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Abstract
We propose a simple deterministic test for deciding whether or not a non-

zero element a ∈ IF2n or IF3n is a zero of the corresponding Kloosterman sum
over these fields, and analyse its complexity. The test seems to have been over-
looked in the literature. For binary fields, the test has an expected operation
count dominated by just two IF2n -multiplications when n is odd (with a slightly
higher cost for even extension degrees), making its repeated invocation the most
efficient method to date to find a non-trivial Kloosterman sum zero in these
fields. The analysis depends on the distribution of Sylow p-subgroups in two
corresponding families of elliptic curves, which we prove using a theorem due
to Howe.
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1 Introduction

For a finite field IFpn , the Kloosterman sum Kpn : IFpn → C can be defined by

Kpn(a) = 1 +
∑

x∈IF×pn

ζTr(x−1+ax),

where ζ is a primitive p-th root of unity and Tr denotes the absolute trace map
Tr : IFpn → IFp, defined by

Tr(x) = x + xp + xp2
+ · · ·+ xpn−1

.

Note that in some contexts the Kloosterman sum is defined to be just the summation
term without the added ‘1’ [18]. As one would expect, a Kloosterman (sum) zero is
simply an element a ∈ IF×pn for which Kpn(a) = 0.
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Kloosterman sums have recently become the focus of much research, most no-
tably due to their applications in cryptography and coding theory (see [7, 29] for
example). In particular, zeros of K2n lead to bent functions from IF22n → IF2 [9], and
similarly zeros of ternary Kloosterman sums give rise to ternary bent functions [15].

It was recently shown that zeros of Kloosterman sums only exist in characteristics
2 and 3 [20], and hence these are the only cases we consider. Finding such zeros is
regarded as being difficult, and recent research has tended to focus on characterising
Kloosterman sums modulo small integers [28, 23, 10, 8, 24, 11, 13, 12]. While these
results are interesting in their own right, they also provide a sieve which may be used
to eliminate elements of a certain form prior to testing whether they are Kloosterman
zeros or not, by some other method.

Following work by Katz and Livné [18], Lachaud and Wolfmann [21] and Moisio [27],
Lisoněk has exploited a connection between Kloosterman sums and the group orders
of two families of elliptic curves [23]. In particular, for p ∈ {2, 3} the Kloosterman
sum Kpn(a) is equal to one minus the trace of Frobenius of an associated elliptic
curve Epn(a). Using p-adic methods — originally due to Satoh [31] — computing
the group orders of these elliptic curves asymptotically takes O(n2 log2 n log log n)
bit operations and requires O(n2) memory (see Vercauteren’s thesis [35] for con-
tributions and a comprehensive survey). Lisoněk also suggests that if instead one
only wants to determine whether a given element is a zero, one can do so by check-
ing whether a random point on Epn(a) has order pn. Asymptotically, this has a
similar bit complexity to the point counting approach, requires less memory, but is
randomised. Using this method he was able to find a Kloosterman zero of K2n for
n ≤ 64 and K3n for n ≤ 34, in a matter of days [23].

In this paper we take the elliptic curve interpretation to its logical conclusion,
in terms of proving divisibility results of Kloosterman sums by powers of the char-
acteristic. In particular we give an efficient deterministic algorithm to compute the
Sylow 2- and 3-subgroups of the associated elliptic curves in characteristics 2 and
3 respectively, along with a generator (these subgroups are cyclic in the cases con-
sidered). Moreover, the average case running-time of these algorithms is analysed,
and is considerably faster than the two methods mentioned.

Finding a single Kloosterman zero — which is often all that is needed in applica-
tions — is then a matter of testing field elements until one is found. This crucially
depends on the number of Kloosterman zeros, see [18] and §6.3. We note that should
one want to find all Kloosterman zeros over IF2n , then one can use the fast Walsh-
Hadamard transform (see [3] for an overview), which has complexity O(2n · n), or
complex multiplication [2], whereas our method would take O(2n · n log n) in the
best case.

2 Connection with elliptic curves

The following two lemmas were used by Lisoněk, while the third was proven in [23].
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Lemma 2.1 ([21]). Let a ∈ IF×2n and define the elliptic curve E2n(a) over IF2n by

E2n(a) : y2 + xy = x3 + a.

Then #E2n(a) = 2n +K2n(a).

Lemma 2.2 ([27]). Let a ∈ IF×3n and define the elliptic curve E3n(a) over IF3n by

E3n(a) : y2 = x3 + x2 − a.

Then #E3n(a) = 3n +K3n(a).

Lemma 2.3 ([23]). Let p ∈ {2, 3}, let a ∈ IF×pn, and let 0 ≤ k ≤ n. Then pk | Kpn(a)
if and only if there exists a point of order pk on Epn(a).

Lemma 2.3 is a simple consequence of the structure theorem for elliptic curves
over finite fields. Note that for p ∈ {2, 3}, by Lemmas 2.1 and 2.2 we have Kpn(a) = 0
if and only if Epn(a) has order pn. By Lemma 2.3, this is equivalent to Epn(a) having
a point of order pn, and hence finding a point of order pn proves that Kpn(a) = 0.
For the remainder of the paper, when we refer to a prime p we implicitly mean
p ∈ {2, 3}.

3 Determining the Sylow p-subgroup of Epn(a)

It is easy to show that K2n(a) ≡ 0 (mod 4) and K3n(a) ≡ 0 (mod 3) for all a ∈ IF2n

and IF3n respectively. One way to see this is to observe that E2n(a) possesses a
point of order 4 (see §4) and E3n(a) possesses a point of order 3 (see §5), and hence
by Lagrange’s theorem, 4 | #E2n(a) and 3 | #E3n(a).

For an integer x, let ordp(x) be the exponent of the maximum power of p that
divides x. For a given a ∈ IF×pn , let k = ordp(#Epn(a)), so that the Sylow p-subgroup
Sp(Epn(a)) has order pk. Since by Lemma 2.3, Sp(Epn(a)) is cyclic, it contains
(p− 1)pk−1 generators. Multiplying these by p results in (p− 1)pk−2 generators of
the order pk−1 subgroup. Continuing this multiplication by p process, after k − 1
steps one arrives at the p-torsion subgroup, consisting of p − 1 order p points and
the identity element O. These considerations reveal the structure of the p-power
torsion subgroups, which one may view as a tree, with O as the root. The root has
p− 1 children which are the non-identity points in Epn(a)[p]. If k > 1 each of these
p− 1 vertices has p children: the elements of Epn(a)[p2] \ Epn(a)[p]. For 1 < i < k,
at the i-th level, each of the (p− 1)pi−1 vertices have p children.

Using a division polynomial approach Lisoněk was able to prove a condition on
a such that K2n(a) is divisible by 16, and likelise a condition on a such that K3n(a)
is divisible by 9. While other methods have pushed the divisibility of K2n(a) by 2k

up to 64 [13] and K3n(a) by 3k up to 27 [12], these use p-adic methods; the division
polynomial approach seemingly being too cumbersome to progress any further.
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However, the process outlined above — taking a generator of Sp(Epn(a)) and
multiplying by p repeatedly until the non-identity elements of the p-torsion are ob-
tained — can be reversed, easily and efficiently, using point-halving in even charac-
terstic, and point-thirding in characteristic three, as we demonstrate in the following
two sections. Furthermore, due to the cyclic structure of Sp(Epn(a)), at each level,
either all points are divisible by p, or none are. This means one can determine
the height of the tree by using a depth-first search, but without any backtracking.
When a point P on a particular level can not be halved or thirded, this level is
logp |Sp(Epn(a))|, and P is a generator. Furthermore, one can do this without ever
computing the group order of the curve. This process has been considered previ-
ously by Miret et al., in the case of determining the Sylow 2-subgroup of arbitrary
elliptic curves [25], and for all other primes l > 2 [26], with the exception of the cases
l = p. The case l = p = 2 follows easily from point halving, which is well studied in
cryptographic circles [19, 32, 14, 1], and known to be faster than point doubling in
many cases. The case l = p = 3 has not been explicitly addressed before, and we do
so here for the family E3n(a).

We summarise this process in Algorithm 1. Regarding notation, we say that a
point P is p-divisible if there exists a point Q such that pQ = P , and write Q = P/p.

Algorithm 1: DETERMINE Sp(Epn(a))

INPUT: a ∈ IF×pn, P ∈ Epn(a)[p] \ {O}
OUTPUT: (k, Pk) where k = ordp(#Epn(a)) and 〈Pk〉 = Sp(Epn(a))

1. counter← 1;
2. While P is p-divisible do:
3. P := P/p;
4. counter++;
5. Return (counter, P )

4 Binary fields

We now work out the details of Algorithm 1 for the family of curves E2n(a). For a
fixed n, given a point P = (x, y) ∈ E2n(a), 2P = (ξ, η) is given by the formula:

λ = x + y/x,

ξ = λ2 + λ, (1)
η = x2 + ξ(λ + 1).

We therefore need to reverse this process. Given Q = (ξ, η), to find P = (x, y) such
that [2]P = Q, we do the following.
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First, we solve λ2 + λ = ξ, if possible. This is solvable in IF2n if and only if
Tr(ξ) = 0, since the trace of the left-hand side is zero for every λ ∈ IF2n . For odd n
this can be solved using the half trace (we defer the treatment for even n until §4.1),

H(c) =
(n−1)/2∑

i=0

c22i
.

One can check that λ = H(ξ) solves equation (1). We then have

x = (η + ξ(λ + 1))1/2,

y = x(x + λ).

This completes the halving of the point Q = (ξ, η). Note that λ = H(ξ)+1 provides
the other point whose duplicate is Q. There is a unique 2-torsion point (0, a1/2),
which when halved by the above method gives the point P4 = (a1/4, a1/2) of order
4, which we use as the base point in the following algorithm.

Algorithm 2: DETERMINE S2(E2n(a))

INPUT: a ∈ IF×2n, x = a1/4, y = a1/2

OUTPUT: (k, Pk) where k = ord2(#E2n(a)) and 〈Pk〉 = S2(E2n(a))

1. counter← 2;
2. While Tr(x) = 0 do:
3. λ← H(x);
4. x← (y + x(λ + 1))1/2;
5. y ← x(x + λ);
6. counter++;
7. Return (counter, P = (x, y))

Observe that if the point P4 satisfies Tr(a1/4) = Tr(a) = 0, then there is a point
of order 8, and hence 8 | K2n(a), which was first proven in [15] and later in [23].

4.1 Solving λ2 + λ = ξ for even extension degrees

When n is even, the half trace approach will not work. Instead, fix an element
δ ∈ IF2n with Tr(δ) = 1. Then a solution to equation (1) is given by [4, Chapter II]

λ =
n−2∑
i=0

( n−1∑
j=i+1

δ2j

)
ξ2i

. (2)
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The inner sums can be precomputed, and for a general δ the computation of λ
would require n−1 multiplications in IF2n , which together with the 2 multplications
coming from steps 4 and 5 of Algorithm 2, totals n + 1 multiplications.

However, should IF2n contain a proper subfield with extension degree a power of
2, then one can reduce this cost significantly. Let n = 2im with i ≥ 1 and m odd.
Fix a δ ∈ IF

22i with TrIF
22

i /IF2
(δ) = 1. Then

TrIF
22

i·m/IF2
(δ) = m · TrIF

22
i /IF2

(δ) = 1.

Hence this δ can be used in (2). As δ22i

= δ, upon expanding (2) in terms of

{δ20
, δ21

, . . . , δ22i−1}, we see that at most 2i multiplications of elements of IF
22i by

elements of IF2n are required. So the smaller the maximum power of 2 dividing n,
the faster one can solve equation (1). In the case where n = 2m with m odd, only
2 such ‘mini’ multiplications are necessary. Note that when n itself is odd, we set
δ = 1 and so no multiplications are needed. At the other end of the extreme, if
n = 2i, then one requires n − 1 full multiplications and 2 more for steps 4 and 5
of Algorithm 2. So in this case we obtain no improvement over the naive initial
method of (2).

5 Ternary fields

Let Q = (ξ, η) ∈ E3n(a). To find P = (x, y) such that [3]P = Q, when possible, we
do the following. As in [26, §4], we have

x([3]P ) = x(P )− Ψ2(x, y)Ψ4(x, y)
Ψ2

3(x, y)
,

or
(x− ξ)Ψ2

3(x, y)−Ψ2(x, y)Ψ4(x, y) = 0,

where Ψl is the l-th division polynomial. Working modulo the equation of E3n , this
becomes

x9 − ξx6 + a(1− ξ)x3 − a2(a + ξ) = 0,

whereupon substituting X = x3 gives

f(X) = X3 − ξX2 + a(1− ξ)X − a2(a + ξ) = 0. (3)

To solve (3), we make the transformation

g(X) = X3f

(
1
X
− a(1− ξ)

ξ

)
=

a2η2

ξ3
X3 − ξX + 1.

Hence we must solve

X3 − ξ4

a2η2
X +

ξ3

a2η2
= 0.
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Writing X = ξ2

aη X̄ this becomes

X̄3 − X̄ +
aη

ξ3
= 0. (4)

Hence our thirding condition is simply that Tr(aη/ξ3) = 0, since as before, for every
element of IF3n we have Tr(X̄3 − X̄) = 0. To solve (4) we use a function similar to
the half trace: for n ≡ 2 (mod 3) we define

H3(c) = c +
(n−2)/3∑

i=1

c33i − c33i−1
.

One can check that this solves the stated equation, the other two solutions being
H3(c)± 1. For n ≡ 1 (mod 3) one can define a similar function, whereas for n ≡ 0
(mod 3) one can use an analogue of the binary solution given in §4.1.

Unrolling the transformations leads to the following algorithm, with input the
3-torsion point P3 = (a1/3, a1/3).

Algorithm 3: DETERMINE S3(E3n(a))

INPUT: a ∈ IF×3n, x = a1/3, y = a1/3

OUTPUT: (k, Pk) where k = ord3(#E3n(a)) and 〈Pk〉 = S3(E3n(a))

1. counter← 1;
2. While Tr(ay/x3) = 0 do:
3. λ← H3(−ay/x3);

4. x←
(

ay
x2λ
− a(1−x)

x

)1/3

;

5. y ←
(
x3 + x2 − a

)1/2
;

6. counter++;
7. Return (counter, P = (x, y))

Observe that as with Algorithm 2, if the point P3 satisfies Tr(a · a1/3/a) =
Tr(a) = 0, then there is a point of order 9, and hence 9 | K3n(a), which was first
proven in [34], and later in [23] and [11].

6 Heuristic analysis of Algorithms 2 and 3

In this section we present an heuristic analysis of the expected computational cost
of Algorithms 2 and 3. We first address the estimated cost of each iteration (which
may be subject to several efficiency improvements), and then address the number
of iterations that are performed.
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6.1 Cost per iteration

The cost of each iteration in Algorithm 2 is dominated by 2 IF2n-multiplications,
the addition, trace, half trace being almost negligible, while squaring and square-
rooting are cyclic shifts when using normal bases, and are also very efficient in
polynomial bases. We refer the reader to [14, 1] for the state of the art in point
halving techniques.

Due to the presence of inversions and square-root computations, Algorithm 3
is considerably less efficient than Algorithm 2. Asymptotically, one expects 3-adic
point counting methods to be superior. However, for fields of a practical size, com-
paring Algorithm 3 with the built-in MAGMA point counting functions (introduced
in [5]), Algorithm 3 is several orders of magnitude faster (as is Algorithm 2). We
leave it as an interesting practical challenge to develop efficient point thirding algo-
rithms and implementations.

6.2 (Heuristic) expected number of iterations

In terms of the number of iterations that must be performed in Algorithms 2 and 3,
we first propose the following simple heuristic argument, before giving a proof in §7.
We make the assumption that over all a ∈ IF×pn , at the start of any iteration,
regardless of the height of the tree at that point, the argument of the trace function is
uniformly distributed in IFpn . While this assumption may seem an unfounded, in our
experiments the resulting estimate is true to within 1% of the actual average value,
for the relatively small fields we compared with. We treat the two characteristics
separately.

For Algorithm 2, every curve order is divisible by 4, and on the first iteration,
2n−1 − 1 of the curves E2n(a) have Tr(a) = 0. On the second iteration, by our
assumption, approximately 2n−2 curves have trace 0. Summing over all iterations
this gives a total of

2n−1 + 2n−1 + · · ·+ 2 + 1 ≈ 2n,

for the number of iterations that need to be performed for all a ∈ IF×2n . This is one
iteration per element and so the expected order of S2(E2n(a)) as n→∞ is 22+1 = 8.

For Algorithm 3, since the trace has probability 1/3 of being zero, the same
argument for the expected number of iterations gives the corresponding total

3n−1 + 3n−2 + · · ·+ 3 + 1 ≈ 3n/2.

Hence over all a ∈ IF×3n , according to this heursitic we have an expected total of
3n/2 iterations, which is 1/2 an iteration per element, and so the expected order of
S3(E3n(a)) as n→∞ is 31+1/2 = 3

√
3.

In terms of finding a point of order pn on Epn(a), note that one only needs to
perform at most dn/2 + logp 4e − (4− p) iterations of Algorithms 2 and 3 for p = 2
and p = 3 respectively, as this determines the curve order uniquely (as pn). The
ceiling is of course the same precision used in the p-adic point counting methods [35].
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6.3 Exact formula for average order of Sp(Epn(a))

Let pn + t be an integer in the Weil interval Wpn = [pn + 1− 2pn/2, pn + 1 + 2pn/2],
which is assumed to be divisible by 4 if p = 2 and divisible by 3 if p = 3. Let N(t)
be the number of solutions in IF×pn to Kpn(a) = t. Katz and Livné have proven the
following [18]. Let α = (t +

√
t2 − 4pn)/2 for t as above. Then

N(t) =
∑

orders O
h(O),

where the sum is over all orders O ⊂ Q(α) which contain ZZ[α]. Hence the total of
the exponents of the Sylow p-subgroups, over all a ∈ IF×pn , is

Tpn =
∑

(pn+t)∈Wpn

N(t) · ordp(pn + t).

The expected order of Sp(Epn(a)) is thus pTpn/(pn−1). It seems difficult to prove the
heuristic of §6.2 by estimating Tpn using the Katz-Livné result directly. However,
using a theorem due to Howe [16], we prove Theorem 7.3 below.

7 Main result

We now present our main result, which proves the expected order of the Sylow p-
subgroups is as stated in §6.2. To facilitate our analysis, for 1 ≤ k ≤ n, we partition
Tpn into the counting functions

Tpn(k) =
∑

(pn+t)∈Wpn ,pk|(pn+t)

N(t), (5)

so that

Tpn =
n∑

k=1

Tpn(k). (6)

Observe that since #E2n(a) ≡ 0 (mod 4) for all a ∈ IF×2n , we have T2n(1) =
T2n(2) = 2n − 1 and furthermore since Tr(a) = 0 for precisely 2n−1 − 1 elements
a ∈ IF×2n , we have T2n(3) = 2n−1 − 1. Similarly, since #E3n(a) ≡ 0 (mod 3) for
all a ∈ IF×3n , we have T3n(1) = 3n − 1 and again by the trace condition, we have
T3n(2) = 3n−1 − 1.

7.1 Estimating Tpn(k)

For k ≥ 2, let T2n(k) be the set of IF2n-isomorphism classes of elliptic curves E/IF2n

such that #E(IF2n) ≡ 0 (mod 2k). Similarly for k ≥ 1, let T3n(k) be the set of IF3n-
isomorphism classes of elliptic curves E/IF3n such that #E(IF3n) ≡ 0 (mod 3k).
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Observe that the elliptic curves E2n(a) and E3n(a) both have j-invariant 1/a [33,
Appendix A], and hence cover all the IF2n- and IF3n-isomorphism classes of elliptic
curves respectively, except j = 0. We have the following lemma.

Lemma 7.1. [6, Lemma 6] Let E/IFq be an elliptic curve and let [E]IFq be the set
of IFq-isomorphism classes of elliptic curves that are IFq-isomorphic to E. Then for
j 6= 0, 1728 we have #[E]IFq = 2, and [E]IFq consists of the IFq-isomorphism class of
E and the IFq-isomorphism class of its quadratic twist Et.

Let #E2n(a) = 2n + 1 − ta, with ta the trace of Frobenius. Since j 6= 0, by
Lemma 7.1 the only other IF2n-isomorphism class with invariant 1/a is that of the
quadratic twist Et

2n(a), which has order 2n + 1 + ta. Since ta ≡ 1 (mod 4), we
have #Et

2n(a) ≡ 2 (mod 4) and hence none of the IF2n-isomorphism classes of the
quadratic twists of E2n(a) for a ∈ IF×2n are in T2n(k), for k ≥ 2. By an analogous
argument, only the IF3n-isomorphism classes of E3n(a) for a ∈ IF×3n are in T3n(k), for
k ≥ 1. Furthermore, all curves E/IF2n and E/IF3n with j = 0 are supersingular [36,
§3.1], and therefore have group orders ≡ 1 (mod 4) and ≡ 1 (mod 3) respectively.
Hence no IFpn-isomorphism classes of curves with j = 0 are in Tpn(k) for p ∈ {2, 3}.
As a result, for 2 ≤ k ≤ n we have

|T2n(k)| = T2n(k), (7)

and similarly, for 1 ≤ k ≤ n we have

|T3n(k)| = T3n(k).

Therefore in both cases, a good estimate for |Tpn(k)| is all we need to estimate
Tpn(k). The cardinality of T3n(k) is naturally related to the study of modular curves;
in particular, considering the number of IFpn-rational points on the Igusa curve of
level pk allows one to prove Theorem 7.3 below [17, 30]. However, for simplicity
(and generality) we use a result due to Howe on the group orders of elliptic curves
over finite fields [16]. Consider the set

V (IFq; N) = {E/IFq : N | #E(IFq)}
/ ∼=IFq

of equivalence classes of IFq-isomorphic curves whose group orders are divisible by
N . Following Lenstra [22], rather than estimate V (IFq; N) directly, Howe considers
the weighted cardinality of V (IFq; N), where for a set S of IFq-isomorphism classes
of elliptic curves over IFq, this is defined to be:

#′S =
∑

[E]∈S

1
#AutIFq(E)

.

For j 6= 0 we have #AutIFq
(E) = 2 [33, §III.10] and since {±1} ⊂ AutIFq(E) we

have #AutIFq(E) = 2 also. Therefore, by the above discussion, for p = 2, k ≥ 2 and
p = 3, k ≥ 1 we have

|Tpn(k)| = 2 ·#′V (IFpn ; pk), (8)

We now present Howe’s result.
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Theorem 7.2. [16, Theorem 1.1] There is a constant C ≤ 1/12 + 52/6 ≈ 1.262
such that the following statement is true: Given a prime power q, let r be the
multiplicative arithmetic function such that for all primes l and positive integers a

r(la) =


1

la−1(l − 1)
, if q 6≡ 1 (mod lc);

lb+1 + lb − 1
la+b−1(l2 − 1)

, if q ≡ 1 (mod lc),

where b = ba/2c and c = da/2e. Then for all positive integers N one has∣∣∣∣#′V (IFq; N)
q

− r(N)
∣∣∣∣ ≤ CNρ(N)2ν(N)

√
q

, (9)

where ρ(N) =
∏

p|N ((p+1)/(p−1)) and ν(N) denotes the number of prime divisors
of N .

Equipped with Theorem 7.2, we now present our main theorem.

Theorem 7.3. Let p ∈ {2, 3} and let Tpn(k) be defined as above. Then

(i) For 3 ≤ k < n/4 we have T2n(k) = 2n−k+2 + O(2k+n/2),

(ii) For 2 ≤ k < n/4 we have T3n(k) = 3n−k+1 + O(3k+n/2),

(iii) T2n = 3 · 2n + O(n · 23n/4),

(iv) T3n = 3n+1/2 + O(n · 33n/4),

(v) limn→∞ Tpn/(pn − 1) =

{
3 if p = 2,

3/2 if p = 3.

Furthermore, in (i)− (iv) the implied constants in the O-notation are absolute and
effectively computable.

Proof. By equations (7) and (8), and Theorem 7.2, for 3 ≤ k ≤ n we have∣∣∣∣T2n(k)
2n+1

− 1
2k−1

∣∣∣∣ ≤ C · 2k · 3 · 2
2n/2

,

from which part (i) follows immediately. Similarly for 2 ≤ k ≤ n we have∣∣∣∣T3n(k)
2 · 3n

− 1
3k−1 · 2

∣∣∣∣ ≤ C · 3k · (4/2) · 2
3n/2

,
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from which part (ii) follows. For part (iii) we write equation (6) as follows:

T2n =
n∑

k=1

T2n(k) =
bn/4c−1∑

k=1

T2n(k) +
n∑

k=bn/4c

T2n(k).

Considering these two sums in turn, for the first we have

2n + (2n + 2n−1 + · · ·+ 2n−bn/4c+2) + O(2n/2+2 + 2n/2+3 + · · ·+ 2n/2+bn/4c)

= 2n +
(2n+1 − 1

2− 1
− 2n−bn/4c+2 − 1

2− 1

)
+ O(2n/2+bn/4c+1)

= 2n +
2n+1 − 1

2− 1
+ O(23n/4).

Observe that pk+1 | t =⇒ pk | t and so T2n(k + 1) ≤ T2n(k), which gives

n∑
k=bn/4c

T2n(k) ≤ (3n/4 + 2) · T2n(bn/4c) = O(n · 23n/4).

Combining these one obtains

T2n = 2n +
2n+1 − 1

2− 1
+ O(n · 23n/4),

which proves (iii). Part (iv) follows with the same argument, but without the first
term. Part (v) now follows immediately from parts (iii) and (iv). ut
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