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Abstract. The existing identity-based encryption (IBE) schemes based on pairings require pair-
ing computations in encryption or decryption algorithm and it is a burden to each entity which
has restricted computing resources in mobile computing environments. An IBE scheme (MY-
IBE) based on a trapdoor DL group for RSA setting is one of good alternatives for applying to
mobile computing environments. However, it has a drawback for practical use, that the key gen-
eration algorithm spends a long time for generating a user’s private key since the key generation
center has to solve a discrete logarithm problem.
In this paper, we suggest a method to reduce the key generation time of the MY-IBE scheme,
applying modified Pollard rho algorithm using significant pre-computation (mPAP). We also
provide a rigorous analysis of the mPAP for more precise estimation of the key generation time
and consider the parallelization and applying the tag tracing technique to reduce the wall-clock
running time of the key generation algorithm.
Finally, we give a parameter setup method for an efficient key generation algorithm and estimate
key generation time for practical parameters from our theoretical analysis and experimental
results on small parameters. Our estimation shows that it takes about two minutes using pre-
computation for about 50 days with 27 GB storage to generate one user’s private key using the
parallelized mPAP enhanced by the tag tracing technique with 100 processors.
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1 Introduction

In [26], Shamir suggested the concept of identity-based cryptosystem and proposed identity-
based signature schemes. Since then, there have been several proposals [9, 16, 28, 31] to con-
struct an identity-based encryption (IBE) scheme. However, these proposals are not fully sat-
isfactory. Some schemes require the condition that users cannot collude for the security and
other schemes spend a long time to generate a user’s private key. Later, the first sufficiently
secure and efficient IBE scheme was proposed using pairings by Boneh and Franklin [4]. Since
Boneh and Franklin’s construction, many IBE schemes [3, 10, 33, 34] based on pairings have
been proposed to enhance the security or efficiency. Also, some IBE schemes [2,11] based on
lattices have been also proposed under the necessary of lattice-based cryptosystems.

However, the existing IBE schemes based on pairings or lattices are not proper on some
systems in which each entity has restricted computing resources, such as mobile computing
environments. In case of pairing-based IBE schemes, an encryption algorithm or a decryption
algorithm requires one or more pairing computations and it spends much computation cost
than modular exponentiations over finite fields. Also, although the encryption and decryption



algorithm of lattice-based IBE schemes are more efficient than those of pairing-based IBE
schemes, the public key size and private key size of lattice-based IBE schemes are quite large
to utilize in mobile entities.

Among previous IBE schemes, Maurer and Yacobi’s suggestion is one of good alterna-
tives for applying to mobile computing environments. In [16], the authors proposed a non-
interactive key distribution (NIKD) algorithm based on a trapdoor DL group which is a
maximal cyclic subgroup G of ZN

∗ where an integer N is hard to factor. Also the authors
provided the IBE (MY-IBE) scheme from their NIKD algorithm. The most hard computation
in encryption and decryption algorithms of the MY-IBE scheme is a modular exponentiation
in ZN

∗ and the user’s private key consists of one element less than N , hence, they are no
burden for a mobile entity.

However, the MY-IBE scheme has some problems for practical use. First, the security
proof of the MY-IBE scheme is insufficient to formal security notion of IBE schemes, provided
in [4]. Second, there are no secure full domain hash functions into a maximal cyclic subgroup
G of ZN

∗. Moreover, the most serious obstacle for practical use of the MY-IBE scheme is that
the key generation time is quite long since the key generation center (KGC) has to solve a
discrete logarithm problem (DLP) in G for generating a private key of a user.

Later, Paterson and Srinivasan resolved the above three problems. In [20], they proposed
a full domain hash function into G and proved the security of the proposed hash function.
Then, they refined the MY-IBE scheme using their hash function and provided the security
proof of the refined MY-IBE scheme based on the formal security definition of IBE schemes.
Finally, they suggested that the use of the index calculus algorithm with significant pre-
computation to reduce the key generation time. However, although KGC utilizes the index
calculus algorithm with significant pre-computed data, there are no known concrete methods
reducing DLP solving time and we cannot estimate the expected key generation time and
required resources such as the amount of memory and the number of processors.

1.1 Our Contribution

The authors in [20] noted that there were no proper variants of the Pollard rho algorithm [23]
using pre-computation. However there have been some proposals [12, 14] to reduce DLP
solving time, modifying the parallelized Pollard rho algorithm [32] using pre-computation. In
this paper, we suggest the method to reduce the key generation time of the MY-IBE scheme
applying a modified Pollard rho algorithm using pre-computation (mPAP).

Moreover, although there have been some complexity analyses [12,14] related to the mPAP,
they did not give precise relations between the required memory size, the pre-computation
time and the online time. Especially, all previous analyses did not provide concrete required
memory size in the mPAP. Hence, one cannot precisely estimate the required memory size of
the MY-IBE scheme with respect to DLP solving time in the practical system. In this paper,
we provide more rigorous complexity analysis of the mPAP including relations between the
amount of pre-computation, online computation and the memory size and give experimental
results of the mPAP on small parameters.
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Also, we discuss about two extensions for reducing the wall-clock running time of the
online phase in the mPAP. First, we consider the possibility of the parallelization of the
mPAP and provide the complexity analysis of the parallelized mPAP. According to our anal-
ysis, while the pre-computation phase of the mPAP can trivially be parallelized with speedup
linear in the number of processors, the online phase of the mPAP can be parallelized with lin-
ear increments of storage for speedup linear in the number of processors. Second, we consider
applying the tag tracing technique [7] to the mPAP for solving DLPs over a finite field. From
experimental results, we confirm that the tag tracing technique works well with the mPAP.

Lastly, we suggest a parameter setup method for reducing key generation time with main-
taining security level and estimate the key generation time and the memory size of the MY-
IBE scheme in the practical system from our theoretical analysis and implementation results
on small parameters. According to our estimation on parameters for 280 security, the par-
allelized mPAP enhanced by the tag tracing technique [7] requires about one minutes and
46 seconds with 100 processors when 100 processors are used for pre-computation for about
50 days with 27 GB storage. Since the key generation process is performed by the key gen-
eration center, 100 processors are quite practical.

1.2 Organization

We introduce the MY-IBE scheme and give some related works on DL algorithm using pre-
computation in Section 2. Section 3 describes the mPAP and provides more rigorous com-
plexity analysis of the algorithm. We also give experimental results on small parameters and
consider the parallelization and applying the tag tracing technique. In Section 4, we suggest
a parameter setup method for reducing key generation time and estimate the key generation
time of the MY-IBE scheme from our theoretical analysis and experimental results on small
parameters.

2 Preliminaries

In this section, we introduce an identity-based encryption scheme (MY-IBE) based on trap-
door DL groups for RSA setting, proposed by Maurer and Yacobi [16] and refined by Paterson
and Srinivasan [20].

The key generation center has to solve one DLP in the key generation algorithm of the
MY-IBE scheme and it takes a long time for practical use. To reduce the key generation
time the authors of [20] suggested the re-use of significant pre-computed elements for solving
previous DLPs. However, their suggestion was not enough to make the MY-IBE scheme
practical for real systems. At the end, we briefly introduce related works on our suggestion
to solve DLPs using significant pre-computation, which is a modification of the parallelized
Pollard rho algorithm [32].

2.1 Identity-based Encryption based on Trapdoor DL

First, we define trapdoor DL groups and trapdoor DL group generators.
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Definition 1 ( [8] ). We define the two following algorithms:

– TDLGen : a polynomial-time algorithm which takes as input a security parameter λ and
outputs a finite cyclic group G, a generator g of G and its trapdoor information τ .

– SolveTDL : a polynomial-time algorithm which takes as input a finite cyclic group G, a
generator g of G, a trapdoor information τ and a target element h of a DLP and outputs
the DL of h based on g.

We also define a polynomial-time algorithm Gen which takes as input a security parameter λ,
runs TDLGen(λ) algorithm and then outputs (G, g). If (G, g, τ) is an output of TDLGen and
a DLP over G is hard for the output of Gen, we call G a trapdoor DL group.

As examples of trapdoor DL groups, one considers a maximal cyclic subgroup G of Z∗N
where N is a product of primes and its trapdoor information is the factorization of N [16].
Then one who knows a factorization of N can efficiently solve a DLP over G using Index
Calculus algorithm or Pohllig-Hellman algorithm with Pollard rho algorithm. However, if N
is a product of more than three primes, there are no secure full domain hash function into G.
Also, one may consider trapdoor DL groups over an elliptic curve E(F2161), whose trapdoor
information are isogenies [30]. But an elliptic curve E(F2161) is the only currently known
possible parameter and it is not yet known how to generalize construction to higher security
level.

In this paper, among these trapdoor DL groups, we will only deal with a maximal cyclic
subgroup G of Z∗N where N is a product of two primes p, q that are roughly the same size
and satisfy p ≡ 3 (mod 4), q ≡ 1 (mod 4), and p− 1, q − 1 are B-smooth integers.

Note that TDLGen and SolveTDL are both polynomial-time algorithms in the above def-
inition. To our knowledge, there are no polynomial-time algorithms to solve a DLP in a
maximal cyclic subgroup G of ZN

∗ although the trapdoor information is given. Hence, the
above group G does not satisfy the definition of trapdoor DL groups. However, there are
some algorithms to solve DLP over G, whose complexity is sub-exponential or exponential
in the security parameter λ but it is quite practical. Hence, we will apply the definition of
SolveTDL relaxedly.

Identity-based Encryption based on trapdoor DL groups In [16], Maurer and Yacobi
proposed an IBE scheme based on a trapdoor DL group G which is a maximal cyclic subgroup
of ZN

∗ where N is a product of primes and whose trapdoor information is a factorization of
N . However, when N is a product of more than three primes, the authors could not give an
efficient full domain hash function from a set {0, 1}∗ to G. Also, although they presented two
efficient full domain hash functions from {0, 1}∗ to G when N is a product of two primes, it
was proved that their suggestions were not secure [15, 17–19]. In [19], the authors presented
another full domain hash function into G, however they did not give a security proof of the
presented hash function.

Later, Paterson and Srinivasan [20] provided a security proof of a full domain hash function
presented in [19]. Based on this full domain hash function, they provided the IND-ID-CPA se-
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cure IBE scheme based on the security notion in [4]1. Here, we present the MY-IBE scheme
modified by Paterson and Srinivasan. The scheme consists of four algorithms:

– Setup(λ): this algorithm runs TDLGen algorithm to obtain (G, g, τ) where G is a maximal
cyclic subgroup of ZN

∗, g is a generator of G and trapdoor information τ which is a
factorization of N . (We assume that N is a product of two primes that are roughly the
same size and satisfy p ≡ 3 (mod 4), q ≡ 1 (mod 4) and gcd(p− 1, q− 1) = 2.) Let H be
a hash function from {0, 1}∗ to ZN and define H1 : {0, 1}∗ → G by

H1(ID) =

(
H(ID)

N

)
H(ID)

where
(
x
N

)
denotes the Jacobi symbol. Let H2 : G → {0, 1}` be a hash function where `

is the bit size of messages. Then this algorithm outputs

params = (λ,G,N, g,H,H1, H2, `)

msk = τ = (p, q).

– KeyGen(params,msk, ID): this algorithm computesH1(ID). Then it runs SolveTDL(G, g, τ,H1(ID))
and obtains the private key sID such that gsID = H1(ID). It outputs sID.

– Encrypt(params, ID,M): this algorithm computes H1(ID) and chooses r ∈ ZN uniformly
at random. Then it outputs C = (U, V ) where U = gr and V = M ⊕H2(H1(ID)r).

– Decrypt(params, sID, C): for a ciphertext C = (U, V ), this algorithm outputs M ′ = V ⊕
H2(U

sID).

Note that the above scheme is IND-ID-CPA secure under the CDH assumption and one-
wayness of the hash function H1. Also the CDH problem in the above group G is at least
hard to factor N . Therefore, the above scheme is IND-ID-CPA secure if factoring N is hard.

Although the encryption and decryption algorithms are efficient since those require two
and one modular exponentiation, respectively, KGC has to solve one DLP over G to generate
the private key for one user. Hence, the weak point of the above scheme is to spend a long
time in the key generation algorithm. To overcome this obstacle, the authors in [20] suggested
the use of the index calculus algorithm with a large amount of pre-computation.

2.2 Discrete Logarithm Algorithm using Pre-computation

To reduce key generation time in KeyGen algorithm of the MY-IBE scheme, the authors
in [20] suggested the use of the index calculus algorithm [1] with significant pre-computation
over Zp and Zq for solving a DLP in a maximal cyclic subgroup G of ZN

∗ where N = pq
and p, q are primes. The index calculus algorithm for solving DLPs divides into two parts,
the pre-computation phase and the online phase. In the pre-computation phase, when the
cyclic group G and a generator g are given, one computes DLs of all elements in the factor
base B. Then in the online phase, one finds some relations between the target element of the

1 Throughout this paper, we follow the security notion of IBE schemes in [4].
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DLP and elements in the factor base B and then solves the DLP using DLs of elements in
the factor base B, which are pre-computed in the pre-computation phase.

However, the complexity of the online phase is the same with the complexity of the pre-
computation phase in the original index calculus algorithm. Hence, it also requires a large
amount of computations for the online phase. For achieving 80-bit security, we assume that
the bit size of p and q is 512. Then, according to the analysis of the number field sieve
method [6] which is a variant of the index calculus algorithm, it is required about O(278.04)
multiplications2 in Zp and Zq in the online phase and hence it is impractical to realize in the
system.

To make the MY-IBE scheme more practical, we will propose the use of the Pohlig-
Hellman algorithm and the modified Pollard rho algorithm with a large amount of pre-
computation. In [20], the authors noted that there were no proper algorithms to solve DLPs
using the Pollard rho algorithm with pre-computation. However, there have been some mod-
ified Pollard rho algorithms [12,14] to solve a DLP efficiently using pre-computation. In [14],
the authors provided the algorithm for solving multiple DLPs using elements which were
computed for solving previous DLPs, modifying the parallelized Pollard rho algorithm [32].
Then the authors in [12] modified the above multiple DLPs solving algorithm to the DLP
solving algorithm with pre-computation, by solving randomly generated DLPs before the
target element of the original DLP is given.

In the rest of this section, we introduce some basic concepts, r-adding walk iterating func-
tion and distinguished point (DP) collision detection method, which are composing variants
of Pollard rho algorithm.

WhenG is a cyclic group of order q generated by a generator g, if we know the factorization
of q =

∏`
i=1 p

ei
i where pi’s are primes, one can reduce the DLP over G to DLPs over a group

of order pi’s using the Pohlig-Hellman algorithm. Hence, it is assumed that the group order
q is prime from here in this subsection. The group element h denotes the target element of
the DLP, in other words, we are looking for the value logg h.

r-adding walk iteration function We briefly look into r-adding walk iterating functions. Par-
tition G into r roughly same sized subsets G1, · · · , Gr so that G = G1 ∪ · · · ∪Gr. The index
function s : G→ {1, 2, · · · , r} is defined to be almost pre-image uniform and efficiently com-
putable. Then choose r pairs (ui, vi) ∈ Zq × Zq and set r multipliers Mi to guihvi . (In [12],
the authors suggested the use of multipliers which are independent of the target element.
Hence we will set multipliers of r-adding walk iterating function in the mPAP to the form
guih0 where ui is a randomly chosen integers in Zq.) Define r-adding walk iterating function
Fr : G× Zq × Zq → G× Zq × Zq by

Fr(y, a, b) = (y ·Ms(y), a+ us(y), b+ vs(y))

where y = gahb. Throughout this paper, Fr will denote an r-adding walk iterating function.

2 The heuristic complexity of the number field sieve for solving one DLP over Z∗p is exp((c +

o(1))(log p)1/3(log log p)2/3) bit operations where c = (64/9)1/3 ≈ 1.9233. And it takes O(log2 p) bit oper-
ations for one modular multiplication between log p-bit integers. Hence we obtain that the computational
complexity of the number field sieve for solving one DLP over 512-bit prime field is O(278.04) multiplication.
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It was shown [25] that the expected number of iterations for finding a collision in a walk
generated by r-adding walk for r ≥ 8 is O(

√
q). Experimental results [29] over elliptic curve

groups show that the expected number of iterations required to find a collision with 20-adding

walk is very close to
√

q
2π, which is that with a random function.

DP collision detection method Let us introduce the DP technique [24], which was originally
used in time memory tradeoff techniques. One sets the distinguishing property that is easy
to check and define a DP by a point satisfying the distinguishing property in G. For example,
one may define the distinguishing property to be that a certain number of the most significant
are all zeros under a fixed encoding of G. One starts with an empty table, and the walk is
computed iteratively until the walk encounters a DP. Then one searches for the same point
with the occurred DP in the table. If it is not in the table, one stores it and generates
another walk. The DP collision detection method is required about t additional iterations for
noticing a collision after a collision occurs in a walk when t−1 is the proportion of DPs in G.
It is straightforward to apply the DP method to multiple walks, so the DP method has an
advantage that admits n-times speedup with an n-processor parallelization [32].

3 Analysis of Discrete Logarithm Algorithm using Pre-computation

In this section, we describe the mPAP, which is a modification of the parallelized Pollard
rho algorithm [32]. Then, we provide more rigorous complexity analysis of the algorithm and
give experimental results on small parameters. Finally, we consider two extensions to reduce
wall-clock running time of the online phase in the mPAP, the parallelization of the mPAP and
applying the tag tracing technique.

3.1 Algorithm Description

Now, we are ready to describe the mPAP, which is a modification of the parallelized Pollard
rho algorithm [32]. Our description is modified in three points compared with the algorithm
in [12]. First, in the pre-computation phase one generates chains which are started from a
random starting point and are ended at a DP, not randomly generating DL instances and
solving these DLPs. Second, multipliers of an r-adding walk iterating function are given by a
special form. Third, one does not store created DPs in the online phase because its advantage
is almost negligible.

Let us describe the mPAP. Choose positive integers m, t such that mt2 = αq where m is
the number of generated chains in the pre-computation phase, t−1 is the proportion of DPs in
the group, and α is not a large constant. The parameters are assumed not to be extreme, in
the sense that 1� m, t� q and a typical value is α ≈ 1. We shall later determine the proper
size of parameters m, t, α. Fix an r-adding walk iterating function Fr so that the multipliers
have the form guh0 for some random u ∈ Zq. Since the pre-computation phase starts before a
target element is given, the multipliers of the r-adding walk iterating function Fr must have
the above form. Determine the distinguishing property so that a proportion of distinguished
points in G is t−1.
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In the pre-computation phase, one chooses m random starting points gi,0 = gai,0h0 ∈ G
for 1 ≤ i ≤ m and iteratively computes gi,j+1 = Fr(gi,j). Each chain is terminated at its first
encounter with a DP. We call by a DP chain a chain ended at a DP. Then one stores the
occurred DPs and the exponents corresponding to each DP in a DP table DT.

The average number of iterations to generate a DP chain is t, but some of chains may fall
into a loop that never reaches a DP. In order to detect a chain falling into an infinite loop,
we set a chain length bound t̂. Any chain longer than this bound is discarded and one can
choose to regenerate a chain from a different starting point. Note that the probability for a
chain not to reach a DP until its t̂-th iteration is (1 − 1

t )
t̂+1 ≈ exp(− t̂+1

t ). This shows that
setting t̂ to a reasonable multiple of t will suffice in removing the effect of any such discarded
chains for any practical purpose.

After the pre-computation phase, one obtains the following matrix.

g1,0
Fr−→ g1,1

Fr−→ · · · · · · Fr−→ g1,t1

g2,0
Fr−→ g2,1

Fr−→ · · · Fr−→ g2,t2

...

gm,0
Fr−→ gm,1

Fr−→ · · · · · · · · · Fr−→ gm,tm

Such matrix consisting of m DP chains is called the DP matrix.

In the online phase, when a target element h of DLP is given, one starts to generate a
DP chain from an element hr for a random 1 ≤ r < q. When a DP occurs in a chain, one
compares it with the stored DPs in the table DT. If a collision is not found, one generates
another DP chain from a distinct starting point hr

′
for a random 1 ≤ r′ 6= r < q. Otherwise,

one can get the DL of h from the relation ai ≡ xbj + aj (mod q) where x is the DL of h, a
pair (gi, ai, bi) and (gj , aj , bj) is the collision, (gi, ai, bi) is the stored point in the table DT,
and (gj , aj , bj) is the created DP in the online phase.

In the modification of the mPAP described in [12], created DPs in the online phase are
also added to the DP table DT. However, unless α is not extremely small, the number of newly
created DPs in the online phase is just one or two. It does not give a big help of accelerating
DL computation of a present target element and hence we do not consider saving created
DPs in the online phase.

3.2 Complexity Analysis

The analysis of the mPAP can be inferred from DL algorithm [14] for multiple instances. Ac-
cording to the analysis, the expected number of group operations to solve k DLPs sequentially
with their algorithm is about

√
2kq. From these results, we simply guess that the expected

number of group operations to solve the (k + 1)-th DLP is about
√

2q/(
√
k + 1 +

√
k) =√

2(k + 1)q −
√

2kq when
√

2kq group operations was done in the pre-computation phase
since the expected number of group operations to solve k + 1 DLPs with their algorithm is
about

√
2(k + 1)q.
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Moreover, Hitchcock et al. [12] provided the expected online time complexity of the
mPAP associated with the amount of pre-computation. However, their analysis has two miss-
ing points:

– Although collisions may occur in the pre-computation phase, it does not consider this fact
in their analysis. Hence they regard that the number of distinct elements in a DP matrix
is the same with the number of iterations in the pre-computation phase.

– It does not consider the additional iterations to reach a DP for collision detection after a
collision occurs in the online phase.

Now, let us correct the complexity of the mPAP. We shall exploit the analysis technique
of time-memory tradeoff. Recently, in [13], the authors gave the expected number of distinct
entries in a DP matrix for various t̂. However, it does not give an error bound of the ap-
proximation value. In the following lemma, we present the precise limit value of the expected
number of distinct entries in a DP matrix when t̂ is sufficiently large and provide the differ-
ence between the limit value and the expected number when we use a specific t̂. This lemma
will make up for the first missing point of the analysis provided by Hitchcock et al.

Lemma 1. Consider a DP matrix created with parameters satisfying mt2 = α q. When the
iterating function is taken to be the random function and t̂ is sufficiently large, we can expect
the DP matrix to contain √

1 + 2α+O(1t )− 1

α
m(t− 1). (1)

distinct entries. Moreover, the difference between the expected number of distinct entries con-
tained in the DP matrix and the above limit value is bounded by m(t̂+ t) exp(−t̂/t).

Proof. We follow the proof of Proposition 10 provided in [13]. Consider a DP matrix generated
in the pre-computation phase. Let mj be the number of elements which first appear at j-th
column in a DP matrix. Now we assume that chains not reaching a DP until t̂ steps remain
on a DP matrix for an analysis and however we will give the error bound considering that
these chains are discarded. Then the recurrence relation

mj

q
=

(
1− exp

(
−mj−1
q

))(
1− 1

t

)(
1−

∑j−1
i=0 mj

q(1− 1/t)

)

with m0 = m is satisfied from Lemma 6 in [13]. Differently from the analysis of [13], the
initial value of the sequence (mi)

∞
i=0 is m since our DP table are generated from the exact

m starting points without making up for the discarded chains to store the exact m DPs in a
table.

Let µi =
mi

q(1− 1/t)
and σj =

∑j−1
i=0 µi. Then the recurrence relation

σj+1 − σj =
m0

q
− 1

t
σj −

1

2
σ2j +O

(
1

t3

)
with σ0 = 0
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is also satisfied from Lemma 7 in [13]. The sequence (σj)
∞
j=0 is monotone increasing from

the definition of the sequence (σj)
∞
j=0 and all σj ’s are bounded since the sum

∑∞
i=0mj does

not exceed the group order q. Hence the sequence (σj)
∞
j=0 converges and the limit S of this

sequence is

−1

t
+

√(
1

t

)2

+ 2

(
m

q
+O

(
1

t3

))
and all σj ’s are less than S. Therefore, the expected number of distinct entries in a DP table
is

∞∑
i=1

mi = q (1− 1/t)

−1

t
+

√(
1

t

)2

+ 2

(
m

q
+O

(
1

t3

)) (2)

=

√
1 + 2α+O( 1

t
)− 1

α
m(t− 1). (3)

Let E be the expected number of distinct elements in a DP table that chains whose length
exceeds t̂ are discarded. Then,

E ≤
t̂∑
i=1

mj ≤ q (1− 1/t) lim
j→∞

σj

= q (1− 1/t)S ≤
√

1 + 2α− 1

α
m(t− 1).

Now, we consider the lower bound of E. Note that the probability that a chain reaches

a DP at j steps is
(
1− 1

t

)j−1 1
t . Let E1 be the expected number of entries belonging to the

discarded chains. Then the relation E ≥ q (1− 1/t)S − E1 is satisfied.

E1 = m
∞∑
i=t̂

(1− 1

t
)i−1

1

t
i =

m

t

∞∑
i=t̂

(1− 1

t
)i−1i (4)

= m

(
t̂

(
1− 1

t

)t̂−1
+

(
1− 1

t

)t̂
t

)
(5)

from
xt̂

1− x
=
∑∞

i=t̂ x
n and its derivation and

(5) ≤
(

1− 1

t

)t̂(
mt̂−mt̂

t
+mt

)
≤m(t̂+ t) exp(−t̂/t)

since f(x) = (1− 1
x)x is an increasing function and lim

x→∞
f(x) = exp (−1). Hence

E1 ≥
√

1 + 2α− 1

α
m(t− 1)−m(t̂+ t) exp(−t̂/t).

10



Therefore, the difference between the limit value and the number of distinct entries on prac-
tical parameters is bounded by m(t̂+ t) exp(−t̂/t).

Considering the fact that the authors ignored (1− 1
t ) in the proof of Proposition 10 in [13],

Lemma 1 shows that the exact limit value of the expected number of distinct entries in a
DP matrix is the same with the approximation value presented in [13]. Also it shows that
the difference between the limit value and the expected number on practical parameters is

negligible since m(t̂ + t) exp(−t̂/t) is sufficiently smaller than
√
1+2α−1
α m(t − 1) when t̂ is

sufficiently larger than t.
We are now ready to discuss about the probability for solving a DLP with generating a

single DP chain in the online phase.

Theorem 1. Fix parameters satisfying mt2 = α q and generate a DP matrix. Then generate
another chain from a random starting point, terminating at its first DP occurrence. When the
iterating function F is taken to be the random function, we can expect the ending DP of the
new chain to be equal to one of the ending DPs for the pre-generated chains with probability

1− 1√
1 + 2α

,

and the error term is bounded by 7α
t + α√

1+2α
(c+ 1) exp(−c) when t̂ = ct for some constant c.

Proof. Let us write DP for the set of all DPs in G, DM (DP matrix) for the set of all elements
belonging to the pre-generated DP chains, and DT (DP table) for the set of ending points of
the pre-generated DP chains.

Once the DP matrix DM is ready, one is told to create a new chain

h0
F−→ h1

F−→ · · · F−→ hj
F−→ · · ·

from a random starting point h0. At each iteration, as a new hj is created, one of the following
three events may occur.

E1. hj ∈ DM : The new chain has merged with a pre-generated chain. The rest
of the chain will automatically follow the pre-generated chain and terminate with a DP
belonging to DT.

E2. hj ∈ DP \ DM = DP \ DT : The new chain has terminated with a DP without merging with
a pre-generated chain. The chain cannot reach a point belonging to DT.

E3. hj 6∈ DM ∪ DP : The new chain has neither merged with one of the pre-generated
chains nor reached a DP. One needs to continue onto the next iteration.

Hence the new chain terminates with an element from DT if and only if each iteration of the
chain results in event E3, before finally sinking into event E1.

Let δ =

√
1 + 2α− 1

α
m + m(t̂ + t) exp(−t̂/t) + mO(1)

α(
√
1+2α+

√
1+2α+O( 1

t
))

. According to

Lemma 1, for a random function, we can expect event E1 to happen, at each iteration,
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with probability

Pr[E1] =

√
1 + 2α− 1

α

mt

q
+
δ

q
=

√
1 + 2α− 1

t
+
δ

q
,

where the equality follows from a use of mt2 = α q. We can also state

Pr[E3] = 1− #(DM ∪ DP)

q
= 1− #DM + #DP−#(DM ∩ DP)

q

= 1−
q
t +

√
1+2α−1
α mt

q
+ ε

= 1−
√

1 + 2α

t
+ ε

as the probability for event E3’s occurrence when ε is #(DM∩DP)
q − δ

q2
≤ m

q .
Finally, gathering the above information and argument, we can compute the probability

for the new chain to terminate at an element of DT to be
∞∑
k=0

(
1−
√

1 + 2α

t
+ ε
)k(√1 + 2α− 1

t
+
δ

q

)
= 1− 1− tε√

1 + 2α+ tε
+

α
√

1 + 2α+ αδ

mt(
√

1 + 2α+ ε)

≈ 1− 1√
1 + 2α

.

When t̂ = ct for some constant c, the error term of the last approximation is bounded by
2tε+ 5α

t + α√
1+2α

(c+ 1) exp(−c) < 7α
t + α√

1+2α
(c+ 1) exp(−c).

Those familiar with time-memory tradeoff techniques can interpret this theorem as giving
the probability of false alarms occurrence3 during the processing of a single non-perfect
DP table. This high probability is an annoyance in the time-memory tradeoff. While every
collision of the online DP chain with the pre-computed table will always bring about a
solution to the DLP since the r-adding walk does not modify the exponent of h. Hence this
high probability is a good thing for DLP solving.

Execution Complexity As given by Theorem 1, the mPAP succeeds using a single online
DP chain with probability 1− 1√

1+2α
.4 Taking the inverse of this value, we can state the ex-

pected number of online DP chain creations until successful DL retrieval to be
√
1+2α√

1+2α−1 . Since

3 One should consider whether allowing the starting point to be the ending point will produce any difference
in the final result.

4 Although we consider the online time complexity with the error term of probability in Theorem 1,

that increases less than 7(
√
1+2α+1)3

4α
+ (
√
1+2α+1)2

2
(c + 1) exp(−c)t, i.e., T <

√
1+2α√

1+2α−1
t + 7(

√
1+2α+1)3

4α
+

(
√

1+2α+1)2

2
(c + 1) exp(−c)t. This error comes from setting the chain length bound t̂. However, since t is

sufficiently large and (c+ 1) exp(−c) is sufficiently smaller than t, we ignore this error on our analysis.

12



the average length of a DP chain is t, we can state the expected online time complexity T ,
storage complexity5 M , and the pre-computation time complexity P as

T ≈
√

1 + 2α√
1 + 2α− 1

t, M ≈ m, and P = mt. (6)

Tradeoff Curve Using the equation mt2 = α q, we obtain

P T ≈ α
√

1 + 2α√
1 + 2α− 1

q. (7)

This shows that any increase in pre-computation is awarded by a corresponding decrease in
online time. Interpretation of the following equations give us more detail.

√
M T ≈

√
α
√

1 + 2α√
1 + 2α− 1

√
q and P ≈

√
α
√
M
√
q. (8)

With minimal storage, the expected pre-computation and online time are both O(
√
q). By

utilizing a storage of size M , we can reduce online time by a factor of
√
M at the price of a√

M factor increase in pre-computation time.
Note that for any fixed q, the right-side of tradeoff curve between storage and online time

is optimal when the constant
√
α
√
1+2α√

1+2α−1 is at its minimum. Explicitly, one can show that the

minimum value of 2.35480 is attained at α = 1+
√
5

4 ≈ 0.809017.

3.3 Experiments

We have tested the complexity analysis of the mPAP by running it with small parameters.
This was implemented on a dual-core AMD Opteron 2.6 GHz system and the NTL library [27]
was used to provide the required finite field arithmetics. Throughout the test, the cyclic group
G = 〈g〉 was taken to be a subgroup of Zp

∗, where p was taken to be a random 1024-bit prime.
The 20-adding walk served as the iterating function. As is customary in time memory tradeoff
tables, sequential points g1, g2, . . . , gm were used in place of the m random points to simplify
implementation. Likewise, the first online chain started from DLP target h and sequential
powers of h were used thereafter. The chain length bound was set to 10t to detect random
walks that fell into loops without reaching a DP. Chains were not regenerated to replace the
discarded chain.

In Table 1, we compare our theory against experiment results under variations of α. The
success probability entries test the validity of Theorem 1 and the last two rows of the table
test the T value as given by (6).

Table 2 shows a similar comparison under a fixed α and varying m and t parameters. This
table gives an indication of how well the relation (8) is observed, i.e., whether the increase in
storage results in the predicted reduction of online time complexity.

5 We are ignoring the fact that duplicate entries may be removed to reduce storage.
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Table 1. Online phase success probability and complexity for various α (q: 42-bit prime, t = 214)

α 0.001 0.01 0.5 0.81 1 1.5 2 10

success probability experiment 0.10 1.30 28.10 37.50 38.10 48.10 54.10 76.90

at 1st chain (%) theory 0.10 0.99 29.29 38.22 42.26 50.00 55.28 78.18

success probability experiment 0.00 0.70 21.50 24.10 25.80 24.80 23.80 17.40

at 2nd chain (%) theory 0.10 0.98 20.71 23.61 24.40 25.00 24.72 17.06

average iterations experiment 1085.7 99.37 3.46 2.62 2.51 2.00 1.87 1.33

until solution (unit:t) theory 1001.5 101.50 3.41 2.62 2.37 2.00 1.81 1.28

Table 2. Online phase success probability and complexity for various m and t (q : 42 bits prime, α = 0.81)

log t 8 11 14 17 20 theory

m 46121039 586463 12564 207 2

storage size (MB) 11806.986 150.135 3.216 0.053 0.001

success 1st chain 36.90 33.80 37.50 37.60 24.50 38.22

probability (%) 2nd chain 23.00 25.50 24.10 22.30 16.40 23.61

ave. iterations until solution (unit: t) 2.70 2.65 2.62 2.78 15.30 2.62

Test results given above are average values done over multiple table creations and multiple
DLP target solving per created table. Each pre-computation table on experiments was created
with a different random multiplier set for the 20-adding walk. All tests used 10 tables and
100 DLPs per table.

The implementation results support our theoretic analysis very well for a wide range of
parameters. The only visible exception corresponds to when m is extremely small. In this
case the expected DP chain length approaches the expected rho length of a random walk and
thus too many chains are being discarded. Unlike the small m case, the results for large m
follows the theory closely. This implies that the mPAP will work well even when extremely
large storage is employed.

3.4 Parallelization

The pre-computation phase of the mPAP can trivially be parallelized. While pre-computation
is certainly the computationally intensive part of the mPAP, there may be situations where
the parallelization of the online phase is desired, possibly to reduce the wall-clock running
time of the online algorithm further. Let us investigate this matter in this subsection.

Readers familiar with time-memory tradeoff techniques will have read the previous mate-
rial with α ≈ 1 in their minds, but one can confirm through a careful re-reading of all proofs
that everything we wrote is true for even extremely small α.

With Theorem 1 confirmed for small α, let us consider the parallel use of n processors
at the online phase. We take parameters m and t such that mt2 = α

n q, where α ≈ 1. Then,
based on Theorem 1, one can state that the probability of success at the first run of the online

phase, i.e., after the n DP chains have been produced, is 1−
(

1
1+2α/n

)n/2
. Inverting this, we
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can state

T1/n ≈
{

1 +
1

(1 + 2α
n )

n
2 − 1

}
t

as the average time spent by each processor, until the DLP is solved. As before, we require
M ≈ m storage and P = mt pre-computation time.

Applying the equation mt2 = α
n q, we can write the analogue to equation (7) as follows.

P T1/n ≈
α

n

{
1 +

1

(1 + 2α
n )

n
2 − 1

}
q. (9)

It is easy to check that 1 + 1
eα−1 ≤ 1 + 1

(1+2α/n)n/2−1 ≤ 1 + 1√
1+2α−1 , so that we can treat

the term inclosed between the braces as an insignificant constant. Noting that nT1/n is the
total online processing time, one can see that (9) is almost identical to (7). In other words,
regardless of parallelization, with the same pre-computation effort, one needs the same total
online processor time to solve a given DLP.

Analogue of (8) is as follows.

√
M T1/n ≈

√
α

n

{
1 +

1

(1 + 2α
n )

n
2 − 1

}√
q (10)

and

P ≈
√
α

n

√
M
√
q. (11)

This says that with n-processor parallelization, one can achieve
√
n times online (wall-clock)

time reduction and also an
√
n factor reduction in pre-computation. A more practical view is

to say that, by deciding to invest n-times more on the online processing power, one reduces
the required cost of the pre-computation phase. Since the pre-computation is much more
resource consuming than the online phase, in most situations, the less-than-linear speedup
of the online phase will be justified by the reduction of pre-computation cost. In addition, if
the parameters were such that the storage cost outweighed the processor cost, then one can
surely justify the cost of additional processors.

This brings us to the subject of what can be done while maintaining the pre-computation
cost. In that case, one can read from (9) that we achieve linear speedup of the online phase,
but one must be slightly more careful before jumping to this conclusion. The equation (11)
shows that the storage must also be increased by a factor of n in addition to the number of
processors. In other words, by increasing the storage and processor used during the online
phase by a factor of n, one achieves n-times speedup of the online phase. If the parameters
were such that the storage cost is much smaller than the processor cost, we may claim linear
speedup through parallelization. If otherwise, this may not be what most would call linear
speedup, but n-times investment on what is used during the online phase results in an n-times
speedup of online phase.
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3.5 Applying Tag Tracing Technique

In order to reduce the time for solving DLP over a finite field more, we consider applying
tag tracing technique [7] to the mPAP. Since the mPAP consists of r-adding walk iterating
function and DP collision detection method, the tag tracing technique can be applied to the
mPAP well. In this subsection, we confirm that the tag tracing technique works well in the
mPAP from experimental results.

Test environment and implementation method of the mPAP were the same with Sec-
tion 3.3. For the tag tracing technique, we stored all possible products of multipliers of
4-adding walk up to 40 steps using pre-computation with 54.9 MB and 36.951 seconds on
average of all tests. Other parameters were set equal to experiments of Section 4.5 in [7] for
fair comparison.

Table 3. Comparison of 20-adding walk and tag tracing (α = 0.81)

q phase 20-adding walk tag tracing 20-add./tag. storage

42bit pre-computation 1032.221 s 77.995 s 13.234 5 MB

(t=214) online 0.256 s 0.027 s 9.487

48bit pre-computation 17005.030 s 1274.148 s 13.346 17 MB

(t=216) online 1.038 s 0.105 s 9.886

54bit pre-computation 210312.400 s 15439.350 s 13.622 68 MB

(t=218) online 4.115 s 0.419 s 9.821

80bit∗ pre-computation 137 y 104.360 d 10 y 136.282 d 268 MB

(t=230) online 4 h 39.620 m 29 m 29.472 s

80bit† pre-computation 1 y 136.097 d 37 d 20.707 h 27 GB

(t=230) online 2 m 47.772 s 17.695 s

estimated value (∗with 1 processor, †parallel processing with 100 processors)

Table 3 gives experimental results of applying 4-adding walk with tag tracing technique
and 20 adding walk to the mPAP. All results are average values done over 10 table creations
and 100 DLP targets solving per created table. Each table was produced with a different
random multipliers for use of different r-adding walks.

We know that the use of 4-adding walk with the tag tracing technique is about 12 times
faster than the use of 20-adding walk without the tag tracing technique from the result of [7]
in our implementation environment. The last row in Table 3 shows that the tag tracing
technique makes the mPAP 9.487 – 13.622 times faster. This shows that applying tag tracing
technique to the mPAP works well.

Moreover, we also estimate the time to solve a DLP on a group of 80-bit order from
experimental results. In Table 3, we confirm that the pre-computation time and the online
time are about 22d/3 and 2d/3 times increased respectively, when d is the difference between
bit sizes of group orders. From this fact, we give the estimation of solving a DLP on a 80-bit
order group using the mPAP with 20-adding walk iterating function and 4-adding walk with
the tag tracing technique in the eighth and ninth rows in Table 3. The last two rows in
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Table 3 also provide the estimation time to solve a DLP using the parallelized mPAP with
100 processors.

4 Key Generation Time Estimation

In this section, we propose a parameter setup method of the MY-IBE scheme for achieving 280

security and efficiently generating a user’s private key. Then we estimate the key generation
time on proposed parameters when applying the mPAP to KeyGen algorithm based on our
complexity analysis and experimental results on small parameters.

4.1 Parameter Setup

In the MY-IBE scheme, the base group G is taken to be a maximal cyclic subgroup of ZN
∗

where N is a product of roughly same sized primes p, q such that p ≡ 3 (mod 4), q ≡ 1
(mod 4), and gcd(p−1, q−1) = 2. In order to obtain a secure MY-IBE scheme, as mentioned
before, it is assumed that the CDH assumption in G holds and hence factoring N is to be
hard.

Consider required conditions that N is hard to factor using known integer factorization
algorithms within 280 time complexity. First, N is to be at least 1024-bit integer (and hence
both p, q are at least 512-bit primes) to endure against the number field sieve factorization
algorithm [6]. Second, there are some factoring algorithms whose time complexity depends
on the factorization of p − 1 and q − 1. In case of the Pollard p − 1 algorithm [22], it takes
O(B logN/ logB) group operations to factor N where p−1 and q−1 are B-smooth integers.
Also, if factors of p−1 or q−1 consist of one (logB)-bit prime and other (logB)/2-bit primes,
then one can factor N within O(

√
B) operations using Brent’s method [5]. Hence one has to

set p, q to be primes such that both p− 1 and q− 1 are at least 280-smooth integers and have
at least two prime factors of 80-bit or more.

However, the number of large prime factors of p− 1 and q − 1 has a significant effect on
the key generation time. Let us look into a process of solving a DLP in KeyGen algorithm
of the MY-IBE scheme, which applies Pohlig-Hellman algorithm [21] with the mPAP. When
an identity ID is given to KGC, he tries to compute the DL of H1(ID) to the base g. Since
KGC knows the factorization of N as trapdoor information, he can apply the mPAP or the
Pollard rho algorithm to obtain H1(ID)ci ’s to the base gci for all ci’s where ci = p− 1/pi or
q − 1/qi, p − 1 =

∏`
i=1 pi, and q − 1 =

∏`
i=1 qi, i.e., he solves DLPs over subgroups of G,

whose order are pi’s and qi’s. Thereafter, he computes the DL of H1(ID) to the base g using
Chinese remainder theorem. In this process, large prime factors of p − 1 and q − 1 cause
more key generation time or much memory size for the mPAP to reduce key generation time.
Hence, we recommend the use of p, q such that both p, q are 512-bit primes and each p − 1,
q − 1 has two 80-bit primes and other less than 40-bit primes.

4.2 Key Generation Time Estimation from Experimental Results

We shall give the estimated key generation time with experimental results applying the mPAP.
Test environment was the same with Section 3.3. Throughout the test, G was taken to be
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a maximal cyclic subgroup of ZN
∗ where N was an 1024-bit integer which was a product of

512-bit primes p, q and two prime factors of p− 1 and q− 1 were (logB)-bit and other prime
factors were less than (logB)/2-bit each. We utilized the mPAP enhanced by the tag tracing
technique [7] for solving DLPs on groups of four large prime factors and applied Pollard rho
algorithm with 20-adding walk and DP collision detection method for solving DLPs on the
other groups. Parameters for tag tracing technique were set equal to Section 3.5 and those
for the mPAP were set to t = 2(logB)/3, α = 0.81.

Table 4. Key generation time for various B

securitypre-comp. pre-comp. online time storage

level size time small factors large factors total

42 229.9 3 m 25 s 0.266 s 0.079 s 0.345 s 17 MB

48 233.9 54 m 45 s 0.495 s 0.310 s 0.805 s 68 MB

80∗ 251 13 y 231 d 3 m 12.605 s 2 h 52.578 m 2 h 55.788 m 270 MB

80† 251 49 d 19 h 1.926 s 1 m 43.547 s 1 m 45.473 s 27 GB

estimated value (∗with 1 processor, †parallel processing with 100 processors)

In Table 4, the third and fourth rows provide our experimental results of the key generation
time corresponding to B, which are average values done over 10 table generations and 100
DLP targets solving per a created table. From these, when the difference between logB’s is
d-bit, we are sure that the pre-computation time and the online-time for large prime factors
are about 22d/3, 2d/3 times increased respectively and the online time for small prime factors
is about 2d/4 times increased.

We estimate the pre-computation time and the online time for 280 security. Assume that
we perform P = 251 pre-computation for four large prime factors and store 218 elements in
each table. Then it takes about 13 years and 231 days for pre-computation with 270 MB
storage. Since the pre-computation can be parallelized, one can generate the table in 49 days
and 19 hours using 100 processors and 270 MB storage, in addition to the factors of n, as the
trapdoor information. When an instance of DLP is given, it can be solved in 2 hours and 56
minutes on one processor.

If, as described in Section 3.4, we decide to parallelize the online phase across 100 proces-
sors while keeping the pre-computation at 251, the online phase reduces to one minute and 46
seconds with the use of 27 GB storage. Since this process is to be done by the key generation
center to handle just key extractions, the presented pre-computation and online time may
both be quite practical.

5 Conclusion

In this paper, we provided the method to reduce the key generation time of the MY-IBE
scheme for practical use. To achieve this, we suggested the use of the mPAP with significant
pre-computation for solving DLPs over a trapdoor DL group in the key generation algo-
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rithm and gave more rigorous complexity analysis of the mPAP. Also we discussed about the
parallelization of the mPAP and applying the tag tracing technique.

Finally, we gave the parameter setup method so that KGC efficiently solves a DLP and
we estimated the key generation time on proposed parameter from our theoretical analysis
and experimental results on small parameters.
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