and MK
is of constant size. Also, a user needs to store log(N) bit-
assignment attributes. Thus, the storage overhead is O(logN),
assuming a user does not store any IDs of the data receivers.
Although the DO may need the list of data receivers’ IDs
along with the list of do not care IDs to perform Boolean
function minimization, we can argue that this does not incur
extra storage overhead.

• The data publishers do not need to store the receiver’s
IDs after the broadcast; thus, the storage space can be
released.

8



TABLE II
COMPARISON OF CIPHERTEXT STORAGE OVERHEAD AND KEY STORAGE OVERHEAD IN DIFFERENT CRYPTOGRAPHIC ACCESS CONTROL SCHEMES

Scheme Ciphertext Storage Key Storage
single data receiver multiple data receivers TA User

ABDS O(logN) ≈ O(log2 N) O(1) O(logN)
Subset-Diff O(t2 · log2t · logN) O(t2 · log2t · logN) O(N) O(t log t logN)

BGW1 O(1) O(1) N/A O(N)

BGW2 O(N
1
2 ) O(N

1
2 ) N/A O(N

1
2 )

ACP O(N) O(N) O(N) O(1)
N : the number of group members; t: maximum number of colluding users to compromise the ciphertext.

(a)

(b)

Fig. 7. (a) Size of ciphertext for group size 512; (b) Size of ciphertext for
group size 1024.

• The TA can periodically publish the minimized SOPE of
all do not care IDs, which can be used by data publishers
to further reduce number of messages.

• If IDs are assigned to users sequentially, i.e., from low to
high, TA can simply publish the lowest unassigned IDs
to all users, who can use the all higher IDs as do not care
values.

• Even if a user needs to store N IDs, the space is merely
N logN bits. If N = 220.

• If a data publisher cannot utilize do not care values to
further reduce the membership function in SOPE form,
the ciphertext storage overhead might be a little higher.
As shown in Figure 7(a)and Figure 7(b), the curve of 0%

vacancy can also be used as ciphertext storage overhead
required if a data publisher does not know the do not
care IDs.

VI. RELATED WORKS

Existing works related to our proposed schemes includes (i)
attribute based encryption and (ii) cryptographic access control
over untrusted storage.

Attribute Based Encryption (ABE) was first proposed as a
fuzzy version of IBE in [23], where an identity is viewed as
a set of descriptive attributes. There are two main variants
of ABE proposed so far, namely Key Policy Attribute Based
Encryption (KP-ABE [17]) and Ciphertext Policy Attribute
Based Encryption (CP-ABE [3]). In KP-ABE, each ciphertext
is associated with a set of attributes and each user’s private
key is embedded with an access policy. Decryption is enabled
only if the attributes on the ciphertext satisfy the access policy
of the user’s private key. In CP-ABE [3], [10], [20], [27], each
user has a set of attributes that associate with user’s private
key and each ciphertext is encrypted by an access policy. To
decrypt the message, the attributes in the user private key need
to satisfy the access policy. CP-ABE is more appealing since
it is conceptually closer to the Role Based Access Control
(RBAC) [24] model.

Cryptographic access control over untrusted storage is inves-
tigated in both cryptography community and networking com-
munity. In cryptography community, Broadcast Encryption
(BE) was introduced by Fiat and Naor in [15]. Compared with
traditional one-to-one encryption schemes, BE is very efficient.
Based on tradeoffs between key storage and ciphertext storage
overhead, existing BE schemes can be generally categorized
into the following classes: (i) constant ciphertext, linear public
and/or private key on number of total receivers [5]; (ii)
linear ciphertext on number of revoked receivers, constant
(or logarithm) public and/or private key, [11], [22], [4]; (iii)
sub-linear ciphertext, sub-linear public and/or private key [5].
In this work, we proposed a new construction of ABDS
scheme to address the deficiency of all 3 class existing works.
Particularly, ABDS supports any arbitrary number of receivers
with much lower complexity of storage and communication.

In networking community, various encrypted file systems
[19], [16], [2], [12] were proposed to secure data over un-
trusted storage. Particularly, in [2], the authors proposed a
distributed storage scheme where users outsource encryption
to a semi-trusted re-encryption server. However, if the server
colludes with some malicious user, the data secrecy will be

9



compromised completely. Compared with this scheme, our
proposed PP-CP-ABE is secure even if service providers and
malicious users collude. Recently, Yu et al. [28] proposed a
security framework for cloud computing based on CP-ABE.
Compared with our work, their solution requires the users to
disclose part of original private key to the cloud while our
solution only send blinded private keys. Moreover, our solution
specially considers mobile cloud environments and their work.

VII. CONCLUSION

In conclusion, we proposed a holistic security framework
for cloud data storage services to secure the data management
in public clouds. Especially, our solution enables lightweight
wireless devices to securely store and retrieve their data in
public cloud with minimal cost. To this end, we proposed
a novel Privacy Preserving Cipher Policy Attribute-Based
Encryption (PP-CP-ABE) to protect users’ encrypted data. Us-
ing PP-CP-ABE, light-weight devices can securely outsource
intensive encryption and decryption operations to cloud service
providers, without revealing the data content and used security
keys. Also, we proposed an Attribute Based Data Storage
(ABDS) system as a cryptographic access control mechanism.
ABDS achieve information theoretically optimal in terms of
minimizing computation, storage and communication over-
heads. Especially, ABDS minimize cloud costs charged by
cloud service providers as well as communication overhead for
data managements. Our performance assessments demonstrate
the security strength and efficiency of our solution in terms of
computation, communication, and storage.

Currently, PP-CP-ABE is based on BSW CP-ABE
scheme[3], which suffers from linearly growing ciphertext
size. We are investigating a CP-ABE scheme that is of constant
ciphertext size and trying to propose a privacy preserving
outsourcing scheme of the new CP-ABE scheme. Moreover,
further performance improvements can be achieved by pre-
computing and caching some mostly used access policy trees
from ESP. Another important future work will be implementa-
tion of a user space secure file system based on popular public
cloud storage such that users can secure their cloud storage
transparently.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proceed-
ings of the 14th ACM conference on Computer and communications
security, pages 598–609. ACM, 2007.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage.
ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In SP ’07: Proceedings of the 2007 IEEE Symposium
on Security and Privacy, pages 321–334, Washington, DC, USA, 2007.
IEEE Computer Society.

[4] D. Boneh, X. Boyen, and E.J. Goh. Hierarchical identity based
encryption with constant size ciphertext. Advances in Cryptology–
EUROCRYPT 2005, pages 440–456, 2005.

[5] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Advances in
Cryptology–CRYPTO 2005, pages 258–275. Springer, 2005.

[6] D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor
tracing with short ciphertexts and private keys. pages 573–592, 2006.

[7] D. Boneh and B. Waters. Conjunctive, subset, and range queries on
encrypted data. pages 535–554. Springer, 2007.

[8] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, I.B.M.T.J.W.R.
Center, and Y. Heights. Key management for secure lnternet multicast
using Boolean functionminimization techniques. INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, 2, 1999.

[9] L. Cheung, J. Cooley, R. Khazan, and C. Newport. Collusion-Resistant
Group Key Management Using Attribute-Based Encryption. Technical
report, Cryptology ePrint Archive Report 2007/161, 2007. http://eprint.
iacr. org.

[10] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In
CCS ’07: Proceedings of the 14th ACM conference on Computer and
communications security, pages 456–465, New York, NY, USA, 2007.
ACM.

[11] C. Delerablée, P. Paillier, and D. Pointcheval. Fully collusion secure dy-
namic broadcast encryption with constant-size ciphertexts or decryption
keys. Pairing-Based Cryptography–Pairing 2007, pages 39–59.

[12] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Over-encryption: management of access control evolution
on outsourced data. In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 123–134. VLDB Endow-
ment, 2007.

[13] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia. Dynamic
provable data possession. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 213–222. ACM, 2009.

[14] A. Fiat and M. Naor. Broadcast Encryption, Advances in Cryptology-
Crypto93. Lecture Notes in Computer Science, 773:480–491, 1994.

[15] A. Fiat and M. Naor. Broadcast Encryption, Advances in Cryptology-
Crypto93. Lecture Notes in Computer Science, 773:480–491, 1994.

[16] E.J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing
remote untrusted storage. In Proc. Network and Distributed Systems
Security (NDSS) Symposium 2003, pages 131–145, 2003.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. Proceedings of
the 13th ACM conference on Computer and communications security,
pages 89–98, 2006.

[18] D. Huang, X. Zhang, M. Kang, and J. Luo. Mobicloud: A secure mobile
cloud framework for pervasive mobile computing and communication. In
Proceedings of 5th IEEE International Symposium on Service-Oriented
System Engineering, 2010.

[19] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu.
Plutus: Scalable secure file sharing on untrusted storage. In FAST
’03: Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 29–42, 2003.

[20] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EURO-
CRYPT’08: Proceedings of the theory and applications of cryptographic
techniques 27th annual international conference on Advances in cryp-
tology, pages 146–162, Berlin, Heidelberg, 2008. Springer-Verlag.

[21] E.J. McCluskey. Minimization of Boolean functions. Bell System
Technical Journal, 35(5):1417–1444, 1956.

[22] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for
stateless receivers. Lecture Notes in Computer Science, pages 41–62,
2001.

[23] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In Advances
in Cryptology–Eurocrypt, volume 3494, pages 457–473. Springer.

[24] RS Sandhu, EJ Coyne, HL Feinstein, and CE Youman. Role-based
access control models. Computer, 29(2):38–47, 1996.

[25] T. Sasao. Bounds on the average number of products in the minimum
sum-of-products expressions for multiple-value input two-valued output
functions. Computers, IEEE Transactions on, 40(5):645–651, May 1991.

[26] A. Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, 1979.

[27] B. Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. ePrint report, 290, 2008.

[28] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing. INFO-
COM’1010. Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, pages 1–9, 2010.

[29] X. Zou, Y.S. Dai, and E. Bertino. A Practical and Flexible Key Man-
agement Mechanism For Trusted Collaborative Computing. INFOCOM
2008. The 27th Conference on Computer Communications. IEEE, pages
538–546, 2008.

10


