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Abstract. We show that the Winternitz one-time signature scheme is existentially unforgeable un-
der adaptive chosen message attacks when instantiated with a family of pseudo random functions.
Compared to previous results, which require a collision resistant hash function, our result provides
significantly smaller signatures at the same security level. We also consider security in the strong sense
and show that the Winternitz one-time signature scheme is strongly unforgeable assuming additional
properties of the pseudo random function. In this context we formally define several key-based security
notions for function families and investigate their relation to pseudorandomness. All our reductions are
exact and in the standard model and can directly be used to estimate the output length of the hash
function required to meet a certain security level.

Keywords Hash-based signatures, post-quantum signatures, pseudorandom functions, security reduc-
tions.

1 Introduction

Digital signatures are ubiquitous in our computer dominated society. They are basic building blocks
of eGovernment and eCommerce. They are used to guarantee the integrity and authenticity of
software updates and enable secure Internet connections. The security of currently used signature
schemes – RSA and ECDSA – relies on the hardness of certain number theoretic problems, whereas
the actual hardness of these problems remains unclear. In 1994 Shor presented a quantum algorithm
that can be used to solve the factorization and discrete logarithm problems in polynomial time, thus
completely breaking RSA and ECDSA [23]. Given the importance of digital signatures, the search
for alternative signature schemes that resist attacks arising from algorithmic and technological
advances is an important research goal.

One promising alternative are hash-based signatures. Their sole security requirement is the
existence of hash function families with certain properties. Current research suggests, that the
security of hash-based signatures will not be significantly harmed by quantum computer supported
attacks [12]. Another benefit of hash-based signature schemes is that they are provably secure in
the standard model [6,7,8,13]. A hash-based signature scheme or Merkle signature scheme (MSS)
consists of the combination of a one-time signature scheme (OTS) to sign the data and Merkle’s tree
authentication scheme [17] which reduces the authenticity of many one-time verification keys to the
authenticity of a single public key. Examples for one-time signature schemes are the Lamport-Diffie
OTS [14], the Merkle OTS [17], the Winternitz OTS [17,8], the Bleichenbacher-Maurer OTS [3], the
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BiBa OTS [18] and HORS [20]. The Winternitz OTS (W-OTS) is most suitable for combining it
with Merkle’s tree authentication scheme because of the small verification key size and the flexible
trade-off between signature size and signature generation time. Further it is possible to compute
the corresponding verification key given a W-OTS signature. So a MSS signature does not need
to contain the verification key. This is not the case for all of the above mentioned schemes besides
the Bleichenbacher-Maurer OTS but it reduces the MSS signature size significantly. Hence efficient
variants of the Merkle signature scheme rely on W-OTS [4]. W-OTS is also used for authentication
in sensor networks [16].

The size of a Winternitz signature is roughly mn/w bits and signing roughly requires 2wm/w
hash operations, where m is the bit length of the hash value to be signed, n is the output length of
the hash function used in the scheme, and w is the Winternitz parameter determining the trade-
off between signature size and signature generation time. In [8,13], the authors provide security
reductions for graph based one-time signature schemes, a general class of OTS which includes W-
OTS. Due to the generality of graph based OTS, these security reductions require the used hash
function to be collision resistant. Collision resistance is one of the strongest security notions of
hash functions and admits effective generic attacks using the birthday paradox. Following these
reductions, to achieve b bits of security one must use n = 2b and m = 2b which yields W-OTS
signatures of size roughly 4b2/w bits.

Our results. In this paper we show that weaker assumptions are sufficient for the security of W-
OTS. We show that W-OTS is existentially unforgeable under adaptive chosen message attacks [11]
when instantiated with a family of pseudorandom functions (PRF). Since the PRF property is not
affected by birthday attacks, hash functions with shorter output length can be used which in turn
reduces the signature size. This result is especially meaningful because the main issue with hash-
based signatures is the signature size. Also, it has been shown that PRF exist if one way functions
(OWF) exist [24,15,10] and further, that OWF exist if secure digital signature schemes exist [22].
So our result shows that a secure instance of W-OTS exists, as long as there exists any secure
signature scheme. For collision resistant hash function families it is unknown if their existence can
be based on the existence of OWF.

We also consider unforgeability in the strong sense by reducing the strong unforgeability of
W-OTS to the intractability of finding key collisions (given x, find k, k′ such that k 6= k′ and
fk(x) = fk′(x)) or second keys (given x and key k, find k′ such that k 6= k′ and fk(x) = fk′(x)).
The notion of key collision resistance was used before by the authors of [19] in the security analysis of
the TESLA protocol. In [9], the author uses this notion as property of pseudorandom function tribe
ensembles to construct a committing and key-hiding private-key encryption scheme. The authors
of [5] provide a construction for perfectly one-way functions assuming key collision resistance. We
provide a thorough treatment of these key based notions and pseudo randomness. We define them
formally and investigate implications and separations among them.

Our results are exact and in the standard model. Such reductions are of enormous practical
value compared to asymptotic results or the random oracle model. Exact reductions allow the
security level of the scheme to be estimated for fixed security parameters. The standard model
uses only security notions which can be efficiently realized in practice. Exact reductions are also of
theoretical interest, because they indicate the quality of a reduction and allow an easy comparison
of the hardness of the problems.
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Notation. Throughout the paper we stick to the following notation. We use n as the main security

parameter. Efficient algorithms require only polynomial time and space in n. The statement x
$←− X

means x is chosen uniformly at random from X. The concatenation of strings is done via ||. We
also write log for log2. During the paper we measure the runtime of an algorithm in terms of the
number of evaluations of the function family used.

Organization. We prove the existential unforgeability of W-OTS using pseudorandom functions in
Section 2. We prove the strong unforgeability of W-OTS using second key resistant or key collision
resistant functions in Section 3. We examine implications and separations between the introduced
security notions in Section 4. We interpret our results and provide concluding remarks in Section
5.

2 Existential unforgeability of the Winternitz one-time signature scheme

In this section we prove that the Winternitz one-time signature scheme (W-OTS) is existentially
unforgeable under adaptive chosen message attacks (EU-CMA) when instantiated with a family of
pseudo-random functions. We begin by reviewing W-OTS and introduce a little tweak required by
the reduction. Then we introduce the required security notions. Finally we state the reduction and
use it to estimate the security level.

2.1 The Winternitz one-time signature scheme

The Winternitz one-time signature scheme was first mentioned in [17] as a generalization of Merkle’s
OTS also proposed in [17]. A complete description can be found in [8]. The core idea of W-OTS is
to iteratively apply a function on a secret input, whereas the number of iterations depends on the
message to be signed. The used functions are members of the function family

F (n) = {fk : {0, 1}n → {0, 1}n|k ∈ {0, 1}n} (1)

parameterized by key k ∈ {0, 1}n and the security parameter n. For our purposes iteratively ap-
plying a function is defined as follows. We use the output of the function fk as key for the next
iteration. The function is always evaluated on the same input x. This is in contrast to the original
construction, where the output of the function is used as input for the next iteration and the key
remains fixed. We use the notation f ik(x) to denote that the function is iterated i times on input x
using key k for the first iteration and the output of the function as key for the next iteration, e.g.
f2k (x) = ffk(x)(x) and f0k (x) = x.

In the following, we only describe the generation of signatures for m-bit messages. The gen-
eralization to arbitrary sized messages is straight forward by utilizing a collision resistant hash
function.

Key pair generation (Algorithm Kg). First we choose the Winternitz parameter w ∈ N, w > 1,

defining the compression level. Next we choose a random value x
$←− {0, 1}n. The signature key

consists of ` bit strings of length n chosen uniformly with the random distribution,

sk = (sk1, . . . , sk`)
$←− {0, 1}(n,`),
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where ` is computed as follows.

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

The verification key is computed using functions from the family F (n). The bit strings in the
signature key are used as key for the function f and the function is iterated w − 1 times on input
x.

pk = (pk0, pk1, . . . , pk`) = (x, fw−1sk1
(x), . . . , fw−1sk`

(x))

Signature generation (Algorithm Sign.) We describe how to sign anm-bit messageM = (M1, . . . ,M`1)
given in base-w representation, i.e. Mi ∈ {0, . . . , w − 1} for i = 1, . . . , `1. We begin by computing
the checksum

C =

`1∑
i=1

(w − 1−Mi) (2)

and represent it to base w as C = (C1, . . . , C`2). The length of the base-w representation of C is at
most `2 since C ≤ `1(w − 1). Then we set B = (b1, . . . , b`) = M ‖ C. The signature of message M
is computed as

σ = (σ1, . . . , σ`) = (f b1sk1(x), . . . , f b`sk`(x)). (3)

Signature verification (Algorithm Vf.) The verifier first computes the base-w string B = (b1, . . . , b`)
as described above. Then he checks whether

(fw−1−b1σ1 (pk0), . . . , f
w−1−b`
σ`

(pk0))
?
= (pk1, . . . , pk`). (4)

The signature is accepted iff the comparison holds.

2.2 Security notions for signature schemes and function families

We begin by reviewing the standard definition of digital signature schemes and the security notion
existential unforgeability under adaptive chosen message attacks (EU-CMA) [11]. We then define
two security notions for function families required for our reduction. The first is the well known
pseudo-randomness property. The second is key one-wayness which states that it is hard to find
a key k such that the function fk maps a given input x to a given output y. We also state two
lemmas about these notions which will be useful for the reduction of W-OTS.

Definition 1 (Digital signature schemes). A digital signature scheme Sig = (Kg,Sign,Vf) is a
triple of PPT algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private signing key sk and a public veri-
fication key pk;

– Sign(sk,M) outputs a signature σ under sk for the message M ;

– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk.

Definition 2 (Existential unforgeability (EU-CMA)). EU-CMA is defined by the following
experiment.
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Experiment ExpEU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)

(M?, σ?)← ASign(sk,·)(pk)

Let {(Mi, σi)}
qSign
1 be the query-answer pairs of Sign(sk, ·).

Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}
qSign
1 .

Sig is (t, ε, q)-existentially unforgeable if there is no t-time adversary that succeeds with probability
≥ ε after making ≤ q signature oracle queries.

A (t, ε, 1)-EU-CMA secure signature scheme is called one-time signature scheme.

Definition 3 (Pseudorandom functions (PRF)). A family of functions F (n) is pseudorandom,
if no efficient algorithm Dis is able to distinguish a randomly chosen function fk ∈ F (n) from a
randomly chosen function from the set G(n) of all functions with same domain and range as F (n).
The formal definition is taken from [2]. Dis gets access to an oracle Box(·) implementing a function
randomly chosen from F (n) or G(n) in a black box manner. The distinguisher may adaptively
query Box(·) as often as he likes. Finally, the distinguisher outputs 1 if he thinks that Box models
a function from F (n) and 0 otherwise.

Let F (n) be a family of functions as in (1) and G(n) = {g : {0, 1}n → {0, 1}n} the family of all
functions with domain and range {0, 1}n. We call F (n) (t, ε)-PRF, if the advantage

AdvPRF
F (n)(Dis) =

∣∣∣Pr[Box
$←− F (n) : DisBox(·) = 1]− Pr[Box

$←− G(n) : DisBox(·) = 1]
∣∣∣ (5)

of any distinguisher Dis that runs in time t is at most ε.

Definition 4 (Key one-wayness (KOW)). Let F (n) be a family of functions as in (1). We call
F (n) (t, ε)-KOW, if the success probability

AdvKOW
A = Pr[(x, k)

$←− {0, 1}n × {0, 1}n, y ← fk(x), k′ ←− A(x, y) : y = fk′(x)] (6)

of any adversary A that runs in time t is at most ε.

Please recall, that the time t is counted in terms of evaluations of f . We assume, that a call
to Box takes the same time as an evaluation of f . The security level or bit security b the family
F (n) or a signature scheme Sig provides against attacks on the respective notion is computed as
b = log(t/ε).

A key collision of F (n) is defined as a pair of distinct keys (k, k′) such that fk(x) = fk′(x) holds
for some x ∈ {0, 1}n. We define an upper (κ) and lower (κ′) bound on the number of key collisions
that occur in the family F (n).

Definition 5. The upper bound κ is defined as follows: For each pair (x, k), there exist at most
κ − 1 different keys k1, . . . , kκ−1, which are also different from k, such that fk(x) = fki(x) for
i = 1, . . . , κ− 1. Equivalently we define the lower bound κ′: For each pair (x, k), there exist at least
κ′ − 1 different keys k1, . . . , kκ′−1, which are also different from k, such that fk(x) = fki(x) for
i = 1, . . . , κ′ − 1.
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The values κ and κ′ restrict the number of different images y some preimage x can be mapped to
by functions in F (n), i.e.

2n

κ
≤
∣∣ {fk(x) : k ∈ {0, 1}n}

∣∣ ≤ 2n

κ′
(7)

for all x ∈ {0, 1}n. Also, given y
$←− {0, 1}n the probability that there exists a key k and preimage

x such that fk(x) = y holds is at least 1/κ.

The following lemma describes an interesting relation between the security level of pseudoran-
dom functions and the value κ defined above.

Lemma 1. Let F (n) be (t, ε)-PRF with security level b = log(t/ε) and κ as in Definition 5. Then
κ ≤ 2n−b + 1.

Proof. Assume κ > 2n−b + 1 and let (x, y) be a pair where there exist κ keys mapping x to y. The
distinguisher Dis queries Box with x. If Box(x) = y then Dis returns 1 and 0 otherwise. Clearly Dis

runs in time t′ = 1. Further we have Pr[Box
$←− F (n) : DisBox(·) = 1] = κ/2n > 2−b + 2−n and

Pr[Box
$←− G : DisBox(·) = 1] = 2−n and therefore ε′ = AdvPRF

F (n)(Dis) > 2−b which is a contradiction.
�

The following lemma states that the KOW property is implied by the PRF property. In other
words, an efficient attacker against the KOW property leads to an efficient distinguisher.

Proposition 1 (PRF ⇒ KOW). Let F (n) be (t, ε)-PRF. Then F (n) is (t − 2, ε/(1/κ − 1/2n) -
KOW.

Proof. Assume there exists an adversary AKOW(x, y) who finds a key k satisfying y = fk(x) in time
tKOW with probability εKOW. Then we can construct a distinguisher Dis using AKOW the following
way: Dis queries Box(·) with x ∈ {0, 1}n. After receiving the answer y, Dis runs AKOW(x, y) to
obtain key k. Then Dis queries Box with a second value x′ ∈ {0, 1}n. If Box(x′) = fk(x

′) = y′ Dis

returns 1 and 0 otherwise. In case Box
$←− F (n), the probability that AKOW outputs a key k such

that fk(x) = y holds is εKOW. The probability that fk(x
′) = y′ holds is at least 1/κ, because at

least one of the κ functions in F (n) mapping x to y also maps x′ to y′. In case Box
$←− G(n), the

probability that AKOW outputs a key k such that fk(x) = y holds is at most εKOW. The probability
that fk(x

′) = y′ holds is 1/2n, because from the 2n(2
n−1) functions in G mapping x to y, only

2n(2
n−2) also map x′ to y′. In summary we get ε ≥ AdvPRF

F (n)(Dis) ≥ εKOW (1/κ− 1/2n) . ut

2.3 Security reduction

We now state the main result of this section.

Theorem 1. Let F (n) be a family of functions as in Equation (1) and κ as in Definition 5. If
F (n) is (tPRF, εPRF)-PRF then W-OTS is (t, ε, 1) EU-CMA with

t = tPRF − tKg − tVf − 2 (8)

ε ≤ εPRF`
2w2κw−1

1(
1
κ −

1
2n

) (9)
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Proof. The proof works as follows: First we use a forger for W-OTS to construct an adversary
on the key one wayness of F (n). This adversary is then used to construct a distinguisher using
Proposition 1. Algorithm 1 shows how a forger ForSign(sk,·)(pk) for W-OTS can be used to construct
an adversary AKOW on the key one-wayness of F (n). The signing oracle Sign is simulated by the
adversary.

Algorithm 1 AKOW

Input: Security parameters n,m, Winternitz parameter w, description of F (n), KOW challenge (x, y) as in Definition
4
Output: k′, such that fk′(x) = y or fail

1. generate W-OTS signature key sk
2. choose indices α ∈ {1, ..., `}, β ∈ {1, . . . , w − 1} uniformly at random
3. compute verification key as pk0 = x, pki = fw−1

ski
(x) for i = 1, . . . , l, i 6= α and pkα = fw−1−β

y (x)

4. run ForSign(sk,·)(pk)
5. when ForSign(sk,·)(pk) queries Sign with message M then compute B = (b1, ..., b`)
6. if bα < β return fail
7. generate signature σ of M and respond to ForSign(sk,·)(pk)
8. when ForSign(sk,·)(pk) returns valid (σ′,M ′) then compute B′ = (b′1, ..., b

′
`)

9. if b′α ≥ β return fail

10. compute k′ ← f
β−1−b′α
σ′
α

(x)

11. if fk′(x) 6= y return fail
12. return k′

The goal of the adversary AKOW is to produce a key k′ such that fk′(x) = y for x, y provided
as input. AKOW begins by generating a regular W-OTS signature key pair and choosing random
positions α and β (Lines 1,2). Then he computes the W-OTS verification key using value x. The
bit string at position α in the verification key (pkα) is computed by inserting y at position β in
the hash chain used to compute pkα (Line 3). Next, AKOW calls the forger and waits for it to ask
an oracle query. The forgers query can only be answered if bα ≥ β holds, because AKOW doesn’t
know the first β entries in the corresponding hash chain (Line 6). The forgery produced by the
forger is only meaningful to AKOW if b′α < β holds (Line 9). Only then the bit string σα in the
forged signature might yield a key k′ such that y = fk′(x) holds (Lines 10,11). We now compute
the success probability of AKOW. W.l.o.g we assume that the forger queries the signing oracle. The
probability of bα ≥ β in Line 6 is at least (`w)−1. This is because of the checksum which guarantees
that not all of the bi are zero simultaneously. The probability that the forger succeeds in Line 8
is at least ε by definition. This probability holds under the condition that the verification key pk
computed in Line 3 resembles a regular verification key which is the case if there exists a key k
such that fβk (x) = y. This happens with probability at least 1/κβ according to Definition 5. The
probability of b′α < β in Line 9 is at least (`w)−1. This is because of M 6= M ′ and the checksum
which guarantees that bi > b′i for some i ∈ {1, . . . , `}. The probability that y = fk′(x) holds in
Line 11 is at least 1/κw−1−β. This is because there exist κw−1 keys mapping x to pkα after w − 1
iterations and only κβ of these keys map x to y after β iterations.

In summary we have εKOW ≥ ε/(`2w2κβκw−1−β) and tKOW = t+ tKg + tVf as the time for the
signature query is already taken into account at the runtime of the forger. Combining this with
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Proposition 1 yields εPRF ≥ ε(1/κ−1/2n)/(`2w2κw−1) and tPRF = t+ tKg + tVf +2 which concludes
the proof. ut

2.4 Security level

We now compute the security level of W-OTS for the case that only generic attacks against the
PRF property of the function family F (n) exist.

Corollary 1. Let b = log(t/ε) denote the security level and use `w as upper bound for tKg and tVf ,
respectively. Let F (n) be (2n−1−log κ, 1/2(1/κ− 1/2n))-PRF with κ = 2. Then the security level of
W-OTS is

b ≥ n− w − 1− 2 log(`w) (10)

Proof. We use a (tPRF, εPRF)-PRF family F (n) and assume that the best attack on the pseu-
dorandomness of F (n) is a brute-force key recovery attack. An attacker that searches through
tKOW = 2n−1−log κ keys has success probability εKOW = 1/2 for recovering the correct key. By
Proposition 1 this yields an tPRF = 2n−1−log κ + 2, εPRF = 1/2(1/κ − 1/2n) distinguisher for the
pseudorandomness of F (n). The security level of the PRF property of F (n) in presence of this
distinguisher is b = n which in turn implies κ ≤ 2 according to Lemma 1. The security level of
W-OTS using F (n) is computed as follows

2b =
t

ε
≥
tPRF − tKg − tVf − 2

εPRF`2w2κw−1

(
1

κ
− 1

2n

)
≥ 2n−log κ − 4`w

`2w2κw−1

≥ 2n−w−2 log(`w) − 4

`w2w−1

Since 4/(`w2w−2) ≤ 2n−w−1−2 log(`w) for all reasonable choices of w and m we finally obtain b ≥
n− w − 1− 2 log(`w) as security level of W-OTS. ut

3 Strong unforgeability of the Winternitz one-time signature scheme

While the reduction of the last section shows that W-OTS is EU-CMA assuming a standard security
notion for hash functions, it does not provide security in the strong sense. This is accomplished
by two reductions presented in this section. We show that W-OTS is strongly unforgeable under
adaptive chosen message attacks (SU-CMA), if the used function family is either second key resistant
or key collision resistant. The difference between EU-CMA and SU-CMA is, that in SU-CMA the
adversary also wins if he returns a new signature for an already queried message. While these
reductions provide stronger security guarantees, they do not rely on standard security notions of
hash functions. One is therefore confronted with a trade-off between security and requirements on
the hash function. Again we begin by introducing the required security notions and then continue
with the reductions and the computation of the security levels.
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3.1 Security notions for signature schemes and function families II

We begin by reviewing the definition of strong unforgeability under adaptive chosen message at-
tacks. Then, we define two security notions for function families required for our reductions. The
first is second key resistance which states that given key k and preimage x, it is hard to find a
key k′ 6= k such that fk(x) = fk′(x). The second is key collision resistance which states that given
preimage x, it is hard to find two distinct keys k, k′ such that fk(x) = fk′(x).

Definition 6 (Strong unforgeability (SU-CMA)). SU-CMA is defined by the following exper-
iment.

Experiment ExpSU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)

(M∗, σ∗)← ASign(sk,·)(pk)

Let {(Mi, σi)}
qSign
1 be the query-answer pairs of Sign(sk, ·).

Return 1 iff Vf(pk,M?, σ?) = 1 and (M?, σ?) 6∈ {(Mi, σi)}
qSign
1 .

The signature scheme Sig is (t, ε, q)-SU-CMA if there is no t-time adversary that succeeds with
probability ≥ ε after making ≤ q signature oracle queries.

Definition 7 (Second key resistance (SKR)). Let F (n) be a family of functions as in (1). We
call F (n) (t, ε)-SKR, if the success probability

AdvSKR
A = Pr[(x, k)

$←− {0, 1}n × {0, 1}n, k′ ← A(x, k) : k′ 6= k, fk′(x) = fk(x)] (11)

of any adversary A that runs in time t is at most ε.

Definition 8 (Key collision resistance (KCR)). Let F (n) be a a family of functions as in (1).
We call F (n) (t, ε)-KCR, if the success probability

AdvKCR
A = Pr[x

$←− {0, 1}n, (k, k′)← A(x) : k 6= k′, fk(x) = fk′(x)] (12)

of any adversary A that runs in time t is at most ε.

Proposition 2 (SKR⇒ KOW). Let F (n) be (t, ε)-SKR with κ′ > 1. Then F (n) is (t− 1, ε/(1−
1/κ′))-KOW.

Proof. Towards contradiction, let us assume a successful adversary A that breaks KOW for F (n).
We show how to use A as a black-box in an algorithm B to break SKR. On input (x, k) from the
SKR experiment, the algorithm B computes y ← fk(x) and runs A(x, y). The subroutine returns
k′ such that fk(x) = fk′(x) with probability at least ε. Then, B returns k′. Since κ′(F (n)) > 1, the
algorithm A returns a key that is different from k with probability at least 1 − 1/κ′ ≥ 1/2. Thus,
B is successful with probability ε(1 − 1/κ′). κ′ > 1 is required to guarantee that a different key
actually exists. ut
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3.2 Security reductions

We now state the main result of this section.

Theorem 2. Let F (n) be a family of functions as in Equation (1) and κ, κ′ as in Definition 5.
a) If F (n) is (tSKR, εSKR)-SKR then W-OTS is (t, ε, 1) SU-CMA with

t ≥ tSKR − tKg − tVf − 1 (13)

ε ≤ εSKR`
2w2κw−2

κ′

κ′ − 1
(14)

b) If F (n) is (tKCR, εKCR)-KCR then W-OTS is (t, ε, 1) SU-CMA with

t ≥ tKCR − tKg − tVf (15)

ε ≤ εKCR
κ′

κ′ − 1
(16)

The proof of this theorem can be found in appendix A

3.3 Security level

We now compute the security level of W-OTS for the case that only generic attacks against the
SKR or KCR property of the function family F (n) exist.

Note, that in case of κ = 1 it is impossible to find two signatures for the same message by
construction. Therefore W-OTS is SU-CMA secure if it is EU-CMA secure and κ = 1. For the
computation of the security level in this section we therefore assume κ, κ′ ≥ 2, such that there
exists at least one key collision for each preimage.

Corollary 2. Let b = log(t/ε) denote the security level and use `w as upper bound for tKg and tVf ,
respectively.

a) Let F (n) be (2n−1−log κ + 1, (κ′− 1)/(2κ′))-SKR and (tPRF, εPRF)-PRF with log(tPRF/εPRF) = n
and κ′ = κ = 2. Then the security level of W-OTS is

b ≥ n− w − 2 log(`w) (17)

b) Let F (n) be (2(n−log κ
′)/2, 1/2)-KCR and (tPRF, εPRF)-PRF with log(tPRF/εPRF) = n and κ′ =

κ = 2. Then the security level of W-OTS is

b ≥ (n− 1)/2− 1 (18)

Proof. a) We use a (tSKR, εSKR)-SKR family F (n) and assume that the best attack on the second
key resistance of F (n) is a brute-force key recovery attack. An attacker that searches through
tKOW = 2n−1−log κ keys has success probability εKOW = 1/2 for recovering the correct key. By
Proposition 2 this yields an

tSKR = 2n−1−log κ + 1, εSKR =
1

2
· κ
′ − 1

κ′
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adversary on the second key resistance of F (n). The security level of the SKR property of F (n) in
presence of this adversary is b = n− log(κ− 1), assuming κ = κ′. We further assume that F (n) is
(tPRF, εPRF)-PRF with log(tPRF/εPRF) = n. This justifies using κ′ = κ = 2 since κ′ ≥ 2 is required
to ensure that second keys actually exist. The security level of W-OTS is computed as follows

2b =
t

ε
≥
tSKR − tKg − tVf − 1

εSKR`2w2κw−2
· κ
′ − 1

κ′

=
2n−log κ − 4`w

`2w2κw−2
· κ
′ − 1

κ′
· κ

κ− 1

≥ 2n−w+1−2 log(`w) − 4

`w2w−2

Since 4/(`w2w−2) ≤ 2n−w−2 log(`w) for all reasonable choices of w and m we finally obtain b ≥
n− w − 2 log(`w) as security level of W-OTS.

b) We use a (tKCR, εKCR)-KCR family F (n) and assume that the best attack on the key collision
resistance of F (n) is a birthday attack, i.e. an adversary that searches through tKCR = 2(n−log κ

′)/2

keys has success probability εKCR = 1/2 for finding a key collision. The security level of the KCR
property of F (n) in presence of this adversary is b = (n− log κ′)/2− 1. Again we assume that F (n)
is (tPRF, εPRF)-PRF with log(tSKR/εSKR) = n and use κ′ = κ = 2. The security level of W-OTS is
computed as follows

2b =
t

ε
≥
tKCR − tKg − tVf

εKCR
· κ
′ − 1

κ′
≥ 2(n−1)/2 − 2`w

Since 2`w ≤ 2(n−1)/2−1 for reasonable choices of w and m we finally obtain b ≥ (n − 1)/2 − 1 as
security level of W-OTS.

4 Relation between security notions

In this section we complete the analysis of implications and separations between key one-wayness
(KOW), second key resistance (SKR), key collision resistance (KCR), and pseudorandomness (PRF)
started with Propositions 1 and 2, whereas the suspected separation PRF ; SKR is left as an open
problem. The proofs of this section can be found in Appendix B. Figure 1 summarizes our findings.

Proposition 3 (KOW ; PRF). Let g : {0, 1}n → {0, 1}n be a one-way function. Then there
exists a family F (n) that is KOW but not PRF.

Proposition 4 (KOW ; SKR). Let F (n) be (t, ε)-KOW. Then, there is a family F ′(n) that is
(t, 2ε)-KOW but not SKR.

Proposition 5 (KOW ; KCR). Let F (n) be (t, ε)-KOW. Then, there is a family F ′(n) of func-
tions that is (t, ε+ 2/2n)-KOW but not KCR.

Proposition 6 (KCR⇒ SKR). Let F (n) be (t, ε)-KCR. Then F (n) is (t, ε)-SKR.

Proposition 7 (SKR ; KCR). Let F (n) be (t, ε)-SKR. Then, there is a family F ′(n) of functions
that is (t, ε+ 2/2n)-SKR but not KCR.

11



Fig. 1. Implications among PRF, KOW, SKR, and KCR. A straight arrow A → B means that property A implies
property B and a dashed line means that the implication is conditional. When there is no arrow, it means that we
show a separation. The suspected separation between PRF and SKR is an open problem.

Proposition 8 (PRF ; KCR). Let F (n) be (t, ε)-PRF. Then, there is a family F ′(n) of functions
that is (t, ε+ 2/2n)-PRF but not KCR.

The following corollaries can be proven in analogy to Proposition 3.

Corollary 3 (SKR ; PRF). If second preimage resistant functions exist, there is a family F (n)
that is SKR but not PRF.

Corollary 4 (KCR ; PRF). If collision resistant functions exist, there is a family F (n) that is
KCR but not PRF.

5 Conclusion

We have provided three security reductions for W-OTS. The first one shows that W-OTS provides
a security level of at least n − w − 1 − 2 log(`w), if the security level of the PRF property of the
used function family is at least n. When using n = 128 and w = 16 the security level of W-OTS
is at least 91 while the size of a signature is 560 Bytes. The more conservative approach of using
n = 160 yields a security level of at least 129, which guarantees long-term security but results in
larger signatures of 860 Bytes. This reduction is especially appealing because it only assumes a
standard security notion of hash functions. SHA-1 and SHA-2 being PRFs is required when using
them in the HMAC construction and SHA-3 will be specifically designed to be a PRF. Furthermore,
this reduction also works for the special class of pseudorandom permutations (PRP). PRP is the
standard model for block ciphers, so it is possible to replace the hash function family with a block
cipher. As a block cipher with n bit keys is normally assumed to provide n bit security against
distinguishing attacks this justifies our assumption of κ ≤ 2 given Lemma 1. Since several of today’s
CPUs are equipped with an AES co-processor, this might also lead significant speed-ups in practice.

However, this reduction does not guarantee strong unforgeability, except in case of κ = 1
meaning that no key collisions exist. If no key collisions exist, each message has a unique signature
and the scheme is trivially SU-CMA when it is EU-CMA. Showing SU-CMA in general requires
that the underlying functions are either SKR or KCR. This has been shown in the second and third
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reduction. The security level of W-OTS is at least n−w− 1− 2 log(`w) if the security level of the
SKR property of the used PRF is at least n − log(κ − 1). When using KCR, the security level of
W-OTS is at least (n − 1)/2 − 1 if the security level of the KCR property of the used PRF is at
least (n− log κ)/2− 1. We remark that the last reduction also works with the original Winternitz
construction using a family of collision resistant hash functions. In other words, W-OTS is SU-CMA
if the used function is collision resistant. However, using a PRF with additional KCR property has
the benefit that an exact value for the maximum number κ of key collisions that occur within the
family is known. This is required for the estimation of the exact security level.

As a by-product we have defined three key-based security notions for function families: key
one-wayness (KOW), second key resistance (SKR), and key collision resistance (KCR). We have
analyzed implications and separations among these properties and pseudorandomness. Although,
these relations have not been analyzed before, they support the common intuition. In fact, key-
based and non-key-based notions share an analoguous hierarchy of implications and separations
with respect to preimage resistance, second preimage resistance, and collision resistance. We refer
the reader to [21] for a discussion on non-key-based notions.

We would like to point out that KCR functions fk can easily be obtained from collision resistant
functions gk by defining fk(x) = gx(k). If we require f to inherit the PRF property of g, we have
to assume that the compression function of g is dual-PRF, meaning that it is a PRF regardless of
which input it is keyed with. This is also a requirement of the security proof of HMAC [1]. SKR
functions can be constructed equivalently while the KOW property is immediately implied by the
PRF property. While we have shown the separation of PRF and KCR, we leave the suspected
separation of PRF and SKR as an open problem. Moreover, we have studied the relation between
the security level of a PRF and the maximum number of key collisions that can occur.
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A Proof of Theorem 2

To prove part a) we show in Algorithm 2 how a forger ForSign(sk,·)(pk) for W-OTS can be used to
construct an adversary ASKR on the second key resistance of F (n) with non negligible advantage.
The signing oracle Sign is simulated by the adversary.

On input of a challenge key kc and value xc, ASKR first generates a W-OTS key pair using
x = xc. Then he places kc randomly in the hash chain used to compute pkα at position β and runs
ForSign(sk,·)(pk) on input pk = (xc, pk1, . . . , pk`). If the forger queries the oracle on message M , ASKR

can only answer the query if bα ≥ β. In this case the adversary returns (M,σ) otherwise he returns
fail. If the forger succeeds in computing a valid signature (M ′, σ′) there are two possible cases.

If ForW−OTS returns a signature for the message sent to the oracle, there has to be at least one
index i such that σi 6= σ′i because σ 6= σ′. ASKR only found a 2nd key if (1) α is one of these indices,
(2) bα = β and (3) fkc(xc) = fσ′α(xc). Observe that (1) implies that kc 6= σ′α and therefore σ′α is a
2nd key for the challenge (kc, xc). So ASKR returns σ′α.

If the forger returns a signature for a new message the adversary can only find a 2nd key for

the challenge kc if (1a) b′α < β or (1b) b′α = β and bα > β, if (2) fkc(xc) = f
β−b′α+1
σ′α

(xc) holds and

last but not least if kc 6= f
β−b′α
σ′α

(xc). If all of these conditions are fulfilled ASKR returns f
β−b′α
σ′α

(xc)
as 2nd key. Otherwise ASKR returns fail.

14



Algorithm 2 ASKR

Input: Security parameters n,m, Winternitz parameter w, description of F (n), SKR challenge (xc, kc) ad in Definition
7
Output: k′ : fkc(xc) = fk′(xc) or fail

1. generate W-OTS key pair (sk, pk) using x = xc
2. choose indices α ∈ {1, ..., `}, β ∈ {0, . . . , w − 2} uniformly at random
3. replace pkα with fw−1−β

kc
(xc)

4. run ForSign(sk,·)(pk)
5. when ForSign(sk,·)(pk) queries Sign with message M then compute B = (b1, ..., b`)
6. if bα < β return fail
7. generate signature σ of M and respond to ForSign(sk,·)(pk)
8. when ForSign(sk,·)(pk) returns valid (σ′,M ′) then compute B′ = (b′1, ..., b

′
`)

9. if M = M ′ and σα 6= σ′α and bα = β and fkc(xc) = fσ′
α

(xc) then return σ′α

10. elseif M 6= M ′ and (b′α < β or (b′α = β and bα > β)) and fkc(xc) = f
β−b′α+1

σ′
α

(xc) and kc 6= f
β−b′α
σ′
α

(xc) then

return f
β−b′α
σ′
α

(xc)

11. return fail

We now compute the success probability. Like in the proof of Theorem 1 a), pk is a possible
public key only with probability at least 1/κβ. As before we assume that ForSign(sk,·)(pk) queries the
oracle without loss of generality. So the probability of bα ≥ β in line 6 is at least (`w)−1. This is
caused by the checksum which guarantees that at least one bi is greater zero. The forger succeeds
with probability at least ε according to the definition. Then we’ve got two mutual exclusive cases.

Case 1 (M = M ′): The probability that σα 6= σ′α holds in line 9 is at least 1/` as there
has to be at least one index i such that σi 6= σ′i because σ 6= σ′. For the second condition
bα = β we get a probability of 1/w as β was chosen at random. If the second condition holds,
the last condition fkc(xc) = fσ′α(xc) holds at least with probability 1

κw−1−β−1 , because there are∣∣∣{y ∈ {0, 1}n|fw−1−β−1y (xc) = pki

}∣∣∣ = κw−1−β−1 possible values for fσ′α(xc). So altogether we get

a probability of at least ε
`2w2κw−2 for finding a 2nd key for this case.

Case 2 (M 6= M ′): The probability in Line 10 that (b′α < β or (b′α = β and bα > β)) holds is
greater than (`w)−1. This is because of M 6= M ′ and the checksum which guarantees that bi > b′i
for some i ∈ {1, . . . , `}. Next fkc(xc) = f

β−b′α+1
σ′α

(xc) holds at least with probability 1
κw−1−β−1 as

before. And at last kc 6= f
β−b′α
σ′α

(xc) holds with probability at least κ′−1
κ′ if the previous condition

already holds. Therefore we get a success probability of ε(κ′−1)
`2w2κw−2κ′ for case 2.

Since both cases are mutually exclusive, the success probability of ASKR is

εSKR ≥ min{ ε

`2w2κw−2
,
ε(κ′ − 1)

`2w2κw−2κ′
} =

ε(κ′ − 1)

`2w2κw−2κ′
.

The time required by ASKR is tSKR ≤ t + tKg + tVf . The time to answer the signature query is
already contained in the runtime of the forger. This concludes the proof of part a).

To prove part b) we show in Algorithm 3 how a forger ForSign(sk,·)(pk) for W-OTS can be used to
construct an adversary AKCR on the key collision resistance with non negligible advantage. Again,
the signing oracle Sign is simulated by the adversary.

The goal of adversary AKCR on input xc is to find two different keys k1, k2 for which fk1(xc) =
fk2(xc) holds. Therefore AKCR begins by generating a W-OTS key pair using (x = xc) and calling
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Algorithm 3 AKCR

Input: Security parameter n, Winternitz parameter w, description of F (n), KCR challenge xc as in Definition 8
Output: (k1,k2): k1 6= k2 and fk1(xc) = fk2(xc) or fail

1. generate W-OTS key pair (sk, pk) using x = xc
2. run ForSign(sk,·)(pk)
3. when ForSign(sk,·)(pk) queries Sign with message M then

generate signature σ of M and respond to ForSign(sk,·)(pk)
4. when ForSign(sk,·)(pk) returns valid (σ′,M ′) then compute B′ = (b′1, ..., b

′
`).

5. if there exists an index i such that f
b′i
ski

(xc) 6= σ′i then
compute the smallest index j ≥ 1 such that

f
b′i+j
ski

(xc) = f j
σ′
i
(xc) and f

b′i+j−1

ski
(xc) 6= f j−1

σ′
i

(xc)

return (f
b′i+j−1

ski
(xc), f

j−1

σ′
i

(xc))

6. else return fail

ForSign(sk,·)(pk) with the generated public key. If the forger queries the signing oracle Sign for the
signature of a message M , AKCR answers this query with σ = Sign(sk,M). If the forger succeeds
in generating a signature (M ′, σ′), AKCR computes the vector B′ = (b′i), 1 ≤ i ≤ l using M ′ as in

the signing algorithm of W-OTS. Then he checks if there exists an index i with f
b′i
ski

(xc) 6= σ′i. As

f
w−1−b′i
f
b′
i

ski

(xc) = pki = f
w−1−b′i
σ′i

(xc) there must exist one j, 0 ≤ j ≤ w−1−b′i with f
b′i+j
ski

(xc) = f j
σ′i

(xc)

and f
b′i+j−1
ski

(xc) 6= f j−1
σ′i

(xc). So AKCR returns the key collision (f
b′i+j−1
ski

(xc), f
j−1
σ′i

(xc)).

We now compute the success probability. The forger returns a valid signature with probability
ε per definition. Then we have two alternative cases:

If M ′ = M the forger returned a different signature for the message M signed by Sign. In this
case the forger returned a key collision with probability 1. As σ 6= σ′ there has to be at least one

index i with σi 6= σ′i what implies f
b′i
ski

(xc) 6= σ′i.

If M ′ 6= M the probability that we find an index i with f
b′i
ski

(xc) 6= σ′i and therefore a key
collision is at least (κ′ − 1)/κ′. If the forger did not query Sign there is at least one index i with
b′i > 0 because of the checksum construction. If the forger did query Sign there is at least one index
i with b′i < bi because of the checksum construction. In both cases there is at least one value σ′i the
adversary was unable to take from prior information. As there are κ′ keys mapping xc to some fix
value, there are κ′j possibilities to map σ′i to pki = f j

σ′i
(xc) for j = w − 1 − b′i. So the probability

that f
b′i
ski

(xc) = σ′i holds is (κ′j − 1)/κ′j . So in the worst case we find a collision with probability at
least (κ′ − 1)/κ′ as we stated above.

Since both cases are mutually exclusive, the probability εKCR of finding a key collision is at
least εKCR ≥ ((κ′− 1)/κ′)ε. the time required by AKCR is tKCR ≤ t+ tKg + tVf . The time to answer
the signature query is already contained in the runtime of the forger. This concludes the proof of
part b). ut

B Proofs of implications and separations

Proof of Proposition 3 (KOW ; PRF). We construct the function family F (n) as follows: fk(x) :=
g(k), ∀k, x ∈ {0, 1}n. F (n) is not pseudorandom as there exists an distinguisher Dis querying Box
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t times with different values and if Box answers all queries with the same value Dis returns 1. The

success probability of Dis is εPRF = 1 − 2n(2
n−t)

2n2n
= 1 − 1

2tn running in time t. F (n) is KOW as we
could construct an adversary AOW on the one-wayness of g using any adversary AKOW on the KOW

property of F (n). On input y AOW chooses x
$←− {0, 1}n, runs k ← AKOW(x, y) and returns k. ut

Proof of Proposition 4 (KOW ; SKR). We denote functions in F (n) and F ′(n) with f and f ′

respectively, and we define F ′(n) as follows. For all k ∈ {0, 1}n−1, we define f ′k||0 := fk||0 =: f ′k||1
and add {f ′k||0, f

′
k||1} to F ′(n). Thus, we have that f ′k = f ′k⊕(0n−1||1) for every k ∈ {0, 1}n. Observe

that F ′(n) is KOW because a successful adversary against KOW in F ′(n) will output the correct
key w.r.t. F (n) with probability at least 1/2. Given the fact that key-collisions are easy to find, the
new family is not SKR. On input (x, k), the adversary simply outputs k⊕ (0n−1||1) and wins with
probability 1 in the SKR experiment. ut

Proof of Proposition 5 (KOW ; KCR). Let k1, k2 ∈ {0, 1}n be distinct, fixed keys and denote
functions in F (n) and F ′(n) with f and f ′ respectively. We define the new family F ′(n) as follows.
For all k ∈ {0, 1}n \ {k2}, we set f ′k1 := fk1 and inject a collision f ′k2 := f ′k1 . The new family is
still KOW because the challenge key is chosen uniformly at random and the above change does
not influence the adversaries success probability but for a negligible (2/2n) amount. However, the
new family is not KCR because on input a description of F ′(n), the adversary will simply output
(k1, k2), under which every input collides. ut

Proof of Proposition 6 (KCR⇒ SKR). Towards contradiction, let us assume a successful adversary
A that breaks SKR for F (n). We show how to use A as a block-box in an algorithm B to break
KCR. On input x from the KCR experiment, the algorithm B chooses k uniformly at random and
runs A(x, k). The subroutine returns k′ such that k′ 6= k and fk(x) = fk′(x) with probability at
least ε. Then, B returns the pair (k, k′) and is successful with the same probability ε and a negligible
computational overhead. ut

Proof of Proposition 7 (SKR ; KCR). Let k1, k2 ∈ {0, 1}n be distinct, fixed keys and denote
functions in F (n) and F ′(n) with f and f ′ respectively. We define the new family F ′(n) as follows.
For all k ∈ {0, 1}n \ {k2}, we set f ′k1 := fk1 and inject a collision f ′k2 := f ′k1 . The new family is
still SKR because the challenge key is chosen uniformly at random and the above change does
not influence the adversaries success probability but for a negligible (2/2n) amount. However, the
new family is not KCR because on input a description of F ′(n), the adversary will simply output
(k1, k2), under which every input collides. ut

Proof of Proposition 8 (PRF ; KCR). We construct F ′ as follows. We select k1, k2
$←− {0, 1}n,

and define f ′k ∈ F ′(n) as x 7→

{
0n for k ∈ {k1, k2}
fk(x) otherwise

for all k ∈ {0, 1}n.

Towards contradiction, let us assume that F ′ is not PRF. Then, there is a distinguisher A
that breaks PRF with non-negligible probability ε. With access to Box, we construct an adversary
Dis against the family F . The distinguisher Dis answers all queries of A with its own oracle and
simply forwards the output of A as its decision. Hence, the advantage of Dis is ε − 2/2n because
the probability that Box represents fk1 or fk2 is at most 2/2n, which contradicts the assumption.

Furthermore, F ′ is clearly not KCR because on input a preimage x, one can simply output
(k1, k2) as the “colliding” keys. ut
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