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Abstract

In this work, we study (the direct constructions of) bidirectional proxy re-encryption (PRE)
with alleviated trust in the proxy, specifically the master secret security (MSS) and the non-
transitivity (NT) security, in the standard model, and achieve the following:

• A multi-hop MSS-secure bidirectional PRE scheme with security against chosen plain-
text attacks (CPA) in the standard model, where the ciphertext remains constant size
regardless how many times it has been re-encrypted. To the best of our knowledge, there
exists previously no MSS-secure multi-hop bidirectional PRE scheme with constant size
of ciphertexts (whether in the random oracle model or not).

• A single-hop MSS-secure and non-transitive bidirectional PRE scheme with security against
chosen ciphertext attacks (CCA) in the standard model. The CCA-secure scheme is based
on the CPA-secure scheme, and particularly employs a new re-encryption key (REK) gen-
eration mechanism to which each user makes equal contributions, where a single REK is
used in both directions with the same computation so that the proxy needs not to distin-
guish the transform direction when it re-encrypts ciphertexts. Besides alleviated trust in
proxy, single-hop non-transitive bidirectional PRE schemes also enjoy better fine-grained
delegate right control (against malicious proxy).

The security analysis uses Coron’s technique [Coron, Crypto 2000], which particularly allows
adaptive secret-key corruption. Along the way, we also refine and clarify the security models
for bidirectional PRE.

1 Introduction

Proxy re-encryption (PRE), introduced in [7], allows a proxy to transform ciphertexts computed
under the public-key of Alice (the delegator) into other ciphertexts for Bob (the delegatee). The
proxy, however, learns nothing about the underlying messages encrypted, and has no knowledge
of the secret keys of the delegators and delegatees. PRE has many applications (for example,
encrypted email forwarding, outsourced filtering of encrypted spam, law enforcement, secure file
systems, and performing cryptographic operations on storage-limited devices, etc), and becomes
increasingly popular as a method for managing encrypted file systems [3–5,14,21,22,24,28–30].

According to the direction of transformation, PRE can be classified into two types: unidirec-
tional and bidirectional [24]. In unidirectional PREs, the proxy can only transform ciphertexts
from Alice to Bob. While in bidirectional PREs, the proxy can transform ciphertexts in both
directions. Both types of PRE have their respective interesting applications. In this paper, we
shall concentrate on bidirectional PRE. As an example to illustrate the application of bidirectional
PRE, consider the following scenario: Alice and Bob collaborate to conduct a secret assignment,
and they need to share their encrypted data in a fair manner (i.e., Alice needs to read all of Bob’s
encrypted data, and Bob needs also to read all of Alice’s encrypted data). Indeed, this can be done
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by exchanging their secret keys. However, such a solution is highly unsatisfactory, since it places
too much trust on each other. Bidirectional PRE can provide solutions in a more desirable way for
such scenarios. PRE can also be categorized into multi-hop PRE, in which the ciphertexts can be
transformed from Alice to Bob and then to Charlie and so on, and single-hop PRE, in which the
ciphertexts can only be transformed once [24]. In this work, as is typical in this literature, we only
consider single-key PRE schemes, where both the re-encryption key (REK) and the secret-key of
each user (delegator or delegatee) consist of only a single group element.

Up to now, the only known CCA-secure bidirectional PRE scheme in the standard model is the
one proposed by Canetti and Hohenberger [14] (referred to as CH07 scheme), which is multi-hop
and is based on Blaze et al.’s [7] CPA-secure bidirectional PRE scheme. The generation of re-
encryption key (REK) in both these schemes [7,14] uses the following strategy: for two users (say,
Alice and Bob) with secret keys xa and xb respectively, the re-encryption key is simply computed
as rka↔b = xb

xa
. Actually, xb

xa
is used for re-encryption from Alice to Bob, and for re-encryption

from Bob to Alice, the proxy uses rk−1
a↔b =

xa

xb
(that is, the proxy action in the two re-encryption

directions is not identical). Unfortunately, in this way, if the proxy (who knows the re-encryption
key) colludes with one of the user, it can recover the other user’s secret key. It is worth noting
that, in practice, a user may also use its secret-key to perform other cryptographic operations
such as signing, identifications, etc (cf. [4, 5]). This means that the collusion in such bidirectional
PRE schemes not only surrenders the user’s decryption right, but also can totally surrender the
user’s digital identity [4, 5]. Another observation on the REK generation mechanism of [7, 14]
is the transitivity of REK, by which the proxy alone can create delegation rights between two
entities that have never agreed on this. Specifically, from the REK rka↔b =

xb

xa
between Alice and

Bob and the REK rkb↔c =
xc

xb
between Bob and Charlie, the proxy alone can compute the REK

rka↔c = rka↔b · rkb↔c = xc

xa
between Alice and Charlie. We note that multi-hop PRE schemes

intrinsically suffer from such delegation right uncontrol against a malicious proxy, as what can
be done by the proxy with the created REK rka→c can actually be done with the existing REKs
rka→b and rkb→c (though with higher computational complexity). That is, formulti-hop PRE, users
may have to rely upon the trust of the proxy to not generate delegation rights to unnegotiated
users, even if the underlying REK generation is non-transitive. But, for single-hop PRE, where a
transformed ciphertext generated by the proxy cannot be further transformed, if the underlying
REK generation is non-transitive a malicious proxy itself may be unable to delegate rights among
unnegotiated users. This indicates that, suppose the underlying REK generation is non-transitive,
single-hop PRE can enjoy better fine-grained delegation right control (against malicious proxy)
than multi-hop PRE. Motivated by the above observations and aimed for alleviating the trust in
the proxy, Ateniese et al. [4, 5] introduced for PRE the notions of non-transitivity (NT) security
(which informally says that given re-encryption keys rka→b and rkb→c no efficient algorithm can
compute rka→c) and master secret security (MSS) (which informally says that the delegator’s
secret-key cannot be derived even if the proxy and the delegatee collude).

Several CPA-secure single-hop unidirectional PRE schemes with the MSS security and NT
security in the standard model were proposed by Ateniese et al. [4,5]. Based on the schemes of [4,5],
Libert and Vergnaud [29,30] proposed more advanced single-hop unidirectional PRE schemes with
the MSS security and NT security in the standard model. The PRE scheme proposed in [29,30] is
secure against replayable chosen ciphertext attacks (RCCA), which is a weaker variant of the CCA
security in the sense that the re-randomizing of the challenge ciphertext is tolerated.

Canetti and Hohenberger [14] ever mentioned a generic method for transforming any unidi-
rectional PRE into a bidirectional one by generating two unidirectional REKs between Alice and
Bob (i.e., rka→b and rkb→a) and setting the bidirectional REK to be rka↔b = (rka→b, rkb→a).
However, since in unidirectional PRE schemes the REK of one direction (e.g., rka→b) cannot be
computed from the REK of the opposite direction (e.g., rkb→a), the complexity of REK genera-
tion can be doubled with this generic method (as already noted in [14]). As REK generation is
the key component for a PRE scheme, REK generation usually assumes secure and authenticated
communication channels in practice (the actual implementations of such channels can themselves
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cause much overload to the PRE system in reality) or some (usually impractical) secure multi-party
computation protocols (particularly for some exisiting bidirectional PRE schemes). Also, for proxy
cryptosystems, the workload of the proxy is usually the bottle-neck of the whole system. Thus, it
is naturally desirable to devise direct constructions of bidirectional PRE schemes with alleviated
trust in the proxy (say, the MSS and NT security).

Still no direct constructions of MSS-secure or NT-secure (whether CPA-secure or CCA-secure)
bidirectional PRE are known (whether in the random oracle model or not). Note that, even with
the above generic transformation method [14], still no fully CCA secure bidirectional PRE with
the MSS and NT security in the standard model is known. Moreover, even with the above generic
transformation method, up to now there still exists no MSS-secure multi-hop bidirectional PRE
schemes with constant size of ciphertexts. So, a further interesting question is how to construct
MSS-secure multi-hop PRE schemes with constant size of ciphertexts, even with only chosen plain-
text security.

Our contributions. In this paper, we deal with direct constructions of (single-key) bidirectional
PRE schemes with the MSS security and NT security in the standard model, and achieve the
following contributions:

1. We present the first MSS-secure multi-hop (bidirectional) PRE scheme with constant size of
ciphertexts. We prove its CPA security under the DBDH assumption, and its MSS security
under the discrete logarithm (DL) assumption.

2. We present (direct construction of) a CCA-secure single-hop bidirectional PRE scheme with
both the MSS security and the NT security. The CCA-security of transformed ciphertexts
is based upon the 2-weak decisional bilinear Diffie-Hellman inverse (2-wDBDHI) assumption
[9]. The CCA-security of original ciphertexts (resp., the NT-security that is stronger than
the CCA-security of original ciphertexts) is based upon a newly introduced assumption,
called 1-augmented wDBDHI (1-AwDBDHI) (resp., 2-AwDBDHI), with complexity of only
about twice (resp., thrice) of that in solving the decisional bilinear Diffie-Hellman (DBDH)
assumption in the generic bilinear group model.

Our PRE constructions are novel: the CPA-secure scheme is new; the CCA-secure scheme is
based on the CPA-secure scheme, and particularly employs a new re-encryption key generation
mechanism, similar to Diffie-Hellman key-exchange (DHKE) but w.r.t. a different generator, to
which each user makes equal contributions. Besides rendering the MSS security and the NT
security, another particular advantage of this DHKE-like re-encryption key generation is that,
when queried for re-encrypting ciphertexts, (unlike in all previous bidirectional PRE schemes) the
proxy does not need to distinguish the re-encryption direction (i.e., from Alice to Bob, or vice
versa) as its actions for both directions are the same. The security analysis uses Coron’s technique
[Coron, Crypto 2000], which particularly allows adaptive secret-key corruption. Along the way, we
refine the security models for (particularly, single-hop) bidirectional PRE, including CCA security,
MSS security and NT security, and clarify the subtleties surrounding security formulations.

Compared with the CPA-secure bidirectional PRE scheme proposed by Blaze, Bleumer and
Strauss in Eurocrypt’98 [7], our CPA-secure PRE scheme gains the advantage of MSS-security. In
comparison with the only known CCA-secure bidirectional PRE scheme in the standard model [14],
our CCA-secure scheme adds the MSS and NT security, the property of single-key re-encryption
with the same computation in both directions, and is also essentially more efficient and has shorter
ciphertexts. Also, NT-secure single-hop PRE enjoys better fine-grained delegation right control
(against malicious proxy) than multi-hop bidirectional PRE. The CH07 scheme is multi-hop and
is based on the DBDH assumption; our CCA-secure scheme is single-hop (where both original
ciphertext CCA security and transformed ciphertext CCA security need to be dealt with), and
is based on relatively non-standard assumptions than DBDH. Achieving CCA-secure single-hop
bidirectional PRE (with the MSS and NT security) under weaker assumptions is left as an inter-
esting open problem for future exploration. Detailed comparison with the Canetti-Hohenberger
scheme [14] is presented in Appendix A.
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2 Preliminaries

Notations. We use x
$
← S to denote that an element x is chosen uniformly at random from S.

For a string x, |x| denotes its bit-length. We use A(x1, x2, · · · ) to denote that A is an algorithm
with the input (x1, x2, · · · ), and use y ← A(x1, x2, · · · ) to denote the running of A(x1, x2, · · · )
with the output y. For AO1,O2,···(x1, x2, · · · ), it means that A is an algorithm with the input
(x1, x2, · · · ) and can access to oracles O1,O2, · · · . By y ← AO1,O2,···(x1, x2, · · · ), we denote the
running of AO1,O2,···(x1, x2, · · · ) with the output y. Let G and GT be two cyclic multiplicative
groups with the same prime order p. A bilinear pairing is a map e : G × G → GT with the
following properties: (1) Bilinearity: ∀g1, g2 ∈ G,∀a, b ∈ Zp, we have e(ga1 , g

b
2) = e(g1, g2)

ab; (2)
Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) 6= 1GT

, where 1GT
is the identity

element in group GT ; (3) Computability: There exists an efficient algorithm to compute e(g1, g2)
for ∀g1, g2 ∈ G. Throughout this paper, we denote by τ the maximum over the time to compute an
exponentiation, a multi-exponentiation and a pairing. To distinguish from the notation of pairing
operation, we use ė to denote the base of the natural logarithm.

Definition 1. The decisional bilinear Diffie-Hellman (DBDH) problem [10] in groups (G,GT ) is,

given (g, ga, gb, gc, Z) ∈ G
4 × GT with unknown a, b, c

$
← Z

∗
p, decide whether Z = e(g, g)abc. For

an adversary B, we define its advantage in solving the DBDH problem in groups (G,GT ) as

AdvDBDH
B ,

∣

∣

∣
Pr[B(g, ga, gb, gc, e(g, g)abc) = 1|a, b, c

$
← Z

∗

p]− Pr[B(g, ga, gb, gc, e(g, g)z) = 1|a, b, c, z
$
← Z

∗

p]
∣

∣

∣
.

We say that the (t, ǫ)-DBDH assumption holds in (G,GT ) if no t-time adversary B has advan-
tage at least ǫ in solving the DBDH problem in G.

Definition 2. The q-weak decisional bilinear Diffie-Hellman inversion assumption (q-wDBDHI)

[9] in groups (G,GT ) is, given (g, ga, · · · , ga
q
, gb, Z) ∈ G

q+2×GT with unknown a, b
$
← Z

∗
p, to decide

whether Z = e(g, g)b/a. For an adversary B, we define its advantage Advq-wDBDHI
B in solving the

q-wDBDHI problem as
∣

∣

∣Pr[B(g, ga, · · · , ga
q

, gb, e(g, g)
b
a ) = 1|a, b

$
← Z

∗

p]− Pr[B(g, ga, · · · , ga
q

, gb, e(g, g)z) = 1|a, b, z
$
← Z

∗

p]
∣

∣

∣ ,

We say that the (t, ǫ)-q-wDBDHI assumption holds if no t-time adversary B has advantage at least
ǫ in solving the q-wDBDHI.

In this paper, our proposed scheme shall also use a variant of q-wDBDHI assumption named q
augmented weak decisional bilinear Diffie-Hellman inversion assumption (q-AwDBDHI), which is
almost identical to the q-wDBDHI assumption except introducing the additional term g1/a

2
.

Definition 3. The q-AwDBDHI assumption in groups (G,GT ) is, given (g, g1/a
2
, ga, · · · , ga

q
, gb, Z) ∈

G
q+3 × GT with unknown a, b

$
← Z

∗
p, to decide whether Z = e(g, g)b/a. For an adversary B, we

define its advantage Advq-AwDBDHI
B in solving the q-AwDBDHI problem as

∣

∣

∣Pr[B(g, g1/a
2

, ga, · · · , ga
q

, gb, e(g, g)
b
a ) = 1|a, b

$
← Z

∗

p]− Pr[B(g, g1/a
2

, ga, · · · , ga
q

, gb, e(g, g)z) = 1|a, b, z
$
← Z

∗

p]
∣

∣

∣ ,

We say that the (t, ǫ)-q-AwDBDHI assumption holds in (G,GT ) if no t-time adversary B has
advantage at least ǫ in solving the q-AwDBDHI.

Note that, introducing the additional term g1/a
2
still does not appear to ease the computation

of e(g, g)b/a, since the input vector is missing the term gab. The hardness of q-AwDBDHI is implied
by that of general Diffie-Hellman problem in the generic bilinear group model [9]. In particularly,
a generic attacker’s advantage in solving the 1-AwDBDHI (resp. 2-AwDBDHI) assumptions (on
which our CCA-secure PRE scheme is based) is only about twice (resp. thrice) of that in solving
the DBDH problem. The reader is referred to Appendix C for details.
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3 Security Model for Bidirectional PRE

Formally, a bidirectional PRE scheme consists of the following six algorithms [14]: (1) Setup
algorithm Setup(k), which on input a security parameter k outputs the global parameter param;
(2) Key generation algorithm KeyGen(param), by which each user i generates its public/private key
pair (pki, ski); (3) REK generation algorithm ReKeyGen(ski, skj), which on input two private keys
ski and skj outputs a re-encryption key rki↔j to the proxy; (4) Encryption algorithm Enc(pki,m),
which outputs a ciphertext CTi of m ∈ M under pki (Here M is the message space); (5) Re-
encryption algorithm ReEnc(rki↔j ,CTi), which, on input a re-encryption key rki↔j and an original
ciphertext CTi under public key pki, outputs a transformed ciphertext CTj under public key pkj;
(6) Decryption algorithm Dec(skz,CTz), which, on input a private key skz and a ciphertext CTz,
outputs a message m ∈ M or the error symbol ⊥ (if CTz is invalid). We remark that for each user
the secret-key used for decryption and that for REK generation are the same.

Next, we introduce the following oracles which will be used to model the abilities of the ad-
versary: (1) Public key oracle Opk(·): On input Opk(i), it runs (pki, ski) ← KeyGen(param)
and returns pki. (2) Secret key oracle Osk(·): On input Osk(pki), it returns the correspond-
ing secret key ski. (3) Re-encryption key oracle Ork(·, ·): On input Ork(pki, pkj), it returns
rki↔j ← ReKeyGen(ski, skj). (4) Re-encryption oracle Ore(·, ·, ·): On input Ore(pki, pkj , CTi), it
returns CTj ← ReEnc(rki↔j, CTi). (5) Decryption oracle Od(·, ·): On input Od(pkz, CTz), it returns
the result of Dec(skz, CTz), where skz is the secret key w.r.t to public keys pkz. Note that for the
last four oracles, it is required that pki, pkj and pkz are all generated by oracle Opk.

CCA security (of original ciphertexts) for bidirectional PRE. For an adversary A running
in two stages find and guess, we define its advantage as

AdvIND-PRE-oCCA
PRE,A (k) =

∣

∣

∣Pr
[

ExpIND-PRE-oCCA-1
PRE,A (k) = 1

]

− Pr
[

ExpIND-PRE-oCCA-0
PRE,A (k) = 1

]∣

∣

∣ ,

or equivalently (by some standard trick [6, 20]),

AdvIND-PRE-oCCA
PRE,A (k) = |2Pr[δ′ = δ] − 1|,

where ExpIND-PRE-oCCA-δ
PRE,A is defined by the following experiment:

Experiment ExpIND-PRE-oCCA-δ
PRE,A (k)

param← Setup(1k);

(m0,m1, pki∗)← A
Opk(·),Osk(·),Ork(·,·),Ore(·,·,·),Od(·,·)(find, param), where |m0| = |m1|;

CT∗ ← Enc(pki∗ ,mδ), where δ
$
← {0, 1};

δ′ ← AOpk(·),Osk(·),Ork(·,·),Ore(·,·,·),Od(·,·)(guess, param, CT∗);
return δ′.

During the above experiment, as in [14] it is required that the following requirements are
simultaneously satisfied:

1. For any re-encryption key query Ork(pki, pkj), it is required that either both the secret keys
with respect to pki and pkj are corrupted (by oracle queries to Osk by A) or alternately both
are uncorrupted;

2. pki∗ is generated by oracle Opk, and A cannot issue the secret key query Osk(pki∗);

3. A cannot simultaneously issue Osk(pkj) and Ore(pki, pkj , CTi) such that (pki, CTi) is a deriva-
tive of (pki∗ , CT

∗). (The derivatives of (pki∗ , CT
∗) are defined below.)

4. A cannot issue Od(pkz, CTz) such that (pkz, CTz) is a derivative of (pki∗ , CT
∗).

The derivatives of (pki, CTi) are inductively defined by the following rules:

Rule-1: (pki, CTi) is a derivative of itself.
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Rule-2: If (pkj , CTj) is a derivative of (pki, CTi) and (pkz, CTz) is a derivative of (pkj , CTj), then
(pkz, CTz) is a derivative of (pki, CTi).

Rule-3: If A has issued a re-encryption query Ore(pki, pkj, CTi) and obtained the resulting trans-
formed ciphertext CTj, then (pkj , CTj) is a derivative of (pki, CTi).

Rule-4: If A has issued a re-encryption key generation query Ork(pki, pkj) or Ork(pkj , pki), and
Dec(skj , CTj) ∈ {m0,m1}, then (pkj , CTj) is a derivative of (pki, CTi).

Remark 1. The above IND-PRE-oCCA security formulation for single-hop bidirectional PRE is
essentially identical to the IND-PRE-CCA security formulated in [14] for multi-hop bidirectional
PRE, but have the following key differences (which make IND-PRE-oCCA strictly stronger than
IND-PRE-CCA):

• Adaptive vs. non-adaptive secret-key corruption. Our IND-PRE-oCCA formulation allows
adaptive secret-key corruption. That is, adversary A can adaptively learn users’ secret-keys
by querying the oracle Osk(pki) (as long as pki was formerly generated by the oracle Opk).
In the IND-PRE-CCA formulation of [14], the oracle Osk is defined to have no input and
work as follows: when queried, Osk generates a new pair (pk, sk) by running KeyGen, and
returns (pk, sk) to A. Note that A cannot corrupt the secret-keys corresponding to already
existing public-keys. As a consequence, the simulator in the CCA proof of [14] does not need
to handle queries of adaptive secret-key corruption.

• Rule-4 difference. The Rule-4 is formulated in [14] as follows: “if A has queried Ork(pki, pkj)
or Ork(pkj , pki), or alternatively a series of queries Ork(pki, pkk1), · · · ,Ork(pkkτ−1 , pkkτ ),
Ork(pkkτ , pkj) where τ ≥ 2 (which is mentioned in the Rule-4 motivation in [14]), and
Dec(pkj , CTj) ∈ {m0,m1}, then (pkj , CTj) is the derivative of (pki, CTi).” In contrast, from the
series of queries Ork(pki, pkk1), · · · ,Ork(pkkτ−1 , pkkτ ),Ork(pkkτ , pkj), even if A can get rki↔j

but without querying either Ork(pki, pkj) or Ork(pkj , pki), (pkj , CTj ← ReEnc(rki↔j, CTi)) is
not the derivative of (pki, CTi) according to our Rule-4 specification.

Remark 2. A further stronger formulation of Rule-4 (which renders further stronger IND-PRE-
oCCA security), for bidirectional PRE with deterministic re-encryption algorithm ReEnc, is: If
A has issued a re-encryption key generation query Ork(pki, pkj) or Ork(pkj, pki) to learn rki↔j,
and CTj = ReEnc(rki↔j, CTi) then (pkj , CTj) is a derivative of (pki, CTi). The observation is that
the requirement Dec(pkj , CTj) ∈ {m0,m1} in the Rule-4 specification of [14] may be over strict,
which particularly excludes re-randomizing the challenge ciphertext CT∗i . Specifically, consider
the following ciphertext re-randomizing attack: given (pki, CTi) where CTi is the original (resp.,
transformed) ciphertext under public-key pki, an adversary A first re-randomizes CTi into CT

′
i 6= CTi

and then gets CTj ← ReEnc(rki↔j, CT
′
i) (resp., A first gets CTj ← ReEnc(rki↔j , CTi) and then re-

randomizes CTj into CT′j 6= CTj). Such attacks are forbidden by definition within the definitional
framework of [14] as (pkj , CTj) (resp., (pkj, CT

′
j)) is still defined to be the derivative of (pki, CTi),

while such an attack is allowed with the above stronger Rule-4 formulation as (pkj , CTj) (resp.,
(pkj , CT

′
j)) is not viewed as the derivative of (pki, CTi)). We show our CCA-secure PRE scheme,

which is of deterministic re-encryption, satisfies the stronger IND-PRE-oCCA security with this
modified stronger Rule-4 formulation.

Definition 4. A single-hop bidirectional PRE scheme is said to be (t, qpk, qsk, qrk, qre, qd, ǫ)-IND-
PRE-oCCA secure, if for any t-time adversary A who asks at most qpk, qsk, qrk, qre and qd queries to
oracles Opk,Osk,Ork,Ore and Od, respectively, we have AdvIND-PRE-oCCA

PRE,A (k) ≤ ǫ. The probability
is taken over the choice of the random bit δ, coins of adversary A and the oracles.

CPA security of (multi-hop) bidirectional PRE. For the CPA security of (multi-hop) bidirec-
tional PRE, referred to as IND-PRE-CPA, the IND-PRE-CPA experiment (denoted ExpIND-PRE-CPA

PRE,A )
amounts to a restricted version of the above IND-PRE-oCCA experiment, where adversary A is
only allowed to make queries to Opk, Osk and Ork (but oracle access to Ore and Od is denied) in
both the find stage and the guess stage [14].
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Non-Transitivity. One might think the following definition for NT-security would be sufficient:
the proxies alone cannot generate a new valid re-encryption key between two users who has never
agreed on the delegations, e.g., from the re-encryption keys rki↔j and rkj↔k, the adversary cannot
produce the re-encryption key rki↔k. However, such a definition is somewhat weak, since it does
not prevent an adversary from computing some other information that will allow it to re-encrypt
ciphertexts from i to k (which is what we actually care about). For example, suppose a PRE
scheme dose not satisfy the above NT-security (i.e., a valid re-encryption key can be generated
transitively), and then we can easily convert it into another PRE scheme satisfying the above “NT-
security” in the following way:1 Let ri↔j be a re-encryption key for the original scheme. In the new
scheme, we define a valid re-encryption key to be the triplet (ri↔j ,Sign(ski, ri↔j),Sign(skj , ri↔j)),
where Sign is some secure signature algorithm. It is easy to see that the proxy will not be able to
generate any new valid re-encryption keys involving user i without breaking the signature scheme.
However, since the original scheme is not “NT-secure”, the adversary could still compute ri↔k

from ri↔j and rj↔k, and thus is still able to redelegate decryption rights. Therefore, a reasonable
NT-security definition should satisfy: if the proxy has the re-encryption keys rki∗↔j and rkj↔k,
even in collusion with user k it shouldn’t be able to decrypt ciphertexts intended for user i∗. We
formally define the NT-security as below:

For an adversary A running in two stages find and guess, we define its advantage as

AdvNT
PRE,A(k) =

∣

∣

∣Pr
[

ExpNT-1
PRE,A(k) = 1

]

− Pr
[

ExpNT-0
PRE,A(k) = 1

]∣

∣

∣ ,

where ExpNT-δ
PRE,A is defined by the following experiment:

Experiment ExpNT-δ
PRE,A(k)

param← Setup(1k);

(m0,m1, pki∗)← A
Opk(·),Osk(·),Ork(·,·),Ore(·,·,·),Od(·,·)(find, param), where |m0| = |m1|;

CT∗ ← Enc(pki∗ ,mδ), where δ
$
← {0, 1};

δ′ ← AOpk(·),Osk(·),Ork(·,·),Ore(·,·,·),Od(·,·)(guess, param, CT∗);
return δ′.

During the above experiment, it is required that the following requirements are simultaneously
satisfied:

1. For a public key pkj whose secret key is corrupted (by oracle query to Osk), A cannot issue
Ork(pki∗ , pkj) or Ork(pkj , pki∗).

2. pki∗ is generated by oracle Opk, and A cannot issue the secret key query Osk(pki∗);

3. A cannot simultaneously issue Osk(pkj) and Ore(pki, pkj , CTi) such that (pki, CTi) is a deriva-
tive of (pki∗ , CT

∗).

4. A cannot issue Od(pkz, CTz) such that (pkz, CTz) is a derivative of (pki∗ , CT
∗).

Definition 5. A bidirectional PRE scheme is said to be (t, qpk, qsk, qrk, qre, qd, ǫ)-NT-secure, if for
any t-time adversary A who asks at most qpk, qsk, qrk, qre, qd queries to oracles Opk,Osk,Ork,Ore,Od,
respectively, we have AdvNT

PRE,A(k) ≤ ǫ.

Remark 3. In the above definition, it would be legal for adversaryA to issue queriesOrk(pki∗ , pkj),
Ork(pkj , pkk) and Osk(pkk), only if A does not issue Osk(pkj). Thus the above definition can
ensure that, the proxies with re-encryption keys rki∗↔j and rkj↔k is unable to decrypt ciphertexts
intended for user i∗, even in collusion with user k.

Remark 4. At first glance, one might think that the above NT-security is still too weak in the
sense that, it does not secure against the collusion of the delegatees (j and k) and the proxy (who

1We sincerely thank the anonymous reviewers of CRYPTO’11 for pointing out this interesting example.
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holds the re-encryption key between users i∗ and j). However, such an attack would make no sense,
since the proxy can first re-encrypt the challenge ciphertext CT∗ into a transformed ciphertext for
user j, and then decrypt it with user j’s secret key. Nevertheless, as stressed in [4, 5, 29, 30], it
is still an open problem to come up with a (unidirectional or bidirectional) PRE scheme secure
against transfer of delegation attacks, i.e., the collusion of the delegatees (j and k) and the proxy
(with re-encryption keys between users i∗ and j) cannot produce the re-encryption key from i∗ to
k.

Remark 5. The NT definition is almost identical to the IND-PRE-oCCA definition, with the
exception in Requirement 1. It can be verified that Requirement 1 in the NT definition is strictly
weaker than that in the IND-PRE-oCCA definition. Thus the IND-PRE-oCCA security is implied by
the NT security (as stated in Proposition 1). The reason we separate IND-PRE-oCCA security from
NT security is that, as we shall see, the former can normally be achieved with weaker assumption
than that for achieving the latter.

Proposition 1. For a single-hop bidirectional PRE E, the IND-PRE-oCCA security is implied by
the non-transitivity security. That is, if there exists an adversary A who can also break the IND-

PRE-oCCA security of E, then there also exists an adversary B who can also break the NT security
of E.

CCA Security of transformed ciphertexts for single-hop bidirectional PRE. Note that,
for single-hop bidirectional PRE, the original and transformed ciphertexts have different forms.
The above IND-PRE-oCCA definition provides A with an original ciphertext in the challenge
phase. An orthogonal definition of security is to capture the indistinguishability of transformed
ciphertexts, in which adversary A is given a challenge transformed ciphertext. For single-hop
schemes, since transformed ciphertexts cannot be re-encrypted, we should allow the adversary to
obtain any re-encryption keys (including those between the target user and the corrupted users).
Consequently, the re-encryption oracle becomes useless to A since A can re-encrypt ciphertexts
itself using the corresponding re-encryption keys.

Specifically, for an adversary A running in two stages find and guess against a bidirectional
single-hop PRE scheme, we define its advantage in distinguishing transformed ciphertexts as

AdvIND-PRE-tCCA
PRE,A (k) =

∣

∣

∣
Pr

[

ExpIND-PRE-tCCA-1
PRE,A (k) = 1

]

− Pr
[

ExpIND-PRE-tCCA-0
PRE,A (k) = 1

]∣

∣

∣
,

where ExpIND-PRE-tCCA-δ
PRE,A is defined by the following experiment:

Experiment ExpIND-PRE-tCCA-δ
PRE,A (k)

param← Setup(1k);

(m0,m1, pki∗ , pki′)← A
Opk(·),Osk(·),Ork(·,·),Od(·,·)(find, param), where |m0| = |m1|;

CT′ ← Enc(pki′ ,mδ), where δ
$
← {0, 1}; CT∗ = ReEnc(rki′↔i∗ , CT

′);

δ′ ← AOpk(·),Osk(·),Ork(·,·),Od(·,·)(guess, param, CT∗);
return δ′.

During the above experiment, the following requirements are required to be simultaneously
satisfied:

1. pki′ and pki∗ are generated by oracle Opk, and A has never issued the query Osk(pki∗). But,
the query Osk(pki′) is allowed to A.

2. A has never issued the query Od(pki∗ , CT
∗).

Definition 6. A single-hop bidirectional PRE scheme is said to be (t, qpk, qsk, qrk, qd, ǫ)-IND-PRE-
tCCA secure, if for any t-time adversary A who asks at most qpk, qsk, qrk and qd queries to oracles
Opk,Osk,Ork and Od, respectively, we have AdvIND-PRE-tCCA

PRE,A (k) ≤ ǫ.
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Experiment ExpMSS
PRE,A(k)

param← Setup(1k);

(pki∗ , ski∗)← A
Opk(·),Osk(·),Ork(·,·)(param);

If ski∗ is a valid secret key w.r.t. pki∗ then return 1,
else return 0.

Master secret security. For an adversary against the MSS security of a bidirectional PRE
scheme, we define its advantage as AdvMSS

PRE,A(k) = Pr
[

ExpMSS
PRE,A(k) = 1

]

, where ExpMSS
PRE,A is

defined by the following experiment:
During the above experiment, it is required that pki∗ is generated by oracle Opk, and A has never
issued the secret key query Osk(pki∗).

Definition 7. A bidirectional PRE scheme is said to be (t, qpk, qsk, qrk, ǫ)-MSS secure, if for any t-
time adversary A who asks at most qpk, qsk and qrk queries to oracles Opk,Osk and Ork, respectively,
we have AdvMSS

PRE,A(k) ≤ ǫ.

Remark 6. The MSS-security is actually a refinement of the MSS-security considered in [4, 5].
But, we would like to reminder here that, for some unusual or unnatural cases, the situation is a
bit subtle. One example is, in a PRE scheme, the secret-key of each user consists of two elements
(sk, sk′) but the element of sk′ is never used in re-encryption key generation and decryption.
Another example is: the user’s secret-key is defined to be sk, but it actually uses sk′ = f(sk) for
decryption and REK generation where f is a one-way function. All these unusual or unnatural
protocol examples can be trivially MSS-secure, though we are unaware of any existing PRE scheme
being of such unusual structures. For the general case, roughly speaking, we say a PRE scheme
is MSS-secure if the adversary is infeasible to output the secret-key elements of the delegator that
are actually put into effect in REK generation and ciphertext decryption. Formal formulation of
MSS-security for the general case is outside the scope of this paper, and is left for future exploration.

Due to the space limitation, we present the formulation and discussion of NT-security in Ap-
pendix D, where we in particular show that, for single-hop bidirectional PREs, the IND-PRE-oCCA
(resp., MSS) security is implied by the NT (resp., IND-PRE-tCCA) security. The reason we separate
IND-PRE-oCCA (resp., MSS) security from NT (resp., IND-PRE-tCCA) security is that, as we shall
see, the former can normally be achieved with weaker assumptions than those for achieving the
latter.

4 CPA-Secure Multi-Hop Bidirectional PRE with MSS-Security

Let (G,GT ) be bilinear groups with prime order p ≥ 2k, where k is the security parameter. Then
our multi-hop bidirectional PRE scheme is specified as below:

Setup(1k): Picks two generators g, g1
$
← G, and output the public parameter param = (g, g1).

KeyGen(param): User i randomly pick xi
$
← Z

∗
p, and sets its public key as pki = gxi and private

key as ski = xi.

ReKeyGen(ski, skj): On input two private keys ski and skj , this algorithm outputs the bidirec-

tional re-encryption key rki↔j = g−ski
1 g

skj
1 (= g

−ski+skj
1 ).

Enc(pki,m): To encrypt a message m ∈ GT under the public key pki, the sender picks r
$
← Z∗

p,
and outputs the ciphertext CTi as below:

CTi = (C1, C2) = (gr,m · e(pki, g1)
r) .
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ReEnc(rki↔j , CTi): On input a re-encryption key rki↔j = g−xi
1 g

xj

1 , a ciphertext CTi = (C1, C2)
under public key pki, this algorithm computes C ′

2 = C2 · e(C1, rki↔j) = m · e(pki, g1)
r ·

e(gr , g−ski
1 g

skj
1 ) = m · e(pki, g1)

r · e(pki, g1)
−r · e(pkj , g1)

r = m · e(pkj , g1)
r, and output CTj =

(C1, C
′
2) as the transformed ciphertext under public key pkj .

Dec(CTz, skz): On input a private key and ciphertext CTz, this algorithm outputs m← C2

e(C1,g1)skz
.

Theorem 1. Our scheme is IND-PRE-CPA secure, assuming the DBDH assumption holds in
(G,GT ).

Proof. Given a DBDH instance (g, ga, gb, gc, Z) ∈ G
4 × GT with unknown a, b, c

$
← Z

∗
p, B’s

goal is to decide whether Z = e(g, g)abc. B works by interacting with adversary A in experiment
ExpIND-PRE-CPA

PRE,A (where A is only allowed to make queries to Opk, Osk and Ork in the find and
guess stages), as follows:

Initialize. B defines g1 = gb, and returns the public parameter param = (g, g1) to A.

Find Stage. Adversary A issues a series of queries as in experiment ExpIND-PRE-CPA
PRE,A . B maintains

a list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$
← Z

∗
p. Next, using Coron’s technique [15], it flips a

biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise, where θ is a fixed
probability that will be determined later. If ci = 1, it sets pki = gxi (meaning that ski = xi);
else pki = ga+xi (meaning that ski = a+ xi). Next, it adds the tuple (pki, xi, ci) to Llist and
returns pki to A.

• Secret key oracle Osk(pki): B first recovers (pki, xi, ci) from Llist. If ci = 1, B returns ski = xi
to A; otherwise, it outputs a random bit and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: B returns rki↔j = g
−xi+xj

1 = g−ski
1 g

skj
1 to A.

– ci = cj = 0: B returns rki↔j = g
−xi+xj

1 = g
−(a+xi)+(a+xj)
1 = g−ski

1 g
skj
1 to A.

– ci 6= cj : B outputs a random bit and aborts.

Challenge. When A decides that find stage is over, it outputs a public key pki∗ and two
equal-length messages m0,m1 ∈ GT with the restrictions specified in experiment ExpIND-PRE-CPA

PRE,A .

Algorithm B first recovers the tuple (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs a random bit

and aborts. Otherwise (it means that pki∗ = ga+xi∗ ), B flips a random coin δ
$
← {0, 1}, defines

C∗
1 = gc, C∗

2 = Z · e(gb, gc)xi∗ ·mδ, and returns CT∗ = (C∗
1 , C

∗
2 ) as the challenge ciphertext to A.

Observe that, if Z = e(g, g)abc, CT∗ is a valid challenge ciphertext. To see this, letting r∗ = c,
we have

C∗
1 = gc = gr

∗

,

C∗
2 = Z · e(gb, gc)xi∗ ·mδ = e(g, g)abc · e(gb, gc)xi∗ ·mδ = e(ga+xi∗ , gb)c ·mδ = e(pki∗ , g1)

r∗ ·mδ.

On the other hand, if Z is uniform and independent in GT , the challenge ciphertext CT∗ is
independent of δ from the adversary’s view.

Guess Stage. Adversary A continues to issue the rest queries with the restrictions described in
experiment ExpIND-PRE-CPA

PRE,A , and B answers these queries just as it does in the find stage.

Output. Eventually, adversary A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs 1 to guess
Z = e(g, g)abc; otherwise, B outputs 0 to guess that Z is a random element in GT .

This completes the description of the simulation. We next analyze the simulation. It is
clear that the simulation of oracle Opk is perfect. Let Abort denote the event that B aborts
(when Z = e(g, g)abc) during the simulation of oracles Osk,Ork or in Challenge stage. We have
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Pr[¬Abort] = θqsk(θ2 + (1 − θ)2)qrk(1 − θ) ≥ θ2qrk+qsk(1 − θ). By setting θ = 1 − 1
1+2qrk+qsk

, we

get Pr[¬Abort] ≥ ė−1 1
(1+2qrk+qsk)

= 1
ė(1+2qrk+qsk)

. Note that, if event Abort does not occur during
the simulation, the simulations for Osk,Ork and Challenge stage all are perfect. In this case,
if A can break the IND-PRE-CPA security of our scheme, B can also resolve the DBDH instance.
Specifically, Pr[B(g, ga, gb, gc, Z) = 1|Z 6= e(g, g)abc] = 1

2 as in this case the view of A is independent
of δ, Pr[B(g, ga, gb, gc, Z) = 1|Z = e(g, g)abc)] = 1

2 · Pr[Abort] + Pr[δ′ = δ|¬Abort] · Pr[¬Abort] =
1
2 · (1 − Pr[¬Abort)] + Pr[δ′ = δ|¬Abort] · Pr[¬Abort] = 1

2 + Pr[¬Abort](Pr[δ′ = δ|¬Abort] − 1
2).

Thus, ǫ′ = AdvDBDH
B = |Pr[B(g, ga, gb, gc, Z) = 1|Z = e(g, g)abc)] − Pr[B(g, ga, gb, gc, Z) = 1|Z 6=

e(g, g)abc]| = |Pr[¬Abort](Pr[δ′ = δ|¬Abort] − 1
2)|. As ǫ = AdvIND-PRE-CPA

PRE,A = |2Pr[δ′ = δ] − 1|

and Pr[¬Abort] ≥ 1
ė(1+2qrk+qsk)

, we have ǫ′ = AdvDBDH
B ≥ ǫ

2ė(1+2qrk+qsk)
. It’s easy to see that the

running time of B is bounded by t′ ≤ t+O(τ(qpk + qrk)). ⊔⊓

Theorem 2. Our scheme is MSS secure, assuming the DL assumption holds in group G.

Proof. Given a DL instance (g, ga) ∈ G
2 with unknown a

$
← Z

∗
p, B’s goal is to output the value

a. B works by interacting with adversary A in experiment ExpMSS
PRE,A as follows:

Initialize. B picks α1
$
← Z

∗
p and defines g1 = gα1 , and returns param = (g, g1) to A.

Query Stage. Adversary A issues a series of queries as in experiment ExpMSS
PRE,A. B maintains a

list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): Identical to that in the proof of Theorem 1.

• Secret key oracle Osk(pki): Identical to that in the proof of Theorem 1.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: B returns rki↔j = g
−xi+xj

1 = g−ski
1 g

skj
1 to A.

– ci = cj = 0: B returns rki↔j = g
−xi+xj

1 = g
−(a+xi)+(a+xj)
1 = g−ski

1 g
skj
1 to A.

– ci = 1 ∧ cj = 0: It means that ski = xi and skj = a + xj . B returns rki↔j =

g
−xi+xj

1 gα1a = g−xi

1 (gα1)a+xj = g−ski
1 g

skj
1 to A.

– ci = 0 ∧ cj = 1: It means that ski = a + xi and skj = xj . B returns rki↔j =

g
−xi+xj

1 g−aα1 = g
−(a+xi)
1 g

xj

1 = g−ski
1 g

skj
1 to A.

Output stage. Finally, A outputs a secret key ski∗ w.r.t. the public key pki∗ that has not been
queried to Osk. B recovers (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs “failure” and aborts.
Otherwise (it means ski∗ = a+ xi∗), B outputs a = ski∗ − xi∗ as the solution to the DL instance.

Analysis. It’s easy to check that the running time of B is bounded by t′ ≤ t+O(τ(qpk + qrk)). Let
Abort denote the event of B’s aborting during the simulation of oracle Osk or in Output stage. We
have Pr[¬Abort] = θqsk(1 − θ). By setting θ = qsk

1+qsk
, we get Pr[¬Abort] ≥ 1

ė(1+qsk)
. Note that, if

event Abort does not occur, the simulation is perfect from the view of A. Therefore, if A can break
the MSS security with probability ǫ, B can solve the DL instance with probability ǫ′ ≥ ǫ

ė(1+qsk)
. ⊔⊓

5 CCA-Secure Single-Hop Bidirectional PRE with both MSS Se-

curity and NT Security

Before presenting the construction, we first highlight some subtleties and rationales in designing
CCA-secure PRE schemes. It is well known that for a CCA-secure public key encryption scheme,
its ciphertexts should be non-malleable [1, 6, 16, 18, 31]. However, the subtlety and difficulty of
achieving CCA-secure PRE scheme lies in that a PRE scheme itself requires flexibility for converting
a ciphertext under one public key into another one for another user (which is referred to as legal
malleability). For a (single-hop) PRE scheme to be CCA-secure, it must ensure that the legal
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malleability from original ciphertexts to transformed ciphertexts is the only way of malleating
ciphertexts. In particular, a CCA-secure (single-hop) PRE scheme should guarantee both the
non-malleability of original ciphertexts and the non-malleability of transformed ciphertexts.

Let (G,GT ) be bilinear groups with prime order p > 2k, where k is the security parameter.
Our CCA-secure bidirectional PRE scheme is specified by the following algorithms:

Setup(1k): This setup algorithm works as follows:

1. Pick generators g, g0, g1, u1, u2, u3
$
← G.

2. Choose a target collision-resistant hash function H : G × {0, 1}ℓ → Z
∗
p. Choose also

a pseudo-random function (PRF) family F : GT × G → {0, 1}ℓ−ℓ1‖{0, 1}ℓ1 such that,
given a seed in GT and an input in G, it outputs an ℓ-bit pseudorandom string. Here
“||” denotes the operator of string concatenation, and ℓ and ℓ1 are all polynomial in k.

3. Output the public parameter param = (p,G,GT , g, g0, g1, u1, u2, u3,H, F, ℓ1, ℓ).

KeyGen(param): User i picks xi
$
← Z

∗
p, and sets its public key as pki = gxi and private key as

ski = xi.

ReKeyGen(ski, skj): On input two private keys ski and skj , this algorithm outputs the bidirec-

tional re-encryption key rki↔j = g
skiskj
1 .

Note that, from rki↔j = g
skiskj
1 and ski no efficient algorithm can compute skj, which ensures

the MSS security. Also, given two REKs rki↔j = g
skiskj
1 and rkj↔k = g

skjskk
1 and even also

the secret key skk, no efficient algorithm can decrypts (original) ciphertexts generated under
pki, which implies the infeasibility of computing rki↔k = gskiskk1 and thus ensures the NT
security. Formal analysis of the MSS-security and NT-security is referred to Appendix E.

Enc(pki,m): To encrypt a message m ∈ {0, 1}ℓ1 under pki, the sender proceeds as follows:

1. Pick r
$
← Z

∗
p, and set C0 = gr0 and C1 = gr.

2. Compute K = e(pki, g1)
r and set C2 = [F (K,C0)]ℓ−ℓ1

‖
(

[F (K,C0)]
ℓ1 ⊕ m

)

, where

[F (K,C0)]ℓ−ℓ1
(resp., [F (K,C0)]

ℓ1) denotes the (ℓ−ℓ1)-bit prefix (resp., the ℓ1-bit suffix)
of [F (K,C0)].

3. Pick t
$
← Z

∗
p, and compute h = H(C0, C2) and C3 =

(

uh1u
t
2u3

)r
.

4. Output the ciphertext CTi = (t, C0, C1, C2, C3).

Here, the use of PRF, rather than a generic authentication mechanism (e.g., encrypt-then-
MAC), is to get shorter ciphertext and to have more concise security proof. Note that
the value t can be viewed to serve as the randomness of a chameleon hash function in an
application of the Canetti-Halevi-Katz and Boyen-Mei-Waters techniques [11, 13]. This use
of a chameleon hash function with randomness enables our scheme to achieve the adaptive
security, i.e., the adversary needs not to commit ahead of time which public key she wants
to challenge. We note that the use of a chameleon hash function with randomness was also
previously appeared in [2, 23,27,32].

ReEnc(rki↔j , CTi): On input an REK rki↔j = g
xixj

1 , an original ciphertext CTi and another public
key pkj , this algorithm re-encrypts this ciphertext intended for public key pkj as follows:

1. Compute h = H(C0, C2), and then check the validity of CTi by testing whether the
following equalities hold:

e(C0, u
h
1u

t
2u3) = e(C3, g0), (1)

e(C0, g) = e(C1, g0). (2)

Observe that Eq. (1) ensures that C0 = gr0 and C3 =
(

uh1u
t
2u3

)r
, and Eq. (2) ensures

that C0 = gr0 and C1 = gr. Note that, using the technique as in [12, 17, 25, 26], the
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efficiency of the above verifications can be further improved by reducing two pairings
(at the cost of two more multi-exponentiations). Concretely, the verifications can be

alternately done by picking r1, r2
$
← Z

∗
p and testing whether

e
(

C0, g
r1
(

uh1u
t
2u3

)r2
)

= e (Cr1
1 Cr2

3 , g0) . (3)

2. If the above verifications fail, output ⊥ indicating an invalid ciphertext. Otherwise,
compute C ′

1 = e(C1, rki↔j), and output the transformed ciphertext under public key
pkj as CTj = (t, C0, C

′
1, C2, C3). Observe that CTj is of the following forms:

CTj = (t, C0, C
′
1, C2, C3) =

(

t, gr0,K
skj , [F (K,C0)]ℓ−ℓ1‖

(

[F (K,C0)]
ℓ1 ⊕m

)

,
(

uh1u
t
2u3

)r
)

,

where K = e(pki, g1)
r.

Dec(skz, CTz): On input (skz, CTz), this algorithm works according to two cases:

• CTz is an original ciphertext CTz = (t, C0, C1, C2, C3) (where C1 ∈ G):

1. First check the validity of the ciphertext as in Eq. (3). If the verification fails,
output “⊥” indicating an invalid ciphertext.

2. Compute K = e(C1, g1)
skz , and output m = [F (K,C0)]

ℓ1 ⊕ [C2]
ℓ1 , where [C2]

ℓ1

denotes the ℓ1-bit suffix of C2.

• CTz is a transformed ciphertext CTz = (t, C0, C
′
1, C2, C3) (where C ′

1 ∈ GT ):

1. First check the validity of the ciphertext as in Eq. (1). If the verification fails,
output “⊥” indicating an invalid ciphertext.

2. Compute K = C ′
1
1/skz . Output m = [F (K,C0)]

ℓ1 ⊕ [C2]
ℓ1 if the following equality

holds:

[F (K,C0)]ℓ−ℓ1 = [C2]ℓ−ℓ1 . (4)

Otherwise, output “⊥” indicating an invalid ciphertext.

Remark 7. In the security proofs, to answer adversary A’s decryption queries on transformed
ciphertexts, the simulator needs to know the original public key pki. To deal with this problem,
we can slightly modify the above scheme by including public key pki into both original ciphertext
and transformed ciphertext, and computing h = H(pki, C0, C2) instead of h = H(C0, C2) (the
description of H should accordingly be H : G2 × {0, 1}ℓ → Z

∗
p). The security analysis, as well as

the comparison with CH07, is w.r.t. this modified version.

Remark 8. At a high level, the equalities (1) and (2) (resp., (1) and (4)) ensure the well-formedness
of original (resp., transformed) ciphertexts, and thus the above PRE construction fits the afore-
mentioned design rationales of non-malleability for achieving CCA-secure PRE schemes.

Remark 9. In algorithm ReKeyGen, users i and j make equal contributions to the REK key

rki↔j = g
skiskj
1 . Such an advantageous feature enables the proxy to transform ciphertexts without

distinguishing the re-encryption direction, since its actions for both directions are the same. To
our knowledge, this is the first bidirectional PRE scheme that enjoys this advantageous feature.

5.1 Security Analysis

Theorem 3. Our scheme is IND-PRE-oCCA secure, assuming the hash function H is target colli-
sion resistant, F is a PRF family and the 1-AwDBDHI assumption holds in groups (G,GT ).

Proof. Suppose there exists an adversary A who can break the (t, qpk, qsk, qrk, qre, qd, ǫ)-IND-PRE-
oCCA security of our scheme, then we show how to construct another algorithm B that can break the

1-AwDBDHI assumption in (G,GT ). Given a 1-AwDBDHI instance (g, g
1
a2 , ga, gb, Z) ∈ G

4 × GT

with unknown a, b
$
← Z

∗
p, B’s goal is to decide whether Z = e(g, g)b/a. B works by interacting with

adversary A in experiment ExpIND-PRE-oCCA
PRE,A as follows:
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Initialize. B providesA with public parameter including g0 = gγ0 , g1 =
(

g
1
a2
)γ1 , u1 =

(

g
1
a2
)α1gβ1 , u2 =

(

g
1
a2
)α2gβ2 and u3 =

(

g
1
a2
)α3gβ3 for random γ0, γ1, α1, α2, α3, β1, β2, β3

$
← Z

∗
p.

Find Stage. AdversaryA issues a series of queries as in experiment ExpIND-PRE-oCCA
PRE,A . B maintains

a list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$
← Z

∗
p. Using the Coron’s technique [15], it flips a biased

coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise, where θ is a fixed probability
to be determined later. If ci = 1, it sets pki = gxi (meaning that ski = xi); else pki = (ga)xi

(meaning that ski = axi). Next, it adds (pki, xi, ci) to Llist and returns pki to A.

• Secret key oracle Osk(pki): B first recovers (pki, xi, ci) from Llist. If ci = 1, B returns ski = xi
to A; otherwise, it outputs a random bit and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: B returns rki↔j = g
xixj

1 = g
skiskj
1 to A.

– ci = cj = 0: B returns rki↔j = gγ1xixj =
(

(

g
1
a2
)γ1

)axiaxj

= g
skiskj
1 to A.

– ci 6= cj : B outputs a random bit and aborts.

• Re-encryption oracle Ore(pki, pkj , CTi): B first parses CTi as (pki, t, C0, C1, C2, C3), computes
h = H(pki, C0, C2), and then checks the validity of the ciphertext as in Eq. (3). If the
verification fails, it returns “⊥” to A (indicating an invalid ciphertext). Otherwise, B recovers
tuples (pki, xi, ci) and (pkj , xj, cj) from Llist, and works according to the following two cases:

– ci = cj : B first generates the re-encryption key rki↔j as in the response for the re-
encryption key oracle Ork, and returns CTj ← ReEnc(rki↔j , CTi) to A.

– ci 6= cj : Without loss of generality, suppose ski = axi and skj = xj. B first checks
whether α1h + α2t + α3 = 0 or not, where h = H(pki, C0, C2). If α1h + α2t + α3 = 0
then B outputs a random bit and aborts. Otherwise, from C0 = gr0 = gr·γ0 and

C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
, B can compute

gr1 =
(

g
γ1
a2
)r

=







C3

C
β1h+β2t+β3

γ0
0







γ1
α1h+α2t+α3

. (5)

Then B computes C ′
1 = e (ga, gr1)

xixj , and returns CTj = (pki, t, C0, C
′
1, C2, C3) to A.

Observe that CTj is indeed a valid transformed ciphertext as required, since ci 6=
cj means skiskj = axixj , and hence we have C ′

1 = e (ga, gr1)
xixj = e

(

gr, g
axixj

1

)

=

e(gr , g
skiskj
1 ) = e(C1, rki↔j).

Note that, in the public parameters u1 =
(

g
1
a2
)α1gβ1 , u2 =

(

g
1
a2
)α2gβ2 and u3 =

(

g
1
a2
)α3gβ3 ,

α1 (α2, α3, resp.) is perfectly blinded by β1 (β2, β3, resp.), and hence no information about
α1, α2 and α3 is leaked to the adversary. So, in Eq. (5), the equality α1h + α2t + α3 = 0
mod p information-theoretically holds with probability 1/p.

• Decryption oracle Od(pkz, CTz): B first recovers tuple (pkz, xz, cz) from Llist. If cz = 1 (it
means that skz = xz), algorithm B returns the result of Dec(xz, CTz) to A. Otherwise, B
proceeds according to the following two cases:

– CTz = (pkz, t, C0, C1, C2, C3) is an original ciphertext: Compute h = H(pkz , C0, C2)
and then check the validity of the ciphertext as in Eq. (3). If the verification fails,
output “⊥” indicating an invalid ciphertext. Then, check whether α1h + α2t + α3 = 0
mod p. If α1h+α2t+α3 = 0 mod p, output a random bit and abort; Otherwise, from

C0 = gr0 = gr·γ0 and C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
, obtain gr1 as in

Eq. (5). Then, compute K = e(pkz, g
r
1) and output m = [F (K,C0)]

ℓ1 ⊕ [C2]
ℓ1 .
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– CTz = (pki, t, C0, C
′
1, C2, C3) is a transformed ciphertext: Compute h = H(pki, C0, C2)

and then check the validity of the ciphertext as in Eq. (1). If the verification fails, output
“⊥” indicating an invalid ciphertext. Otherwise, check whether α1h + α2t + α3 = 0
mod p. If α1h + α2t + α3 = 0 mod p, output a random bit and abort; Otherwise,
continue to execute the following steps:

1. From C0 = gr0 = gr·γ0 and C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
,

obtain gr1 as in Eq. (5).
2. Recover tuple (pki, xi, ci) from Llist. If ci = 1 check whether C ′

1 = e(pkxi
z , gr1)

holds; while if ci = 0 check whether C ′
1 = e(gxixzγ1 , C

1
γ0
0 ) holds. If no, output “⊥”

indicating an invalid ciphertext.
3. Compute K = e(pki, g

r
1) and check whether [F (K,C0)]ℓ−ℓ1 = [C2]ℓ−ℓ1 . If not,

output “⊥”; otherwise, output m = [F (K,C0)]
ℓ1 ⊕ [C2]

ℓ1 .

Note that, similar to the analysis in oracle Ore, α1h + α2t + α3 = 0 mod p holds with
probability 1

p .

Challenge. When A decides that find stage is over, it outputs a public key pki∗ and two equal-
length messages m0,m1 ∈ {0, 1}

ℓ1 with the restrictions specified in experiment ExpIND-PRE-oCCA
PRE,A .

Algorithm B responds as follows:

1. Recover tuple (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs a random bit in {0, 1} and
aborts. Otherwise, it means that pki∗ = (ga)xi∗ , and B proceeds to execute the rest steps.

2. Define C∗
0 =

(

gb
)γ0 , C∗

1 = gb,K∗ = Zxi∗γ1 , C∗
2 = [F (K∗, C∗

1 )]ℓ−ℓ1‖([F (K∗, C∗
1 )]

ℓ1 ⊕mδ) for a

random bit δ, t∗ = −α1h∗+α3
α2

and C∗
3 =

(

gb
)β1h∗+β2t∗+β3 where h∗ = H(pki∗ , C

∗
0 , C

∗
2 ).

3. Return CT∗ = (pki∗ , t
∗, C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 ) as the challenge ciphertext to adversary A.

Observe that if Z = e(g, g)b/a, the ciphertext CT∗ is indeed a valid challenge ciphertext. To see
this, letting r∗ = b, we have

C∗
0 =

(

gb
)γ0 = (gγ0)b = gr

∗

0 , C∗
1 = gb = gr

∗

,

K∗ = Zxi∗γ1 = e(g, g)
bxi∗ γ1

a = e
(

gaxi∗ , g
γ1
a2
)b

= e(pki∗ , g1)
r∗ ,

C∗
3 = (gb)β1h∗+β2t∗+β3 =

(

gβ1h∗+β2t∗+β3
)b

=
(

(

g
1
a2
)α1h∗(

g
1
a2
)−

α1h
∗+α3
α2

·α2
(

g
1
a2
)α3 · gβ1h∗+β2t∗+β3

)r∗

=
((

(

g
1
a2
)α1gβ1

)h∗

·
(

(

g
1
a2
)α2gβ2

)t∗

·
(

(

g
1
a2
)α3gβ3

))r∗

=
(

uh
∗

1 ut
∗

2 u3
)r∗

.

On the other hand, if Z is distributed uniformly and independently over GT , so is K∗, and mδ

is blinded by the pseudorandom value [F (K∗, C∗
1 )].

Guess Stage. Adversary A continues to issue the rest queries. In this stage, whenever B finds
a collision of h∗ = H(pki∗ , C

∗
0 , C

∗
2 ), B outputs a random bit and aborts, which is referred to as

collision abort for presentation simplicity. Otherwise, B can respond these queries for A as in the
find stage (recall that A has to follow the restrictions described in experiment ExpIND-PRE-oCCA

PRE,A ).
We highlight three key observations on B’s simulation of the guess stage:

• The reason for collision abort is: Provided A can find collisions of h∗, it can distinguish
the simulation of B and its real interactions with the oracles in experiment ExpIND-PRE-oCCA

PRE,A .

For example, from CT∗ = (pki∗ , t
∗, C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 ), A sets C∗′

2 = C∗
2 ⊕ (0ℓ−ℓ1 ||m0), if h

∗ =
H(pki∗ , C

∗
0 , C

∗
2 ) = H(pki∗ , C

∗
0 , C

∗′
2 ) then CT∗′ = (pki∗ , t

∗, C∗
0 , C

∗
1 , C

∗′
2 , C

∗
3 ) is a valid ciphertext

and A can get the plaintext by querying CT∗′ to the decryption oracle Od. Note that for real
interactions in experiment ExpIND-PRE-oCCA

PRE,A , the plaintext got by A from Od(pki∗ , CT
∗′) will

be either m0⊕m0 = 0 (in case CT∗ encrypts m0) or m1⊕m0 (in case CT∗ encrypts m1). But,
for the simulation of B when Z is a random value in GT , A will get back an arbitrary value
with Od(pki∗ , CT

∗′).
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• Although CT∗ leaks the information α1h
∗+α2t

∗+α3 = 0 to A, the fact that α1h
∗+α2t

∗+α3 =
0 still information-theoretically hides the values of α1, α2, α3. Thus, the equality that for some
h, t, α1h+ α2t+ α3 = 0 mod p (that will cause B to abort in the simulation of Ore,Od) in
the guess stage still information-theoretically holds with probability 1

p .

• IfA queriesOrk(pki∗ , pkj) (orOrk(pkj , pki∗)) andOd(pkj , CTj) such that CTj = (pki∗ , t, C0, C
′
1,

C2, C3) is a re-encrypted ciphertext, B can check whether CTj = ReEnc(rki∗↔j, CT
∗) by first

recovering tuple (pkj , xj , cj) (note that it must be cj = 0) and testing whether t = t∗, C0 =

C∗
0 , C2 = C∗

2 , C3 = C∗
3 and C ′

1 = e(gxi∗xjγ1 , C
1
γ0
0 ) are simultaneously hold. This is why our

scheme satisfies the modified stronger Rule-4 as mentioned in Remark 2.

Output. Eventually, adversary A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs 1 to guess
Z = e(g, g)b/a; otherwise, B outputs 0 to guess that Z is a random element in GT .

This completes the description of the simulation. Let Abort denote the event that B aborts
(when Z = e(g, g)b/a) during the simulation of oracles Osk,Ork,Ore,Od or in Challenge stage or
due to collision abort in Guess stage. We have Pr[¬Abort] ≥ θqsk(θ2+(1−θ)2)qrk(1− 1

p)
qre+qd(1−

θ)(1−AdvTCRH,A) ≥ θ2qrk+qsk(1− θ)(1− 1
p)

qre+qd(1−AdvTCRH,A). By setting θ = 1− 1
1+2qrk+qsk

, we have

Pr[¬Abort] ≥ 1
ė(1+2qrk+qsk)

(1− qre+qd
p )(1 −AdvTCRH,A).

Observe that, if event Abort does not occur during the simulation and Z = e(g, g)b/a, then

the simulation of B is perfect from the view of A. In this case, Pr[B(g, g
1
a2 , ga, gb, Z) = 1|Z =

e(g, g)b/a] = 1
2 Pr[Abort] + Pr[δ′ = δ|¬Abort] Pr[¬Abort] = 1

2 + Pr[¬Abort](Pr[δ′ = δ|¬Abort] − 1
2).

On the other hand, if event Abort does not occur during the simulation and Z is distributed
uniformly and independently over GT , the only advantage that A can get is to break the
pseudorandomness of the PRF F . In the later case, by standard probabilistic trick [6, 20]
we get Pr[δ′ = δ|B does not abort when Z 6= e(g, g)b/a] = 1

2 ±
1
2Adv

PRF
F,F . Defining ǫprf =

±1
2Adv

PRF
F,F Pr[B does not abort when Z 6= e(g, g)b/a] (that is a negligible quantity assuming the

underlying PRF is secure), we have Pr[B(g, g
1
a2 , ga, gb, Z) = 1|Z 6= e(g, g)b/a] = 1

2 + ǫprf . Thus,

ǫ′ = Adv1-AwDBDHI
B = |Pr[B(g, g

1
a2 , ga, gb, Z) = 1|Z = e(g, g)b/a)] − Pr[B(g, g

1
a2 , ga, gb, Z) = 1|Z 6=

e(g, g)b/a]| = |Pr[¬Abort](Pr[δ′ = δ|¬Abort] − 1
2) − ǫprf |. As ǫ = AdvIND-PRE-oCCA

PRE,A = |2Pr[δ′ =

δ] − 1| and Pr[¬Abort] ≥ 1
ė(1+2qrk+qsk)

(1 − qre+qd
p )(1 − AdvTCRH,A), we have ǫ′ = Adv1-AwDBDHI

B ≥
|± 1

2
ǫ−ǫprf |

ė(1+2qrk+qsk)
(1− qre+qd

p )(1−AdvTCRH,A). Note that, under the assumption that the underlying H and

F are secure, if ǫ is non-negligible in k, so is ǫ′. It’s also easy to check that, by straightforward
computation, the running time of B is bounded by t′ ≤ t+O(τ(qpk + qrk + 8qre + 8qd)). ⊔⊓

Theorem 4. Our scheme is IND-PRE-tCCA secure, assuming the hash function H is target collision
resistant, F is a PRF family and the 2-wDBDHI assumption holds in groups (G,GT ).

Proof. Suppose there exists an adversary A who can break the (t, qpk, qsk, qrk, qd, ǫ)-IND-PRE-
tCCA security, then we show how to construct another algorithm B that can break the 2-wDBDHI
assumption in (G,GT ). Given a 2-wDBDHI instance (g, ga, ga

2
, gb, Z) ∈ G

4 × GT with unknown

a, b
$
← Z

∗
p, B’s goal is to decide whether Z = e(g, g)b/a by interacting with A. Before starting the

simulation, B first tosses a biased coin COIN ∈ {0, 1} that yields 0 with θ and 1 otherwise, where
θ is a fixed probability to be determined later. Then, B interacts with A as follows:

Initialize. B first randomly picks γ0, γ1, α1, α2, α3, β1, β2, β3
$
← Z

∗
p, and provides A with public

parameters including
{

g0 =
(

ga
2)γ0 , g1 = gγ1 , u1 = gα1

(

ga
2)β1 , u2 = gα2

(

ga
2)β2 , u3 = gα3

(

ga
2)β3 , If COIN = 0;

g0 = (ga)γ0 , g1 = gγ1 , u1 = gα1
(

ga
)β1 , u2 = gα2

(

ga
)β2 , u3 = gα3

(

ga
)β3 , If COIN = 1.

Find Stage. Adversary A issues a series of queries as in experiment ExpIND-PRE-tCCA
PRE,A . B maintains

a list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): Identical to that in the proof of Theorem 3.
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• Secret key oracle Osk(pki): Identical to that in the proof of Theorem 3.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: B returns rki↔j = g
xixj

1 = g
skiskj
1 to A.

– ci = cj = 0: B returns rki↔j =
(

ga
2)γ1xixj = (gγ1)axiaxj = g

skiskj
1 to A.

– ci 6= cj : B returns rki↔j = (ga)γ1xixj = (gγ1)axixj = g
skiskj
1 to A.

• Decryption oracle Od(pkz, CTz): B first recovers tuple (pkz, xz, cz) from Llist. If cz = 1 (it
means that skz = xz), algorithm B returns the result of Dec(xz, CTz) to A. Otherwise, B
proceeds to execute the following steps:

1. If CTz = (pkz, t, C0, C1, C2, C3) is an original ciphertext, compute h = H(pkz , C0, C2)
and then check the validity of the ciphertext as in Eq. (3). If CTz = (pki, t, C0, C

′
1, C2, C3)

is a transformed ciphertext, compute h = H(pki, C0, C2) and then check the validity of
the ciphertext as in Eq. (1).

2. If the verification fails, output “⊥” indicating an invalid ciphertext. Otherwise, we have






C0 = gr0 =
(

ga
2)r·γ0 , C3 = (uh1u

t
2u3)

r =
(

gα1h+α2t+α3
(

ga
2)β1h+β2t+β3

)r
, If COIN = 0;

C0 = gr0 =
(

ga
)r·γ0 , C3 = (uh1u

t
2u3)

r =
(

gα1h+α2t+α3
(

ga
)β1h+β2t+β3

)r
, If COIN = 1.

3. Check whether α1h+α2t+α3 = 0 mod p. If α1h+α2t+α3 = 0 mod p, output a random

bit and abort; Otherwise, obtain gr1 by computing gr1 =





C3

C

β1h+β2t+β3
γ0

0





γ1
α1h+α2t+α3

.

4. If CTz is an original ciphertext, compute K = e(pki, g
r
1). If CTz is a transformed cipher-

text, recover tuple (pki, xi, ci) from Llist, and check the validity of ciphertext component
C ′
1 as follows: If ci = 1 check whether C ′

1 = e(gaxixz , gr1) holds; while if ci = 0 check
whether C ′

1 = e(ga
2xixz , gr1) holds. If no, output “⊥” indicating an invalid ciphertext,

otherwise, compute K = e(pkj , g
r
1).

5. Check whether [F (K,C0)]ℓ−ℓ1 = [C2]ℓ−ℓ1 . If not, output “⊥” indicating an invalid
ciphertext; otherwise, output m = [F (K,C0)]

ℓ1 ⊕ [C2]
ℓ1 .

Challenge. When A decides that find stage is over, it outputs (m0,m1, pki∗ , pki′) with the
restrictions specified in experiment ExpIND-PRE-tCCA

PRE,A . Algorithm B responds as follows:

1. Recover tuples (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs a random bit and aborts.
Otherwise (it means that pki∗ = (ga)xi∗ , ski∗ = axi∗), B proceeds to execute the rest steps.

2. Recover tuple (pki′ , xi′ , ci′) from Llist. If ci′ 6= COIN , B outputs a random bit and aborts
since it means B guessed the wrong COIN . Otherwise, B proceeds to execute the rest steps.

3. Define C∗
0 =

(

gb
)γ0 , C ′∗

1 = e(g, gb)xi′xi∗γ1 ,K∗ = Zxi′γ1 , C∗
2 = [F (K∗, C∗

1 )]ℓ−ℓ1‖([F (K∗, C∗
1 )]

ℓ1⊕

mδ) for a random bit δ, t∗ = −α1h∗+α3
α2

and C∗
3 =

(

gb
)β1h∗+β2t∗+β3 where h∗ = H(pki′ , C

∗
0 , C

∗
2 ).

4. Return CT∗ = (pki′ , t
∗, C∗

0 , C
′∗
1 , C

∗
2 , C

∗
3 ) as the challenge ciphertext to adversary A.

Observe that if Z = e(g, g)b/a, the ciphertext CT∗ is indeed a valid challenge ciphertext
(with the same distribution of transformed ciphertext from user i′ as specified in experiment
ExpIND-PRE-tCCA

PRE,A ), since
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• if COIN = 0, letting r∗ = b
a2
, we have

C∗
0 =

(

gb
)γ0 =

(

(ga
2
)γ0

) b

a2 = gr
∗

0 ,

C ′∗
1 = e(g, gb)xi′xi∗γ1 = e (gaxi′ , gγ1)

b

a2
·axi∗ = e(pki′ , g1)

r∗ski∗ = K∗ski∗ ,

K∗ = Zxi′γ1 = e(g, g)
b
a
xi′γ1 = e (gaxi′ , gγ1)

b

a2 = e(pki′ , g1)
r∗ ,

C∗
3 = (gb)β1h∗+β2t∗+β3 =

(

(ga
2
)β1h∗+β2t∗+β3

)
b

a2 =
(

gα1h∗

g
−

α1h
∗+α3
α2

·α2gα3 · (ga
2
)β1h∗+β2t∗+β3

)r∗

=
(

(

gα1(ga
2
)β1

)h∗

·
(

gα2(ga
2
)β2

)t∗
·
(

gα3(ga
2
)β3

)

)r∗

=
(

uh
∗

1 ut
∗

2 u3
)r∗

.

• if COIN = 1, letting r∗ = b
a , we have

C∗
0 =

(

gb
)γ0 = ((ga)γ0)

b
a = gr

∗

0 ,

C ′∗
1 = e(g, gb)xi′xi∗γ1 = e (gxi′ , gγ1)

b
a
·axi∗ = e(pki′ , g1)

r∗ski∗ = K∗ski∗ ,

K∗ = Zxi′γ1 = e(g, g)
b
a
xi′γ1 = e (gxi′ , gγ1)

b
a = e(pki′ , g1)

r∗ ,

C∗
3 = (gb)β1h∗+β2t∗+β3 =

(

(ga)β1h∗+β2t∗+β3

) b
a
=

(

gα1h∗

g
−

α1h
∗+α3
α2

·α2gα3 · (ga)β1h∗+β2t∗+β3

)r∗

=
((

gα1(ga)β1

)h∗

·
(

gα2(ga)β2

)t∗

·
(

gα3(ga)β3

))r∗

=
(

uh
∗

1 ut
∗

2 u3

)r∗

.

On the other hand, if Z is distributed uniformly and independently over GT , so is K∗, and mδ

is blinded by the pseudorandom value [F (K∗, C∗
1 )].

Guess Stage. Adversary A continues to issue the rest queries. In this stage, whenever B finds
a collision of h∗ = H(pki′ , C

∗
0 , C

∗
2 ), B outputs a random bit and aborts, which is referred to as

collision abort for presentation simplicity. Otherwise, B can respond these queries for A as in the
find stage (recall that A has to follow the restrictions described in experiment ExpIND-PRE-tCCA

PRE,A ).

Output. Eventually, adversary A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs 1 to guess
Z = e(g, g)b/a; otherwise, B outputs 0 to guess that Z is a random element in GT .

This completes the description of the simulations. Let Abort denote the event that B
aborts (when Z = e(g, g)b/a) during the simulation of oracles Osk,Od (in both the find state
and the guess stage) or in Challenge stage or due to collision abort in Guess stage. We
have Pr[¬Abort] ≥ θ1+qsk(1 − 1

p)
qd(1 − θ)2(1 − AdvTCRH,A). By setting θ = 1 − 2

3+qsk
, we have

Pr[¬Abort] ≥ 4
ė2(3+qsk)2

(1− qd
p )(1−AdvTCRH,A). Similarly to the analysis in Theorem 3, we can have

ǫ′ = Adv2-wDBDHI
B ≥

|± 1
2
ǫ−ǫprf |

ė2(3+qsk)2
(1 − qd

p )(1 − AdvTCRH,A). Note that, under the assumption that the

underlying H and F are secure, if ǫ is non-negligible in k, so is ǫ′. It’s also easy to check that, by
straightforward computation, the running time of B is bounded by t′ ≤ t+O(τ(qpk + qrk + 8qd)).

⊔⊓

Though the IND-PRE-oCCA (resp., IND-PRE-tCCA) security already implies the NT (resp.,
MSS) security of our scheme. We show, in Appendix E, that the NT (resp., MSS) security can
be established merely upon some weaker assumption introduced and justified in this work, which
might be of independent interest, without additionally relying upon the hardness assumptions of
H or F .
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A Comparisons with CH07 Scheme

In Table 1, we compare our CCA-secure scheme with the Canetti-Hohenberger multi-hop bidirec-
tional PRE scheme [14] (referred to as CH07 scheme) that is CCA-secure in the standard model.
We first explain some notations used in Table 1 (page 21). Here |G| and |GT | denote the bit-length
of an element in groupsG and GT , respectively. |M| denotes the bit-length of the plaintext in CH07
scheme, and ℓ denotes the security parameter in our scheme. |svk| and |σ| denote the bit-length
of the verification key and signature of one-time signature used in CH07 scheme, respectively. We
use tp, te, tme, ts, tv to represent the computational cost of a bilinear pairing, an exponentiation, a
multi-exponentiation, one signing and one verifying a one-time signature, respectively.

B Preliminaries

Definition 8 (Target-collision resistant hash function). Let H : X → Y be a hash function. For
an algorithm B, define its advantage as

AdvTCRH,B = Pr
[

x← X,x′ ← B(x) : x′ 6= x ∧H(x′) = H(x)
]

.

We say that H is target-collision resistant if for any probabilistic polynomial-time (PPT) algorithm
B, its advantage AdvTCRH,B is negligible.

Definition 9 (Pseudorandom function (PRF) [19]). Let F : K × D → R be a polynomial-time
computable function family, where K is the set of keys of F , and D is the domain and R is the
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Schemes Our Scheme CH07 Scheme

MSS-secure? X ×

non-transitive? X ×
single-hop or multi-hop single-hop multi-hop

original ciphertext length 1|Zp|+4|G|+ℓ |svk|+3|G|+1|GT |+1|σ|
transformed ciphertext length 1|Zp|+3|G|+1|GT |+ℓ |svk|+3|G|+1|GT |+1|σ|

encryption cost 1tp + 1tme + 2te 1tp + 1tme + 2te + 1ts
re-encryption cost 3tp + 2tme 2tp + 2tme + 1te + 1tv

original decryption cost 3tp + 2tme + te 3tp + 2tme + 1te + 1tv
transformed decryption cost 2tp + 2tme + te 3tp + 2tme + 1te + 1tv
adaptive sk corruption? Yes Unknown

assumption 2-wDBDHI/1-AwDBDHI DBDH

Table 1: Comparisons between Our CCA-Secure Scheme and CH07 Scheme

range. Let Func(D,R) be the family of all functions mapping D to R. For a PPT adversary F ,
we define its advantage as

AdvPRFF,F =
∣

∣

∣
Pr

[

ExpPRF−1
F,F = 1

]

− Pr
[

ExpPRF−0
F,F = 1

]∣

∣

∣
,

where experiments ExpPRF−1
F,F and ExpPRF−0

F,F are defined as below:

Experiment ExpPRF−1
F,F

K
$
← K

b
$
← FF (K,·)

Return b

Experiment ExpPRF−0
F,F

g
$
← Func(D,R)

b
$
← Fg(·)

Return b

We say that F is a pseudorandom function family, if for any PPT adversary F , its advantage
AdvPRFF,F is negligible.

C Results on General Diffie-Hellman Problem and the Hardness

of q-AwDBDHI Assumption

In this section, we review Boneh et al.’s results [9] on the general Diffie-Hellman problem in the
generic bilinear group model, and analyze the relative hardness of the q-AwDBDHI assumption in
the generic bilinear group model.

C.1 An Equivalent Definition of q-AwDBDHI Problem

For an easy analysis of the relative hardness of the q-AwDBDHI problem in the generic bilinear
group model, we here first describe an equivalent variant of q-AwDBDHI problem.

Proposition 2. The q-AwDBDHI problem in groups (G,GT ) is equivalent to given (g, ga
2
, ga

3
, · · · ,

ga
q+2, ga

2b, Z) ∈ G
q+3 ×GT with unknown a, b

$
← Z

∗
p, to decide whether Z = e(g, g)a

3b holds.

Proof. Given input (g, ga
2
, ga

3
, · · · , ga

q+2, ga
2b, Z), we can construct a q-AwDBDHI instance by

setting (y = ga
2
, y1/A

2
= g, yA = ga

3
, · · · , yA

q
= ga

q+2
, yB = ga

2b), which implicitly defines A = a
and B = b. Then, we have e(y, y)B/A = e(ga

2
, ga

2
)b/a = e(g, g)a

3b. The converse implication is
easily established and demonstrates the equivalence between both problems. ⊔⊓

C.2 General Diffie-Hellman Problem

Before giving the definition of the general Diffie-Hellman problem, we review some notations used
in [9]. Let p be an integer and let s, n be positive integers. Let P,Q ∈ Fp[X1, · · · ,Xn]

s be two s-
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tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, · · · ,Xn]. We write P = (p1, p2, · · · , ps)
and Q = (q1, q2, · · · , qs). It is required that both p1 and q1 are constant polynomial 1. For a set
Ω, a function h : Fp → Ω, and a vector (x1, · · · , xn) ∈ F

n
p , we write

h(P (x1, · · · , xn)) =
(

h (p1(x1, · · · , xn)) , · · · , h (ps(x1, · · · , xn))
)

∈ Ωs,

h(Q(x1, · · · , xn)) =
(

h (q1(x1, · · · , xn)) , · · · , h (qs(x1, · · · , xn))
)

∈ Ωs.

For a polynomial f ∈ Fp[X1, · · · ,Xn], we let df denote the total degree of f . For a set
P ⊆ Fp[X1, · · · ,Xn]

s, we let dP = max{df |f ∈ P}.
Let G0,G1 be groups of order p and let e : G0 × G0 → G1 be a non-degenerate bilinear map.

Let g be a generator of G0 and set g1 = e(g, g) ∈ G1.
Now the (P,Q, f)-Diffie-Hellman problem in G is depicted as below: given the vector

H(x1, · · · , xn) =
(

gP (x1,··· ,xn), g
Q(x1,··· ,xn)
1

)

∈ G
s
0 ×G

s
1,

compute g
f(x1,··· ,xn)
1 ∈ G1.

Example C.1 Many assumptions, including BDH assumption and the computational version of
q-AwDBDHI assumption, fall in the (P,Q, f)-Diffie-Hellman assumptions.

• BDH assumption: Set P = (1, x, y, z), Q = (1), f = xyz. Here s = 4, n = 3, dP = 1, dQ = 0
and df = 3.

• Computational version of q-AwBDHI assumption: Set P = (1, x2, x3, · · · , xq+2, x2y), Q =
(1), f = x3y. Here s = q + 3, n = 2, dP = q + 2, dQ = 0 and df = 4.

To obtain the most general result, Boneh et al. [9] considered the decisional version of (P,Q, f)-
Diffie-Hellman problem. It is said that an algorithm B that outputs b ∈ {0, 1} has advantage ǫ in
solving the decisional (P,Q, f)-Diffie-Hellman problem if

Pr
[

B
(

H(x1, · · · , xn), g
f(x1 ,··· ,xn)
1

)

= 0
]

− Pr
[

B (H(x1, · · · , xn), T ) = 0
]

> ǫ,

where the probability is over the random choice of generator g ∈ G0, the random choice of
x1, · · · , xn in Fp, the random choice of T ∈ G1, and the random bits consumed by B.

C.3 Complexity Lower Bound in Generic Bilinear Groups

We first review what is a generic bilinear group. Consider two random encodings ξ0, ξ1 of the
additive group Z

+
p , i.e. injective maps ξ0, ξ1 : Z+

p → {0, 1}
m. For i = 0, 1, denote Gi = {ξi(x)|x ∈

Z
+
p }. We are given oracles to compute the induced group action on G0,G1, and an oracle to

compute a non-degenerate bilinear map e : G0 × G0 → G1. Group G0 is called a generic bilinear
group.

Before giving the complexity lower bound for the decisional (P,Q, f)-Diffie-Hellman problem
in generic bilinear groups, we review the following useful definitions.

Let P,Q ∈ Fp[X1, · · · ,Xn]
s be two s-tuples of n-variate polynomials over Fp. Write P =

(p1, · · · , ps) and Q = (q1, · · · , qs) where p1 = q1 = 1. We say that a polynomial f ∈ Fp[X1, · · · ,Xn]
is dependent on the sets (P,Q) if there exists s2 + s constants {ai,j}

s
i,j=1, {bk}

s
k=1 such that f =

∑s
i,j=1 ai,jpipj +

∑s
k=1 bkqk. We say that f is independent of (P,Q) if f is not dependent on

(P,Q). It can be verified that, as to the assumptions listed in Example A.1, polynomial f is indeed
independent of (P,Q).

Boneh et al. gave the following theorem, which gives a lower bound on the advantage of a
generic algorithm in solving the decisional (P,Q, f)-Diffie-Hellman problem.

Theorem 5. Let P,Q ∈ Fp[X1, · · · ,Xn]
s be two s-tuples of n-variate polynomials over Fp and let

f ∈ Fp[X1, · · · ,Xn]. Let d = max(2dP , dQ, df ). Let ξ0, ξ1 and G0,G1 be defined as above. If f
is independent of (P,Q), then for any A that makes a total of at most qo queries to the oracles
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computing the group operation in G0,G1 and the bilinear pairing e : G0 ×G0 → G1, we have

∣

∣

∣Pr

[

x1, · · · , xn, y
$
← Fp; b

$
← {0, 1}; tb ← f(x1, · · · , xn); t1−b ← y :

A
(

p, ξ0(P (x1, · · · , xn)), ξ1(Q(x1, · · · , xn)), ξ1(t0), ξ1(t1)
)

= b

]

−
1

2

∣

∣

∣ ≤
d · (qo + 2s+ 2)2

2p
.

Table 2 gives the complexity lower bound for the decisional version of the assumptions listed
in Example A.1 (i.e., DBDH and q-AwDBDHI).

Assumptions DBDH q-AwDBDHI

Complexity lower bound
3(qo + 10)2

2p
2(q+2)(qo+2q+8)2

2p

Table 2: Complexity lower-bound of DBDH and q-AwDBDHI in the generic bilinear group model

As to the 1-AwDBDHI and 2-AwDBDHI assumptions, on which our CCA-secure PRE scheme

is based, its complexity lower bound in the generic bilinear group is 6(qo+10)2

2p and 6(qo+12)2

2p respec-
tively. Hence, a generic attacker’s advantage in 1-AwDBDHI (resp. 2-AwDBDHI) is about twice
(resp. thrice) of that in DBDH.

D More on the MSS-Security and NT-Security for Bidirectional

PRE

D.1 Implication of the MSS Security

We show that, for single-hop bidirectional PRE, MSS-security as defined in Definition 7 is implied
by the IND-PRE-tCCA security.

Proposition 3. For a single-hop bidirectional PRE E, the master secret security is implied by the
IND-PRE-tCCA security. That is, if there exists an adversary A who can break the MSS security
of E, then there also exists an adversary B who can also break the IND-PRE-tCCA security of E.

Proof. We show how to construct an adversary B to break E ’s IND-PRE-tCCA security by inter-
acting with A. B interacts with A as follows:

Initialize. B obtains the public parameter param from its challenger in experimentExpIND-PRE-tCCA
PRE,A .

Then B forwards param to A.

Query Stage (corresponding to the find stage in ExpIND-PRE-tCCA
PRE,A ). A issues a series of queries

Opk,Osk,Ork. B forwards these queries to its own challenger in experiment ExpIND-PRE-tCCA
PRE,A , and

then returns the corresponding results to A.

Output. A returns a private key ski∗ , whose public key pki∗ is generated by oracle Opk, to B. B
outputs (pki∗ , pki′ ,m0,m1) to its challenger, where pki′ is a public key generated by oracle Opk,
and m0,m1 are two equal-length messages chosen randomly by B. Then B is given a challenge
transformed ciphertext CT∗ = ReEnc(rki′↔i∗ ,Enc(pki′ ,mδ)). Using ski∗ , B can decrypt CT∗, and
then recover δ. Therefore, B can break the IND-PRE-tCCA security of E . ⊔⊓

Note that the MSS security is not implied by the IND-PRE-oCCA security, as particularly no
restriction is posed on the oracle access to Ork by A (in particular, A can get any re-encryption
key including those between corrupted users and uncorrupted users).

E Analysis of MSS and NT Security

We first introduce the complexity assumption to be used to prove the MSS security of the single-hop
bidirectional PRE scheme proposed in Section 5.
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Definition 10. The q-strong discrete logarithm (q-SDL) problem in group G is, given (g, ga, ga
2
, · · · ,

ga
q
) ∈ G

q+1, where a
$
← Z

∗
p, to output a. For an adversary B, we define its advantage in solving

the q-SDL problem in group G as

Advq-SDL
B , Pr[B(g, ga, ga

2
, · · · , ga

q

) = a].

We say that the (t, ǫ)-q-SDL assumption holds in G if no t-time adversary B has advantage at least
ǫ in solving the q-SDL problem in G.

The q-SDL assumption is quite mild, which is particularly weaker than the (widely used) q-
strong Diffie-Hellman assumption [8] and also the q-wDBDHI assumption reviewed above. Note
also that the 1-SDL assumption is just the traditional DL assumption. In this work, we only
employ the traditional DL assumption and the 2-SDL assumption.

Recall that the IND-PRE-tCCA security of our scheme proposed in Section 5 is based on the
2-wDBDHI assumption and assumes target-collision resistant hash functions and pseudorandom
functions. Next, we show that its MSS security actually can be established merely upon the weaker
2-SDL assumption and without additionally assuming collision-resistant hash functions or PRFs.

Theorem 6. Our PRE scheme proposed in Section 5 is MSS secure, assuming the 2-SDL as-
sumption (i.e., the q-SDL assumption for q = 2) holds in group G. Specifically, suppose there
exists an adversary A who can break the (t, qpk, qsk, qrk, ǫ)-MSS security of our scheme, then there
exists an algorithm B which can break the (t′, ǫ′)-2-SDL assumption in G with ǫ′ ≥ ǫ

ė(1+qsk)
and

t′ ≤ t+O(τ(qpk + qrk)).

Proof. Given a 2-SDL instance (g, ga, ga
2
) ∈ G

3 with unknown a
$
← Z

∗
p, B’s goal is to output the

value a. B works by interacting with adversary A in experiment ExpMSS
PRE,A as follows:

Initialize. B provides A with public parameter including g0 = gγ0 , g1 = gγ1 , u1 = gβ1 , u2 = gβ2

and u3 = gβ3 for random γ0, γ1, β1, β2, β3
$
← Z

∗
p.

Query Stage. Adversary A issues a series of queries as in experiment ExpMSS
PRE,A. B maintains a

list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$
← Z

∗
p. Next, using the Coron’s technique [15], it flips

a biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise, where θ is a fixed
probability to be determined later. If ci = 1, it sets pki = gxi (meaning that ski = xi); else
pki = (ga)xi (meaning that ski = axi). Next, it adds the tuple (pki, xi, ci) to Llist and returns
pki to A.

• Secret key oracle Osk(pki): B first recovers (pki, xi, ci) from Llist. If ci = 1, B returns ski = xi
to A; otherwise, it outputs a random element in Z

∗
p and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: B returns g
xixj

1 = g
skiskj
1 to A.

– ci = cj = 0: B returns rki↔j = (ga
2
)γ1xixj = (gγ1)a

2xixj = g
axiaxj

1 = g
skiskj
1 to A.

– ci 6= cj : B returns rki↔j = (ga)γ1xixj = (gγ1)axixj = g
skiskj
1 to A.

Output stage. Finally, A outputs a secret key ski∗ with respect to the public key pki∗ which has
not been queried to oracle Osk. B first recovers (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs a
random element in Z

∗
p and aborts. Otherwise (it means that ski∗ = axi∗), B outputs a = ski∗/xi∗

as the solution to the 2-SDL instance.
Analysis. The rest analysis is identical to that of Theorem 2. ⊔⊓

Theorem 7. Our scheme is NT secure, assuming the hash function H is target collision resistant,
F is a PRF family and the 2-AwDBDHI assumption holds in groups (G,GT ).
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Proof. Suppose there exists an adversary A who can break the (t, qpk, qsk, qrk, qre, qd, ǫ)-NT security
of our scheme, then we show how to construct another algorithm B that can break the 2-AwDBDHI

assumption in (G,GT ). Given a 2-AwDBDHI instance (g, g
1
a2 , ga, ga

2
, gb, Z) ∈ G

5 × GT with

unknown a, b
$
← Z

∗
p, B’s goal is to decide whether Z = e(g, g)b/a. B works by interacting with

adversary A in experiment ExpNT
PRE,A as follows:

Initialize. B providesA with public parameter including g0 = gγ0 , g1 =
(

g
1
a2
)γ1 , u1 =

(

g
1
a2
)α1gβ1 ,

u2 =
(

g
1
a2
)α2gβ2 and u3 =

(

g
1
a2
)α3gβ3 for random γ0, γ1, α1, α2, α3, β1, β2, β3

$
← Z

∗
p.

Find Stage. Adversary A issues a series of queries as in experiment ExpNT
PRE,A. B maintains a

list Llist, and answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$
← Z

∗
p. Using the Coron’s technique [15], it flips a biased

variable ci ∈ {0, 1,
′ −′} such that Pr[ci = 0] = Pr[ci =′ −′] = θ and Pr[ci = 1] = 1 − 2θ,

where θ is a fixed probability to be determined later. If ci = 1, it sets pki = gxi (meaning
that ski = xi); if ci = 0, it sets pki = (ga)xi (meaning that ski = axi); if ci =

′ −′, it sets
pki = (ga

2
)xi (meaning that ski = a2xi). Next, it adds (pki, xi, ci) to Llist and returns pki to

A.

• Secret key oracle Osk(pki): B first recovers (pki, xi, ci) from Llist. If ci = 1, B returns ski = xi
to A; otherwise, it outputs a random bit and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj , xj , cj)
from Llist, and responds according to the following three cases:

– ci = cj = 1: Return rki↔j = g
xixj

1 = g
skiskj
1 to A.

– ci = cj = 0: Return rki↔j = gγ1xixj =
(

(

g
1
a2
)γ1

)axiaxj

= g
skiskj
1 to A.

– ci = cj =
′ −′: Return rki↔j = (ga

2
)γ1xixj =

(

(

g
1
a2
)γ1

)a2xia
2xj

= g
skiskj
1 to A.

– (ci =
′ −′ ∧ cj = 1) or (ci = 1 ∧ cj =′ −′): Return rki↔j = gγ1xixj =

(

(

g
1
a2
)γ1

)a2xixj

=

g
skiskj
1 to A.

– (ci =
′ −′∧cj = 0) or (ci = 0∧cj =

′ −′): Return rki↔j = (ga)γ1xixj =
(

(

g
1
a2
)γ1

)a2xiaxj

=

g
skiskj
1 to A.

– (ci = 1 ∧ cj = 0) or (ci = 0 ∧ cj = 1): Output a random bit and aborts.

• Re-encryption oracle Ore(pki, pkj , CTi): B first parses CTi as (pki, t, C0, C1, C2, C3), computes
h = H(pki, C0, C2), and then checks the validity of the ciphertext as in Eq. (3). If the
verification fails, it returns “⊥” to A (indicating an invalid ciphertext). Otherwise, B recovers
tuples (pki, xi, ci) and (pkj , xj, cj) from Llist, and works according to the following two cases:

– ci 6= cj : Without loss of generality, suppose ski = axi and skj = xj. B first checks
whether α1h + α2t + α3 = 0 or not, where h = H(pki, C0, C2). If α1h + α2t + α3 = 0
then B outputs a random bit and aborts. Otherwise, from C0 = gr0 = gr·γ0 and

C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
, B can compute

gr1 =
(

g
γ1
a2
)r

=







C3

C
β1h+β2t+β3

γ0
0







γ1
α1h+α2t+α3

. (6)

Then B computes C ′
1 = e (ga, gr1)

xixj , and returns CTj = (pki, t, C0, C
′
1, C2, C3) to A.

Observe that CTj is indeed a valid transformed ciphertext as required, since ci 6=
cj means skiskj = axixj , and hence we have C ′

1 = e (ga, gr1)
xixj = e

(

gr, g
axixj

1

)

=

e(gr , g
skiskj
1 ) = e(C1, rki↔j). Observe also that, in Eq. (6), the equality α1h+α2t+α3 =

0 mod p information-theoretically holds with probability 1/p.
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– Otherwise: B first generates the re-encryption key rki↔j as in the response for the
re-encryption key oracle Ork, and returns CTj ← ReEnc(rki↔j, CTi) to A.

• Decryption oracle Od(pkz, CTz): B first recovers tuple (pkz, xz, cz) from Llist. If cz = 1 (it
means that skz = xz), algorithm B returns the result of Dec(xz, CTz) to A. Otherwise, B
proceeds according to the following two cases:

– CTz = (pkz, t, C0, C1, C2, C3) is an original ciphertext: Compute h = H(pkz , C0, C2)
and then check the validity of the ciphertext as in Eq. (3). If the verification fails,
output “⊥” indicating an invalid ciphertext. Then, check whether α1h + α2t + α3 = 0
mod p. If α1h+α2t+α3 = 0 mod p, output a random bit and abort; Otherwise, from

C0 = gr0 = gr·γ0 and C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
, obtain gr1 as in

Eq. (6). Then, compute K = e(pkz, g
r
1) and output m = [F (K,C0)]

ℓ1 ⊕ [C2]
ℓ1 .

– CTz = (pki, t, C0, C
′
1, C2, C3) is a transformed ciphertext: Compute h = H(pki, C0, C2)

and then check the validity of the ciphertext as in Eq. (1). If the verification fails, output
“⊥” indicating an invalid ciphertext. Otherwise, check whether α1h + α2t + α3 = 0
mod p. If α1h + α2t + α3 = 0 mod p, output a random bit and abort; Otherwise,
continue to execute the following steps:

1. From C0 = gr0 = gr·γ0 and C3 = (uh1u
t
2u3)

r =
(

(

g
1
a2
)α1h+α2t+α3gβ1h+β2t+β3

)r
,

obtain gr1 as in Eq. (6).
2. Recover tuple (pki, xi, ci) from Llist. Verify the validity of C ′

1 according to four
cases: if ci = 1 check whether C ′

1 = e(pkxi
z , gr1) holds; if ci = cz = 0 check whether

C ′
1 = e(gxixzγ1 , C

1
γ0
0 ) holds; if (ci = 0 ∧ cz =′ −′) or (ci =′ −′ ∧ cz = 0) check

whether C ′
1 = e((ga)xixzγ1 , C

1
γ0
0 ) holds; if (ci = cz =′ −′) check whether C ′

1 =

e((ga
2
)xixzγ1 , C

1
γ0
0 ) holds. If the above verifications fail, output “⊥” indicating an

invalid ciphertext.
3. Compute K = e(pki, g

r
1) and check whether [F (K,C0)]ℓ−ℓ1 = [C2]ℓ−ℓ1 . If not,

output “⊥”; otherwise, output m = [F (K,C0)]
ℓ1 ⊕ [C2]

ℓ1 .

Note that, similar to the analysis in oracle Ore, α1h + α2t + α3 = 0 mod p holds with
probability 1

p .

Challenge. When A decides that find stage is over, it outputs a public key pki∗ and two equal-
length messages m0,m1 ∈ {0, 1}

ℓ1 with the restrictions specified in experiment ExpIND-PRE-oCCA
PRE,A .

Algorithm B responds as follows:

1. Recover tuple (pki∗ , xi∗ , ci∗) from Llist. If ci∗ 6= 0, B outputs a random bit in {0, 1} and
aborts. Otherwise, it means that pki∗ = (ga)xi∗ , and B proceeds to execute the rest steps.

2. Define C∗
0 =

(

gb
)γ0 , C∗

1 = gb,K∗ = Zxi∗γ1 , C∗
2 = [F (K∗, C∗

1 )]ℓ−ℓ1‖([F (K∗, C∗
1 )]

ℓ1 ⊕mδ) for a

random bit δ, t∗ = −α1h∗+α3
α2

and C∗
3 =

(

gb
)β1h∗+β2t∗+β3 where h∗ = H(pki∗ , C

∗
0 , C

∗
2 ).

3. Return CT∗ = (pki∗ , t
∗, C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 ) as the challenge ciphertext to adversary A.

Observe that if Z = e(g, g)b/a, it can be verified that the ciphertext CT∗ is indeed a valid
challenge ciphertext. On the other hand, if Z is distributed uniformly and independently over GT ,
so is K∗, and mδ is blinded by the pseudorandom value [F (K∗, C∗

1 )].

Guess Stage. Adversary A continues to issue the rest queries. In this stage, whenever B finds
a collision of h∗ = H(pki∗ , C

∗
0 , C

∗
2 ), B outputs a random bit and aborts, which is referred to as

collision abort for presentation simplicity. Otherwise, B can respond these queries for A as in
the find stage (recall that A has to follow the restrictions described in experiment ExpNT

PRE,A).
Output. Eventually, adversary A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs 1 to guess
Z = e(g, g)b/a; otherwise, B outputs 0 to guess that Z is a random element in GT .

This completes the description of the simulation. Let Abort denote the event that B aborts
(when Z = e(g, g)b/a) during the simulation of oracles Osk,Ork,Ore,Od or in Challenge stage or
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due to collision abort in Guess stage. We have Pr[¬Abort] ≥ (1− 2θ)qsk(1− 2θ(1− 2θ))qrkθ(1−
1
p)

qre+qd(1−AdvTCRH,A) ≥ (1 − 2θ)qsk+qrkθ(1− 1
p)

qre+qd(1−AdvTCRH,A). By setting θ = 1
2(1+qsk+qrk)

, we

have Pr[¬Abort] ≥ 1
2ė(1+qsk+qrk)

(1− qre+qd
p )(1−AdvTCRH,A).

Observe that, if event Abort does not occur during the simulation and Z = e(g, g)b/a, then the

simulation of B is perfect from the view of A. In this case, Pr[B(g, g
1
a2 , ga, ga

2
, gb, Z) = 1|Z =

e(g, g)b/a] = 1
2 Pr[Abort] + Pr[δ′ = δ|¬Abort] Pr[¬Abort] = 1

2 + Pr[¬Abort](Pr[δ′ = δ|¬Abort] − 1
2).

On the other hand, if event Abort does not occur during the simulation and Z is distributed
uniformly and independently over GT , the only advantage that A can get is to break the
pseudorandomness of the PRF F . In the later case, by standard probabilistic trick [6, 20]
we get Pr[δ′ = δ|B does not abort when Z 6= e(g, g)b/a] = 1

2 ±
1
2Adv

PRF
F,F . Defining ǫprf =

±1
2Adv

PRF
F,F Pr[B does not abort when Z 6= e(g, g)b/a] (that is a negligible quantity assuming the

underlying PRF is secure), we have Pr[B(g, g
1
a2 , ga, ga

2
, gb, Z) = 1|Z 6= e(g, g)b/a] = 1

2 +ǫprf . Thus,

ǫ′ = Adv2-AwDBDHI
B = |Pr[B(g, g

1
a2 , ga, ga

2
, gb, Z) = 1|Z = e(g, g)b/a)]−Pr[B(g, g

1
a2 , ga, ga

2
, gb, Z) =

1|Z 6= e(g, g)b/a]| = |Pr[¬Abort](Pr[δ′ = δ|¬Abort]− 1
2)−ǫprf |. As ǫ = AdvIND-PRE-oCCA

PRE,A = |2Pr[δ′ =

δ] − 1| and Pr[¬Abort] ≥ 1
2ė(1+qsk+qrk)

(1 − qre+qd
p )(1 − AdvTCRH,A), we have ǫ′ = Adv2-AwDBDHI

B ≥

|± 1
2
ǫ−ǫprf |

2ė(1+qsk+qrk)
(1− qre+qd

p )(1−AdvTCRH,A). Note that, under the assumption that the underlying H and

F are secure, if ǫ is non-negligible in k, so is ǫ′. It’s also easy to check that, by straightforward
computation, the running time of B is bounded by t′ ≤ t+O(τ(qpk + qrk + 8qre + 8qd)). ⊔⊓
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