
Acceleration of Composite Order Bilinear Pairing on Graphics
Hardware

Ye Zhang1, Chun Jason Xue2, Duncan S. Wong2, Nikos Mamoulis1 and S.M. Yiu1

1 Department of Computer Science, The University of Hong Kong, Hong Kong
{yzhang4, nikos, smyiu}@cs.hku.hk

2 Department of Computer Science, City University of Hong Kong, Hong Kong
{jasonxue, duncan}@cityu.edu.hk

Abstract. Recently, composite-order bilinear pairing has been shown to be useful in many cryp-
tographic constructions. However, it is time-costly to evaluate. This is because the composite order
should be at least 1024bit and, hence, the elliptic curve group order n and base field become too
large, rendering the bilinear pairing algorithm itself too slow to be practical (e.g., the Miller loop is
Ω(n)). Thus, composite-order computation easily becomes the bottleneck of a cryptographic con-
struction, especially, in the case where many pairings need to be evaluated at the same time. The
existing solution to this problem that converts composite-order pairings to prime-order ones is only
valid for certain constructions. In this paper, we leverage the huge number of threads available on
Graphics Processing Units (GPUs) to speed up composite-order pairing computation. We inves-
tigate suitable SIMD algorithms for base field, extension field, elliptic curve and bilinear pairing
computation as well as mapping these algorithms into GPUs with careful considerations. Experi-
mental results show that our method achieves a record of 8.7ms per pairing on a 1024bit security
level, which is a 20-fold speedup compared to state-of-the-art CPU implementation. This result
also opens the road to adopting higher security levels and using rich-resource parallel platforms,
which for example are available in cloud computing. In fact, we can achieve more than 24 times
speedup on a 2048bit security level and a record of 7× 10−6 USD per pairing on the Amazon cloud
computing environment.

1 Introduction

A bilinear pairing ê : G × G → GT is said to be over a composite-order group if the order G
and GT is composite. Pairings with this property are commonly used in recent cryptographic
constructions, e.g., [5,6,12,14]. On the other hand, evaluating a pairing over a composite-order
group is much more expensive compared to its prime-order counterpart. The composite order
should be large enough (e.g., at least 1024bit) to be difficult to factorize, while a much smaller
prime order (e.g., 160bit) is enough to achieve the same security level. As a result, the underlying
finite field, elliptic curve operations and the pairing evaluating algorithm itself become much
slower. An estimation [9] shows that the composite-order pairing would be 50x times slower
than its prime-order counterpart. Thus, composite-order pairing computation easily becomes
the bottleneck of a cryptographic construction, especially in cases where many such pairings
need to be evaluated at the same time (e.g., a product of pairings in [12]).

There are some efforts to address this problem. Freeman [9] proposed a method that can con-
vert a scheme constructed with a composite-order pairing to a prime-order pairing construction
with the same functionality. However, Freeman’s method is not black-box; it is only valid for
certain cryptographic constructions. [15] also points out that some schemes inherently require
composite-order groups and cannot be transformed mechanically from one setting to the other,
by using the methodology of [9].

2 Y. Zhang et al.

In this paper, we leverage the huge number of threads available on GPUs (Graphics Process-
ing Units) to speed up the composite-order bilinear pairing computation. The proposed method
considers parallelism both within and between pairings. To compute a pairing, we use a block of
threads, while we concurrently run many blocks to compute many pairings in parallel. We first
implemented 32bit modular addition, subtraction and multiplication on each thread. Addition,
subtraction and multiplication operations on finite field Fq are conducted on a block of threads
via Residue Number System (RNS) [13]. Multiplication and square operations on extension
field Fq2 and addition and double operations on elliptic curve are implemented upon Fq opera-
tions, which in turn are based on a block of threads. Putting all together, the bilinear pairing
algorithm [3] is implemented upon the Fq operations, Fq2 operations, and the elliptic curve oper-
ations. Compared to the existing work, our method is transparent and generic to cryptographic
schemes. It can serve for all cryptographic schemes constructed in composite-order pairings.

To the best of our knowledge, this work is the first on evaluation of bilinear pairings (over
composite-order group) on graphics card hardware. Porting the existing CPU-version code into
the GPU is not trivial, due to the different levels of parallelism provided by CPUs and GPUs.
As a result, we need to find and implement the best parallel (e.g., SIMD-fashion) algorithms
for GPU that evaluate arithmetic operations on base field, extension field, elliptic curve, and
the bilinear pairing algorithm itself. Different design decisions were made compared to the CPU
code. For example, Fq operations in our implementation is done by a block of threads via RNS
instead of the serialized method on CPU. Due to RNS, we had to seek the formulas that can
minimize the number of modular reductions. Moreover, the multiplication inverse in the proposed
implementation needs to be avoided which motivates us to choose a projective coordinate system
to represent elliptic curve points and to postpone the final powering operation back to CPU. The
experimental results show that the proposed method achieves a 20-fold speedup on a 1024bit
security level, compared to state-of-the-art implementation [20] for CPUs. Specifically, it achieves
a record of 8.7ms per pairing on average, which is comparable with prime-order group pairings.

The rest of this paper is organized as follows. Related work is discussed in Section 2. Sections
3 and 4 present background on the mathematics and GPU programming. In Sections 5 and 6, we
present the arithmetic operations and the bilinear pairing algorithm in detail. Section 7 discusses
the implementation considerations on mapping the algorithms discussed in Section 5 and 6 onto
CUDA. The experimental results are shown in Section 8. We conclude this paper in Section 9.

2 Related Work

There have been many efforts to speed up cryptographic primitives over GPUs by exploring the
large number of available cores. [17] and [8] first considered modular multiplication (i.e., the
multiplication operation over a finite field Fq where q is a large prime number) over GPUs. At
that time, GPUs were still designed for processing graphics only and therefore a large effort
was required for researchers to map their programs to the GPU architecture. Later on, [21],
[11], and [4] also provided a framework for implementing Fq operations, but this time on a
CUDA-architecture GPU that provides researchers and programmers the ability to write general-
purpose programs. More recently, Guillermin [10] investigated scalar multiplication of elliptic
curve on an FPGA hardware. Still, none of the works above aims at speeding up a bilinear
pairing (especially, over a composite-order group) which acts as one of the dominating tools in
the recent cryptographic constructions design.

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 3

The first algorithm for computing a Tate pairing on CPUs was introduced by Miller [16] and
an improved algorithm was proposed by Barreto et al. [3]. In this paper, we adopt the method
proposed in [3]. The well-known implementation of bilinear pairings over CPUs is the Pairing-
Based Cryptography (PBC) library [20], which we include for comparison in experiments.

3 Mathematics of Composite Order Bilinear Pairing

In this section, we introduce the basic concept on bilinear pairings and the group on which a
bilinear pairing is defined. We describe the relationship between group size and security level
and why the composite order in a bilinear pairing should be much larger than a prime order.

Let G1 and G2 be two cyclic additive groups and GT a cyclic multiplicative group. A bilinear
map (of order l ∈ N) is defined as

el : G1 ×G2 → GT (1)

with the following properties: (1) bilinear: for all P ∈ G1, Q ∈ G2 and a, b ∈ Z, el(aP, bQ) =
el(P,Q)ab; (2) non-degenerate: el(P,Q) 6= 1 for some P ∈ G1 and Q ∈ G2, where 1 is the identity
element of GT ; and (3) computable: there is an efficient algorithm to compute el(P,Q) for any
P ∈ G1 and Q ∈ G2. If there exists a distortion map φ : G1 → G2, we can define a symmetric
bilinear pairing êl : G×G→ GT so that êl(P1, P2) = el(P1, φ(P2)) for any P1, P2 ∈ G1.

Specifically, let E be an elliptic curve defined over a finite field Fq where q = pm, p,m ∈ N
and p is the characteristic of Fq. Let O be the point at infinity for E. For a nonzero integer l,
the set of points P in E(Fq) such that lP = O is denoted as E(Fq)[l]. The group E(Fq)[l] is said
to have security multiplier or embedding degree k for some k > 0 if l | qk − 1 and l - qs − 1 for
any 0 < s < k. The Tate pairing of order l is a map

el : E(Fq)[l]× E(Fqk)[l]→ Fqk (2)

The pairing-friendly elliptic curve that we use for realizing a composite order bilinear pairing is
a supersingular elliptic curve in the following form which is defined over a prime field.

E : y2 = x3 + (1− b)x+ b, b ∈ {0, 1} (3)

The group order l is composite and the embedding degree k is 2. There exists a distortion map
φ : E(Fq)→ E(Fqk) which allows us to define a symmetric bilinear map as

êl : E(Fq)[l]× E(Fq)[l]→ Fqk (4)

so that êl(P,Q) = el(P, φ(Q)) for any P,Q ∈ E(Fq)[l]. In our implementation, we set b = 0, that
is, E : y2 = x3 +x over Fq and the prime q ≡ 3 (mod 4). The order of E(Fq) is #E(Fq) = q+ 1.
This curve is referred to as A1 curve in the PBC software library [20].

3.1 Finite Field Size vs. Security Level

The security of pairing-based cryptosystems generally relies on two problems, elliptic curve
discrete logarithm problem (ECDLP) in G and logarithm problem in the extension field Fqk ,
that is, GT . For a pairing-based cryptosystem that requires 1024bit security, the size of the
extension field Fqk should at least be 1024 bits long and the group order of G should at least be
160 bits long [18].

4 Y. Zhang et al.

In most composite-order pairing-based cryptosystems, their security also relies on the in-
tractability of a problem called Subgroup Decisional Problem (SDP) [5]: for a bilinear map
ê : G × G → GT of composite order l, without knowing the factorization of the group order l,
the SDP is to decide if an element x is in a subgroup of G or in G. For the intractability of SDP,
the group order l of G should be at least 1024 bits long. As l|q+1, q should also be at least 1024
bits long. As the embedding degree k is 2, the size of the extension field Fq2 is at least 2048 bits
long.

4 NVIDIA’s CUDA Framework

NVIDIA’s CUDA consists a set of software tools (e.g., CUDA Toolkit) and the graphics card
hardware. CUDA facilitates the design and implementation of general-purpose programs on
NVDIA’s graphics cards. A program includes one kernel function written in the CUDA C/C++
language (i.e., an extension to C/C++ language designed for CUDA) in a .cu file. This .cu
file is complied via NVCC (i.e., NVidia Cuda Compiler), which sends the host code to the na-
tive GCC/Visual C++ Compiler and compiles the GPU code (e.g., the kernel function) into
a NVIDIA’s virtual machine code (PTX) and in turn the graphics card’s machine code (.cu-
bin). NVCC also combines the compiled host and GPU codes to finally generate a single host
executable file which includes the host code on how to launch the kernel’s GPU machine code.

Currently, there are many NVIDIA’s graphic cards supporting CUDA 3. In our experiments,
we use GeForce GTX 285 (240 CUDA cores) and GTX 480 (480 CUDA cores) cards which are the
top-end products of the second and third generations (“Fermi”) of CUDA-enable graphic cards
separately. A CUDA-enable graphic card contains tens of Streaming Multiprocessors (SMs) of
which each could run hundreds of threads seemingly concurrently. In fact, a SM schedules those
threads based on a group of 32 threads (called a “warp”). At one time, a warp of 32 threads is
active and those 32 threads will be mapped to the 8 (in GTX 285) or 32 (in GTX 480) CUDA
cores (i.e., the physical processing units) to execute. As there is only one instruction decoding
unit available for each SM, all 32 threads within one warp should share the same instruction,
otherwise the divergent instructions will be serialized.

At the logical level of the design, programmers can define the grid size and the block size for
their own kernel function. The grid size defines how many blocks within one grid run for this
kernel function and block size defines how many threads are within each block. CUDA guarantees
that threads within the same block can communicate and will execute on the same SM. The
logical design hides the difference between graphic cards and the different power between different
GPUs. For example, without changing the code, a card with a larger number of SMs would run
more blocks each time, resulting in a better performance automatically.

Each thread can also access a few (private) register files while threads within each block can
access to the pre-block “shared memory”. The device (global) memory, located off-chip, is the
largest available memory that can be read/written by all threads, however, its access time is
400-600 times higher, compared to the registers and the shared memory. Constant and texture
memory is also located on the device memory with special 1D and 2D caches available. A CUDA
program should carefully choose which memory to use to achieve an optimized performance. For
more details on CUDA architecture and programming with CUDA, the reader can refer to [19].

3 http://www.nvidia.com/object/cuda_gpus.html

http://www.nvidia.com/object/cuda_gpus.html

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 5

5 Arithmetic Operations

The arithmetic operations required by a bilinear pairing are the operations in the extension field
Fq2 and the elliptic curve E(Fq) which are in turn based on the base field operations in Fq. In
this section, we first describe the algorithms for based field operations and then algorithms on
the extension field and elliptic curve.

Specifically, the operations in Fq2 include multiplication a×b and square a2 where a, b ∈ Fq2 .
The operations in E(Fq) are double 2P and addition P +Q where P,Q ∈ E(Fq). The operations
in Fq considered in this paper include multiplication, addition and subtraction.

The multiplication inverse in Fq is expensive in our GPU implementation, which motivates
us to avoid it. However, there are two occasions which may require multiplication inverse. One
is in the addition and double operations of E(Fq). This can be avoided by using a projective
coordinate system to represent elliptic curve points and we do so. The second one is in the final
powering of bilinear pairing. However, we identify that the final powering is not a bottleneck of
the whole system. In fact, through the experiments, we find that the final powering is 500+ times
faster than the Miller’s loop on the CPU. Therefore, we can leave the work of final powering
(and therefore multiplication inverse in Fq) to the CPU.

Furthermore, cryptographic constructions may only require the result of a product of bilinear
pairings [12]. In this case, we can calculate the multiple pairings result (without the final power)
on the GPU, then multiply them and do the single final powering to get the result. In this way,
the cost to compute the final powering would be even ignored.

5.1 Base Field Operations

Motivated by the feasibility of performing fast and parallelized operations on multi-core graphics
hardware, we choose to represent the base field elements of Fq in Residue Number System (RNS).
In RNS, an n-length vector a = (a1, a2, ..., an) is chosen such that gcd(ai, aj) = 1 for all i 6= j
and q < A where A =

∏n
i=1 ai is called the dynamic range of a. For any x, 0 ≤ x ≤ q, it can

be represented uniquely in RNS as 〈x〉a = (x mod a1, x mod a2, . . . , x mod an), and recovered
uniquely in the form of x mod A due to the Chinese Remainder Theorem.

The purpose of using RNS is to break down some basic arithmetic operations that include
� ∈ {+,−,×} to small pieces which can be parallelized and computed using the multiple cores
of the GPU. That is, 〈x〉a � 〈y〉a = ((x1 � y1) mod a1, . . . , (xn � yn) mod an) where 〈x〉a =
(x1, . . . , xn) and 〈y〉a = (y1, . . . , yn). Note that division (and therefore multiplication inverse in
Fq) and comparison in RNS are non-trivial and usually avoided from using as they do not offer
speed advantage over conventional methods.

It is known that the multiplication operation on Fq can be done in RNS using the RNS
Montgomery multiplication algorithm (see [13]). But there are few papers dealing with addition
and subtraction on Fq in RNS. If we see the RNS Montgomery multiplication algorithm as the
first step to compute multiplication (the second step is the mod q operation), we can find a
uniform way to handle addition and subtraction in RNS as well. Basically, given two elements
a, b ∈ Fq, we calculate addition a + b, subtraction a − b and multiplication a × b without any
modular operations. The result may grow up; when it becomes larger than a threshold, we
employ an explicit modular reduction (i.e., modq) to bring back the result to the allowed range
again. This idea makes the operations in base field Fq simple and clear. Moreover, since the first
step addition, subtraction and multiplication are cheap in RNS, this method allows us to fully
focus on the most expensive part; that is, the second step: modular reduction.

6 Y. Zhang et al.

To perform modular reduction, we employ the Montgomery Modular Reduction algorithm
in RNS. Algorithm 1 shows the algorithm (derived from [13, Alg. 3], as we discussed). In the
algorithm, the dynamic ranges of bases a and b are denoted as A and B, respectively.4 Also note
that the output of Algorithm 1 is sB−1(modq) where the component B−1 should be removed
in the conventional way of using the Montgomery Multiplication algorithm (see [13]).

Algorithm 1: Montgomery Modular Reduction in Residue Number Systems [13]

Input: 〈s〉a∪b.
Output: 〈w〉a∪b, where w < 2q and w ≡ sB−1 (mod q).
Ensure: gcd(B, q) = 1, gcd(A,B) = 1, 4q ≤ B and 2q ≤ A.

1 〈t〉b ← 〈s〉b · 〈−q−1〉b 〈t〉a∪b ⇐ 〈t〉b ;
2 〈u〉a ← 〈t〉a · 〈q〉a ;
3 〈v〉a ← 〈s〉a + 〈u〉a ;
4 〈w〉a ← 〈v〉a · 〈B−1〉a 〈w〉a ⇒ 〈w〉a∪b ;
5 return 〈w〉a∪b

The symbol ⇒ (or ⇐) represents a base extension algorithm [21,11]. Given an RNS repre-
sentation 〈x〉c, this algorithm outputs 〈x〉d for d 6= c. The two base extensions 〈t〉a∪b ⇐ 〈t〉b and
〈w〉a ⇒ 〈w〉a∪b are the most computationally expensive parts of Algorithm 1.The following
theorem states the correctness of Algorithm 1.

Theorem 1. For any integer s such that 0 ≤ s < αq2, Algorithm 1 outputs w such that
0 ≤ w < 2q if B > αq and A > 2q.

Proof. From Algorithm 1, we have

w =
v

B
=
s+ tq

B
<
αq2 +Bq

B

w < q · (αq
B

+ 1) < 2q.
(5)

Therefore, when the result of a{+,−,×}b grows beyond threshold αq2, we can reduce it back
to w < 2q. Furthermore, we can control parameter α, such to trade off between the number of
reductions and the number of threads; a larger α results a larger threshold, but B > αq will be
larger as well, requiring a larger number of bases to represent.

5.2 Extension Field Operations

Given an element a ∈ Fq2 , a can be written as x + iy where x, y ∈ Fq and i2 = −1. The
multiplication a× b :

a× b = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y1 + x2y2)

which requires two reductions with four cheap multiplications and two cheap additions in RNS.
Since the number of reductions meets with the lower bound (two), we do not resort to more ad-
vanced methods (e.g., Karatsuba multiplication). Similarly, squaring a2 requires two reductions
as well.

a2 = (x21 − y21) + i2x1y1
4 We refer readers to [1] for information on how to choose a good base a and b.

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 7

5.3 Elliptic Curve Operations

As we discussed, we adopt the Jacobian projective coordinate system for representing points in
elliptic curve to avoid multiplication inverse in Fq. A point P = (X,Y, Z) in Jacobian projective
coordinates can be mapped to (X

Z2 ,
Y
Z3) in affine coordinates.

Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points in E(Fq). Below is the formula from
[7] for computing double, that is, R = 2P = (X3, Y3, Z3):

X3 = T, Y3 = −8Y 4
1 +M(S − T), Z3 = 2Y1Z1

where S = 4X1Y
2
1 , M = 3X2

1 + Z4
1 , T = −2S +M2. Addition R = P +Q = (X3, Y3, Z3) :

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H3 + r(U1H

2 −X3), Z3 = Z1Z2H

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , S2 = Y2Z

3
1 , H = U2 − U1, r = S2 − S1.

In our implementation, to make the addition formula simpler, Q is given in affine coordinates
(X2, Y2). Equivalently, we can view it as Q = (X2, Y2, 1) in Jacobian projective coordinates.
Hence the formula above can be refined as follows:

X3 = −H3 − 2X1H
2 + r2, Y3 = −Y1H3 + r(X1H

2 −X3), Z3 = Z1H

where H = X2Z
2
1 −X1 and r = Y2Z

3
1 − Y1.

As in the previous section, we are interested to find patterns like
∑
AiBi in operations,

to minimize the number of modular reductions. The refined formulas to compute addition and
double in E(Fq) are shown in Table 1.

Table 1: E(Fq) Operations

2(X1, Y1, Z1, Z
2
1) (X1, Y1, Z1) + (X2, Y2)

Y 2
1 H = X2Z

2
1 −X1

S = 2Y 2
1 X1 e0 = Y2Z1

M = (Z2
1)2 + 3X2

1 r = Z2
1e0 − Y1

X3 = T = M2 − 2S H2 = (H)2

Y3 = −MT +MS − 8(Y 2
1)2 X3 = (r)2 − (HH2)− 2X1H

2

Z3 = 2Y1Z1 e1 = −X3 +X1H
2

Z2
3 = (Z3)2 e2 = Y1H

Y3 = e1r − e2H2

Z3 = Z1H

Z2
3 = (Z3)2

6 Bilinear Pairing Algorithms

Based on the operations above, in this section, we describe the bilinear pairing algorithm itself.
Algorithm 2 shows the Barreto et al.’s algorithm [3] to compute bilinear pairings. The algorithm
is described specifically for composite-order bilinear pairing in Eq. (4).

8 Y. Zhang et al.

Algorithm 2: Barreto et al.’s Algorithm [3]

Input: P,Q ∈ G.
Output: ê(P,Q) = en(P, φ(Q)) where n = #E(Fq) = q + 1.
Ensure: E : y2 = x3 + x over Fq; q > 3, q ≡ 3 (mod 4); φ(x, y) = (−x, iy) ∈ E(Fq2)[n] for

(x, y) ∈ E(Fq)[n], i ∈ Fq2 , i2 = −1.
1 Let n = (nt, ..., n0), ni ∈ {0, 1} and nt = 1 ;
2 Set f ← 1 and V ← P ;
3 for i← t− 1 to 0 do
4 Set f ← f2 · gV,V (φ(Q)) ;
5 V ← 2V ;
6 if i = 0 then
7 break ;
8 end
9 if ni = 1 then

10 Set f ← f · gV,P (φ(Q)) ;
11 V ← V + P ;

12 end

13 end

; // f (q2−1)/n The final powering

14 return f

Algorithm 3: gU,V · φ [20]

Input: U = (x1, y1, z1, z
2
1) ∈ E(Fq)[n] in Jacobian projective coordinate ; V = (x2, y2) and

Q = (x3, y3) ∈ E(Fq)[n] in affine coordinate where n = #E(Fq).
Output: Ĝ ∈ Fq2 .
Ensure: E : y2 = x3 + x over Fq; q > 3, q ≡ 3 (mod 4); φ(x, y) = (−x, iy) ∈ E(Fq2)[n] for

(x, y) ∈ E(Fq)[n], i ∈ Fq2 , i2 = −1.
1 if U 6= V (either x1

z21
6= x2 or y1

z31
6= y2) then

/* ax+ by + c = 0 is the line that goes through U and V . */

2 a← y1 − z31y2 ;
3 b← z31x2 − z1x1 ;
4 c← −(ax2 + by2) ;

5 end
6 else

/* ax+ by + c = 0 is the tangent to the elliptic curve E(Fq) at the point U. */

7 a← −(3x21 + z41)z21 ;
8 b← 2y1z

3
1 ;

9 c← −(2y21 + ax1) ;

10 end
11 return (c− ax3) + by3i.

Line 5 and 11 in the algorithm are the double and addition in E(Fq); lines 4 and 10 are
the multiplication operations in Fq2 which all have been discussed in the previous section. The
function gU,V · φ : E(Fq)→ Fq2 is shown in Algorithm 3.

The flow of computations in Algorithm 2 and Algorithm 3 only depends on the system
parameters (e.g., n = q+1) but not on the input points. Since these two algorithms fit well with
the SIMD fashion of a GPU, we do not further refine the bilinear pairing algorithms.

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 9

7 Implementation and Analysis

In this section, we discuss how the previous presented algorithms are mapped to CUDA pro-
gramming model. Specifically, we discuss what data structures that we use to represent base
field, extension field and elliptic curve elements. We also describe the building algorithms for
single thread and how we store variables and constants onto GPUs.

In this paper, we consider 1024/2048bit composite order. As the word length in GPU is
32 bits, we need at least 1024/32=32 (64) bases to represent a 1024/2048bit number (i.e., Fq

element) in RNS. Each base is handled by one thread. In fact, the number 32/64 only acts a
lower bound, the least number we can choose is 33/65. We also need another set of bases for
the base extension operation, therefore, the total number of bases to represent one Fq element
is 33+33+1=67 (65+65+1=131). The additional base comes from the Shenoy’s base extension
algorithm. Hence, each Fq element is mapped to a block of 67 (and 131) threads and the data
structure to represent one Fq element is simply a 32bit unsigned integer (UINT32).

We do not consider parallelism within the operations of extension field and elliptic curve, as
our goal in this paper is to compute as many as possible pairings at one time (a typical goal in
a server setting). Therefore, we build extension field and elliptic curve directly on the base field.
The data structure for the extension field elements consists of a two-dimension vector (x, y) where
x, y are UINT32. The data structure to represent elliptic curve points in projective coordinates
consists of (x, y, z, z2) of UINT32s. The bilinear pairing algorithm is straightforwardly built
upon the base field, extension field and elliptic curve operations. Therefore, each block handles
one pairing calculation. Our grid and block arrangements simplify the design. Specifically, the
base field operations consist of two parts. One is to compute addition a+ b mod m, subtraction
a−b mod m and multiplication a×b mod m for the base m < 232. The other is to do Montgomery
modular reduction via base extension. To compute a+ b mod m (similarly, a− b mod m), there
are two cases: a + b < m and m ≤ a + b < 2m where we assume that 0 ≤ a, b < m. In the
second case, we need to output a+ b−m as the result. However, this case handling, depending
on the input values, causes a branch divergence on the GPU (since GPU is SIMD). To minimize
the divergence, we compute both u = a + b and v = u − m first, no matter what the inputs
are. Then, we do the condition test and output u or v accordingly, where now the divergence is
minimized as the output operation.

The multiplication a × b mod m follows the method in [2,21]. Given 0 ≤ a, b < m, let
d = 232 −m and p = ab = ph232 + pl. Then,

p = ph(d+m) + pl

p mod m ≡ phd+ pl
(6)

If m is large enough, then d = 232−m will be quite small and phd will be smaller than ph232.
Following this direction, we can further reduce phd and prove that p mod m ≡ duh +ul + pl and
duh + ul + pl < 2m, where phd = uh232 + ul. We also note that CUDA does not provide direct
functions to output the lowest 32bit of two 32bit number multiplication and the NVCC compiler
does not do a good job when translating C code a× b into a proper PTX code. Here we use the
method in [22] that hardcodes a proper PTX multiplication code as “asm(“mul.wide.u32 %0,
%1, %2:”: “=l”(p), “=r”(a), “=r”(b))” which has a better performance than NVCC.

The memory is allocated as follows. The basic idea is that we (try to) store all variables to
the register file of their threads such that the access time to them can be ignored. We also store
67 (and 131) bases and those one-dimensional precomputed values in the constant memory to

10 Y. Zhang et al.

facilitate its 1D cache. Although the time for the fist access to them is large (400-600 cycles), the
overall access time could be small as the algorithms and their threads fetch them frequently. For
example, in each algorithm, the first thing is to load the associated base of that thread to the
register. We also store the 2D array of the base extension algorithm to the texture memory so
that we can benefit from the spatial locality and the 2D cache of the texture memory. Through
the CUDA profiler’s report, it indeed exploits caching well and the cache-hit rate is very high.

8 Experimental Results

The experiments were conducted on NVIDIA GeForce GTX 285, GTX 480 and Amazon EC2
Cloud Computing5 Cluster GPU Instances (equipped with two Tesla M2050). The detailed
system configurations are shown in Table. 2. For comparison, we also choose Pairing-Based
Cryptography (PBC) library version 0.5.11 (built upon GMP library6 version 5.0.1) as the
benchmark that runs on Intel Core 2 E8300 CPU at 2.83GHz and 3GB memory. Through the
experiments, we choose random points P,Q ∈ E(Fq) as the input to evaluate ê(P,Q).

Table 2: Experimental Configurations

GPU Model CUDA Cores Clock (GHz) Graphical Memory (GB) Compute Capability

GTX 285 240 1.476 1 1.3 (GT200)

GTX 480 480 1.4 1.5 2.0 (Fermi)

Amazon EC2 448 (x2) 1.15 3 (x2) 2.0 (Fermi)

We first compare the running time on CPU and GPUs. The results are shown in Fig. 1. The
GPUs method seems not to have advantage when the number of pairings is small (< 32), as the
hardware is not fully occupied. With the number becoming larger, the speedup in running time
increases. This indicates that the GPUs method is especially suitable for the case that multiple
composite-order pairings should be evaluated at the same time.

Specifically, in the 1024bit security level, GTX 285, M2050 (Amazon EC2) and GTX 480
achieve a running time of 17.4ms, 11.9ms and 8.7ms per pairing respectively, which is 9.6,
14.3 and 19.6 times faster respectively compared to the state-of-the-art CPU implementation
(171.1ms per pairing). We note that this result has been comparable with prime-order pairing
implementation on CPU (see the dash lines in Fig. 1). Where both A and D179 [20] pairing are for
1024bit security and A is the fastest. With a 2.1 USD charge per hour, 11.9ms on Amazon EC2
also means that the cost to compute a pairing is as low as (2.1×11.9)/(60×60×1000) = 7×10−6

USD. For example, assuming that the CPU machine in our experiments is with 400 USD price,
such a low cost means this machine should continuously for 2.65 year to recover the cost.

In a higher 2048bit security level, the speedup on GTX 480 is even more than 24x (48.9ms
per pairing, compared with 1189.8ms per pairing on CPU). GTX 280 and M2050 also achieve
high speedups of 12 (98.2ms per pairing) and 21 (54.7ms per pairing) times at such a security
level, which suggests that our method is promising for higher security levels.

5 http://aws.amazon.com/ec2/
6 http://gmplib.org/

http://aws.amazon.com/ec2/
http://gmplib.org/

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 11

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of Pairings

T
ot

al
 T

im
e

(m
s)

GTX 285
GTX 480
Tesla M2050
CPU (1024bit Composite Order)
CPU (A Type, Prime Order)
CPU (D179 Type, Prime Order)

(a) 1024bit Security Level

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Number of Pairings

T
ot

al
 T

im
e

(m
s)

GTX 285
GTX 480
Tesla M2050
CPU (2048bit Composite Order)
CPU (D437 Type, Prime Order)

(b) 2048bit Security Level

Fig. 1: Running Time on different GPUs and CPU

8.1 Number of Registers vs. Optimized Average Running Time

In the next experiment, we analyze how the implementation parameters impact the performance.
We record the running time by changing the maximum number of registers that one thread can
use, from 16 to 32 to find which allocation minimizes the average running time per pairing. The
results are shown in Table. 3 for GTX 285. In Table. 3, the number of pairings which achieves
the optimized average running time for each different maximum numbers of registers (16–32)
can be predictable. In fact, we show in Fig. 2 the predicted and experimentally recorded running
time, for the case where the maximum number of registers per thread is set to 26. We can see
that the optimized average time only reaches 120 7 (and 240, . . .) where a big skip appears,
which indicates that all hardware resource is occupied.

Table 3: Optimized Average Running Time

Number of Registers 16 17 18 19 20 21

Number of Pairings 240 180 180 180 180 150

Average Time (ms) 18.5 17.8 17.7 17.5 17.4 17.8

Number of Registers 22 23 24 25 26 27

Number of Pairings 150 150 150 120 120 120

Average Time (ms) 17.8 17.8 18.4 19.3 19.4 19.2

Number of Registers 28 29 30 31 32

Number of Pairings 120 120 120 120 120

Average Time (ms) 19.0 20.0 N/A 22.5 22.0

(a) 1024bit Security Level

Number of Registers 16 17 18 19 20 21

Number of Pairings 150 120 120 120 120 120

Average Time (ms) N/A 99.0 99.1 98.6 98.4 98.2

Number of Registers 22 23 24 25 26 27

Number of Pairings 90 90 90 90 90 60

Average Time (ms) 101.0 101.2 105.4 102.7 103.7 127.7

Number of Registers 28 29 30 31 32

Number of Pairings 60 60 60 60 60

Average Time (ms) 123.7 127.5 N/A 147.3 145.2

(b) 2048bit Security Level

7 This number can be digged out by CUDA GPU Occupancy Calculator, http://developer.download.nvidia.
com/compute/cuda/CUDA_Occupancy_calculator.xls.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

12 Y. Zhang et al.

0 50 100 150 200 250 300 350
1000

2000

3000

4000

5000

6000

7000

8000

Number of Pairings

T
ot

al
 T

im
e

(m
s)

Experimental Result
Predition

Fig. 2: Prediction of Running Time

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Pairngs

T
ot

al
 T

im
e

(m
s)

Fig. 3: Running Time vs. Number of Registers

Different numbers of registers per thread have no impact on Fermi’s architecture (Fig. 3)
(GTX 480, M2050). we believe that this is because local memory is cached by its L1/L2 cache.

8.2 Effect of Unrolling

We also unroll the for loops inside the base extension algorithms. The results are shown in
Table. 4. We do not test on unrolling 8 or more loops on GTX 285 as the compiler fails at the
configurations. The experimental results suggest that unrolling at 1024/2048bit security levels
does not speed up the performance obviously. Therefore, our implementation is optimized at
these levels.

Table 4: Unrolling v.s. Performance

Unroll 1 (ms) Unroll 2 (ms) Unroll 4 (ms) Unroll 8 (ms) Unroll 16 (ms)

GTX480, 1024bit 2208.0 2227.2 2406.2 2801.3 2991.0

GTX480, 2048bit 10677.7 10399.3 11639.5 12994.5 13762.9

GTX285, 1024bit 3132.0 3225.9 3205.1 – –

9 Conclusions

This paper is a thorough study on how to compute bilinear pairing using graphics card hardware.
To fully utilize the thousands of threads on GPU, we choose RNS system to represent elements in
base field Fq. Based on RNS, we further implement the arithmetic operations on Fq2 and E(Fq),
and the bilinear pairing algorithm itself. Experimental results show that our implementation
is much faster than state-of-the-art CPU implementation to compute composite-order pairings
and is comparable with the prime-order CPU implementation. Specifically, it achieves a record
of 8.7ms per pairing, which is 19.6 time faster compared with (composite-order) CPU implemen-
tation in the 1024bit security level. At a 2048bit level, the speedup is even higher (24 times). We

Acceleration of Composite Order Bilinear Pairing on Graphics Hardware 13

also conduct experiments on a cloud computing environment (Amazon EC2), which suggests a
low-cost record of 7 × 10−6 USD per pairing. We should also note that our implementation is
generally valid for prime-order pairings as well.

References

1. J. C. Bajard, S. Duquesne, M. Ercegovac, and N. Meloni. Residue systems efficiency for modular products
summation: application to elliptic curves cryptography. Advanced Signal Processing Algorithms, Architectures,
and Implementations XVI, 6313(1):631304, 2006.

2. J.-C. Bajard, N. Meloni, and T. Plantard. Efficient rns bases for cryptography. In IMACS’2005 World
Congress, 2005.

3. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems.
In Advances in Cryptology - CRYPTO 2002, pages 354–368. Springer, 2002. LNCS 2442.

4. D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. Ecm on graphics cards. In Proceedings
of the 28th Annual International Conference on Advances in Cryptology: the Theory and Applications of
Cryptographic Techniques, EUROCRYPT ’09, pages 483–501, Berlin, Heidelberg, 2009. Springer-Verlag.

5. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In Proc. of Theory of
Cryptography (TCC) ’05, pages 325 – 341. Springer, 2005. LNCS 3378.

6. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing. Cryptology ePrint Archive,
Report 2006/045, 2006. http://eprint.iacr.org/.

7. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed coordinates. In Advances
in Cryptology - ASIACRYPT ’98, pages 51 – 65. Springer, 1998. LNCS 1514.

8. S. Fleissner. Gpu-accelerated montgomery exponentiation. In Y. Shi, G. van Albada, J. Dongarra, and
P. Sloot, editors, Computational Science C ICCS 2007, volume 4487 of Lecture Notes in Computer Science,
pages 213–220. Springer Berlin / Heidelberg, 2007.

9. D. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In
H. Gilbert, editor, Advances in Cryptology C EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 44–61. Springer Berlin / Heidelberg, 2010.

10. N. Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over Fp. In S. Mangard
and F.-X. Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, volume 6225 of
Lecture Notes in Computer Science, pages 48–64. Springer Berlin / Heidelberg, 2010.

11. O. Harrison and J. Waldron. Efficient acceleration of asymmetric cryptography on graphics hardware. In
AFRICACRYPT ’09: Proceedings of the 2nd International Conference on Cryptology in Africa, pages 350–
367, Berlin, Heidelberg, 2009. Springer-Verlag. LNCS 5580.

12. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and
inner products. In EUROCRYPT’08: Proceedings of the theory and applications of cryptographic techniques
27th annual international conference on Advances in cryptology, pages 146–162, Berlin, Heidelberg, 2008.
Springer-Verlag.

13. S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-rower architecture for fast parallel montgomery
multiplication. In Advances in Cryptology - EUROCRYPT 2000, pages 523 – 538. Springer, 2000. LNCS
1807.

14. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-
based encryption and (hierarchical) inner product encryption. In H. Gilbert, editor, Advances in Cryptology
C EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 62–91. Springer Berlin /
Heidelberg, 2010.

15. S. Meiklejohn, H. Shacham, and D. Freeman. Limitations on transformations from composite-order to prime-
order groups: The case of round-optimal blind signatures. In M. Abe, editor, Advances in Cryptology -
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 519–538. Springer Berlin /
Heidelberg, 2010.

16. V. S. Miller. Short programs for functions on curves. unpublished manuscript available at
http://crypto.standford.edu/miller/miller.pdf.

17. A. Moss, D. Page, and N. Smart. Toward acceleration of rsa using 3d graphics hardware. volume 4887 of
Lecture Notes in Computer Science, pages 364–383. Springer Berlin / Heidelberg, 2007.

18. NIST. Recommendation for key management, 2007.
19. NVIDIA Corporation. Nvidia cuda c programming guide, 2010. http://developer.download.nvidia.com/

compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf.

http://eprint.iacr.org/
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

14 Y. Zhang et al.

20. PBC Library. The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.
21. R. Szerwinski and T. Güneysu. Exploiting the power of gpus for asymmetric cryptography. In CHES ’08:

Proceeding sof the 10th international workshop on Cryptographic Hardware and Embedded Systems, pages
79–99, Berlin, Heidelberg, 2008. Springer-Verlag. LNCS 5154.

22. K. Zhao. Implementation of multiple-precision modular multiplication on gpu, 2009. http://www.comp.hkbu.
edu.hk/~pgday/2009/10th_papers/kzhao.pdf.

http://www.comp.hkbu.edu.hk/~pgday/2009/10th_papers/kzhao.pdf
http://www.comp.hkbu.edu.hk/~pgday/2009/10th_papers/kzhao.pdf

	Acceleration of Composite Order Bilinear Pairing on Graphics Hardware
	Ye Zhang, Chun Jason Xue, Duncan S. Wong, Nikos Mamoulis and S.M. Yiu
	Introduction
	Related Work
	Mathematics of Composite Order Bilinear Pairing
	Finite Field Size vs. Security Level

	NVIDIA's CUDA Framework
	Arithmetic Operations
	Base Field Operations
	Extension Field Operations
	Elliptic Curve Operations

	Bilinear Pairing Algorithms
	Implementation and Analysis
	Experimental Results
	Number of Registers vs. Optimized Average Running Time
	Effect of Unrolling

	Conclusions

