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Abstract

We investigate public key encryption that allows the originator of a ciphertext to retrieve a
“forgotten” plaintext from the ciphertext. This type of public key encryption with “backward
recovery” contrasts more widely analyzed public key encryption with “forward secrecy”. We
advocate that together they form the two sides of a whole coin, whereby offering complementary
roles in data security, especially in cloud computing, 3G/4G communications and other emerging
computing and communication platforms. We formalize the notion of public key encryption
with backward recovery, and present two construction methods together with formal analyses of
their security. The first method embodies a generic public key encryption scheme with backward
recovery using the “encrypt then sign” paradigm, whereas the second method provides a more
efficient scheme that is built on Hofheinz and Kiltz’s public key encryption in conjunction with
target collision resistant hashing. Security of the first method is proved in a two-user setting,
whereas the second is in a more general multi-user setting.

1 Introduction

Forward security, a notion first proposed by Günther [10] in the context of key exchange, has
been well studied during the past decade. It guarantees the security of past uses of a secret key.
Notably, past ciphertexts associated with a forward secure encryption scheme cannot be decrypted
by an adversary even if the adversary possesses the current decryption key. A corollary of forward
security is that it is infeasible even for either a receiver or a sender to recover plaintexts from past
ciphertexts. A related point is that with traditional public key encryption, a sender is in general
not able to decrypt a ciphertext he sent earlier. At a first look it might sound strange that a
sender wants to decrypt a past ciphertext, given that it was him who created the ciphertext from
a plaintext in his possession in the first place. As will be shown below, with the advent of new
generations of computing and communication systems, users are increasingly relying on external
storage to maintain data, especially when the amount of data exceeds the capacity of their local
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storage. This trend entails the necessity of decrypting ciphertexts by the sender who has “forgotten”
the associated plaintexts.

Let us first take a look at the emerging cloud computing platform. The deployment of 3G/4G
and other new generations of communication systems, together with the availability of increasingly
sophisticated smart phones and other handheld devices, is altering the traditional image of how
people use mobile phones and access the Internet. Anecdotal evidence indicates that more and
more people are bypassing traditional computers, and instead using a smart phone not only as
a communication tool but also as an access point to data that is stored in servers residing in a
communication infrastructure. This type of applications for outsourcing individual’s computing
needs mirrors cloud computing for businesses.

As an example, we consider a typical email communication system where a user relies on an
email server, called a message storage and transfer agent or MSTA, for all communications. All his
incoming messages are stored in an inbox folder on the MSTA, and an outgoing message is relayed by
the MSTA to the MSTA of the intended recipient of the message, with a copy of the message being
kept in the “Sent Mail” folder of the sender’s MSTA. Clearly, due to its advantages in scalability and
flexibility, public key encryption is a preferred method for secure email communication. Consider a
situation where a verbatim copy of a public key encrypted message is kept on the MSTA. At a later
stage the sender finds out that he is no longer in possession of the original message in the storage
of his local or handheld device such as a netbook computer or a smart phone, and has to rely on
the MSTA for the retrieval of the message. If the copy of the message on the MSTA is encrypted
using a regular public key encryption technique, he will now be out of luck.

The issue discussed above could be addressed if the user keeps a copy of the original, unencrypted
message on the MSTA. This, however, would require the modification of the user’s email system,
possibly deviating from current industrial standards for email protocols. Worse still, it would
introduce new issues on the security of unencrypted messages kept on the server. Yet a further
potential problem would be the requirement of storing two copies of a message, one encrypted and
the other unencrypted, on the MSTA.

The above example highlights the need for a new type of public key encryption that allows
the sender to decrypt a ciphertext at a later stage. We are not aware of any existing public key
encryption technique that can be “tweaked” to fulfill the requirement. A further challenge for
designing such a new type of public key encryption is a requirement related to the authenticity of a
ciphertext. Specifically, the originator may need to be assured at a later stage that the ciphertext
was indeed produced by himself earlier.

Our second example has do to with data centers or more generally, cloud computing. Businesses
are increasingly relying on cloud computing to outsource data processing and storage, with the
primary goal of reducing or eliminating in house technical support, cutting costs and increasing
productivity. To that end, it is envisioned that a business would maintain no local copy of past
data, relying instead on data centers in the cloud for the availability, security, integrity, consistency
and freshness of the data. Among the myriad of technical and nontechnical issues that are yet to
be fully addressed, storing data in an encrypted form is without doubt one of the techniques that
should be in any toolkit for trusted cloud computing. It is not an over-statement to say that there
are numerous possible ways to store encrypted data in remote servers. The simplest of these would
be for a user to encrypt data, store the ciphertext in the cloud, and afterwards when he needs the
data again, fetches the ciphertext from the cloud and decrypts it to the original data. The user
can choose to use either a private key encryption algorithm or a public key encryption algorithm.
When a private key encryption algorithm such as AES is used, both encryption and decryption can
be done easily, even by a relatively low power device such as a smart phone. When a public key
encryption algorithm is used instead, a problem similar to that of the mail transfer example arises.
That is, the originator of a ciphertext may neither be able to decrypt the ciphertext not check
its integrity. One might ask why one has to use public key encryption in such applications. The
answer lies in the fact that modern applications are getting ever more complex, and often times
encryption is applied as one of many intermediate stages of data processing. It is conceivable that
public key encryption may be applied to provide data confidentiality in a large system for cloud
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computing.
These questions are a direct motivation for us to inquire into public key encryption that admits

the backward recovery of plaintexts by their originator while at the same time ensuring that the
originator can verify whether a ciphertext was produced by himself earlier.

Our result. Our first contribution is to formalize the notion of public key encryption with
backward recovery (PKE-BR) as well as its associated security models. We then present a generic
construction of PKE-BR using the “encrypt then sign” paradigm [2]. The basic idea underlying
our construction is that an ephemeral key is encapsulated, called a key encapsulation mechanism or
KEM, not only by a receiver’s public key but also by a sender’s, and the randomness re-use (RR)
technique discussed in [4] is applied to reduce the bandwidth and computational cost. As for security
analysis, we prove that our PKE-BR KEM is IND-CCA2 secure and existentially unforgeable in a
two-user setting if the underlying two-receiver KEM is IND-CPA and the underlying signature is
weakly unforgeable.

A downside of the generic construction is that it is not quite efficient due to the use of a signing
procedure. It turns out that the “encrypt then sign” paradigm is in fact an overkill in the context of
meeting the requirements of PKE-BR. One reason is that the receiver may not be always required
to check the origin of a ciphertext. This happens in a situation where checking the origin of a
ciphertext can be accomplished using an out-of-band method. For instance, a data center may
process and store data received from legitimate users only, who are required to login and prove
their identities before being allowed to use any service of the data center. Yet another reason is that
the originator may not be willing to have his or her identity being tied to a ciphertext explicitly
which is necessarily the case when a typical digital signature scheme is employed.

The above observations motivate us to design a more efficient PKE-BR scheme, by converting
Hofheinz and Kiltz’s public key encryption scheme [11] into a tag based KEM. Hofheinz and Kiltz’s
scheme, which is based on factoring in the standard model, is very efficient and requires only about
two exponentiations for encryption and roughly one exponentiation for decryption. As was already
discussed by Hofheinz and Kiltz in [11], an interesting property of the scheme is that the RSA
modulus N can be shared among many users. This property allows the application of our backward
recovery technique in the resulting scheme. Furthermore, we observe that a target collision resistant
hash function suffices to guarantee the integrity of a ciphertext and a message authentication code
can be applied to allow the sender to verify the origin of a ciphertext. Proving the security of this
efficient scheme, however, turns out to be more challenging. The main difficulty of the security proof
lies in the fact that the setting of the simulated receiver’s public key is related to the adversary’s
challenge tag and relying on the factoring assumption only turns out to be inadequate. Hence the
security proof of our scheme cannot follow that of [11] directly. To overcome this problem, we
resort to the decisional Diffie-Hellman assumption in addition to the factoring assumption, so that
a simulated receiver’s public key can be proven to be indistinguishable from a public key in a real
scheme by any probabilistic polynomial time adversary.

Related work. While backward recovery was already mentioned as “past message recovery” in
early work on signcryption [3] and such an interesting property is still retained in some signcryption
schemes, such as those in [3][14], not all signcryption schemes have such a property, and more
importantly, the concept and formal definition of backward recovery are yet to be further studied.

A somewhat related notion is multi-receiver signcryption [8][17][16] which can provide not only
confidentiality and integrity but also authenticity and non-repudiation for multiple receivers. In
fact, a sender in our generic construction plays the role of a receiver in a multi-receiver signcryption
setting. Notice that the roles of the two “receivers” (the sender and the receiver) in our setting
are not equal, which results in a critical difference between our second scheme and traditional
multi-receiver signcryptions. That is, the receiver has to check the integrity of a ciphertext in its
entirety, including both the sender’s part and the receiver’s part, while the sender does not have
to check the receiver’s part. Although the receiver in our second scheme cannot verify the origin of
a ciphertext, the scheme is very much suitable for an application environment where the sender’s
identity can be verified easily by some out-of-band methods, say, login authentication of a data
center or subscriber authentication of a cell phone network.
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2 Preliminaries

Notations. ZN denotes the set of integers modulo N and |u| denotes the absolute value of u,
where u ∈ ZN is interpreted as a signed integer with −(N −1)/2 ≤ u ≤ (N −1)/2. [N ] denotes the
set of integers 1, 2, ..., N . PPT denotes probabilistic polynomial time. A real-valued function µ over
integers is said to be negligible if it approaches 0 at a rate faster than the inverse of a polynomial
over integers.

Target-collision resistant hash functions. A hash function H : {0, 1}l → {0, 1}lH is (εHash, t)-
target collision resistant if no probabilistic t-polynomial time algorithm A can output a y such that
H(y) = H(x) and y 6= x for a given x ∈ {0, 1}l with a probability at least εHash, when a security
parameter (which is typically played by lH) is sufficiently large. H is simply said to be target
collision resistant if εHash can be any inverse polynomial and t be any polynomial in the security
parameter.

Decisional Diffie-Hellman (DDH) assumption in groups with composite order. Let
G be an Abelian group with composite order N = (P − 1)(Q− 1), where P and Q are large primes
such that |P | = |Q|. Here, |P | (or |Q|) denotes the binary length of P (or Q). g ∈ G is a generator
of G. The decisional Diffie-Hellman assumption states that, for any PPT algorithm A, there exists
a negligible function µ such that for all sufficiently large |Q|

|Pr[a, b
R←ZN :A(g, ga, gb, gab)=1]−Pr[a, b, c

R←ZN :A(g, ga, gb, gc)=1]| ≤ µ(|Q|)

where the probability is taken over the random choices of g, a, b, c and the coin-tosses of A.
In this paper, we consider the DDH assumption in the quadratic residue group QRN , where

N = (2p + 1)(2q + 1) is a Blum integer such that p, q, (2p + 1) and (2q + 1) are all primes.

Blum-Blum-Shub (BBS) pseudorandom number generator [6]. Let

BBSN (u) = (LSBN (u),LSBN (u2), ...,LSBN (u2lk−1
)) ∈ {0, 1}lk

denote the BBS pseudorandom number generator, where LSBN (u) denotes the least significant
bit of u mod N . BBS is pseudorandom if factoring Blum integer N is hard. (For details, please
refer to Theorem 2 of [11].) The pseudorandomness of BBS is defined by a pseudorandomness test
described as follows.

PRNG experiment for BBS generator [11]. For an algorithm D, define the advantage of
D as

AdvBBS
D (k) =

1
2
|Pr[D(N, z,BBSN (u)) = 1]− Pr[D(N, z, U{0,1}lk ) = 1]|,

where N is a Blum integer, u ∈ QRN is uniformly chosen, z = u2lk , and U{0,1}lk ∈ {0, 1}lk is
independently and uniformly chosen.

The algorithm D is said to (t, ε)-break BBS if D’s running time is at most t and AdvBBS
D (k) ≥ ε.

Weak unforgeability of digital signature. It is defined by the following game between a
challenger and an adversary.

1. The adversary sends the challenger a list of messages M = {m1, ..., mn}.
2. The challenger generates a private/public key pair (skSig, pkSig) and signs each mi using skSig

for i = 1 to n. The corresponding signature list is Sig = {(m1, σ1), ..., (mn, σn)}. Then pkSig

and Sig are sent back to the adversary.

3. The adversary outputs a pair (m∗, σ∗).
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We say the adversary wins the game if (m∗, σ∗) 6∈ Sig and σ∗ can be verified to be a valid signature
for m∗. A signature scheme is weakly unforgeable if the probability that the adversary wins the
game is negligible.

The above game captures the existential unforgeability with respect to weak chosen-message
attacks (or generic chosen message attacks [9]) against digital signature, where the generation of
the message list M does not depend on the public key pkSig. We follow the definition of weak
unforgeability in [12] except that in [12], the adversary is said to win the game if m∗ 6∈ {m1, ..., mn}
and σ∗ can be verified to be a valid signature for m∗.

3 Security requirements and models

3.1 Security requirements

To illustrate the security requirements of PKE-BR, we take the mail transfer as an example and
consider a communication model of three communicating parties, including the message storage
and transfer agent (MSTA), Alice (a sender) and Bob (a receiver). Note that this communication
model also includes the case of a data center, where the data center plays both the role of the
MSTA and that of the receiver. The main procedure of a PKE-BR scheme can be divided into the
following phases.

1. Encryption. Alice encrypts a plaintext (or mail) m under Bob’s public key, and passes the
resultant ciphertext c over to her local MSTA.

2. Delivery. Upon receiving c, MSTA saves c in Alice’s “sent mail folder” and delivers c to
Bob. (Actually, c is delivered to Bob’s local MSTA. Bob receives c from his local MSTA.)

3. Decryption. Upon receiving the ciphertext c, Bob can decrypt c using his private key.

4. Recovery. When requested by Alice, her MSTA retrieves c and returns it back to Alice.
Alice can recover m from c using her own private key.

From the above procedure, one can see that when a weak public key encryption scheme is
applied, m may be potentially leaked and/or modified during any of the following three phases: (1)
transmission from Alice to Bob, (2) residing in the storage device of a MSTA, and (3) transmission
from the MSTA back to Alice. This justifies the following three security requirements for PKE-BR:

• Confidentiality of the plaintext m. For the confidentiality, we adopt the notion of indistin-
guishability under adaptive chosen ciphertext attack (IND-CCA2) [15].

• Integrity of the ciphertext c. Bob the receiver can be assured that the ciphertext c is not
modified during transmission from Alice to Bob.

• PKE-BR authenticity. Alice the sender can be assured that a ciphertext c′ received and a
plaintext m′ recovered from c′ are both initially produced by/originated from herself.

The first requirement is a standard security requirement for any encryption scheme. The second
one can be achieved by checking the integrity of the ciphertext. (Note that the first requirement
does not necessarily imply the second.) To fulfill the third security requirement, a primitive which
enables Alice to verify the authenticity of a ciphertext, such as a public key signature or a message
authentication code, may be employed.

3.2 Key encapsulation with backward recovery

It is known that a key encapsulation mechanism or KEM can be converted to a hybrid encryption
[1]. Similar techniques can be applied to construct a PKE-BR scheme from a KEM-BR (KEM with
backward recovery). Hence, our focus will be on KEM-BR. In this section, we describe a public
key KEM-BR, which consists of a tuple of five algorithms.
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1. Common Parameter Generation

• A probabilistic common parameter generation algorithm, Com. It takes as input a
security parameter 1k and returns the common parameter I.

2. Key Generation

• A probabilistic sender key generation algorithm KeyS . It takes as input the common
parameter I and outputs a private/public key pair (skS , pkS) for the sender.

• A probabilistic receiver key generation algorithm KeyR. It takes as input the common
parameter I and outputs a private/public key pair (skR, pkR) for the receiver.

3. Symmetric Key Generation and Encapsulation

• A probabilistic symmetric key generation and encapsulation algorithm, KGE. It takes
the common parameter I, the sender’s private/public key pair (skS , pkS) and the re-
ceiver’s public key pkR as input and outputs the symmetric key K, the state information
s and the encapsulated value CKGE . KGE consists of the following two algorithms.

(a) A probabilistic symmetric key generation algorithm, Sym. It takes I as input, and
outputs a symmetric key K and some state information denoted by s.

(b) A probabilistic key encapsulation algorithm, Encap. It takes the state information
s, the sender’s private/public key (skS , pkS) and the receiver’s public key pkR as
input, and returns an encapsulated value CKGE . More precisely, Encap consists
of two algorithms, a key encapsulation algorithm KE and a key authentication
algorithm KA which function as follows:
– KE takes the state information s and the receiver’s public key pkR as input and

returns E1.
– KE takes the state information s and the sender’s public key pkS as input and

returns E2. Denote (E1, E2) by E.
– KA takes (E, skS , pkS) as input and returns σ = (σ1, σ2), where σ1 provides

integrity and σ2 provides authenticity, respectively.
Encap outputs CKGE = (E, σ) = (CR, CS), where CR = (E1, σ1) is intended for the
receiver and CS = (E2, σ2) for the sender.

4. Decapsulation

• A deterministic decapsulation algorithm, Decap. It takes the sender’s public key pkS ,
the receiver’s private/public key pair (skR, pkR) and CKGE as input, and returns either
a symmetric key K or a unique error symbol ⊥. Decap consists of two algorithms, an
integrity check algorithm IC and a key decapsulation algorithm KD whose functions
are described below:

– IC takes the sender’s public key pkS , the receiver’s private/public key pair (skR, pkR)
and CKGE as input, and outputs either “OK” or ⊥.

– If IC does not return ⊥, KD takes as input the receiver’s private/public key pair
(skR, pkR) and CKGE , and outputs a symmetric key K.

5. Backward Recovery

• A deterministic backward recovery algorithm Recov. It takes skS , pkS , pkR and CKGE as
input and returns ⊥ or a symmetric key K. Recov consists of two algorithms KAC and
KD. The former is for checking key authenticity and the latter for key decapsulation.

– KAC takes the sender’s private/public key pair (skS ,pkS), the receiver’s public key
pkR and CKGE as input, and outputs either “OK” or ⊥.
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– If KAC does not return ⊥, KD takes as input the sender’s private/public key pair
(skS , pkS), the receiver’s public key pkR and CKGE , and outputs a symmetric key
K.

Remark. Note that the description of KEM-BR is based on the model for signcryptions [5][7].
Compared with signcryptions [5][7], in our model authenticity and integrity checks, however, are
separated. That is, the receiver only has to execute integrity check, while the sender has to execute
authenticity check. A further difference is that the generation of a symmetric key (ephemeral key)
K does not involve the receiver’s (or sender’s) private key in our model. Hence, the adversary does
not have to query the symmetric key generation “oracle” in the following security models.

3.3 Security models

3.3.1 IND-CCA2 security for KEM-BR in the two-user setting

The IND-CCA2 game for KEM-BR is played by two parties, an adversary and a challenger.

1. The challenger generates a common parameter I ← Com(1k), a sender’s private/public key
pair (skS , pkS) ← KeyS(I) and a receiver’s key pair (skR, pkR) ← KeyR(I).

2. Given (I, pkS , pkR), the adversary A can make the following three kinds of queries to the
corresponding oracles.

• The encapsulation query qEncap. A forwards the public key pkR as the encapsulation
query qEncap to the encapsulation oracle OEncap. Upon receiving qEncap, OEncap runs
KGE(I, skS , pkS , pkR) and returns CKGE .

• The decapsulation query qDecap. A forwards (pkR, CKGE) as the decapsulation query
qDecap to the decapsulation oracle ODecap. Upon receiving qDecap, ODecap returns Decap
(pkS , skR, pkR, CKGE).

• The recovery query qRecov. A forwards CKGE as the recovery query qRecov to the recovery
oracle ORecov. Upon receiving qRecov, ORecov returns Recov(skS , pkS , pkR, CKGE).

3. The challenger computes (K0, s)
R← Sym(I) and the challenging encapsulation C∗

KGE ←
Encap (skS , pkS , pkR, s). The challenger then generates a random symmetric key K1 in the
range of Sym and a random bit b ∈ {0, 1}. It sends (Kb, C

∗
KGE) back to A.

4. A can forward the same kinds of queries as previously, except C∗
KGE in the decapsulation

query qDecap and the recovery query qRecov.

5. A terminates by returning a guess b′ for the value of b.

We say that the adversary wins the above game if b′ = b. The advantage of A is defined as

|Pr[A wins the game]− 1/2|.

KEM-BR is IND-CCA2 secure if, for any PPT adversary A, the advantage of A is negligible with
respect to the security parameter 1k.

3.3.2 BR unforgeability in the two-user setting

For the authenticity and the integrity of KEM-BR, we require that it should be infeasible for an
adversary to forge a valid CKGE . Note that the receiver’s key pair is fixed before the adversary
issues any query in the two-user setting. The attack game of unforgeability goes as follows.

1. The challenger first generates I
R← Com(1k), (skS , pkS) R← KeyS(I) and (skR, pkR) R←

KeyR(I). It then passes (I,pkS ,skR,pkR) over to the adversary.
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2. The adversary A is given access to OEncap and ORecov as defined in the IND-CCA2 game. A
terminates by outputting CKGE .

We say that the adversary wins the above game if the following conditions hold.

• CKGE is not returned by OEncap with pkR as qEncap.

• ⊥8 KAC(skS , pkS , pkR, CKGE) or ⊥8 IC(pkS , skR, pkR, CKGE).

Security model in the multi-user setting. The corresponding security model in the multi-user
setting for KEM-BR is similar to that in the two-user setting, except that the adversary can issue
any public key pk as qEncap and pk may be generated by the adversary at his will.

4 A generic construction

In this section, we show how to construct a secure KEM-BR in the two-user setting from an IND-
CPA KEM and a weakly unforgeable signature. The generic construction, which is based on the
“encrypt then sign” techniques [2], goes as follows.

1. Using a randomness reusing (RR) technique, an IND-CPA KEM can be converted to an IND-
CPA two-receiver KEM1. The two “receivers” are the receiver R and the sender S. (Notice that,
not all the IND-CPA KEM can be converted to an IND-CPA two-receiver KEM using RR [4].) Let
KEM2 = (Com2,Key2,KGE2,KD2) denote the resulting two-receiver KEM and C = (CR, CS)
denote the output of KGE2(pkS ,pkR).

2. Apply a weakly unforgeable signature Sig to C and output (C, Sig(skSig, C)), where skSig

denotes the sender’s signing key. We note that Sig plays the role of KA in the KEM-BR model.
3. For decapsulation and backward recovery, Sig(skSig, C) should be verified first using the

sender’s public key for the signature. If the signature is valid, decapsulating C is carried out as in
the two-receiver KEM. That is, the receiver runs KD2(skR, C) for decapsulation and the sender
runs KD2(skS , C) for backward recovery. As for the security of the resulting KEM-BR, we have
the following Theorems 1 and 2.

Theorem 1 KEM-BR is IND-CCA2 secure in the two-user setting if the underlying two-receiver
KEM is IND-CPA and the signature is weakly unforgeable.

Proof. If there exists a PPT algorithm A that breaks the IND-CCA2 security of KEM-BR in
the two-user setting, we show that one can use A to construct a PPT algorithm B to break the
IND-CPA security of the underlying two-receiver KEM or the weak unforgeability of the signature.

Given the sender’s public key pkS and the receiver’s public key pkR, B generates a set of
ciphertexts List = {C1, C2, ..., Cn} using KGE2(pkS , pkR) and stores the corresponding key list
K = {K1, ..., Kn}, where n is the maximum number of encapsulation queries issued by A. When
receiving the challenge (K∗

b , C∗) of the IND-CPA game, B sends List together with the challenge
ciphertext C∗ to the challenger of the underlying signature ChallengerSig. ChallengerSig runs
the key generation algorithm of the underlying signature scheme to get the public/secret key pair
(pkSig, skSig), and returns the corresponding signature list ListSig ={σ1, ..., σn} and σ∗ for the mes-
sages in List and C∗. Upon receiving ListSig and σ∗, B sets the ciphertext list C = {(C1, σ1),...,(Cn,
σn)} and the queried listQ = {∅}, and defines the challenge of the IND-CCA game as (K∗

b ; (C∗, σ∗)).
Then B defines the sender’s public key of KEM-BR as (pkS , pkSig) and the receiver’s public key as
pkR, and simulates the environment of an IND-CCA2 game of KEM-BR for A as follows.

In the first phase of the game, A can make the following three kinds of queries.

• The encapsulation query qEncap. When A forwards qEncap, B randomly chooses a ciphertext
(Ci, σi) ∈ C/Q, adds (Ci, σi) to Q, and sends (Ci, σi) to A.

1See Appendix A for two-receiver KEM
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• The decapsulation query qDecap. On receiving qDecap = (C, σ), B checks the validity of σ.
There are two cases that we have to take into account.

– If σ is not valid, B returns ⊥.

– If σ is valid, B checks whether (C, σ) ∈ C. If (C, σ) ∈ C, B returns the corresponding
key in K. If (C, σ) 6∈ C and (C, σ) 6= (C∗, σ∗), B outputs (C, σ) as a valid forgery for the
underlying signature and terminates. Otherwise, (C, σ) = (C∗, σ∗) and B terminates by
outputting “failure”.

• The recovery query qRecov. B acts in the same way as what he does in the decapsulation
query.

B sends the challenge (K∗
b ; (C∗, σ∗)) to A. In the second phase, A can forward the same kinds

of queries as previously, except (C, σ) = (C∗, σ∗) in the key decapsulation query and in the recovery
query. Finally, A outputs a bit b′, which is also the output of B.

If B does not terminates during the decapsulation query or the recovery query, B perfectly
simulates the KEM-BR scheme in the two-user setting for A. According to the assumption that A
outputs the right b′ with a non-negligible advantage, B outputs the right b′ in the above IND-CPA
game for the underlying two-receiver KEM with a non-negligible advantage. If B terminates and
outputs (C, σ), σ is a valid forgery for the underlying signature. Note that the probability that C∗

appears in the queries of the first phase is negligible, since C∗ is independent of List and ListSig.
ut

Theorem 2 KEM-BR is existentially unforgeable in the two-user setting if the underlying signature
scheme is weakly unforgeable.

Proof. If there exists a PPT adversary A that can break the unforgeability of KEM-BR, we can
use A as an oracle to construct a PPT adversary B that breaks the weak unforgeability of the
underlying signature.

1. B generates the valid common parameter I and the public/secret encryption keys (pkS , skS ,
pkR, skR) for both the sender and the receiver of the underlying KEM. Using the underlying
KEM, B computes a list of ciphertexts List ={C1, ..., Cn}, where n denotes the maximum
number of the encapsulation queries made by A. Send List to the challenger as the messages
that will be signed.

2. The challenger runs the key generation algorithm of the underlying signature scheme to get
private/public key pair (skSig, pkSig), and returns the corresponding signatures list ListSig =
{σ1, ..., σn} for the messages in List.

3. Upon receiving ListSig and pkSig, B defines the sender’s public key of KEM-BR as (pkS , pkSig)
and the receiver’s public key as pkR, computes the ciphertext list C = {(C1, σ1),..., (Cn, σn)}
and sets the queried list Q = {∅}. Then B can answer the encapsulation queries from A as
in the proof of Theorem 1. Finally, A outputs a valid forgery (C∗, σ∗) with a non-negligible
probability. As a result, B can output σ∗ as the forgery for the underlying signature. Note
that the success probability of B is the same as that of A.

This completes the proof for Theorem 2. ut
PKE-BR in the multi-user setting. An intuitive method of constructing PKE-BR scheme

in the multi-user setting from KEM-BR is as follows.

1. Convert the KEM-BR scheme to a Tag-KEM using methods of [1]. More precisely, the
signature of KEM-BR is computed as Sig(skSig, C, τ), where τ is a tag. To prove the CCA2
security of the resulting Tag-KEM, the signature Sig is required to be existentially unforgeable
against chosen message attack instead of weakly unforgeable.

9



2. Replace the tag with an IND-CCA2 secure DEM secure against passive attacks. The resulting
scheme is a CCA2 Tag-KEM/DEM in the two-user setting.

3. Apply a generic transformation outlined in [2] to convert the scheme for the two-user setting
to one for the multi-user setting. That is, the sender’s public key is included in DEM as part
of a plaintext and the receiver’s public key is included in the signature, e.g., Sig(skSig, C,
τ, pkR) where τ = DEM(K,m, pkS). Notice that the underlying encryption DEM should be
IND-CCA2 secure in order to prevent the adversary from modifying DEM(K, m, pkS) for a
new related ciphertext [2], say, DEM(K,m, pk′).

We emphasize that since the above transformation is an intuitive one, rigorous security proofs of the
resulting scheme need to be further investigated when concrete KEM/DEM and signature schemes
are used to instantiate the construction.

5 An efficient construction — Tag based KEM-BR

To construct a more efficient KEM-BR, we slightly relax the previous security requirements for
KEM-BR: the sender only has to check the integrity and authenticity of the sender’s part of a
ciphertext. In other words, during the backward recovery phase, the sender runs KAC on input
(skS , pkS , pkR, CRecov), where CRecov = CS denotes the sender’s part of CKGE . With the modified
security requirement, we can provide a concrete tag based KEM-BR (TBR) which is provably secure
in the multi-user setting. The corresponding security model of TBR in the multi-user setting is
similar to that of KEM-BR, except that the adversary is able to forward any public key as qEncap,
and the tag τ is included in the computation of KGE. In addition, the adversary can choose any
tag during the challenge phase. More details of the security model follow.

5.1 Security model of TBR in the multi-user setting

IND-CCA2. The IND-CCA2 game for TBR is played by two parties, the adversary and the
challenger.

1. The challenger generates a common parameter I ← Com(1k), a sender’s private/public key
pair (skS , pkS) ← KeyS(I) and a receiver’s key pair (skR, pkR) ← KeyR(I).

2. The adversary A is given (I, pkS , pkR) and can make the following three kinds of queries.

• The encapsulation query qEncap. A forwards (pk, τ) as the encapsulation query qEncap

to the oracle OEncap, where the public key pk can be generated by the adversary and τ
is the tag. Upon receiving qEncap, the oracle OEncap runs KGE(I, skS , pkS , pk, τ) and
returns CKGE .

• The decapsulation query qDecap. A forwards (pk, CKGE , τ) as the decapsulation query
qDecap to the decapsulation oracle ODecap. Upon receiving qDecap, ODecap returns Decap(
pk, skR, pkR, CKGE , τ).

• The recovery query qRecov. A forwards (CRecov,τ) as the decapsulation query qRecov to
the recovery oracle ORecov, where CRecov is part of CKGE . Upon receiving qRecov, ORecov

returns Recov(skS , pkS , CRecov, τ).

3. A forwards τ∗ to the challenger.

4. The challenger computes (K0, s)
R← Sym(I), generates a random symmetric key K1 in the

range of Sym and a random bit b ∈ {0, 1}. Then, the challenger computes the encapsulation
C∗

KGE ← Encap (skS , pkS , pkR, s, τ∗) and sends (Kb, C
∗
KGE) back to A.

A can make the same kinds of queries as previously, except that it cannot make (pkR,
C∗

KGE , τ∗) as a decapsulation query qDecap or (C∗
Recov, τ∗) as a recovery query qRecov, where

C∗
Recov is part of C∗

KGE .
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5. A terminates by returning a guess b′ for the value of b.

We say the adversary wins the above game if b′ = b.

Unforgeability. For the TBR scheme, we only require that it should be infeasible for an ad-
versary to forge a valid CRecov. The adversary can choose the receiver to which the adversary
wishes to forge. The attack game of unforgeability runs as follows.

1. The challenger generates the common parameter I
R← Com(1k) and a sender key pair

(skS , pkS) R← KeyS(I). Send I and pkS to the adversary.

2. The adversary A can forward encapsulation queries and recovery queries as defined in the
IND-CCA2 game. A terminates by outputting a fixed receiver key pair (pkR, skR) and CRecov.

We say the adversary wins the above game if CRecov is not returned as part of CKGE by OEncap

with pkR as qEncap, and ⊥8 KAC(skS , pkS , pkR, CRecov).

5.2 Tag based KEM-BR scheme (TBR)

Our TBR is based on the Hofheinz-Kiltz KEM [11] and a message authentication code (MAC). In
our construction, the validity of MAC can be checked by the sender only. Furthermore, we take
advantage of a target collision resistant hash function to guarantee that the receiver can check the
integrity of the whole ciphertext. The TBR scheme is described below.

Common Parameter Generation. A security parameter 1k, a target collision resistant
hash function H with lH -bit output, and a BBS pseudorandom number generator BBSN with
lK-bit output. A MAC that is existentially unforgeable against chosen message attack. N =
(2p + 1)(2q + 1) is a Blum integer such that p and q are two primes and |p| = |q| = k. g is the
generator of QRN . Note that the factorization of N is kept secret.

Key Generation. The sender’s private/public key pair is (skS , pkS) where skS=(xS , skMAC),
pkS = yS such that xS

R← [(N−1)/4], yS = gxS ·2lK+lH and skMAC is the key of MAC. The receiver’s
private/public key pair is (skR, pkR), where skR = xR, pkR = yR such that xR

R← [(N − 1)/4],
yR = gxR·2lK+lH .

Symmetric Key Generation and Encapsulation by sender. KGE(I, skS , pkS , pkR, τ)

1. Choose at random r ∈ [(N−1)/4] and compute U = gr·2lK+lH mod N and K = BBSN (gr·2lH ).

2. Compute V1 = |(gv1yR)r| mod N , V2 = |(gv2yS)r| mod N and τMAC = MAC(skMAC ,
U, V2, τ), where v1 = H(U, V2, τ, τMAC), v2 = H(U, τ).

Output C = (U, V1, V2, τMAC).
Decapsulation by receiver. Decap(skR, C, τ)
Given C = (U, V1, V2, τMAC) and τ ,

1. Check (V 2
1 )2

lK+lH ?= (U2)v1+xR2lK+lH mod N , where v1 = H(U, V2, τ, τMAC). If the equation
holds, it outputs “OK”; otherwise, it outputs ⊥ and terminates.

2. Compute a, b, c ∈ Z such that 2c = gcd(v1, 2lK+lH ) = av1 + b2lK+lH . Then compute a
symmetric key K = BBSN (((V 2

1 )a · (U2)b−axR)2
lH−c−1

) which is the output.

Backward Recovery by sender. Recov(skS , CRecov, τ)
Given CRecov = (U, V2, τMAC) and τ ,

1. Check MAC(skMAC , U, V2, τ) ?= τMAC . If the equation holds, Recov returns “OK”; other-
wise, it returns ⊥ and terminates.

2. Compute a, b and c such that 2c = gcd(v2, 2lK+lH ) = av2 + b2lK+lH . Then compute K =
BBS(((V 2

2 )a · (U2)b−axS )2
lH−c−1

) which is the output.
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Correctness. Since the correctness of the computation of K in Decap and Recov can be verified
in a similar way as in [11], we only show that both (V 2

1 )2
lK+lH = (U2)v1+xR2lK+lH mod N and

K = BBSN (((V 2
1 )a · (U2)b−axR)2

lH−c−1
) hold for a valid ciphertext C.

Given a valid ciphertext C = (U, V1, V2, τMAC), we have

(V 2
1 )2

lK+lH = ((gv1yR)r)2·2
lK+lH

= (gv1+xR2lK+lH )r·2·2lK+lH

= (gr·2lH+lK )2·(v1+xR·2lK+lH )

= (U2)v1+xR·2lK+lH

where v1 = H(U, V2, τ, τMAC), and

(V 2
1 )a · (U2)b−axR = (gv1+xR·2lK+lH )2ra · (g2lK+lH )2rb−2raxR

= g(v1+xR·2lK+lH )2ra−xR2lK+lH 2ra+2lK+lH 2rb

= g2r(av1+b2lK+lH )

= g2c+1r,

Hence BBS(((V 2
2 )a · (U2)b−axS )2

lH−c−1
) = BBS((g2c+1r)2

lH−c−1
) = BBS(gr·2lH ) = K.

5.3 IND-CCA2 security of TBR

Theorem 3 TBR is IND-CCA2 secure if BBS is pseudorandom, MAC is existentially unforgeable
against chosen message attack and DDH assumption holds in QRN .

Proof. If there exists a PPT adversary A to break the IND-CCA2 security of TBR, we may
construct a PPT adversary D to break the security of BBS as in [11]. However, the proof tech-
nique in [11] cannot be applied to the construction of D directly, since the setting of the simulated
receiver’s public key is related to the adversary A’s challenge tag τ∗. That is, D cannot compute
the simulated public key without τ∗, while A forwards τ∗ only after receiving the simulated public
key. To solve the above problem, we introduce a new game, called Game 2, which is similar to
the standard IND-CCA2 game, except that the challenger randomly chooses τ∗∗ and compute the
challenge ciphertext using τ∗∗ instead of τ∗. Then, we show that the adversary’s view in Game
1 and Game 2 are indistinguishable. Therefore, to prove the security of TBR in the standard
IND-CCA2 game (Game 1), we only have to prove its security in Game 2.

Game 1. This is the same as the standard IND-CCA2 game for TBR. The challenger picks at
random r∗ ∈ [(N − 1)/4] and computes a challenge ciphertext (Kb;C∗) = (Kb;U∗, V ∗

1 , V ∗
2 , τ∗MAC),

where U∗ = gr∗·2lK+lH , V ∗
1 = |(gv∗1 · yR)r∗ |, V ∗

2 = |(gv∗2 · yS)r∗ |, v∗1 = H(U∗, V ∗
2 , τ∗, τ∗MAC), v∗2 =

H(U∗, τ∗), τ∗MAC = MAC(skMAC , U∗, V ∗
2 , τ∗) and τ∗ is a challenge tag chosen by the adversary.

Game 2. Game 2 is similar to Game 1, except that here the challenger picks at ransom τ∗∗ and
τ∗∗MAC , and computes V ∗∗

1 = |(gv∗∗1 ·yR)r∗ |, V ∗∗
2 = |(gv∗∗2 ·yS)r∗ |, where v∗∗1 = H(U∗, V ∗∗

2 , τ∗∗, τ∗∗MAC),
v∗∗2 = H(U∗, τ∗∗). The challenge ciphertext is (Kb;C∗) = (Kb;U∗, V ∗∗

1 , V ∗∗
2 , τ∗MAC), where τ∗MAC =

MAC(skMAC , U∗, V ∗∗
2 , τ∗) and τ∗ is chosen by the adversary as in Game 1.

Note that the only difference between Game 1 and Game 2 is the challenge ciphertexts. Hence,
in order to prove the indistinguishability between Game 1 and Game 2, we only have to prove that
(V ∗

1 ,V ∗
2 , τ∗MAC) in Game 1 and (V ∗∗

1 ,V ∗∗
2 ,τ∗MAC) in Game 2 are indistinguishable. To that end, we

need the following claim.

Claim 1 Let g1 and g2 be the generators of QRN and fp,q(·, ·, ·, ·) be a PPT computable function
whose output is an element in QRN . (p, q) is the auxiliary input of f . Assume DDH assumption
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holds in QRN , it is infeasible for any PPT adversary A′ to distinguish between tuple T0 and tuple
T1

T0 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0)}

T1 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1)}

where r is a random element in [(N − 1)/4], τ1 is chosen uniformly at random, and τ0 is generated
by the adversary.

Proof. In Claim 1, we implicitly define the following game between the challenger and the adversary
A′. Given (N, g1, g2, g

r
1), the adversary A′ computes τ0 and sends τ0 to the challenger. Then the

challenger returns Tb, where b
R← {0, 1}. A′ aims to tell whether b = 0 or 1. More details are

described in the following.
We construct a series of tuples to show the indistinguishability between T0 and T1.

1. Tuple 1 = {g1, g2, g
r
1, g

r
2}, where r is a random element in [|QRN |].

2. Tuple 2 = {g1, g2, g
r
1, Q}, where Q is a random element in QRN .

Let εDDH be the advantage with which A′ can solve the DDH problem. Tuple 1 and Tuple
2 can be distinguished with advantage at most εDDH , if DDH assumption holds. That is,

|Pr[A′(Tuple 1) = 1]− Pr[A′(Tuple 2) = 1]| ≤ εDDH . (1)

where εDDH is negligible.

3. Tuple 3 = {g1, g2, g
r
1, Q · fp,q(g1, g2, g

r
1, τ0)}, where τ0 is generated by the adversary A′ on

input (N, g1, g2, g
r
1).

4. Tuple 4 = {g1, g2, g
r
1, Q · fp,q(g1, g2, g

r
1, τ1)}, where τ1 is chosen randomly in QRN .

The distribution of Tuple 2, Tuple 3 and Tuple 4 are identical, since Q is a random element
in QRN . We have

Pr[A′(Tuple 2) = 1] = Pr[A′(Tuple 3) = 1] = Pr[A′(Tuple 4) = 1]

5. Tuple 5 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0)}

6. Tuple 6 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1)}

Since |Pr[A′(Tuple 1) = 1]− Pr[A′(Tuple 2) = 1]| ≤ εDDH , we have

|Pr[A′(Tuple 3) = 1]− Pr[A′(Tuple 5) = 1]| ≤ εDDH . (2)

Similarly, |Pr[A′(Tuple 4) = 1]− Pr[A′(Tuple 6) = 1]| ≤ εDDH .

Therefore, we have

|Pr[A′(Tuple 5) = 1−A′(Tuple 6) = 1]| (3)
≤ |Pr[A′(Tuple 5) = 1]− Pr[A′(Tuple 3) = 1]|+

|Pr[A′(Tuple 6) = 1]− Pr[A′(Tuple 3) = 1]|
≤ |Pr[A′(Tuple 5) = 1]− Pr[A′(Tuple 3) = 1]|+

|Pr[A′(Tuple 6) = 1]− Pr[A′(Tuple 4) = 1]|
≤ 2εDDH

Next, we consider the indistinguishability between T0 and Tuple 5. Conditioned on that
r ∈ [|QRN |], T0 and Tuple 5 are identically distributed. That is,

Pr[A′(T0) = 1|r ∈ [|QRN |]] = Pr[A′(Tuple 5) = 1|r ∈ [|QRN |]] (4)
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Hence,
|Pr[A′(T0) = 1]− Pr[A′(Tuple 5) = 1]| ≤ Pr[r 6∈ [|QRN |]] (5)

where Pr[r 6∈ [|QRN |]] denotes that r ∈ [(N − 1)/4] but r > |QRN |.
Since |QRN | = pq = (2p + 1)(2q + 1)/4− (2p + 2q + 1)/4 = (N − 1)/4− (p + q)/2, we have
Pr[r 6∈ [|QRN |]] = ((p + q)/2)/((N − 1)/4) ≤ 2−k+1. Likewise, we have

|Pr[A′(T1) = 1]− Pr[A′(Tuple 6) = 1]| ≤ 2−k+1 (6)

Using 5, 6 and 3, we get |Pr[A′(T1) = 1]− Pr[A′(T0) = 1]| ≤ 2−k+2 + 2εDDH .

The proof of Claim 1 is complete. ut
The following Claim 2 can be proven in a way analogous to the proof for Claim 1.

Claim 2 Let g1, g2 and g3 be the generators of QRN and f ′p,q(·, ·, ·, ·, ·, ·) be a PPT computable
function whose output is an element in QRN . (p, q) is the auxiliary input of f ′. Assume DDH
assumption holds in QRN , it is infeasible for any PPT adversary A′ to distinguish between tuple
T ′0 and tuple T ′1

T ′0 = {g1, g2, g3, g
r
1, g

r
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ0)}

T ′1 = {g1, g2, g3, g
r
1, g

r
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ1)}

where r is a random element in [(N − 1)/4], τ1 is chosen randomly, and τ0 is generated by the
adversary.

To prove this claim, we notice that if there exists a PPT algorithm A′ which can distinguish
T ′0 and T ′1, we can then construct from A′ a new PPT algorithm A to distinguish T0 and T1, which
contradicts Claim 1. Details of the proof are similar to that for Claim 1 and hence are omitted.

Claim 3 Let g1, g2 and g3 be the generators of QRN and fp,q(·, ·, ·, ·) and f ′p,q(·, ·, ·, ·, ·, ·) be two
PPT computable functions whose output is an element in QRN . (p, q) is the auxiliary input of f
and f ′. If

• T0 and T1 can be distinguished with advantage at most 2−k+2 + 2εDDH .

• T ′0 and T ′1 can be distinguished with advantage at most 2−k+2 + 2εDDH

then T ′′0 and T ′′1 can be distinguished with advantage at most 2−k+2 + 2εDDH , where

T0 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0)},

T1 = {g1, g2, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1)},

T ′0 = {g1, g2, g3, g
r
1, g

r
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ0)},

T ′1 = {g1, g2, g3, g
r
1, g

r
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ1)},

T ′′0 = {g1, g2, g3, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ0), gr

3 · f ′p,q(g1, g2, g3, g
r
1, g

r
2, τ0)},

T ′′1 = {g1, g2, g3, g
r
1, g

r
2 · fp,q(g1, g2, g

r
1, τ1), gr

3 · f ′p,q(g1, g2, g3, g
r
1, g

r
2, τ1)},

r is a random element in [(N−1)/4], τ0 is generated by the adversary A and τ1 is chosen randomly.

To prove Claim 3, we note that if Claim 3 does not hold, we can easily construct an efficient
algorithm to distinguish T0 and T1 (or T ′0 and T ′1), which contradicts Claim 1 (or Claim 2).

Claim 3 implies the indistinguishability between (V ∗
1 , V ∗

2 ) and (V ∗∗
1 , V ∗∗

2 ), which also implies the
indistinguishability between (V ∗

1 , V ∗
2 , τ∗MAC) and (V ∗∗

1 , V ∗∗
2 , τ∗MAC). (Otherwise, MAC will serve as

an efficient distinguishing algorithm.) That is, we can set g1 = g2lK+lH , g2 = yS , g3 = yR, gr
1 = U∗,

τ0 = (τ∗, τ∗MAC), τ1 = (τ∗∗, τ∗∗MAC) and

|gr
2 · fp,q(g1, g2, g

r
1, τ0)| = |yr∗

S · (gH(U∗,τ∗))r∗ | = |(gv∗2 · yS)r∗ | = V ∗
2 ,

|gr
2 · fp,q(g1, g2, g

r
1, τ1)| = |yr∗

S · (gH(U∗,τ∗∗))r∗ | = |(gv∗∗2 · yS)r∗ | = V ∗∗
2 ,

|gr
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ0)| = |yr∗

R · (gH(U∗,V ∗2 ,τ∗,τ∗MAC))r∗ | = |(gv∗1 · yR)r∗ | = V ∗
1 ,

|gr
3 · f ′p,q(g1, g2, g3, g

r
1, g

r
2, τ1)| = |yr∗

R · (gH(U∗,V ∗∗2 ,τ∗∗,τ∗∗MAC))r∗ | = |(gv∗∗1 · yR)r∗ | = V ∗∗
1 .
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Due to Claim 3, we have that the challenge ciphertexts of Game 1 and Game 2 can be distinguished
with advantage at most 2−k+2 + 2εDDH . Hence, we have

Claim 4 |Pr[Game 1]−Pr[Game 2]| ≤ 2−k+2 +2εDDH , where Pr[Game i] denotes the probability
that the adversary wins Game i, for i = 1 and 2.

Next, we prove the IND-CCA2 security of TBR in Game 2. If there exists an adversary A which
can break the IND-CCA2 security of TBR in Game 2, we can construct a BBS distinguisher D to
break the BBS generator security. Given (N, z,W ), the aim of D is to distinguish whether W is a
pseudorandom string generated by BBSN (z2−lK ) or a random string in {0, 1}lK . Actually, D can
set the receiver’s public key and the challenge ciphertext by selecting τ∗∗ and τ∗∗MAC randomly. More
precisely, D can set U∗ = z, K = W , V ∗∗

1 = |U∗β1 |, V ∗∗
2 = |U∗β2 |, v∗∗1 = H(U∗, V ∗∗

2 , τ∗∗, τ∗∗MAC),

v∗∗2 = H(U∗, τ∗∗), yR = gβ1·2lK+lH−v∗∗1 , yS = gβ2·2lK+lH−v∗∗2 , where β1
R← [(N − 1)/4], β2

R←
[(N − 1)/4], τ∗∗ and τ∗∗MAC are chosen randomly by D. After receiving τ∗ from the adversary, D
can compute τ∗MAC = MAC(skMAC , U∗, V ∗∗

2 , τ∗), where skMAC is generated by D. Hence, the
challenge ciphertext is (U∗, V ∗∗

1 , V ∗∗
2 , τ∗, τ∗MAC). The remaining proof is similar to that of Theorem

3 of [11], except that, for the recovery query qRecov, we have to consider the probability that the
adversary can forge a valid MAC. According to Theorem 3 of [11] 2, we have

Claim 5 |Pr[Game 2]−1/2| ≤ 2−k+3 +εHash +εBBS +εMAC , where εHash denotes the probability
that the target collision happens, εBBS denotes the advantage that the BBS output can be distin-
guished from the random string, and εMAC denotes the probability that the adversary can output a
forgery for MAC.

Due to Claim 4 and Claim 5, we get

|Pr[Game 1]− 1/2| ≤ 3 · 2−k+2 + 2εDDH + εHash + εBBS + εMAC

which completes the proof of Theorem 3. ut

5.4 Unforgeability

Theorem 4 TBR is existentially unforgeable if the underlying MAC is existentially unforgeable
against chosen message attack.

The theorem can be proved by contradiction, namely if there exists an efficient algorithm A
that breaks the unforgeability of TBR, we can then construct an efficient algorithm B to break
the security of the underlying MAC. Descriptions of the proof are straightforward and hence are
omitted.

5.5 Implementation

For implementation, H and HMAC can be instantiated with SHA-256 and HMAC-SHA-256,
respectively, and AES can be applied for data encryption, where the symmetric key K is of length
128. The computational cost of the decapsulation (or the backward recovery) of TBR is similar to
that of the decapsulation of the original Hofheinz-Kiltz encryption scheme [11]. For encapsulation,
our scheme requires about one more full exponentiation than that of [11], due to the computation
of V2. However, more than 60% computation of the encapsulation can be processed offline. That
is, P1 = gr, P2 = yr

S and U = P 2lH+lK

1 can be precomputed. On input the receiver’s public key
yR and the plaintext, compute V2 = |P v2

1 P2| and V1 = |P v1
1 yr

R|, where v1 and v2 are very small
exponents. More precisely, assume that one regular exponentiation with an exponent of length l
requires 1.5l modular multiplications and lN , which is the binary length of N , is 2048. The offline
computation of encapsulation requires about 3lN + lH + lK = 6528 multiplications; the online
computation requires about 1.5lN + 3lH = 3840 multiplications.

2Theorem 3 of [11] states that εKEM ≤ 2−k+3 + εHash + εBBS , where εKEM denotes the advantage that the
adversary breaks the security of KEM. Notice that the definition of the advantage is |Pr[A wins the game]− 1/2|.
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A Two-receiver KEM

Two-receiver KEM. We briefly describe the two-receiver KEM scheme, which is a special case
of the multi-receiver encryption [13]. A two-receiver KEM consists of four PPT algorithms, which
are the common parameter generation algorithm Com2, the key generation algorithm Key2, the
symmetric key generation and encapsulation algorithm KGE2 and the key decapsulation algorithm
KD2. Com2 on inputs security parameter 1k outputs the common parameter I. Key2 on inputs
the common parameter I outputs private/public key pair (sk, pk). Suppose the two receivers are
UserS and UserR, who have private/public key pair (skS , pkS) and (skR, pkR), respectively. KGE2

on inputs two receivers’ public key (pkS , pkR) outputs ciphertext C = (CS , CR), where CS is for
receiver UserS and CR is for receiver UserR. KD2 on inputs (ski, C) outputs the ephemeral key
K or the error symbol ⊥, where i = S or R. More precisely, receiver Useri uses a function TAKEi

that on input C outputs Ci and computes K using ski and Ci.

IND-CCA2 security of two-receiver KEM. The IND-CCA2 game of a two-receiver KEM
is played by two parties, the challenger and the adversary. The game is described as follows.

1. The challenger generates I ← Com2(1k). It runs Key2(I) and outputs two private/public
key pair (skS , pkS) and (skR, pkR). Send (pkS , pkR) to the adversary.

2. The adversary is given access to the decapsulation oracles OskS
and OskR

, where Oski
on

inputs C returns KD2(ski, C), for i = S or R.

3. The challenger computes (K∗
0 , C∗) ← KGE2(pkS , pkR), (where C∗ = (C∗

S , C∗
R),) generates a

random symmetric key K∗
1 and sends (K∗

b , C∗) to the adversary, where b
R← {0, 1}.

4. The adversary can make the decapsulation queries C as in Step 2, except that C∗
i 6= TAKEi(C)

for i = S and R. Finally, the adversary terminates by returning a bit b′.

The adversary wins the game if b = b′. A two-receiver KEM is IND-CCA2 secure if, for any PPT
adversary, |Pr[b = b′]− 1/2| is negligible with respect to the security parameter 1k.

The IND-CPA security of two-receiver KEM is defined similarly except that the adversary
cannot have access to the decapsulation oracles.
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