
Proofs of Ownership in Remote Storage Systems ∗

Shai Halevi1, Danny Harnik2, Benny Pinkas3, and Alexandra Shulman-Peleg2
1IBM T. J. Watson Research Center, 2IBM Haifa Research Lab, 3Bar Ilan University

Abstract
Cloud storage systems are becoming increasingly popular. A
promising technology that keeps their cost down is deduplication,
which stores only a single copy of repeating data. Client-side dedu-
plication attempts to identify deduplication opportunities already
at the client and save the bandwidth of uploading copies of existing
files to the server.

In this work we identify attacks that exploit client-side dedu-
plication, allowing an attacker to gain access to arbitrary-size files
of other users based on a very small hash signatures of these files.
More specifically, an attacker who knows the hash signature of a
file can convince the storage service that it owns that file, hence the
server lets the attacker download the entire file. (In parallel to our
work, a subset of these attacks were recently introduced in the wild
with respect to the Dropbox file synchronization service.)

To overcome such attacks, we introduce the notion of proofs-of-
ownership (PoWs), which lets a client efficiently prove to a server
that that the client holds a file, rather than just some short infor-
mation about it. We formalize the concept of proof-of-ownership,
under rigorous security definitions, and rigorous efficiency require-
ments of Petabyte scale storage systems. We then present solutions
based on Merkle trees and specific encodings, and analyze their
security. We implemented one variant of the scheme. Our perfor-
mance measurements indicate that the scheme incurs only a small
overhead compared to naive client-side deduplication.
Keywords: Cloud storage, Deduplication, Merkle trees, Proofs of
ownership.

1. Introduction
Cloud computing provides a low-cost, scalable, location-independent
infrastructure for data management and storage. The rapid adoption
of Cloud services is accompanied by increasing volumes of data
stored at remote servers, so techniques for saving disk space and
network bandwidth are needed. A central up and coming concept in
this context is deduplication, where the server stores only a single
copy of each file, regardless of how many clients asked to store that
file. All clients that store the file merely use links to the single copy

∗ The work of Benny Pinkas was supported by the SFEROT project funded
by the European Research Council (ERC). The work of Danny Harnik and
Alexandra Shulman-Peleg has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement n 257019.

[Copyright notice will appear here once ’preprint’ option is removed.]

of the file stored at the server. Moreover, if the server already has a
copy of the file, then clients do not even need to upload it again to
the server, thus saving bandwidth as well as storage (this is termed
client-side deduplication). Reportedly, business applications can
achieve deduplication ratios from 1:10 to as much as 1:500, result-
ing in disk and bandwidth savings of more 90% [8]. Deduplication
can be applied at the file level or at the block level, and this paper
focuses on file-level deduplication. (Block-level deduplication is
discussed briefly in Section 6.)

In a typical storage system with deduplication, a client first
sends to the server only a hash of the file and the server checks
if that hash value already exists in its database. If the hash is not
in the database then the server asks for the entire file. Otherwise,
since the file already exists at the server (potentially uploaded by
someone else), it tells the client that there is no need to send the
file itself. Either way the server marks the client as an owner of
that file, and from that point on there is no difference between the
client and the original party who has uploaded the file. The client
can therefore ask to restore the file, regardless of whether he was
asked to upload the file or not.

Harnik et al. observed recently that client-side deduplication in-
troduces new security problems [13]. For example, a server telling
a client that it need not send the file reveals that some other client
has the exact same file, which could be a sensitive information.
The findings in [13] apply to popular file storage services such as
MozyHome and Dropbox, among others.

A New Attack. The starting point of this work is a much more
direct threat to storage systems that use client-side deduplication
across multiple users. Specifically, by accepting the hash value as
a “proxy” for the entire file, the server allows anyone who gets the
hash value to get the entire file. Consider for example the following
case: Bob is a researcher who routinely publishes hashes of his
lab reports, as a time-stamp for the results of his research. Bob is
also careful to daily backup his hard disk to an online file storage
service. Alice is interested in learning the results of Bob’s research.
She signs up to the same storage service, asks to backup a file, and
when asked to present its hash value she presents the value that was
published by Bob as a time-stamp for his file. The service forgoes
the upload, and just makes note that Alice and Bob uploaded the
same file. Later on, Alice asks to recover that file and the service
complies, sending her a copy of Bob’s lab report.

The problem illustrated above stems from the fact that by learn-
ing just a small piece of information about the file, namely its hash
value, an attacker is able to get the entire file from the server. This
extra piece of information is not really meant to be secret, and in
fact it must be computable from the file via a deterministic public
algorithm which is shared by all clients.

A simplistic fix for this attack is to hash some context informa-
tion together with the file, e.g., ‘‘deduplication at cloud
service XYZ’’ and a system-wide random salt value (i.e., a
single random value used for all files). This makes it highly unlikely
for different applications to use the same hashing mechanism, thus
preventing the specific attack from above. We note, however, that

1 2011/8/11

this solution is still unsatisfactory, in that it does not address the
root cause of the attack: There is still a very short piece of informa-
tion that represents the file, and an attacker that learns that piece of
information can get access to the entire file. Although we plugged
one avenue by which the attacker was able to get this piece of in-
formation, there could be others.

Potential Attacks
Below we list some plausible attack scenarios, supporting our main
point that representing a large file by a small piece of “not really
secret” information is a bad idea. Some of the attacks were demon-
strated against popular storage services.

Usage of a common hash function. This is essentially the attack
described in the previous example, where the deduplication system
uses a standard hash function in a straightforward manner. (It was
recently reported that Dropbox uses SHA256 for this purpose [1].)
In that case it is plausible that an attacker can get hold of the hash
values of files owned by other users (e.g., if these hash values are
used elsewhere or the user publishes a signature on the file).

Using the storage service as an unintended CDN. In this sce-
nario, Alice the attacker uploads a copy of a (potentially huge, and
possibly copyright infringing) file to the storage server and pub-
lishes the hash of that file (e.g., on her web page). Now anyone
wishing to obtain the file can attempt to upload it to the storage
service, present the hash value to the service and be identified as
owning that file, and then ask to restore the file from the storage
service. Hence Alice essentially uses the storage service as a con-
tent distribution network (CDN). This behavior may run afoul with
the business model of that storage server, which is likely to be de-
signed to support many uploads but very few restore operations.
This behavior might also support piracy and copyright infringing
behavior.

Server break-in. Consider an attacker that is able to temporarily
compromise a server machine, getting access to its internal cache,
which includes the hash values for all the recently accessed files.
Having obtained this (relatively small) piece of information, the
attacker is now able to download all these files, which may include
confidential files of others. The attacker can even publish these hash
values, thus enabling anyone in the world to get these files.

Note that it is unlikely that the attacker can use a short compro-
mise event to actually download all the large files themselves, but
the server cache may be many orders of magnitude smaller. Further,
note that even if the server learns about the attack early on, there
is not much that it can do about it. The only effective remedy that
it has is to turn off client side deduplication for the affected files,
essentially “forever.”

Malicious client software. A similar attack to the above attack is
also possible on the client side. For example, Alice the attacker can
install malicious software on the machine of Bob the victim. The
malicious software can use a very low-bandwidth covert channel to
send to Alice the hash of interesting files, thus enabling Alice to
get the file itself from the server. (In fact, in [13] it was shown how
to use the deduplication service itself as a low bandwidth covert
channel. The attack described here can amplify this covert channel
and enable the leakage of much larger amounts of data.)

As opposed to the malicious software stealing Bob’s access
password to the storage server, the hash-based attack works no
matter how well Bob protects his credentials (e.g., even if Bob uses
an external device or some TPM-based scheme to authenticate to
the server). Further, the usage of a stolen password can be identified
by Bob checking his account login audit files. A hash based attack
cannot be easily tracked since the attacker pose as legitimate users
who happen to upload the same files as Bob.

In one variant of this attack, the software temporarily copies a
file on Bob’s machine to a directory whose contents are routinely
backed up online, wait for a backup operation, then delete the file
from that directory. Online storage services typically keeps deleted
files for a at least 30 days, giving Alice ample opportunity to
recover the file with very little chance for Bob to trace how the
leak happened.

The attack can be amplified even further in the following way.
The examination of Dorredorf and Pinkas [7] revealed that the
client software of several file storage services, including Dropbox,
stores local unencrypted manifest files, written in SQLite format.
These files include an entry for each file stored by the service,
which includes the hash value of the file. A malicious software
can leak to Alice the hash value of this file itself. Alice can use
this value to recover the manifest file, and then use the hash values
stored in the manifest file to recover all files stored by Bob. The
implication is that a leakage of a short hash value, which is either
20 or 32 byte long (depending on the service), leaks all of Bob’s
files, in a way which is essentially undetectable.

Accidental leakage. Even without malicious software, when a
short value is used to represent a big file there always exists a
risk of it leaking (e.g., by swapping the value into disk via storage-
area network, storing that value in a “control file” that may be left
behind in a directory, etc.) If many clients have the same file (e.g.,
a department-wide document), it may become quite likely that one
of them will accidentally leak the short summary of that document,
thus allowing unauthorized access to it via the storage service.

Implementations of the attack
We stress that the attacks that we describe are not just theoreti-
cal. Independently of our work, the attack was very recently dis-
covered by Wladimir van der Laan, who started an open-source
project called Dropship that uses the Dropbox storage servers as
a CDN. The Dropship project was withdrawn after Dropbox had
asked “in a really civil way” that its creator take down the source
code, since they “felt that it is a violation of the TOS (Terms of
Service)” [1, 18].1 This attack against Dropbox, as well as a simi-
lar attack that was implemented against another major file storage
service, was also discovered and implemented by Dorrendorf and
Pinkas [7]. (The name of the second service is withheld since the
relevant company has not yet been notified.). Another recent and in-
dependent implementation of the attack on Dropbox was described
by Mulazzani et al. [16].

Effect on Open APIs for Remote Storage. Given the many av-
enues, described above, for the attacker to get hold of the hash val-
ues of files, it is clear that using only a small hash as a proxy for a
large file is a security vulnerability in systems that use client-side
deduplication. This vulnerability must be addressed before we can
attempt to create open APIs for remote-storage that support client-
side deduplication, since such APIs have to be usable in environ-
ments that are sensitive to some of the attacks above. We thus view
a solution to this problem as an enabler for the creation of advanced
open storage APIs.

1.1 Proofs of Ownership (PoWs)
To solve the problem of using a small hash value as a proxy for the
entire file, we want to design a solution where a client proves to the
server that it indeed has the file. We call a proof mechanism that

1 It is interesting to note that even though the Dropbox service allows its
users to share files by storing them on their public folder, Dropbox has
actively tried to shutdown the Dropship service. This might be due to the
fact that normal file sharing through the public folder is bandwidth limited,
and since Dropship is better suited for sharing copyright infringing content.

2 2011/8/11

prevents such leakage amplification a proof of ownership (PoW).
We note that this is somewhat similar to proofs of retrievability
(PORs) [14, 17] and proofs of data possession (PDPs) [3] with
a role reversal (the client is the prover rather than the server).
However, this role reversal between client and server is significant,
and in particular the advanced POR and PDP protocols in the
literature are inapplicable in our setting, see more discussion in
Section 1.3.

Some important requirements that constrain the solution in our
setting are discussed next:
Public hash function. To support cross-user deduplication, all
clients must use the same procedure for identifying duplicate files.
Hence this procedure must be public (since it is implemented in
every client), which means that a determined attacker can learn it.
Bandwidth constraints. The protocol run between the server and
client must be bandwidth efficient. Specifically, it must consume
a lot less bandwidth than the size of the file (otherwise the client
could just send the file itself to the server).
Server constraints. The server typically has to handle a huge
number of files. (For example, Mozy reports storing more than 25
Petabytes of data.) The files themselves are stored on a secondary
storage with a large access time, and the server can store only
a small amount of data per file in fast storage (such as RAM).
Moreover, the server cannot afford to retrieve the file or parts of
it from secondary storage upon every upload request. The solution
must therefore allow the server to store only an extremely short
information per file, that will enable it to check claims from clients
that they have that file, without having to fetch the file contents for
verification.
Client constraints. The client should be able to efficiently prove
to the server that it knows the file in question. This could be hard,
e.g., if the file is very large and does not fit in local memory. We
therefore seek a solution where the client can compute the proof by
making a single pass over the file (and using a reasonable amount
of memory).

On the other hand, during the computation of the proof there
should be no very-short state from which the proof can be com-
puted. Otherwise the very-short state itself can serve as a proxy for
the large file, and the system will remain vulnerable to some of the
atacks above.

1.1.1 Our security definition
For security we want to ensure that as long as the file has a lot of
min-entropy (from the attacker’s perspective), the attacker has only
a small chance of convincing the server. We stress that in many
cases, an attacker may have some partial information about the
file, e.g., it may know the format of the file, its language, or the
contents of large portions in the file. Hence we require security
even when the entropy of file (from the attacker’s perspective) is
much smaller than the file length, as long as there are still a lot of
uncertainty left in the file.2

Defining what it means for the file to have a lot of min-entropy
from the attacker’s perspective turns out to be somewhat subtle.
The formal definition roughly follows the CDN/malicious-software
attack scenarios. Specifically, we consider an attacker that does not
know all of the file, but has accomplices who have the file. The
accomplices can interact with the storage server, and can help the
attacker in arbitrary ways, subject to only two constraints. One
constraint is that the total number of bits that the accomplices
send to the attacker is much smaller than the initial min-entropy
of the file (hence the file still has a lot of min-entropy even after all

2 Note that the security also holds for computational notions of entropy, e.g.,
even if the adversary holds an encrypted version of the file.

that communication). The other constraint is that the accomplices
can only help the attacker during an off-line phase before the
proof protocol begins, since otherwise the attacker could just relay
messages back and forth between the server and an accomplice who
has the file. (The no-man-in-the-middle restriction seems justified
in many of the attack scenarios from above.) This formulation can
be viewed as an instance of the “bounded retrieval model” [6, 9].

1.2 Our Solutions
In this work we consider a few different formal formulations of the
intuitive requirement above and associated protocols that realize
them. The first solution is the most stringent in terms of security,
but lacks in efficiency (mainly of computation time and memory
requirements). The next solutions two solutions each improve on
these aspects at the cost of relaxations on the security guarantees.

A general solution. Our most stringent security requirement says
that as long as the min-entropy in the original file minus the number
of bits sent to the adversary by the accomplices is more than the
security parameter, the adversary should not be able to convince the
server that it has the file (except with insignificant probability). This
notion can be achieved by adopting the Merkle-tree-based proof-
of-retrievability protocol. Namely, we first encode the file using an
erasure code, such that it is possible to recover the whole file from
any (say) 90% of the encoded bits. We then build a Merkle tree over
the encoded file, and have the server ask for a super-logarithmic
number of leaves, chosen at random.

From the properties of the erasure code, if the adversary is
missing any of the file then there are at least 10% of the leaves that
it does not know. Moreover, if the file has high min-entropy from
the adversary’s perspective then it cannot even guess the value of
these 10% leaves with any noticeable chance for success. Hence,
it will be caught with overwhelming probability.3 This solution is
described in Section 3.

A more efficient solution using universal hashing. The above
solution is not as efficient for the client as we would like. First,
computing the erasure code requires random access to bits of the
file, hence for large files that do not fit in RAM it entails too
many disk accesses. Also, the server must ask for a number of
leaves which is super-logarithmic in the security parameter, which
means that the communication complexity of the proof protocol is
ω(k log k logn) for an n-leaf tree and security parameter k.

We therefore seek more efficient protocols, even at the price
of settling for a somewhat weaker form of security. Specifically,
we relax our security requirement by having an upper-threshold T
such that if the attacker gets T bits from its accomplices then it is
allowed to convince the prover (even if T is much smaller than
the entropy of the file). This allows us to have a mechanism in
which the client only needs O(T) bits of internal memory in order
to process the file, even if the file itself is much larger, and the
communication in the protocol depends (polylogarithmically) on T
and not on the size of the file. In realistic scenarios, we may get
adequate security by setting T to be a rather large value (but not
huge), e.g., 64 MByte. With this relaxation, a good solution would
be to use universal hashing to hash the potentially large file into
a reduction buffer of size at most 64MByte, and then implement
the Merkle-tree protocol on the hashed values. This solution is
described in Section 4.

3 Without erasure codes, an adversary could have very high success proba-
bility on large files with small entropy, since the small entropy might mean
that the adversary knows most of the file. The codes ensures that even a sin-
gle unknown block of a large file will be extended to many unknown blocks
in the encoded file.

3 2011/8/11

A streaming scheme and implementation The more efficient so-
lution can be implemented with reasonable memory, but univer-
sal hashing with such large output size is very expensive to com-
pute. We, thus, optimize for a more practical solution for which
we can still offer meaningful security analysis, albeit under some
restrictions. We may argue that in realistic settings the input distri-
bution (from the attacker’s perspective) is not arbitrary, but rather
is taken from a specific class of distributions. Specifically, these
distributions capture cases in which there are parts of the file that
the attacker may know and other parts that are essentially ran-
dom. We formulate this condition (which is a generalization of
“block-fixing” distributions), and describe a protocol that can be
proved secure for this class of input distributions. Roughly speak-
ing, for these common input distributions we can replace the uni-
versal hashing with a procedure that generates a good erasure code
over the reduction buffer.

We stress that it is impossible to verify experimentally the as-
sumption about the input distribution, since it is an assumption
about the view of an attacker. Still it seems a reasonable assumption
to make in many settings (e.g., even files in a known format contain
some file specific information that is essentially random, see exam-
ples in Section 2.2.1). We also stress that we do not know of any
efficiently computable input distributions under which there is an
attack on our streaming scheme. It is interesting to either prove that
no such distributions exist (maybe in the random-oracle model) or
to exhibit one.

We implemented this streaming scheme and measured its ex-
pected effect on performance of the system (see details of the im-
plementation and test results in Section 5.3). For large files (over
2GByte) the overhead of our protocol above reading the file and
computing its SHA256, is less than 50%, and this figure drops as
the file grows. The overhead for smaller files is larger, yet it is still
very beneficially to run the protocol when considering the saved
data transfer times. When considering an average 5Mbps network,
the protocol takes no more than 4% of the time it would have taken
to transfer the file via the network (and less than 1% for large files).
Even with a fast 100Mbps network, client-side deduplication with
our protocol beats sending the entire file to the server already for
files as small as 125KByte.

1.3 Related Work
As we mentioned above, proofs-of-ownership are closely related
to proofs of retrievability (POR) [14, 17, 19] and proofs of data
possession (PDP) [3]. The two main differences are that (a) proofs
of retrievability/data-possession often use a pre-processing step that
cannot be used in proofs of ownership, and (b) our security notion
is weaker than that of proofs of retrievability. We now elaborate on
these two points:

No pre-processing step. In PORs/PDPs the input file is pre-
processed by the client by embedding some secrets in it, which
makes it possible for the server to later prove that it has the file
by replying to the client queries with answers that are consistent
with these secrets. In our setting, a new client comes with the only
original file itself, we cannot embed secrets in it for the purpose of
proofs. This rules out solutions based on MACs or signatures, for
example the schemes from [3, 4, 14, 17].

Weaker security guarantee. Our definition is not in the style of
proofs-of-knowledge [11], in that we do not require extractions.
Instead, we assume that the file is chosen from a distribution and
talk about the success probability of the attacker given that distri-
bution. In this sense, our definition is somewhat reminiscent of the
Storage-enforcing Commitment of Golle et al. [12]. It is obvious
that our security notion is implied by the stronger extraction prop-
erty. It is also not hard to show an example of a protocol which is

secure according to our notion but does not have an efficient extrac-
tor.4

Another well studied, related problem is that of verifying the
integrity of memory contents in computing platforms and ensuring
that no memory corruption affects the performed computations
[10]. Many of these schemes utilize Merkle trees [15] for memory
and data authentication.

2. Preliminaries
We briefly survey the tools that we use in our solutions and state our
security definition. Below we denote by [n] the set {1, 2, . . . , n}.

Error correction codes. An [n, k, d] code represents k-bit values
using n-bit codewords which at at least d apart. We identify the
code with an encoding function E : {0, 1}k → {0, 1}n, and it has
the property that for any two different values x, y ∈ {0, 1}k, the
Hamming distance betweenE(x) andE(y) is at least d. The small-
est distance between any two codewords is called the minimum-
distance of the code. It is clear that a code with minimum-distance d
can recover from any d− 1 erasures.

Pairwise independent hashing. A family H of functions from
{0, 1}k to {0, 1}n is pairwise independent (aka 2-universal) if for
every two different values x, y ∈ {0, 1}k and every two strings
a, b ∈ {0, 1}n, when choosing at random h ∈R H the probability
that h maps x to a and y to b is exactly 2−2n. An example of
a pairwise independent family is the family of affine functions,
H = {(x 7→ Ax+ b) : A ∈ {0, 1}k×n, b ∈ {0, 1}n}.

Collision resistant hashing. A collision-resistant hash function
has shorter output than input, and yet it is hard to find efficiently
two inputs that maps to the same output. Formally, a family of
functions H is collision resistant if no efficient algorithm can find,
on input a random h ∈ H, two different inputs x 6= y such that
h(x) = h(y) (except with insignificant probability). In practice
we use a single function that accepts arbitrary-size input and has a
fixed-size output (e.g., SHA256 with 256 bits of output).

2.1 Merkle Trees
A Merkle tree provides a succinct “commitment” to a large buffer,
such that it is later possible to “open” and verify individual blocks
of the buffer without giving the entire buffer. To construct a Merkle
tree we split the input buffer into blocks, then group the blocks
in pairs and use a collision-resistant hash function to hash each
pair. The hash values are then again grouped in pairs and each
pair is further hashed, and this process is repeated until only a
single hash value remains. This results in a binary tree with the
leaves corresponding to the blocks of the input buffer and the root
corresponding to the last remaining hash value. (When the number
of blocks in the input buffer is 2h, the resulting tree is a height-h
complete binary tree.)

We denote by MTh,b(X) the binary Merkle tree over buffer X
using b-bit leaves and the hash function h. For each node in the
tree n ∈ MTh,b(X), we denote by vn the value associated with
that node. That is, the value of a leaf is the corresponding block
of X , and the value of an intermediate node n ∈MTh,b(X) is the
hash vn = h(vl, vr) where vl, vr are the values for the left- and
right-children of n, respectively. (If one of the children of a node
is missing from the tree then we consider its value to be the empty
string.)

4 For example, applying the solution of Section 3 to a one-way permutation
of the file rather than to the file itself. One can extract the permuted file but
cannot extract the file itself (still this adheres to the requirement of PoWs,
since to answer correctly many bits have to be leaked).

4 2011/8/11

For a leaf node l ∈MTh,b(X), the sibling path of l consists of
the value vl and also the values of all the siblings of nodes on the
path from l to the root. Given the index of a leaf l ∈ MTh,b(X)
and a sibling path for l, we can compute the values of all the leaves
on the l-root path itself in a bottom-up fashion by starting from
the two leaves and then repeatedly computing the value of a parent
as the hash of the two children values. (The order of the children
in the hash computation is determined by the bits of the binary
representation of the index of l.)

We say that an alleged sibling path P = (vl, vn0 , vn1 , . . . , vni)
is valid with respect to MTh,b(X) if i is indeed the height of the
tree and the root value as computed on the sibling path agrees
with the root value of MTh,b(X). Note that in order to verify that
a given alleged sibling path is valid, it is sufficient to know the
number of leaves and the root value of MTh,b(X). (We also note
that any two different valid sibling paths with respect to the same
Merkle tree imply in particular a collision in the hash function.)

The Merkle-tree proof protocol. All our solutions use the follow-
ing basic proof protocol, between a verifier that has the root value
of a Merkle tree MTh,b(X) (and the number of leaves in the tree),
and a prover who claims to know the underlying buffer X . The
verifier simply chooses some number of leaf indexes and ask the
prover for the value of the corresponding leaves. The prover replies
with these leaves and with a sibling path for each one of them, and
the verifier accepts if all these sibling paths are valid.

Below we use MTPh(v, s, u) to denote the Merkle-tree proto-
col (with respect to hash function h) where the verifier knows the
root value v and number of leaves s, and asks to see u leaves of the
tree (with their sibling paths).

The Merkle-tree lemma. Our security proofs rely on the follow-
ing well-known Merkle-tree lemma, which says that every prover
that passes the Merkle-tree protocol with high enough probability
can be converted into an extractor that extracts most of the leaves of
the tree. We provide the proof in the appendix for self-containment.

Lemma 1 (Merkle-tree lemma). There exists a black-box extrac-
tor K with oracle access to a Merkle-tree-prover, that has the fol-
lowing properties:

1. For every prover P and v ∈ {0, 1}∗, s, u ∈ N, and δ ∈ [0, 1],
KP (v, s, u, δ) makes at most u2s(log(s) + 1)/δ calls to its
prover oracle P .

2. Fix any hash function h and input buffer X with s leaves of
b-bits each, and let v be the root value of MTh,b(X). Also fix
some u ∈ N and a prover (that may depend on h,X and u)
P ∗ = P ∗(h,X, u).
Then if P ∗ has probability at least (1− α)u + δ of convincing
the verifier in the Merkle-tree protocol MTPh(v, s, u) (for
some α, δ ∈ (0, 1]), then with probability at least 1/4 (over
its internal randomness) the extractor KP∗(v, s, u, δ) outputs
values for at least a (1 − α)-fraction of the leaves of the tree,
together with valid sibling paths for all these leaves.

2.2 Proofs of Ownership
Proof-of-ownership is a protocol in two parts between two players
on a joint input F (which is the input file). First the verifier summa-
rizes to itself the input file F and generates a (shorter) verification
information v. Later, the prover and verifier engage in an interactive
protocol in which the prover has F and the verifier only has v, at the
end of which the verifier either accepts or rejects. Hence a proof-
of-ownership is specified by a summary function S(·) (which could
be randomized and takes the input file F and a security parameter),
and an interactive two-party protocol Π(P ↔ V).

Validity. The scheme P = (S,Π) is valid if (a) S and Π are
efficient, and (b) for every input file F ∈ {0, 1}n and every

value of the security parameter n, it holds that Π(P (F, 1n) ↔
V (S(F, 1n))) ⇒ accept with all but a negligible probability
(in n).

Efficiency. The main efficiency parameters of a proof-of-ownership
are (a) the size of the summary information v = S(F, 1n), (b) the
communication complexity of the protocol Π, and (c) the computa-
tion complexity of computing the function S and of the two parties
in Π (all with respect to the file size |F | and the security param-
eter n). We seek solutions where the dependence on the security
parameter is linear, and where the computation complexity of S
and P is linear in |F | and everything else is at most (poly) logarith-
mic in |F |.

Another efficiency parameter that can be important is the space
complexity of S, P when viewed as one-pass algorithms that access
the input file in a streaming fashion. (This is significant since for
large files we would like to read them sequentially from disk only
once, and we do not have enough memory to store them all.)

2.2.1 Security of Proofs-of-Ownership
As we explained in the introduction, our goal is to ensure that the
file does not have a “small representation” that when leaked to
an attacker allows the attacker to obtain the file from the server.
Ideally, we would like the smallest representation of the file to be
as long as the amount of entropy in the file itself. There are three
regimes of parameters to keep in mind here:

Low-entropy files. These could be either small files, or large files
that are mostly known. For example, consider an MS-Word doc-
ument describing an employee in a company. The file describing
two different employees may be very large, but they differ on very
few fields. Hence from the point of view of employee A, the file
of employee B has very small entropy. In this case we want to en-
sure that employee A cannot use the storage server to get the file of
employee B without knowing the (very few) fields that separate the
two files.

Medium-entropy files. These are files that have quite a lot of
uncertainty, but still much less than their actual size. For example,
consider an attacker that has a new movie with an invisible digital
watermarking, and wants to get the non-watermarked movie from
the storage server. Here the movie itself could be many megabytes
long, and the only thing that the attacker does not know is the exact
embedding of the watermarks which could be just a few kilobytes.

In this case we want to ensure that even if some information
about the watermarks leaks to the attacker (by accident or malice),
as long as not all the information leaked the attacker cannot use the
storage server to get the non-watermarked movie. (We remark that
security in this setting is the most technically complicated of the
three.)

High-entropy files. These are large files that are mostly unknown
to the attacker. For example, one can think of attackers that try
to use the storage server as a content-distribution network (CDN):
One client uploads the file to a server, then want to send to a second
client just a short message that allows the second client to get the
file from the server. In this case we would like to ensure that the
“short message” cannot be very short, ideally it has to be about as
long as the file itself.

To capture security in these various settings, our attack scenario
postulates an arbitrary distribution D from which the input file is
chosen, F $← D. The file is then given to the storage server who
runs the summary function to get v = S(F).

Next there is a “learning phase” in which the adversary can set-
up arbitrarily many client accomplices and have them receive the
file F and run the proof protocol with the server. (The server plays

5 2011/8/11

the honest verifier with input v and the accomplices follow any
arbitrary protocol set by the adversary.) The accomplices can also
interact with the adversary during the same “learning phase.”

Then the game moves to a “proof phase”, in which the adversary
engages in the proof protocol with the server, trying to prove that
it has the file. (We can even iterate between “learning phases” and
“proof phases”, as long as the adversarial clients cannot talk to the
adversary concurrently with any run of the proof protocol between
the adversary and the server.

Our first (and strongest) security definition seamlessly captures
security in all of these settings. Roughly it says that as long as the
min-entropy in the original distribution is sufficiently larger than
the number of bits sent to the adversary by the accomplices, the
adversary should not be able to convince the server that it has the
file.

Definition 1. Fix parameters s ∈ N, ε ∈ [0, 1]. A scheme P =
(S,Π) is a strong proof of ownership with slackness s and sound-
ness error ε if for any t ∈ N and any input distributionD with t bits
of min entropy, and any adversary as above that receives less than
t− s bits from the accomplices during the game, the adversary has
probability of convincing the storage server that it has the file that
is at most negligible in s more than ε.

In Section 3 we present our basic scheme that satisfies Defini-
tion 1.

Our second definition relaxes the restriction that the proof fails
unless the accomplices send all the entropy of the file to the adver-
sary. Instead, we have a leakage threshold T (set by the designers
of the system) such that we allow the attacker to convince the server
if it receives T or more bits from the accomplices, regardless of the
entropy of the original file. In terms of the three parameter regimes
above, this does not effect much the low- or medium-entropy cases
(since we can set the threshold to a few megabytes), but it weak-
ens the defense in the high-entropy case. For example, if we set the
threshold at 64Mbyte then the server can still be used as a CDN,
except that the “short” message that clients must send to each other
in order to use it will be 64Mbyte long.5

Definition 2. Fix parameters s, T ∈ N, ε ∈ [0, 1]. A scheme
P = (S,Π) is a proof of ownership with leakage threshold T ,
slackness s, and soundness error ε, if for any t ∈ N, any input
distribution D with t bits of min entropy, and any adversary as
above that receives less than min(T, t−s) bits from the accomplices
during the game, the verifier rejects the proof with all but negligibly
more than ε probability.

In Section 4 we present a more efficient scheme that satisfies
Definition 2. Our last definition further relaxes the security require-
ment, in that we do not insist on protecting every input distribu-
tion, but just distributions taken from some class (which we believe
captures all the “input distributions that appear in practice”). The
streaming scheme in Section 5 adheres to this definition.

Definition 3. Fix parameters s, T ∈ N, ε ∈ [0, 1] and a class CD
of distributions. A scheme P = (S,Π) is a proof of ownership with
respect to CD with leakage threshold T , slackness s, and soundness
error ε, if for any t ∈ N, any input distribution D ∈ CD with t bits
of min entropy, and any adversary as above that receives less than
min(T, t− s) bits from the accomplices, the adversary has at most
negligibly more than ε probability of convincing the storage server
that it has the file.

Note that our definitions and solutions also generalize to a com-
putational analog of entropy, i.e. the distribution is computation-
ally indistinguishable from one with the relevant entropy. The rea-

5 See Section 6 for a way to add protection against CDN attacks also to our
more efficient protocols from Sections 4 and 5.

son is that since the verifier in a proof-of-ownership can be effi-
ciently simulated, then an efficient strategy that fools the proof on
a pseudo-entropy distribution, can be used to distinguish between
the pseudo-entropy and real entropy distributions.

3. A Merkle-Tree-based Solution
Our first solution is also a proof of retrievability protocol: in a
nutshell it works by encoding the file using an erasure code, and
then building a Merkle-tree over the encoded file. Specifically, let
E : {0, 1}M → {0, 1}M

′
be an erasure code, resilient to erasure

of upto α fraction of the bits (for some constant α > 0). Namely,
from any (1 − α)M ′ bits of E(F) it is possible in principle to
completely recover the original F ∈ {0, 1}n. For this application
it is not important that the recovery procedure be efficient, in fact
any code E(·) with minimum distance greater than αM ′ will do.

In addition, let H be a collision resistant hash function with
output length of n bits (e.g., SHA256 with n = 256), and we
denote by MTH,b(X) the binary Merkle tree over buffer X using
b-bit leaves and the hash function H .

The Basic Construction. We have parameters b = 256 (the
Merkle-tree leaf size), ε (the desired soundness bound), and α
(the erasure recovery capability of the code). We use the collision-
resistant hash function H(·) and the α-erasure-code E(·).

On M -bit input file F ∈ {0, 1}M , the verifier computes the en-
codingX = E(F) and then the Merkle treeMTH,b(X) and keeps
only the root of the tree (and the number of leaves) as verification
information. During the proof protocol, the verified chooses at ran-
dom u leaf indexes, `1, . . . , `u, where u is the smallest integer such
that (1−α)u < ε. The verifier asks the prover for the sibling-paths
of all the leaves, and accepts if all the sibling paths are valid with
respect to MTH,b(X).

Theorem 1. The basic construction is a strong proof-of-ownership
protocol as per Definition 1 with soundness (1− α)u.

Proof. Assume that we have an adversary A that breaks the strong
proof-of-ownership property. Specifically, assume that the erasure
code can correct erasures of up to α-fraction of the input and that
the adversary A runs at most some k proof protocols and succeeds
in convincing the server with probability better than t(1−α)u + δ
for a noticeable δ. (The probability is taken over choosing H ∈ H
and F ∈ D and over the internal randomness of the adversary and
server.) We then show a collision attack on H that succeeds with
probability at least δ/8k.

The collision finder gets as input a random H ∈ H, it chooses
F ∈ D, runs the proof-of-ownership game with the prover as per
Definition 1, and whenever the adversary begins a new interaction
with the server (in the role of a prover P ∗), the collision finder
uses the extractor KP∗ from Merkle-tree lemma, trying to extract
a (1 − α)-fraction of the leaves of the tree. If these 1 − α fraction
of the leaves differ than the corresponding leaves in the encoding
of F then the forger extract a collision for H from the Merkle tree,
since both the paths in the real tree MTH,b(X) and the paths given
by P ∗ are valid.

It is left to analyze the success probability of this collision
finder. On one hand, we know that the adversary (and therefore
also the extractor) is missing at least s bits of (min-)information
about F , even when we throw-in the Merkle-tree root as additional
information about F , and hence the probability of the extractor
outputting (1−α)-fraction of the encoding of F (which determine
the entire file F via the encoding E(·)) is at most 2−s.

On the other hand, we know that in at least one of the k runs of
the protocol the prover P ∗ succeeds in convincing the verifier with
probability at least (1−α)u + δ/k. Hence with probability at least

6 2011/8/11

δ/2k over the choice ofH ∈ H, this functionH still leaves the ad-
versary with probability greater than (1−α)u+δ/2k of convincing
the verifier in this run. For such H , by Lemma 1 the extractor will
have probability of at least 1/4 to output (1 − α)-fraction of the
leaves. Hence for such H’s we will find collisions with probability
at least 1/4 − 2−s, and the overall collision probability is at least
δ
2k
· (1

4
− 2−s) ≈ δ/8k, which is still noticeable.

4. Protocols with Small Space
The problem with using the generic solution from the previous
section is that good erasure codes for very large files are expensive
to compute. In particular, it seems that computing a good erasure
code require random access to the bits of the file, which means that
for files larger than the available memory this computation entails
many accesses to the disk.

We get around this problem by introducing a security/space
tradeoff: Namely we allow the designer of the system to specify
a memory-bound L such that (a) the client only needs roughly L
bits of memory during the computation even for a very large files,
but (b) leaking more than O(L) bits may allow the adversary to
cheat in the proof (even if the file has much higher entropy).

The idea is that instead of encoding the file with an erasure code,
we hash it down toL bits using a hash function with public random-
ness, and then do the Merkle tree protocol over the hashed value.
What makes this solution nontrivial is the fact that the adversary
can choose the leakage functions depending on the public random-
ness, for example the adversary can ask to see L/2 bits of the hash
value. In a little more details, we consider a game where the file is
chosen from an arbitrary distribution (that does not depend on the
hash function), then we choose the hash function at random, and
then the adversary sees the hash function and can ask the accom-
plices for leakage that depends on it.

4.1 Using Pairwise Independent Hashing
One solution that works is to use an arbitrary pairwise-universal
hash family H that maps M bit files to (say) L bits. In is instruc-
tive to think of the setting M � L � s, and about input distribu-
tion D with k = L + 2s bits of min-entropy. Note that with high
probability over choice of h ∈ H it is likely that h(F) has high
min-entropy, but this is not enough for us. For example, an adver-
sary can try to find a large set of blocks in the buffer h(F) such
that the projection of h(F) onto these blocks has small min en-
tropy. Then the adversary can ask for leakage only on these blocks,
and hope that all the queries during the Merkle-tree hash will fall
in this large set of blocks.

To show that this line of attack does not work we need to prove
that when h is chosen at random from a pairwise independent
family, then with high probability every large subset of the blocks
of h(F) has high min-entropy. This is proved in Lemma 2, whose
proof is given in Appendix A.2.

Lemma 2. Fix integers b, k,M,L such that 4b divides L, k ≤ M
and 2k < L(2

3
− 1

b
), and denote η = L(2

3
− 1

b
)− 2k. Also let H

be a pairwise independent family of hash functions from {0, 1}M to
{0, 1}L and letD be a distribution over {0, 1}M with min-entropy
of k or more.

Consider a partition of {0, 1}L into b-bit blocks. Then for all
but a 2−η fraction of the functions h ∈ H it holds for every subset
of 2/3 of the blocks that the projection of h(D) onto these blocks
has min-entropy of k − 1 or more.

Given Lemma 2, it is easy to show that the “small-space” pro-
tocol based on universal hashing meets our intermediate notion of
security from Definition 2. The proof is nearly identical to the proof
of Theorem 1 and is omitted here.

Theorem 2. A protocol where the input file is first hashed to an
L-bit buffer using pairwise-independent hash function and then
we run the Merkle-tree protocol on the resulting L-bit buffer is
a proof-of-ownership as per Definition 2, with leakage threshold
T = L(1

3
− 1

2b
).

5. A Streaming Protocol
Although it is possible in principle to implement pairwise-independent
hashing of M bits into an L-bit buffer in a one-pass fashion using
only roughly L bits of memory (e.g., if we use linear hashing), such
implementation would be prohibitively expensive for large M,L.
In this section we present a variant of the space-efficient protocol
that can be implemented much more efficiently, and for which we
can still argue security in realistic settings. We “pay” for the effi-
ciency by only being able to prove security for a more restrictive
set of input distributions, and only under a (reasonable) assumption
about the linear code that we obtain.

We present our scheme as a series of modifications to the gen-
eral universal hashing scheme using linear hashing. In the basic
universal hashing scheme the file is viewed as a bit vector and mul-
tiplied by a random Boolean matrix. Namely, each bit in the file
is XORed to a random subset of locations in the buffer (approx-
imately to half of the locations). The main modifications that we
make are as follows:

Blocks vs. bits: Viewing the file as a bit vector is very taxing
performance wise, as we need to process the bits individually.
Instead we operate on blocks of B bits at a time (for example,
B = 512 bits to match the block size of SHA256). For a file of
M bits we denote the number of blocks by m = dM/Be, and the
L-bit buffer holds ` = dL/Be blocks. All operations in the final
solutions will be XOR operations on blocks of bits, allowing for
high performance.

Theoretically, this choice could severely hurt the properties of
our encoding (since now the first bits of the blocks never interact
with the second bits of the blocks, etc.) But practically we can
justify this choice under the assumption that real life uncertainty
about file contents comes at the granularity of blocks, rather than
uncertainty of single bits. Roughly, the attacker may have some
parts of the file that it knows and others that it does not, and
these parts are not individual bits but rather they are larger blocks.
We thus prove the security of our scheme with respect to a input
distributions that come in blocks, and argue that this should still
provide adequate security in practical settings. See Section 5.1 for
a precise description of the input distributions that we consider.

Sparse reduction and mixing phases: Even when working with
full blocks, adding every input block to a large number of random
locations requires an order of m` operations, which is still too
expensive. (Even for not-so-long files of size ≈ ` blocks requires
work that is quadratic in the buffer length, O(`2).) Instead we aim
for a solution that takes as close to m+ ` operations as we can get.
Our encoding solution consists of two phases:

First we have a reduction phase in which the m-blocks file’s
content is reduced into the reduction buffer of ` blocks. In this stage
each block from the file is XORed to a constant number of random
locations in the buffer (where the constant is as small as 4 in our
implementation). The small constant is significant for performance,
but it means that we have poor diffusion. For example starting from
a file with only a single unknown block we end up with a buffer
with only four unknown blocks.

To overcome this, we run a mixing phase on the buffer (this
stage works on the buffer alone, not the original file). In this phase,
we make several passes over the buffer, each time XORing every
block into four other random locations in the buffer. This phase
resembles the reduction phase but takes as input current blocks

7 2011/8/11

from the buffer rather than input blocks from the original file.
Intuitively, this “unbalanced Feistel” structure should give us good
diffusion if we run enough passes, since each unknown block will
eventually “contaminate” all the blocks in the buffer. (We evaluated
the required number of passes experimentally, and observed that 4-
5 passes are enough to get very good diffusion, see Section 5.2.)

Cyclic shifts on blocks: Simply XORing full blocks onto the buffer
causes an unknown block to cancel itself if it is XORed an even
number of times. Hence in general we expect each unknown block
to influence only 50% of the blocks in the buffer, even after many
passes. To get better diffusion (without paying in performance) we
apply a very simple cyclic shift to the block before XORing it.
Specifically, in our implementation (with B = 512-bit blocks)
we XOR each block into four location, with shifts of 0,128,256
and 384 positions, respectively. (These shift values were chosen to
give good performance on machines with word-size up to 128 bits.)
With this twist each unknown block will influence roughly 15/16
of the blocks in the output buffer as opposed to only 1/2.

Using self contained pseudorandomness: As described so far, the
transformation can be viewed as a fixed linear mapping from an
m-block file to an `-block buffer. However, the description of this
mapping is quite large: for each block position in the file/buffer we
need to specify four indexes in the buffer where this block should
be XORed. Note that the server and all clients have to agree on this
mapping, so we cannot just let each of them choose it at random
as they go along. One option may be to choose this randomness
“once and for all” and hard-wire it in the code, but this would entail
choosing as many random values as the size of the largest possible
file that we may want to process and storing all these values with
the code.

Alternatively, we can generate this mapping pseudo-randomly
from a small description, but then we need to make sure that com-
puting the mapping itself does not consume too much resources.
In out implementation we use a speedup that allows us to get the
mapping “for free”: Observe that the client must anyway hash the
input file, so that the server could compare the hash value and
decide if that file already exists in the database. Hashing the file
(say with SHA256) require applying the underlying SHA256 com-
pression function to each block of the input file, thus computing a
256-bit chaining value that is used when hashing the next block.
In our implementation these intermediate IV values double also as
the specification of our mapping. Namely, we derive from each in-
termediate chaining value the four indexes that tell us where in the
output buffer to XOR the current block. Under the random oracle
model (where SHA256 is assumed to approximate a random func-
tion), this gives us the random mapping that we need (and we store
these indexes and use them again during the mixing phase). This
trick greatly improves performance, since the mapping can now be
computed from the file using quantities that we have anyway.

Note that we are using a different set of pseudorandom choices
for different files, which heuristically could help security, but we
are using it here as a performance optimization trick rather than
a security enhancement mechanism. Indeed below we analyze the
security for the simpler setting of a fixed random map.

5.1 Security of the Streaming Scheme
As we said above, for this implementation we can only prove se-
curity for a restrictive class of input distributions. This class is
a (slight generalization of) block-fixing distribution: Essentially,
from the attacker’s perspective there are blocks in the input file that
are completely random, and others that are fully known. We gener-
alize block-fixing distributions somewhat by allowing the random
blocks to be chosen from a low-rank linear space, this captures for
example the case where the same random block appears in the file

several times. We argue that these generalized block-fixing distri-
butions are a reasonably good approximation to input distributions
that can be found in practice, in that a real-world attacker may know
some parts of a file (e.g., fixed formatting), and may even know that
some unknown parts must be equal to each other (e.g., the same in-
formation appears multiple times), but typically cannot know much
more complicated information about the file.

A good way of thinking about this generalized bit-fixing sources
is that a length-M input file with k-bits of (min)-entropy is obtained
by choosing a k-bit random vector ~w ∈ {0, 1}k and computing
the file itself as ~f ← ~w · A + ~b where A ∈ {0, 1}k×M and
~b ∈ {0, 1}M are chosen by the adversary (and A has full rank).
This is generalized to B-bit blocks if each bit in w is replaced by
a random B bit block but the operation of A remains the same
(except applied to full blocks rather than bits).

Our hashing function can therefore be thought of as taking the
“adversarially encoded” ~f = ~w ·A+~b and “re-encoding” it as ~r ←
h(~f). If h itself is linear, h(~f) = ~f · C (with C ∈ {0, 1}M×L),
then we can view the hashed image as a (coset of a) linear code,
E(~w) = ~w ·AC+ (~bC). We show below that the resulting scheme
will be secure as long as the linear code generated by the matrix
AC has large minimum distance.

Theorem 3. Consider a PoW scheme as described with the fol-
lowing parameters: ` is the number of blocks in the buffer, t is the
number of challenges on Merkle-tree leaves, and C is the matrix
representing the reduce and mix transformation from m blocks to
` blocks. If the matrix C in the scheme is chosen so that for every
full-rank k × m matrix A it holds with high probability (over C)
that the code generated by the rows of AC has minimum distance
at least some d, then the scheme is a secure proof-of-ownership
with soundness (L−d+1

L
)t with respect to generalized block-fixing

distributions with min-entropy k.

The proof of Theorem 3 is given in Appendix A.3. For the
security of our protocol we argue that when choosing a matrix C
as a product of a random sparse reduction matrix R and many
Feistel mixing steps Mi, we get a good code with high probability
(for every full rank A). For example, if the code has minimum
distance ≥ `/3 then we get soundness of (2/3)t. Unfortunately, it
seems very hard to analyze the error-correction properties of such
a construction, so we can only argue security under the unproven
assumption that we get a good code. (In fact we can get by with
a slightly weaker condition: Instead of requiring that the code AC
does not have low-weight words, it is enough to assume that an
efficient adversary cannot find a low-weight word in this code.)

5.2 Implementation
We turn to describe the actual implementation and parameters
that we chose for our scheme, following the techniques described
above.
Block size: We use 512-bit blocks, which is also the block size of
SHA256.

Buffer size: For smaller files uses a buffer roughly the size of
the file.6 For large files we limit the buffer to size 64MByte. This
seems sufficient for most applications (leaking 64MByte is quite
a bit), and at the same time fits comfortably in main memory of
contemporary machines.

Usage of Hash IVs: Hash IV s are computed in the reduction phase
and then the same IVs are used again in the mixing phase. Each IV
contains 256 bits and we typically use 80 (or less) of these bits as

6 The buffer size (in blocks) is rounded up to the next power of 2, to get a
full binary Merkle tree over the buffer.

8 2011/8/11

Input: An M -bit file, broken into m = M
512

blocks.

Initialize buffer. A buffer is allocated with ` blocks of 512
bits, where ` = min{220, 2dlog2me}. (Note that 220 blocks
is 64MByte.)
Also allocate an IV buffer of m 256-bit IVs, set IV [0] =
SHA256-IV. We view each IV [i] as both a 256-bit value
and as an array of 4 indexes into Buffer.

Reduction phase. For each block i ∈ [m]:
1. Compute IV [i] = SHA256(IV [i− 1];File[i])

2. For j = 0 to 3:
3. Block = Cyclic Shift of File[i] by j ∗ 128 bits.
4. XOR Block into location IV [i][j] in Buffer

Mixing phase. Repeat 5 times:
1. For each block i ∈ [`], For j = 0 to 3:
2. Block = Cyclic Shift of Buffer[i] by j ∗ 128 bits.
3. If i 6= IV [i][j] then

XOR Block into location IV [i][j] in Buffer

Figure 1. Outline of the implemented construction.

Figure 2. Mixing iterations. The number of mixing passes needed
to get full diffusion, when the input file has different numbers of
unknown blocks.

indexes for 4 locations in the buffer (there are at most 220 blocks in
the reduction buffer). If the buffer is longer than the input file then
we use more bits from the IVs as indexes.

Number of iterations: The number of required iterations was
tested empirically and shown in Figure 2. We see a convergence
to affecting 15/16 of the blocks within 4 − 5 iterations. For the
smaller buffer sizes, the mixing is slightly faster, and in addition,
if a larger number of blocks is initially unknown, then the mixing
may be as fast as 3 iterations. We set the number of iterations to 5
to accommodate for the largest buffer size (64MByte) and as low
as one unknown block.

Number of challenge leaves: We set the number of challenge
leaves in the Merkle tree to 20. Under the assumption that the code
gives distance of 0.1L this will translate to a soundness error on the

order of 2−66 if no leakage from accomplices is allowed, and to an
error on the order of 2−20 if leakage of up to 0.4L is allowed. Note
that the error does not have to be negligibly small, since the service
can block de-duplication attempts for a file once it has failed a PoW
more than, say, 3 times.

5.3 Performance Evaluation
We implemented a prototype of the PoW protocol, and ran it to
evaluate performance and asses the PoW scheme benefits. We ran
the protocol on random files of sizes 16KByte through 16GByte.
The measurements were performed on an Intel machine with Xeon
X5570 CPU running at 2.93GHz. We implemented the protocol in
C++ and used the SHA256 implementation from Crypto++ [5]. We
considered the following aspects of the implementation:

Client time (Ctime). This includes the time for reading the file
from disk, computing its SHA256 value, performing the reduction
and mixing phases, and finally computing the Merkle-tree over the
resulting buffer.

Our measurements show that the XORs during the reduction
phase add less than 28% time over the insecure solution of just
computing the SHA256 value of the file. The mixing and Merkle-
tree times are relatively significant for small files (about 3 fold
slowdown compared to only computing the SHA256 value), but
once the file grows beyond 64MByte these times remain constant
(844 and 1158ms. respectively) because these procedures are only
applied to the 64MByte buffer. 7

For files larger than 2GByte the overhead of our scheme (vs.
only computing SHA256) is less than 50%. When further increas-
ing the file size this overhead continues to decrease and the time
to compute SHA256 becomes more dominant. These results are
depicted in Figure 3, and the full set of numbers are given in Ta-
ble A.1

Server time (Stime). This is the time spent by the server checking
the Merkle tree authentication signatures. We observed that the
overhead of these tests is very low, validating 20 sibling paths takes
approximately 0.6 ms.

Network time (Ntime). This is the estimated time required to
transfer the protocol data. The overall size of the message trans-
mitted by the protocol for 20 challenges is less than 20K. Thus, the
network transmission time for a 5Mbps network is less than 0.1ms
and is negligible.

Time savings by using deduplication. In Figures 4 and 5 we
demonstrate the time-saving for the client by using deduplica-
tion (including the overhead of our scheme) compared to a pol-
icy of always sending the entire file to the server. We considered
two network settings, one with an average speed for a fast net-
work (5Mbps) [2] and the other being an extremely fast network
(100Mbps). We observed that for the 5Mbps network, the PoW
scheme always consumes less time than transmitting the file over
the network (even for files of about 15KBytes). For the 100Mbps
network deduplication (including the PoW) is faster than transmit-
ting the file for files larger than 64KBytes. Furthermore, the benefit
from using the PoW increases with the file size, e.g., for files larger
than 1GByte the time consumed by PoW comprises of less than 1%
and 20% of the upload time (for 5Mbps and 100Mbps respectively).

Overall, by using PoWs one can get the benefits of client-side
deduplication without sacrificing security. The benefits become
higher as files grow and for better deduplication ratio, as well as
for slower networks.

7 Note that the mixing and Merkle-tree computations can be performed after
the client has sent the SHA256 value to the server and is waiting for the
server to check if the file is already in the database and can be de-duplicated.
Hence, in practice this time may be swallowed by the network latency.

9 2011/8/11

Figure 3. Performance of PoW phases. The running times of the differ-
ent stages of the PoW algorithm compared to the time to read the file from
the disk or calculate its SHA256.

Figure 4. PoW overall performance. Comparison of the overall time
consumed by the PoW scheme to the time to send the file over the networks
with 5Mbps and 100Mbps upload speed. The overall running times of the
PoW scheme are calculated as T = Ctime + Stime +Ntime.

Figure 5. Benefits of deduplication with PoW Comparisons between
systems that perform deduplication with PoW to those that always transmit
the data over the 5Mbps and 100Mbps networks respectively. We consider a
relatively conservative workload in which only 50% of the data is dedupli-
cated and we pay the overhead of the reduction phase of the PoW scheme
for remaining 50% of the files.

6. Additional Comments and Conclusions
In this work we put forward the notion of proof-of-ownership, by
which a client can prove to a server that it has a copy of a file with-

out actually sending the file. This can be used to counter attacks
on file-deduplication systems where the attacker obtains a “short
summary” of the file and uses it to fool the server into thinking that
the attacker owns the entire file. We gave three definitions for secu-
rity in this setting and three matching protocols, the last of which
is very practical. Our streaming protocol allows the designer of the
scheme to set a threshold for how “short” a summary can a file have
(e.g., 64MBytes in our implementation). This seem suitable for the
attack scenarios of common hash functions, malicious software, or
accidental leakage that were described in the introduction.

For CDN attacks the protection of our protocol is not quite as
strong as one could perhaps hope for, but we point out that a very
simple fix can augment this streaming system also against CDN-
type attacks: simply use two Merkle trees, one over the file itself
and the other over the encoded buffer (and the server can keep only
the hash of the two roots). Roughly speaking, the buffer-Merkle-
tree addresses the low-entropy and medium-entropy cases from
Section 2 while the file-Merkle-tree addresses the high-entropy
case. This composed solution can be implemented using small
space, and the running time will be about twice the ones that are
reported in Section 5.3, since computing a Merkle tree is about
twice as expensive as computing plain SHA256 over the same file.

The threshold-free notion of security from Definition 1 does not
capture the added security of this composed solution, since there
are setting of parameters that it does not address. For example,
for a 16GByte file with 128MByte of entropy, an attacker can use
only 64MByte of leakage – i.e., the encoded buffer – and has a
reasonable chance of convincing the server. This is because, unlike
the described solution, the Merkle-tree queries into the file itself are
unlikely to hit the small fraction of the file that the attacker does not
know. However this setting which is not addressed does not seem
to appear much in typical applications.

We remark that the new attacks that we consider and our solu-
tions to them are more relevant for file-level de-duplication than for
block-level deduplication. (Indeed, if an attacker can learn a hash
value for each 8KByte block of the file, then it can probably learn
also the blocks themselves and does not need to fool the storage
server.) Note, however, that the attack remains relevant (and our
solution useful) when a service uses both file- and block-level de-
duplication, as is likely to be the case in practical systems.

Acknowledgment: We thank Dalit Naor for her support through-
out this work.

References
[1] Dropship - dropbox api utilities. https://github.com/

driverdan/dropship, April 2011.

[2] Akamai. The State of the Internet, 3rd Quarter 2010.
www.akamai.com/stateoftheinternet.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song. Provable data possession at untrusted stores. In
ACM CCS ’07, pages 598–609. ACM, 2007.

[4] K. D. Bowers, A. Juels, and A. Oprea. Hail: a high-availability and
integrity layer for cloud storage. In ACM CCS ’09, pages 187–198.
ACM, 2009.

[5] W. Dai. Crypto++ Library, 5.6.1, Jan, 2011.
http://www.cryptopp.com/.

[6] G. DiCrescenzo, R. J. Lipton, and S. Walfish. Perfectly Secure Pass-
word Protocols in the Bounded Retrieval Model. In 3rd Theory of
Cryptography Conference (TCC’06), volume 3876 of LNCS, pages
225–244. Springer, 2006.

[7] L. Dorrendorf and B. Pinkas. Deduplication volnurabilities in major
storage services. Under preparation, 2011.

[8] M. Dutch and L. Freeman. Understanding data de-duplication ratios.
SNIA, February 2009. http://www.snia.org/.

10 2011/8/11

[9] S. Dziembowski. Intrusion-Resilience Via the Bounded-Storage
Model. In 3rd Theory of Cryptography Conference (TCC’06), volume
3876 of LNCS, pages 207–224. Springer, 2006.

[10] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and
L. Torres. Hardware mechanisms for memory authentication: A survey
of existing techniques and engines. Transactions on Computational
Science IV, LNCS, pages 1–22, March 2009 2009.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity
of Interactive Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[12] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforc-
ing communication and storage complexity. In ”Financial Cryptogra-
phy ’02”, volume 2357 of LNCS, pages 120–135. Springer, 2003.

[13] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services, the case of deduplication in cloud storage. IEEE Security and
Privacy Magazine, special issue of Cloud Security, 2010.

[14] A. Juels and B. S. Kaliski, Jr. Pors: proofs of retrievability for large
files. In ACM CCS ’07, pages 584–597. ACM, 2007.

[15] R. C. Merkle. A certified digital signature. In Proceedings on Ad-
vances in cryptology, CRYPTO ’89, pages 218–238, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[16] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.
Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space. In USENIX Security, 8 2011.

[17] H. Shacham and B. Waters. Compact proofs of retrievability. In
ASIACRYPT ’08, pages 90–107. Springer-Verlag, 2008.

[18] K. Thomas. Dropbox: A file sharer’s dream tool? PC World,
April 2011. http://www.pcworld.com/businesscenter/
article/226280/.

[19] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifi-
ability and data dynamics for storage security in cloud computing. In
ESORICS’09, pages 355–370. Springer-Verlag, 2009.

A. Proofs
A.1 Proof of the Merkle Tree Lemma
Proof. (of Lemma 1) This lemma follows from standard hardness-
amplification arguments, namely a prover that succeeds in answer-
ing u leaves with probability better than (1−α)k can be converted
to one that can answer a single query with probability better than
(1− α). We provide the details below.

For the fixed X and h, we say that “P ∗(l1, . . . , lu) is valid” if
P ∗ replies with valid sibling paths for all the leaves when queried
on leaf indexes l1, ...lu, . For a leaf index l ∈ [s] and a query index
i ∈ [u], we say that “l is i-good” if when the i-th leaf index is l and
all the others are chosen at random, the prover gives a valid answer
with high enough probability:

l is i-good ⇔
Pr

l1...lu
[P (j1 . . . ji−1, j, ji+1 . . . ju) is valid] ≥ δ/u

For i ∈ [u] denote Goodi = {l ∈ [s] : l is i-good}. We
prove that there exists at least one query-index i ∈ [u] for which

|Goodi|/s ≥ 1− α. By contradiction, if not then we have

Pr
l1...lu

[P (l1, . . . , lu) is valid]

= Pr[P (l1, . . . , lu) valid and all li’s are i-good]

+ Pr[P (l1, . . . , lu) valid and ∃ i s.t. li not i-good]

≤ Pr[all li’s are i-good]

+

u∑
i=1

Pr[P (l1, . . . , lu)valid & li not i-good]

≤
u∏
i=1

|Goodi|
s

+

u∑
i=1

Pr

[
P (l1, . . . , ln) valid

| li not i-good

]
< (1− α)u + u · (δ/u) = (1− α)u + δ

but we know that Prl1...lu [P (l1 . . . lu) is valid] ≥ (1 − α)u + δ,
so we have contradiction. We can now describe the extractor K:

1. for i = 1 to u, for l = 1 to s
2. repeat du(log(s) + 1)/δe times:
3. choose at random l1 . . . lu ∈ [s]

and query P (l1 . . . li−1, l, li+1 . . . lu)
4. output sibling paths for all the leaves

for which P ever gave any valid sibling path.

Clearly, if l is i-good then during the loop with i, l the prover
will return a valid answer with probability at least 1− e− log s−1 >
1− 1

e·s . Hence when we arrive at the index i for which |Goodi|/s ≥
1 − α, we will find valid sibling paths for an (1 − α)-fraction of
the leaves, except with probability smaller than 1/e.

Note that the lemma does not rely on the hash function h being
collision resistant. However, when used with a collision-resistant
hash function, the lemma implies that the leaf values thatK outputs
are consistent with the original input buffer X (otherwise we get a
collision).

A.2 Pairwise-Independent Hashing
To prove Lemma 2 we first prove that hashing a file with k bits of
entropy into a buffer of size more than 2k bits does not lose much
entropy.

Lemma 3. Fix integers k,M, S such that k ≤ M and 2k < S.
Also letH be a pairwise independent family of hash functions from
{0, 1}M to {0, 1}S and let D be a distribution over {0, 1}M with
min-entropy of k or more. Then for all but a 22k−S fraction of the
functions h ∈ H it holds that the distribution h(D) (over {0, 1}S)
has min-entropy k − 1 or more.

Proof. Let D(x) denote the probability mass of the point x under
D. For any h ∈ H , denote by Col(h) the “nontrivial collision
probability” of h(D), namely

Col(h)
def
= Pr

x,y∈D
[x 6= y and h(x) = h(y)]

=
∑
x 6=y

D(x)D(y) · χ[h(x) = h(y)]

(where χ[h(x) = h(y)] is the indicator variable which is 1 when
h(x) = h(y) and zero otherwise). We will show that for all but a
22k−S fraction of the functions h ∈ H we have Col(h) ≤ 2−2k,
and that the min-entropy of h(D) is at least k − 1 for every such
function h.

11 2011/8/11

Running Times of Our Scheme
Size
(MB)

Disk Read
(ms)

SHA256
(ms)

SHA256 &
Reducer (ms)

Mixing
(ms)

Merkle
scheme (ms)

PoW Total
(ms)

0.015625 0.06 0.34 0.36 0.10 0.61 1.09
0.03125 0.08 0.61 0.66 0.18 1.13 2.00
0.0625 0.12 1.15 1.26 0.36 2.17 3.88
0.125 0.21 2.20 2.54 0.74 4.25 7.68
0.25 0.39 4.28 4.91 1.59 8.39 15.19
0.5 0.72 8.46 9.85 3.64 16.68 30.85
1 1.40 16.71 19.61 7.73 24.19 53.05
2 2.77 32.82 38.84 13.86 36.27 92.72
4 5.46 65.57 75.09 20.60 72.37 171.94
8 10.88 89.99 113.94 58.83 144.65 327.69
16 21.60 170.54 212.07 171.80 289.36 707.68
32 37.19 316.64 431.67 393.68 578.99 1482.29
64 56.88 602.21 849.63 844.03 1158.18 3020.11
128 111.17 1164.32 1678.60 845.24 1157.80 3850.34
256 207.07 2340.62 3312.91 844.67 1157.97 5484.15
512 405.68 4639.60 6573.86 844.08 1157.77 8745.30
1024 801.13 9256.90 13127.82 844.40 1157.83 15298.99
2048 1771.56 18515.19 26211.31 843.71 1157.85 28381.91
4096 6475.74 37004.00 52411.50 844.50 1157.90 54582.35
8192 13010.00 74108.86 104835.00 843.62 1157.92 107006.87
16384 26085.41 151079.76 209760.43 844.70 1158.23 211931.98

Table 1. Performance Measurements. Time measurements of our implementation. The leftmost column present the file size in MegaBytes.
The next two columns present our measurements for the time required to read a file from a disk or calculate its SHA256. The last three
columns present the time consumed by the Reduction and Mixing stages as well as the total time of the PoW algorithm, see Section 5.3. The
measurements were done on Intel Xeon CPU X5570, 2.93GHz, running a C++ code, using Crypto++ for SHA256 calculations [5].

Note that the expected value of Col(h) over a random choice
h ∈ D is

Eh[Col(h)] =
∑
h∈H

1

|H|
∑
x 6=y

D(x)D(y)χ[h(x) = h(y)]

=
∑
x 6=y

D(x)D(y)
∑
h∈H

χ[h(x) = h(y)]

|H|

=
∑
x 6=y

D(x)D(y) Pr
h∈H

[h(x) = h(y)]

(∗)
= 2−S

∑
x 6=y

D(x)D(y) ≤ 2−S ,

where Equality (∗) follows from pairwise independence of H .
Since the expected value of Col(h) is at most 2−S , it follows from
Markov’s inequality that Prh∈H [Col(h) > 2−2k] < 22k−S .

Consider now a fixed function h ∈ H for which Col(h) ≤
2−2k, let z ∈ {0, 1}m be an arbitrary point, and we show that
the probability mass of z under h(D) is at most 21−k. Namely,∑
x∈h−1(z)D(x) ≤ 21−k. Denote the pre-image set of z by

h−1(z) = {x1, x2, . . . , xN}, where the xi’s are ordered by their
probability mass under D. Namely 2−k ≥ D(x1) ≥ D(x2) ≥

. . . ≥ D(xN). Then we have

2−2k
(a)

≥
∑
i 6=j

D(xi)D(xj) =

N−1∑
i=1

N∑
j=i+1

D(xi)D(xj)

(b)

≥
N−1∑
i=1

N∑
j=i+1

D(xi+1)D(xj)

=

N−1∑
i=1

(
D(xi+1)2 +

N∑
j=i+2

D(xi+1)D(xj)

)

≥
N∑
i=2

D(xi)
2

(c)

≥
N∑
i=1

D(xi)
2 − 2−2k,

where inequality (a) follows from Col(h) ≤ 2−2k, inequal-
ity (b) is because Dxi ≥ D(xi+1), and inequality (c) follows
from 2−k ≥ D(x1). We therefore conclude that

∑N
i=1D(xi)

2 ≤
21−2k. This implies

(∑
x∈h−1(z)D(x)

)2
=
∑N
i=1D(xi)

2 +∑
i 6=j D(xi)D(xj) ≤ 21−2k + 2−2k = 3 × 2−2k, and therefore∑
x∈h−1(z)D(x) ≤

√
3× 2−k < 21−k.

Lemma 2. Fix integers b, k,M,L such that 4b divides L, k ≤ M
and 2k < L(2

3
− 1

b
), and denote η = L(2

3
− 1

b
)− 2k. Also let H

be a pairwise independent family of hash functions from {0, 1}M to
{0, 1}L and letD be a distribution over {0, 1}M with min-entropy
of k or more.

Consider a partition of {0, 1}L into b-bit blocks. Then for all
but a 2−η fraction of the functions h ∈ H it holds for every subset
of 2/3 of the blocks that the projection of h(D) onto these blocks
has min-entropy of k − 1 or more.

12 2011/8/11

Proof. Note that for every fixed subset of half the blocks, the
projection of H onto these blocks is itself a pairwise independent
family of hash functions from {0, 1}M to {0, 1}S where S =
2L/3. It follows from Lemma 3 that for all but a 22k−S fraction
of the function h ∈ H , the projection of h(D) onto these blocks
has min-entropy at least k − 1.

Since there are L/b blocks then there are less than 2L/b subsets
of half the blocks, hence by the union bound the probability (over
choosing h ∈ H) that the projection of h(D) on any of these
subsets has less than k − 1 min entropy is at most 22k−S · 2L/b =
22k−(2L/3)+(L/b) = 22k−L(2/3−1/b) = 2−η .

A.3 Security of the Streaming Scheme
We begin by stating a well-known lemma about linear codes:

Lemma 4. Let L > k and let M ∈ {0, 1}k×L be a binary
matrix such that the code generated by the rows ofM has minimum
distance at least some d. Also let ~z ∈ {0, 1}L be some fixed
vector and consider the distribution obtained by choosing a random
w ∈ {0, 1}k and outputting ~w ·M + ~z. Then the projection of z
onto any L− d+ 1 coordinates has k bits of (min-)entropy.

Proof. Fix some set of L − d + 1 coordinates and consider the
corresponding subset of columns ofM and coordinates in ~z, which
we denote byM ′ and ~z′. We show that the distribution on ~w ·M ′+
~z′ is uniform over a set of size 2k, hence it has k bits of (min-
)entropy. To see this, notice that the rows of M ′ must be linearly
independent: Otherwise there would be a nonzero vector ~w∗ 6= ~0
such that ~w∗ ·M ′ = ~0, so the only possibly-nonzero coordinates
in ~w∗ ·M are the d− 1 coordinates that are missing in M ′, hence
~w∗ · M would have Hamming weight at most d − 1, which is a
contradiction. This means that the mapping ~w 7→ ~w ·M ′ + ~z′ is
one-to-one. Hence the distribution over ~w ·M ′ + ~z′ (for a random
~w) is uniform over a set of size 2k.

Corollary 5. Consider input distribution uniform over ~f = ~w ·
A + ~b, and a reduction function h(~f) = ~f · C. If the code
generated by the rows ofAC has minimum distance at least some d
then no adversary can convince the server in one execution of the
proof protocol from Section 5 with prob. noticeably better than
(L−d+1

L
)t.

Proof. (sketch) The Merkle-tree lemma says that any prover that
convinces the verifier with probability noticeably better than
(L−d+1

L
)t can be converted into an extractor that outputs the value

of a fraction (L−d+1
L

) of the leaves (together with accepting sib-
ling paths). On the other hand, Lemma 4 says that every set of
(L−d+1

L
) of the (256-bit) leaves must at least 256k bits of min-

entropy. Hence even after the accomplices leak to the adversary
all but 256(k − 2) bits and the server gives it the Merkle-tree root
(consisting of 256 bits), the adversary (and thus the extractor) are
missing at least 256 bits. Hence the probability that the leaves that
the extractor outputs equal to the original file is at most 2−256, and
hence with probability 1 − 2−256 we get a hash collision in the
Merkle tree.

As an immediate corollary we get Theorem 3.

13 2011/8/11

