
1

SHS: Secure Hybrid Search by Combining
Dynamic and Static Indexes in PEKS

Peng Xu and Hai Jin, Senior Member, IEEE

Abstract—With a significant advance in ciphertext searchability, Public-key encryption with keyword search (PEKS) is the first
keyword searchable encryption scheme based on the probabilistic encryption, such that it is more secure than almost all previous
schemes. However, there is an open problem in PEKS that its search complexity is linear with the sum of ciphertexts, such that
it is inefficient for a mass of ciphertexts.
Fortunately, we find an elegant method that by adaptively taking the keyword trapdoor of each query as an index, the search
complexity of the queried keywords can be decreased in a huge degree. We call this method dynamic index (DI) technique.
Furthermore, for keywords having not been queried before, we employ deterministic encryption to establish indexes to decrease
their first search complexity. We call this method static index (SI) technique. Consequently, we propose a secure hybrid search
(SHS) system by combing DI and SI techniques in PEKS to decrease the search complexity of PEKS. At last, we demonstrate
its semantic security and convergent search complexity, which is considerably lower than that of PEKS.

Index Terms—public-key encryption with keyword search, dynamic index technique, static index technique, secure hybrid search

F

1 INTRODUCTION

PUBLIC-KEY encryption with keyword search
(PEKS) [1] is the first keyword searchable en-

cryption scheme based on the probabilistic encryp-
tion. In the aspect of provable security, it particularly
achieves the stronger IND-CPA (indistinguishability
of ciphertexts under chosen plaintext attack) security
than almost all previous schemes, who were based
on the deterministic encryption or function such as
[2, 3, 4]. In applications, these previous schemes,
roughly speaking, needs to share a symmetric secret
between each pair of sender and receiver. On the
contrary, PEKS generates keyword searchable cipher-
texts only by public-key encryption. Therefore, by
canceling the management of symmetric secrets, PEKS
is more convenient than these previous schemes.

Storage Table of Keyword
Searchable Ciphertexts

User

C1
C2
...
...
...
Cn

Query: keyword trapfoor TK

Respond: all satisfactory
ciphertexts

Note: according to TK , the storage achieves the search by sequentially checking C1 to Cn.

Figure 1. Query and Response of Keyword Searchable
Ciphertexts in PEKS

PEKS is a more convenient and secure scheme

• P. Xu and H. Jin are with Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan,
430074, China. E-Mail: {xupeng, hjin}@mail.hust.edu.cn.

than almost all previous schemes, however, it has a
high search complexity that it is linear with the sum
of ciphertexts. For example, in Figure 1, we simply
describe the query procedure of PEKS and assume
that the storage has stored n keyword searchable
ciphertexts. For each query, because the storage can
not establish indexes for {C1, ..., Cn} by their equality,
it has to sequently check all ciphertexts from C1 to Cn.
Consequently, the search complexity of PEKS is O(n)
and obviously inefficient when n is very large.

1.1 Our Ideas

However, we fortunately observe that by adaptively
taking the keyword trapdoor of each query as an in-
dex, the storage can improve the search performance
of PEKS in a huge degree. For the convenience of fol-
lowing citation, we called this novel method dynamic
index (DI) technique. Furthermore, DI technique can
be conveniently achieved in PEKS. For each query
described in Figure 1, the storage adaptively stores
the keyword trapdoor TK of keyword K and takes
it as the dynamic index of a group, which contains
all keyword searchable ciphertexts containing K. Sub-
sequently, for any new received keyword searchable
ciphertext from a user, such as Cn+1, the storage
can prejudge whether Cn+1 belongs to the group by
its dynamic index. Consequently, DI technique can
improve the search performance that when a user
query the keyword K again, the storage can respond
with all satisfactory keyword searchable ciphertexts
in one step. In contrast with the original search of
PEKS, DI technique obviously decrease the search
complexity, because PEKS needs sequently checking

2

all keyword searchable ciphertexts for any query. In
summary, DI technique can tremendously improves
the search performance of keywords, which have been
queried before. However, for keywords never queried,
DI technique is ineffective for the first search of these
keywords.

Therefore, we additionally propose a static index
(SI) technique to improve the first search performance
of keywords, and combine DI and SI techniques to
completely improve the search performance of PEKS.
Generally speaking, SI technique employs determin-
istic encryption (DE) [4, 5] to generate an index
for each keyword searchable ciphertext. Somewhat
specifically, when a user generates a keyword search-
able ciphertext of keyword K, he additionally takes
the concatenation of K and his own secret as the
plaintext input of DE, and takes the output of DE as
the static index of the ciphertext. Because all keyword
searchable ciphertexts having the same static index
contain the same keyword, the storage can partition
all these ciphertexts of each user into different groups
according to the equality of static indexes, and more
efficiently achieve the first search of keywords under
the help of the partition.

1.2 Necessity of Combining DI and SI Techniques

From the aspect of security, we further illuminate
the reasons of combining above two techniques to
accelerate the search of PEKS.

In order to keep the security of static indexes, SI
technique has to take user’s own secret as a partial
plaintext input of DE (more reasons will be given in
Section 4). So the static indexes generated by different
users always are distinct. In other words, any two
static indexes respectively generated by two users
are unequal, even for the same keyword. So when
employing SI technique in PEKS, the first search com-
plexity of keywords will be decreased to a function of
the number of users.

In contrast, DI technique is only relative to key-
words. To query keywords having been queried be-
fore, its search complexity is independent with the
number of users, such that it is more efficient than SI
technique. But it is ineffective for the first search of
keywords. Consequently, we respectively employ SI
and DI techniques to respectively accelerate the first
search and subsequent searches of keywords.

1.3 Our Contributions

To improve the search performance of PEKS, we nov-
elly propose a secure hybrid search (SHS) system by
combining DI and SI techniques in PEKS. SHS consists
of three procedures as follows: Initialization, Ciphertext
Submission and Ciphertext Query. In order to clearly
describe these procedures, we first present six kernel

algorithms based on the definitions of PEKS, public-
key encryption (PKE) and DE, which are simply listed
as follows:

- SetupSHS generates the required system param-
eters.

- TrapdoorSHS and EncryptSHS respectively gen-
erate a keyword trapdoor and a keyword search-
able ciphertext for an inputted keyword.

- ESIndSHS and EDIndSHS respectively establish
the static and dynamic indexes for an inputted
ciphertext.

- SearchSHS finds out all ciphertexts containing
the same keyword with an inputted keyword
trapdoor.

Secondly, we construct the procedures based on these
algorithms.

Thereafter, we demonstrate the semantic security of
SHS based on the semantically secure PEKS, PKE and
DE. By comparing the search complexity of SHS and
PEKS, SHS is proved to be more efficient than PEKS.
Moreover, the search complexity of SHS is convergent
while increasing queries. On the contrary, the search
complexity of PEKS is divergent.

1.4 Related Works about PEKS

PEKS was first proposed by Boneh et al. in 2004
[1], and realized based on anonymous identity-based
encryption [6, 7, 8, 9]. Abdalla et al. [10] perfected
the foundations of PEKS, and proposed a more secure
transformation from anonymous IBE to PEKS and
an extended PEKS. Baek et al. [11] freed the secure
channel between the storage and users by employing
public-key encryption. To achieve conjunctive key-
word search, two schemes on public-key encryption
with conjunctive keyword search (PECKS) [12, 13]
were respectively proposed. Furthermore, Bethen-
court et al. succeeded on public-key encryption with
conjunctive keyword range search [14] by anonymous
hierarchical IBE (HIBE) [7] in 2006, and updated their
work in 2007 [15]. Boneh et al. proposed a novel
technique called hidden vector encryption (HVE) to
achieve conjunctive, range and subset searches [16].
Camenisch et al. [17] employed the committed two-
part computation protocol to achieve the oblivious
keyword in the generation of keyword trapdoor. Ref-
erences [18, 19] proposed several efficient PECKS by
sharing a secret between sends and receivers. So far as
we known, almost all related works about PEKS are
focus on the versatile searchability. Our paper is the
first one to improve the search complexity of PEKS.

1.5 Organization

The organization of this paper is as follows. In Sec-
tion 2, some preliminary definitions will be given. In
Section 3, we propose the framework of SHS. Section
4 analyzes the security of SHS. Section 5 analyzes

3

the search complexity of SHS. At last, conclusion is
presented in Section 6.

2 PRELIMINARIES

We redefine PEKS, PKE and DE as follows.

Definition 1 (PEKS). PEKS consists of following polyno-
mial time algorithms:

- SetupPEKS(k): Take as input a security pa-
rameter k ∈ N, then probabilistically gener-
ate a pair of public-and-private system parameters
〈PubPEKS , P riPEKS〉, in which PubPEKS includes
the keyword space K.

- TrapdoorPEKS(PriPEKS ,K): Take as input a pri-
vate system parameter PriPEKS and a keyword K ∈
K, then probabilistically generate a keyword trapdoor
TK .

- EncryptPEKS(PubPEKS ,K): Take as input a public
system parameters PubPEKS and a keyword K ∈ K,
then probabilistically generate a keyword searchable
ciphertext of K.

- TestPEKS(PubPEKS , TK , C): Take as input a pub-
lic system parameters PubPEKS , a keyword trap-
door TK and a keyword searchable ciphertext C =
EncryptPEKS(PubPEKS ,K ′), then return B, where

B =

{
1 if K ′ = K;
0 otherwise.

(1)

Moreover, PEKS satisfies the consistency that for any
keyword K ′ ∈ K and its keyword trapdoor TK ,
TestPEKS(PubPEKS , TK , C ′) returns ’1’ if and only if
K = K ′, in which C ′ = EncryptPEKS(PubPEKS ,K ′)

Definition 2 (PKE). PKE consists of following polynomial
time algorithms:

- SetupPKE(k): Take as input a security parameter k ∈
N, then probabilistically generate a pair of public-and-
private keys 〈PubPKE , P riPKE〉, in which PubPKE

includes the plaintext space MPKE .
- EncryptPKE(PubPKE ,M): Take as input a public

key PubPKE and a plaintext M ∈ MPKE , then
probabilistically generate a ciphertext.

- DecryptPKE(PriPKE , C): Take as input a private
key PriPKE and a ciphertext C, then return a plain-
text M .

Moreover, PKE satisfies the consistency that for any plain-
text M ∈ MPKE , DecryptPKE(PriPKE , C) always
returns M if and only if C = EcryptPKE(PubPKE ,M).

Definition 3 (DE). DE consists of following polynomial
time algorithms:

- SetupDE(k): Take as input a security parameter k ∈
N, then probabilistically generate a pair of public-and-
private keys PubDE and PriDE , in which PubDE

includes the plaintext space MDE .
- EncryptDE(PubDE ,M): Take as input a public sys-

tem parameter PubDE and a plaintext M ∈ MDE ,
then deterministically generate a ciphertext.

- DecryptDE(PriDE , C): Take as input a private sys-
tem parameter PriDE and a deterministically gener-
ated ciphertext C, then return a plaintext M .

Moreover, DE satisfies the consistency that for any plain-
text M ∈ MDE , DecryptDE(PriDE , C) always returns
M if and only if C = EcryptDE(PubDE ,M).

3 FRAMEWORK OF SHS
Let || denote concatenation operation. Let |T | denote
the count of elements/records in the set/table T . Let
T [i] denote the i-th element/record of the set/table T .
Let PubTTP

PEKS and PriTTP
PEKS respectively denote the

public-and-private system parameters of PEKS gen-
erated by trusted third part (TTP). Let PubTTP

PKE and
PriTTP

PKE respectively denote the public-and-private
keys of PKE generated by TTP. Let PubTTP

DE and
PriTTP

DE respectively denote the public-and-private
keys of DE generated by TTP.

3.1 Kernel Algorithms of SHS
Based on the definitions of PEKS, PKE and DE, SHS
consists of following polynomial time algorithms:

- SetupSHS described in Algorithm 1 generates
various parameters according to an inputted state
string st. It can generate the system parameters of
PEKS, PKE and DE, two tables SITab and DITab
to respectively store static and dynamic indexes,
and a table CTabindex for an index index to store
the relevant ciphertexts.

Algorithm 1 SetupSHS

Input:
a security parameter, k ∈ N;
a state string, st ∈ {IT,CT, PEKS, PKE, DE};

Output:
1: if st == IT then
2: return 〈SITab,DITab〉;
3: end if
4: if st == CT then
5: return 〈name, CTabname〉;
6: end if
7: if st == PEKS then
8: return SetupPEKS(k);
9: end if

10: if st == PKE then
11: return SetupPKE(k);
12: end if
13: if st == DE then
14: return SetupDE(k);
15: end if

- TrapdoorSHS described in Algorithm 2 generates
a required keyword trapdoor.

- EncryptSHS described in Algorithm 3 generates a
keyword searchable ciphertext by concatenating
two outputs of EncryptDE and EncryptPEKS .

4

Algorithm 2 TrapdoorSHS

Input:
PriTTP

PEKS ; PriTTP
PKE ;

a ciphertext, C = EncryptPKE(PubTTP
PKE ,K);

Output:
1: K = DecryptPKE(PriTTP

PKE , C);
2: return TrapdoorPEKS(PriTTP

PEKS ,K);

Algorithm 3 EncryptSHS

Input:
PubTTP

PEKS ; PubTTP
DE ;

the secret of user, SUser;
a keyword, K;

Output:
1: SI = EncryptDE(PubTTP

DE ,K||SUser);
2: SC = EncryptPEKS(PubTTP

PEKS ,K)
3: return C = SI||SC;

- ESIndSHS described in Algorithm 4 establishes
a static index for an inputted ciphertext. If the
static index index of the inputted ciphertext C
has been established, it adds C into the existing
CTabindex; otherwise, it adds index into SITab
and C into the newly created CTabindex.

Algorithm 4 ESIndSHS

Input:
a keyword searchable ciphertext, C;

Output:
1: if 〈SITab,DITab〉 is not set up then
2: 〈SITab,DITab〉 = Setup(None, IT);
3: end if
4: parsing C as SI||SC;
5: if SI ∈ SITab then
6: add SC into CTabSI ;
7: else
8: 〈name, CTabname〉 = Setup(None,CT);
9: name = SI ;

10: add SC into CTabSI ;
11: end if
12: return 1;

- EDIndSHS described in Algorithm 5 establishes
a dynamic index for an inputted ciphertext. For
the inputted ciphertext C, if there is a index ∈
DITab has TestPEKS(PubTTP

PEKS , index,C) = 1,
then it adds C into the existing CTabindex.

- SearchSHS described in Algorithm 6 responds a
query TK . It contains two procedures: firstly, if
TK is existing in DITab, then it returns CTabTK

;
otherwise, for each index ∈ SITab it sequently
checks the first ciphertext of CTabindex by TK ,
and adds all successfully verified ciphertexts into
the newly created CTabTK

, finally adds TK into
DITab and returns CTabTK

.

Algorithm 5 EDIndSHS

Input:
PubTTP

PEKS ;
a keyword searchable ciphertext, C;

Output:
1: if 〈SITab,DITab〉 is not set up then
2: 〈SITab,DITab〉 = Setup(None, IT);
3: end if
4: parsing C as SI||SC;
5: for i = 1 to |DITab| do
6: if TestPEKS(PubTTP

PEKS , DITab[i], SC) == 1
then

7: add SC into CTabDITab[i];
8: return 1;
9: end if

10: end for
11: return 0;

Algorithm 6 SearchSHS

Input:
PubTTP

PEKS ;
a keyword trapdoor, TK ;

Output:
1: if TK ∈ DITab then
2: return CTabTK

;
3: end if
4: 〈name, CTabname〉 = Setup(None,CT);
5: name = TK ;
6: add TK into DITab;
7: for i = 1 to |SITab| do
8: if TestPEKS(PubTTP

PEKS , TK , CTabSITab[i][1]) ==
1 then

9: add CTabSITab[i] into CTabTK
;

10: delete CTabSITab[i] and SITab[i];
11: end if
12: end for
13: return CTabTK

;

3.2 Procedures of SHS

StorageTrusted Third Part (TTP)

B
C

… …… …

C

A

User User

Dynamic Indexes
and ciphertexts

Static Indexes
and ciphertexts

Communication A achieves the publication of parameters generated by TTP.
Communication B achieves queries and responses of keyword trapdoors.
Communication C achieves submissions of ciphertexts.
Communication D achieves queries and responses of ciphertexts.

A

AD D

B

Figure 2. Communications in SHS

5

User TTP Storage

independently and randomly

choose their SUser;

〈SITab,DITab〉 = SetupSHS(None, IT);〈PubTTP
PEKS , P riTTP

PEKS〉 = SetupSHS(k, PEKS);

〈PubTTP
PKE , P riTTP

PKE〉 = SetupSHS(k, PKE);

〈PubTTP
DE , P riTTP

DE 〉 = SetupSHS(k,DE);

〈PubTTP
PEKS , PubTTP

PKE , PubTTP
DE 〉

〈PubTTP
PEKS〉

1

(a) The Procedure of Initialization.

User Storage

C = EncryptSHS(PubTTP
PEKS , PubTTP

DE , SUser,K);

C

B = EDIndSHS(PubTTP
PEKS , C);

if B == 0 then B = ESIndSHS(C);

return B;

B

1

(b) The Procedure of Ciphertext Submission.

UserTTP Storage

C = EncryptPKE(PubTTP
PKE ,K);

C

TK = TrapdoorSHS(PriTTP
PEKS , P riTTP

PKE , C);

TK TK

CTabTK
= SearchSHS(PubTTP

PEKS , TK);
CTabTK

1

(c) The Procedure of Ciphertext Query.

Figure 3. Three Procedures of SHS.

SHS consists of three procedures among TTP, the
storage and users, as follows: Initialization, Ciphertext
Submission and Ciphertext Query. In Figure 2, we de-
scribe the communications among TTP, the storage
and users in SHS. Furthermore based on the kernel
algorithms of SHS, we respectively describe above
procedures as follows:

- Initialization. TTP, the storage and users inde-
pendently generate their system parameters by
SetupSHS . TTP publishes its public system pa-
rameters to the storage and users by Communica-
tion A in Figure 2. The details are presented in
Subfigure 3(a) of Figure 3.

- Ciphertext Submission. A user generates a cipher-
text by EncryptSHS , and submits it to the storage
by Communication C in Figure 2. The storage
establishes dynamic index or static index tables
for the received ciphertexts by EDIndSHS and
EDIndSHS . The details are presented in Subfig-
ure 3(b) of Figure 3.

- Ciphertext Query. First, a user inquires TTP to

respond a keyword trapdoor of a keyword K by
Communication B in Figure 2. Secondly, the user
submits keyword trapdoor to the storage and gets
the relevant ciphertexts by Communication D in
Figure 2. The details are presented in Subfigure
3(c) of Figure 3.

4 SECURITY ANALYSIS OF SHS
Generally speaking, to realize a secure search on ci-
phertexts, it should be necessary to keep the semantic
security of plaintexts. Specifically in SHS, it should
keep the semantic security of keywords. To realize
this security, we construct SHS based on PEKS, PKE
and DE. Moreover, we can demonstrate that if PEKS,
PKE and DE are semantically secure, then so is SHS.
According to Table 1, the demonstration consists of
following component conclusions:

- If the PEKS employed in SHS is semantically se-
cure, then TK = TrapdoorSHS(PriTTP

PEKS ,K) and
EncryptPEKS(PubTTP

PEKS ,K) can keep the semantic

6

Communication Messages

B
EncryptPKE(PubTTP

PKE , K),

TK = TrapdoorSHS(PriTTP
PEKS , K)

C
EncryptDE(PubTTP

DE , K||SUser),

EncryptPEKS(PubTTP
PEKS , K)

D
TK = TrapdoorSHS(PriTTP

PEKS , K),

CTabTK
= SearchSHS(PubTTP

PEKS , TK)

Table 1
All Interactive Messages Containing a keyword in

SHS.

security of K. According to the definition of the
semantic security of PEKS [1], a semantically
secure PEKS can keep the semantic security of
keywords even if keyword trapdoors are public.
Therefore, TK = TrapdoorSHS(PriTTP

PEKS ,K) and
EncryptPEKS(PubTTP

PEKS ,K) can keep the seman-
tic security of K, if the PEKS employed in SHS
is semantically secure.

- If the PKE employed in SHS is semantically secure,
then EncryptPKE(PubTTP

PKE ,K) can keep the seman-
tic security of K. According to the definition of
the semantic security of PKE [20], this conclusion
obviously holds.

- If the DE employed in SHS is semantically secure,
then EncryptDE(PubTTP

DE ,K||SUser) can keep the
semantic security of K even under keyword guessing
attacks. Differently with probabilistic encryption,
the definition of the semantic security of DE
assumed that all plaintexts have enough entropy
to defense guessing attacks. But in SHS, key-
words would be semantical and indexed in a
dictionary, such that they do not have enough
entropy. Therefore, it is insecure to directly take
the keyword space as the plaintext space of DE
in SHS. To solve this problem, we elegantly take
the concatenation of the keyword space and the
random secret space of users’ as the plaintexts
space of DE. By this method, the entropy of
the plaintexts space of DE can be sufficiently
increased, such that it satisfies the assumption
in the definition of the semantic security of DE,
and defends keyword guessing attacks. Hence,
EncryptDE(PubTTP

DE ,K||SUser) can keep the se-
mantic security of K even under keyword guess-
ing attacks, if the DE employed in SHS is seman-
tically secure.

In summary, if the PEKS, PKE and DE employed
in SHS are semantically secure, then so is SHS even
under keyword guessing attacks.

5 SEARCH COMPLEXITY OF SHS
To clearly present the search complexity of SHS, we
first list several relevant symbols in Table 2. According

Symbol Specification

DITab

A dynamic index table stores all ”distinct”
keyword trapdoors having been queried before.
(The ”distinct” means that there is not any two
keyword trapdoors in DITab contain the same

keyword.)

SITab
A static index table stores all inequivalent static

indexes generated by EncryptDE .

CTabindex

A ciphertext table stores all ciphertexts
belonging to index, in which

index ∈ DITab
⋃

SITab.
K A keyword space K contains |K| keywords.

Table 2
Several Symbols of SHS and their Specifications.

to these symbols, the sum of keyword searchable
ciphertexts generated by users is

sum =
|SITab|∑

i=1

|CTabSITab[i]|+
|DITab|∑

j=1

|CTabDITab[j]|

(2)

in which both |CTabSITab[i]| and |CTabDITab[j]| are
≥ 1. For each search in sum keyword searchable
ciphertexts, PEKS should check ciphertexts one by
one, so the search complexity of PEKS is sum. In
contrast with PEKS, the search complexity of SHS is

O(|SITab|+ |DITab|) (3)

It is obvious that SHS always is more efficient than
PEKS, except in worst case that for any i ∈ [1, |SITab|]
and j ∈ [1, |DITab|], the equations |CTabSITab[i]|=1
and |CTabDITab[j]|=1 simultaneously holds. In the
worst case, SHS at least has the same search com-
plexity with PEKS.

Furthermore, the search complexity of SHS is con-
vergent to |K| following the increase of |DITab|. On
the contrary, the search complexity of PEKS is linear
with sum. Assuming all keywords are uniformly cho-
sen by users, the expected search complexity of SHS
is

O(|DITab| · Pr(TK ∈ DITab)+
(|DITab|+ |SITab|) · Pr(TK /∈ DITab))

= O(|DITab|+ |SITab| · Pr(TK /∈ DITab))

= O(|DITab|+ |SITab| · (1− |DITab|
|K|

))

(4)

in which, TK is a certain keyword trapdoors gen-
erated by a user. Following the increase of |DITab|,
the search complexity of SHS obviously converges to
O(|DITab|). Furthermore, it can be alternatively pre-
sented as O(|K|) since it trivially has |DITab| ≤ |K|.

Under the more general assumption that all key-
words are non-uniformly chosen by users, DITab
contains the frequently used keywords, so for any
keyword trapdoor TK it trivially has

Pr(TK /∈ DITab) < (1− |DITab|
|K|

) (5)

7

Therefore, the search complexity of SHS converge to
O(|DITab|) faster.

In summary, the search complexity of SHS is more
efficient than PEKS, except the worst case that they
have the same complexity. Furthermore, storage will
gradually complete a ”full” dynamic index table while
increasing queries, such that the search complexity is
convergent. On the contrary, the search complexity of
PEKS is divergent and linearly increases with the sum
of keyword searchable ciphertexts.

6 CONCLUSION

To decrease the search complexity of PEKS, we nov-
elly proposed SHS system by combining DI and SI
techniques in PEKS. By analyzing the search com-
plexity of SHS and PEKS, SHS is significantly more
efficient than PEKS. Furthermore, it is noticeable that
the search complexity of SHS converges to the sum of
keywords while increasing queries. On the contrary,
the search complexity of PEKS is divergent and lin-
early increase with the sum of keyword searchable
ciphertexts, which is much larger than the sum of
keywords. At last, we analyzed the security of SHS by
demonstrating that SHS is semantically secure, if the
PEKS, PKE and DE employed in SHS is semantically
secure.

REFERENCES

[1] D. Boneh, G. D. Crescenzo, and R. O. et al.,
“Public key encyrption with keyword search,”
in Advances in Cryptology-EUROCRYPT 2004, ser.
LNCS, C. Cachin and J. Camenisch, Eds., vol.
3027. Springer-Verlag, 2004, pp. 506–522.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical
techniques for searches on encrypted data,” in
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, Berkeley, CA , USA, 2000, pp. 44–55.

[3] E.-J. Goh, “Secure indexes,” 2003,
http://eprint.iacr.org/2003/216.pdf.

[4] M. Bellare, A. Boldyreva, and A. ONeill, “Deter-
ministic and efficiently searchable encryption,”
in Advances in Cryptology - CRYPTO 2007, ser.
LNCS, A. Menezes, Ed., vol. 4622. Santa Barbara,
California, United States: Springer-Verlag, 2007,
pp. 535–552.

[5] M. BELLARE, M. FISCHLIN, and A. O. et al.,
“Deterministic encryption: Definitional equiva-
lences and constructions without random ora-
cles,” in Advances in Cryptology-CRYPTO 08, ser.
LNCS, D. Wagner, Ed., vol. 5157. Springer-
Verlag, 2008, pp. 360–378.

[6] D. Boneh and M. Franklin, “Identity-based en-
cryption from the weil pairing,” in Advances in
Cryptology-CRYPTO 2001, ser. LNCS, J. Kilian,
Ed., vol. 2139. Santa Barbara, California, United
States: Springer-Verlag, 2001, pp. 213–239.

[7] X. Boyen and B. Waters, “Anonymous hierar-
chical identity-based encryption (without ran-
dom oracles),” in Advances in Cryptology-CRYPTO
2006, ser. LNCS, C. Dwork, Ed., vol. 4117. Santa
Barbara, California, United States: Springer-
Verlag, 2006, pp. 290–307.

[8] C. Gentry, “Practical identity-based encyrp-
tion without random oracles,” in Advances in
Cryptology-EUROCRYPT 2006, ser. LNCS, S. Vau-
denay, Ed., vol. 4004. Russia: Springer-Verlag,
2006, pp. 445–464.

[9] L. Ducas, “Anonymity from asymmetry: New
constructions for anonymous hibe,” in The Cryp-
tographers’ Track at the RSA Conference 2010, ser.
LNCS, J. Pieprzyk, Ed., vol. 5985. San Francisco,
CA, USA: Springer Berlin, 2010, pp. 148–164.

[10] M. Abdalla, M. Bellare, and D. C. et al., “Search-
able encryption revisited: Consistency properties,
relation to anonymous ibe, and extensions,” in
Advances in Cryptology-CRYPTO 2005, ser. LNCS,
V. Shoup, Ed., vol. 3621. Santa Barbara, Cali-
fornia, United States: Springer-Verlag, 2005, pp.
205–222.

[11] J. Baek, R. Safavi-Naini, and W. Susilo, “Pub-
lic key encryption with keyword search revis-
ited,” in Computational Science and Its Applications-
ICCSA 2008, O. Gervasi, Ed., vol. 5072. Springer-
Verlag, 2008, pp. 1249–1259.

[12] D. J. Park, K. Kim, and P. J. Lee, “Public key en-
cryption with conjunctive field keyword search,”
in WISA 2004, ser. LNCS, C. Lim and M. Yung,
Eds., vol. 3325. Spring-Verlag, 2004, pp. 73–86.

[13] Y. H. Hwang and P. J. Lee, “Public key encryption
with conjunctive keyword search and its exten-
sion to a multi-user system,” in Pairing 2007, ser.
LNCS, T. Takagi, Ed., vol. 4575. Springer-Verlag,
2007, pp. 2–22.

[14] J. Bethencourt, T.-H. H. Chan, and A. P.
et al., “Anonymous multi-attribute encryption
with range query and conditional decryption,”
Carnegie Mellon University, Tech. Rep. CMU-CS-
06-135, 2006.

[15] E. Shi, J. Bethencourt, and T.-H. H. C. et al.,
“Multi-dimensional range query over encrypted
data,” Carnegie Mellon University, Tech. Rep.
CMU-CS-06-135, 2007.

[16] D. Boneh and B. Waters, “conjunctive, subset,
and range queries on ecrypted data,” in proceed-
ings of TCC’07, ser. LNCS, S. P. Vadhan, Ed., vol.
4392. Springer-Verlag, 2007, pp. 535–554.

[17] J. Camenisch, M. Kohlweiss, and A. R. et al.,
“Blind and anonymous identity-based encryp-
tion and authorised private searches on public
key encrypted data,” in Proceedings of the 12th
International Conference on Practice and Theory in
Public Key Cryptography: PKC ’09, ser. LNCS, vol.
5443. CA: Springer-Verlag, 2009, pp. 196–214.

[18] L. Ballard, S. Kamara, and F. Monrose, “Achiev-

8

ing efficient conjunctive keyword searches over
encrypted data,” in ICICS 2005, ser. LNCS,
S. et al., Ed., vol. 3783. Springer-Verlag, 2005,
pp. 414–426.

[19] E.-K. Ryu and T. Takagi, “Efficient conjunctive
keyword-searchable encryption,” in Advanced In-
formation Networking and Applications Workshops,
2007, AINAW ’07. 21st International Conference on.
Niagara Falls, Ontario, Canada: IEEE Computer
Society, 2007, pp. 409 – 414.

[20] S. Goldwasser and S. Micali, “Probabilistic en-
cyrption,” in Proceedings of the fourteenth annual
ACM symposium on Theory of computing. San
Francisco, California, United States: ACM, 1982,
pp. 365–377.

