
The preimage security of double-block-length compression functions

Jooyoung Lee1, Martijn Stam2, and John Steinberger3∗

1 Faculty of Mathematics and Statistics, Sejong University, Seoul, Korea, jlee05@sejong.ac.kr
2 Dept. of Computer Science, University of Bristol, United Kingdom, m.stam@alumnus.tue.nl

3 Institute of Theoretical Computer Science, Tsinghua University, Beijing, China, jpsteinb@gmail.com

Abstract. We give improved bounds on the preimage security of the three “classical” double-block-length, double-
call, blockcipher-based compression functions, these being Abreast-DM, Tandem-DM and Hirose’s scheme. For
Hirose’s scheme, we show that an adversary must make at least 22n−5 blockcipher queries to achieve chance 0.5
of inverting a randomly chosen point in the range. For Abreast-DM and Tandem-DM we show that at least 22n−10

queries are necessary. These bounds improve upon the previous best bounds of Ω(2n) queries, and are optimal up
to a constant factor since the compression functions in question have range of size 22n.

1 Introduction

Almost as soon as the idea of turning a blockcipher into a hash function appeared [13], it became evident that, for
typical blockciphers and security expectations, the hash function needs to output a digest that is considerably larger
than the blockcipher’s block size. Consequently, many proposals of double-block-length, or more generally multi-
block-length, hash functions have appeared in the literature. In this article we focus on a subclass of double-block-
length constructions, where a 3n-bit to 2n-bit compression function makes two calls to a blockcipher of 2n-bit key
and n-bit block.

Recently, for all three well-known members of this class—those being Tandem-DM [8], Abreast-DM [8] and
Hirose’s construction [6]—collision resistance has been successfully resolved [4,6,9,10]: for Abreast-DM and Hirose’s
scheme, Ω(2n) queries to the underlying blockcipher are needed to obtain a non-vanishing advantage in finding a
collision. For Tandem-DM, Ω(2n−logn) queries are needed, which is almost optimal ignoring log factors.

On the other hand, the corresponding situation for preimage resistance is far less satisfactory. Up to now, it has
been an open problem to prove preimage resistance for values of q higher than 2n for either Abreast-DM, Tandem-DM
or Hirose. This is not to say that no dedicated preimage security proofs have appeared in the literature. For instance,
Lee, Stam and Steinberger [10] provide a preimage resistance bound for Tandem-DM that is a lot closer to 2n than
a straightforward implication [14] of their collision bound would give. However, a “natural barrier” occurs once 2n

queries are reached: namely, a blockcipher “loses randomness” after being queried Ω(2n) times on the same key
(for example, when 2n − 1 queries have been made to a blockcipher under a given key, the answer to the last query
under that key is deterministic). Going beyond the 2n barrier seemed to require either a very technical probabilistic
analysis, or some brand new idea. In this paper, we show a new idea which delivers tight bounds in a quite pain-free
and untechnical fashion.

OUR CONTRIBUTION. In this paper, we prove that various compression functions that turn a blockcipher of 2n-bit key
into a double-block-length hash function, have preimage resistance close to the optimal 22n in the ideal cipher model.
Our analysis covers many practically relevant proposals, such as Abreast-DM, Hirose-DM and Tandem-DM. Bounds
for the case n = 128 are depicted in Figure 1 (with α = q1/2/2 for Abreast-DM and Tandem-DM). At the heart
of our result are so-called “super queries”, a new technique to restrict the advantage of an adaptive preimage-finding
adversary.

To build some intuition for our result, let us start with considering the much easier problem of constructing a 3n-bit
to 2n-bit compression function H based on two 3n-bit to n-bit smaller underlying primitives f and f ′. An obvious
approach is simply to concatenate the outputs of f and f ′, that is let H(B) = f(B)∥f ′(B) for B ∈ {0, 1}3n. If f and

∗ Supported by the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174, by the National
Basic Research Program of China Grant 2007CB807900, 2007CB807901 and by NSF grand CNS 0904380.

Hirose’s scheme
Abreast-DM / Tandem-DM

0

0.2

0.4

0.6

0.8

1

P
re

im
ag

e_
re

si
st

an
ce

220 230 240 250 260
log_q

Fig. 1: Preimage bounds for the classical constructions.

f ′ are modeled as independently sampled, ideally random functions, then it is not hard to see that H behaves ideally
as well. In particular, it is preimage resistant up to 22n queries (to f and f ′).

When switching to a blockcipher-based scenario, it is natural to replace f and f ′ in the construction above by
E, resp. E′, both run in Davies–Meyer mode. In other words, for blockciphers E and E′ both with 2n-bit keys and
operating on n-bit blocks, define H(A∥B) = (EB(A) ⊕ A)∥(E′

B(A) ⊕ A) where A ∈ {0, 1}n and B ∈ {0, 1}2n.
While there is every reason to believe this construction maintains preimage resistance up to 22n queries, the standard
proof technique against adaptive adversaries falls short significantly. Indeed, the usual argument goes that the ith query
an adversary makes to E using key K will return an answer uniform from a set of size at least 2n− (i−1) and thus the
probability of hitting a prespecified value is at most 1/(2n− (i− 1)) < 1/(2n− q). Unfortunately, once q approaches
2n, the denominator tends to zero (rendering the bound useless). As a result, one cannot hope to prove anything beyond
2n queries using this method. This restriction holds even for a “typical” bound of type q/(2n − q)2.

When considering non-adaptive adversaries only, the situation is far less grim. Such adversaries need to commit to
all queries in advance, which allows bounding the probability of each individual query hitting a prespecified value by
2−n. While obviously there are dependencies (in the answers), these can safely be ignored when a union bound is later
used to combine the various individual queries. Since the q offset has disappeared from the denominator, the typical
bound q/(2n)2 would give the desired security.

Our solution, then, is to force an adaptive adversary to behave non-adaptively. As this might sound a bit cryptic,
let us be more precise. Consider an adversary adaptively making queries to the blockcipher, using the same key
throughout. As soon as the number of queries to this key passes a certain threshold, we give the remaining queries to
the blockcipher using this very key for free. We will refer to this event as a super query. Since these free queries are
all asked in one go, they can be dealt with non-adaptively, preempting the problems that occur (in standard proofs)
due to adaptive queries. Nonetheless, for every super query we need to hand out a very large number of free queries,
which can aid the adversary. Thus we need to limit the amount of super queries an adversary can make by setting the
threshold that triggers a super query sufficiently high. In fact, we set the threshold at exactly half4 the total number of
queries that can be made under a given key (i.e., it is set at 2n/2 queries). This effectively doubles the adversary’s query
budget, since for every query the adversary makes it can get another one later “for free” (if it keeps on making queries
under the same key), but such a doubling of the number of queries does not lead to an unacceptable deterioration of
the security bound.

With this new technique in hand, we revisit the proofs of preimage resistance of the three main double-block-
length, double-call constructions (Tandem-DM, Abreast-DM and Hirose). An additional technical problem is that

4 The “optimized” threshold turns out to be very near one half, but a bit less; we set the threshold at a half for simplicity in our
proofs.

2

these compression functions each make two calls to the same blockcipher, as opposed to using two calls to independent
blockciphers (we discuss the latter, somewhat easier scenario in Appendix A). Ideally, to get a good bound, one would
like to query the two calls necessary for a single compression function evaluation in conjunction (this would allow
using the randomness of both calls simultaneously, potentially leading to a denominator 22n as desired for preimage
resistance). For instance, in the context of collision resistance for Hirose-DM and Abreast-DM corresponding queries
are grouped in cycles (of length 2 and 6, respectively) and all queries in a cycle are made simultaneously: if the
adversary makes one query in a cycle, the remaining queries are handed out for free. Care has to be taken that these
free queries and the free queries due to super queries do not reinforce each other to untenable levels.

For Hirose’s scheme, there are no problems as the free queries introduced by a super query necessarily consist
of full cycles only. The corresponding (upper) bound on the preimage finding advantage is 16q/22n which is as
desired, up to a small factor. For Abreast-DM, however, the cyclic nature can no longer be exploited: any super query
introduces many partial cycles, yet freely completing these might well trigger a new super query, etc.! Luckily, the
original preimage proof for Tandem-DM [10] (which does not involve cycles) provides a way out of this conundrum.
The downside however is that our preimage bound for Abreast-DM and Tandem-DM is slightly less tight than that
for Hirose’s scheme. Ignoring negligible terms, it grows roughly as 16

√
q/2n. Although this is faster than one might

wish for (as can be seen in Figure 1), it does imply that Ω(22n) queries are required to find a preimage with constant
probability. To compare numerical bounds for n = 128, Hirose’s scheme requires about 2251 blockcipher queries to
achieve chance 0.5 of inverting a randomly chosen point in the range, while Abreast-DM and Tandem-DM require
2246 queries.

RELATED WORK. The problem of preimage security for double-block-length compression functions beyond 2n has
previously been tackled by Krause, Armknecht and Fleischmann [7]. They discuss what can be regarded as variations
of calling Davies–Meyer twice in parallel (using distinct blockciphers). For one such compression function, they prove
a Ω(22n) preimage resistance bound.

Their original analysis predated our work, but was technically flawed, and we obtained our results after discovering
these flaws. We emphasize, however, that the techniques we developed are entirely disjoint from those in their original
preprint [7]. After we pointed out the technical problems to Krause et al. they (independently) found a second analysis
using rather similar ideas to ours, which is contained in the new version of their preprint.

The analysis of Krause et al. contains a number of additional elements besides the super query idea, such as
conditioning on the number of preimages present for a given key. In Appendix A we show that, to analyze the
preimage security for a class encompassing that targeted by Krause et al., the use of super queries alone suffices. The
proof thus obtained is significantly simpler, and the bound is slightly sharper, as well.

2 The model

A blockcipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·) is a permutation of {0, 1}n for each
K ∈ {0, 1}m. We call m the key size and n the block length of the blockcipher. It is customary to write EK(X)
instead of E(K,X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1

K (·) denotes the inverse of EK(·) (as EK(·) is a
permutation). Henceforth, we will restrict to the case m = 2n and we define N = 2n.

A compression function H is blockcipher-based if, in its execution, it has access to a blockcipher. In this paper,
we only discuss double-block-length, double-call constructions, meaning that H is a function from 3n-bits to 2n-bits
making two calls to some underlying blockcipher E. (This definition will become more concrete in the next sections.)

As our preimage security notion for H , we adopt everywhere preimage resistance in the information theoretic
setting [14]. In this preimage resistance experiment, a computationally unbounded adversary A with oracle access to
a uniformly sampled blockcipher E : {0, 1}2n × {0, 1}n → {0, 1}n selects and announces a point C ∈ {0, 1}2n,
before making queries to E. We allow A to query both E and E−1. After q queries to E, the query history of A is the
set of triples Q = {(Xi,Ki, Yi)}qi=1 such that EKi(Xi) = Yi and A’s i-th query is either EKi(Xi) or E−1

Ki
(Yi) for

1 ≤ i ≤ q. We say A succeeds or finds a preimage if its query history Q contains the means of computing a preimage
of C, in the sense that there exist values B ∈ {0, 1}3n, K1,K2 ∈ {0, 1}2n and X1, X2, Y1, Y2 ∈ {0, 1}n such that
both (X1,K1, Y1) and (X2,K2, Y2) are in the query historyQ, H(B) = C and the two queries used to evaluate H(B)
are precisely EK1(X1) and EK2(X2). In this case, we also say Q contains a preimage of C. We let

Preim(Q)

3

c

A

S

R

A⊕ c ⊕S

A⊕R

ML

Fig. 2: Hirose’s compression function. All wires carry n-bit values. The top and bottom blockciphers, which are the same blockci-
pher, have 2n-bit key and n-bit input/output. The wires A,L,M are the inputs to the compression function. The bottom left-hand
wire is not an input; it carries an arbitrary nonzero constant c.

be the predicate that is true if and only ifQ contains a preimage of C, where C is an elided-but-understood parameter
of the predicate. We define

Advepre
H (q) = max

A
Pr[Preim(Q)]

where the maximum is taken over all adversaries A making at most q queries, and where the probability is taken over
the randomness of E as well as over the adversary’s coins, if any.

For Tandem-DM, it turns out that the everywhere preimage resistance notion is slightly too strong, as there is
one weak point (namely 02n) in the range, for which finding preimages is a bit easier. A simple adaptation of the
everywhere preimage resistance definition is to disallow the adversary to choose C = 02n as the target point [10]; we
denote the corresponding advantage as

Advepre ̸=0
H (q) .

(We will still use the same predicate Preim(Q) though.)
A standard assumption to make in ideal cipher proofs is that “the adversary never makes a query to which it

already knows the answer”. By this it is meant, for example, that one can assume the adversary never makes a query
EK(X), obtaining an answer Y , and then makes the query E−1

K (Y) (which will necessarily be answered by X).
In the current context, where we consider adversaries making 2n queries or more, this assumption should be more
precisely restated as “the adversary never makes a query that will result in a triple (X,K, Y) which is already present
in the query history”. (This latter assumption can be made without loss of generality using the fact that EK(·) is a
permutation.) Indeed, if an adversary has made 2n − 1 queries under a key K, the result of the last query under that
key is predetermined, and thus the adversary “already knows” the answer to this query. However, one should not forbid
the adversary from making this query, since the query may be necessary to complete a preimage.

Our security proofs also use the notion of “free” queries. Formally, these can be modeled as queries which the
adversary is “forced” to query (under certain conditions), but for which the adversary is not charged: they do not
count towards the maximum of q queries which the adversary is allowed. However, these queries become part of the
adversary’s query history, just like other queries. In particular, the adversary is not allowed, later, to remake these
queries “on its own” (due to the previously discussed assumption that the adversary never makes a query which it
already owns).

3 Preimage security results for Hirose’s scheme

Hirose [6] introduced his 3n-bit to 2n-bit compression function making two calls to a blockcipher of 2n-bit key over
10 years after Abreast-DM and Tandem-DM (see the next Sections). Hirose’s construction (Figure 2) is simpler than
either Abreast-DM or Tandem-DM and in particular uses a single keying schedule for the top and bottom blockciphers.
Moreover, Hirose himself already proved birthday-type collision resistance for his construction in the ideal cipher
model, thereby pre-dating similar collision resistance analyses for Abreast-DM and Tandem-DM. Previously, Lee and
Kwon [9] have shown that Advepre

Hir (q) ≤ 2q/(N − 2q)2, which becomes void once q > N/2. Our result below
improves upon this bound considerably.

4

Theorem 1. Let Hir : {0, 1}3n → {0, 1}2n be the blockcipher-based compression function depicted in Figure 2. Then

AdvepreHir (q) ≤ 8q/N2 + 8q/N(N − 2).

In particular, Advepre
Hir (q) is upper bounded by approximately 16q/N2.

Proof. Let U∥V ∈ {0, 1}2n be the point to invert (chosen by the adversary before it makes any queries to E). We upper
bound the probability that, in q queries, the adversary finds a point A∥L∥M ∈ {0, 1}3n such that Hir(A∥L∥M) =
U∥V .

When the adversary makes a forward query EL∥M (A) we give it for free, also, the answer to the query EL∥M (A⊕
c). Moreover when the adversary makes a backward query E−1

L∥M (R), resulting in an answer A = E−1
L∥M (R), we give

it for free the answer to the forward query EL∥M (A⊕ c). Also, we assume that the adversary never makes a query to
which it knows the answer (in the sense discussed in Section 2). Thus the elements of the adversary’s query historyQ
can be paired into adjacent pairs of the form (A,L∥M,R), (A ⊕ c, L∥M,S). We call such a pair an “adjacent query
pair”.

We now give further free queries to the adversary, in the fashion described next. After each adjacent query pair
has been completed (namely, after the adversary has received the response to both its query and its associated free
query, and after these have been placed in the query history), we check whether the key used for the latest query is
such that the (current) query history contains exactly N/2 queries with this key. If so, we give all remaining queries
under this key for free to the adversary. There will be exactly N/2 such queries, which can be paired into N/4 adjacent
query pairs. We insert these N/2 free queries into the query history pair-by-pair (to maintain, mostly for conceptual
simplicity, the adjacent pair structure of the query history). We note that, after these free queries have been inserted
into the query history, the adversary cannot make any more queries under this key, since the adversary is assumed
never to make a query to which it knows the answer.

When N/2 free queries are given to the adversary in the fashion just described, we say that a super query occurs.
We also use the term “super query” to denote the set of N/2 free queries thus returned to the adversary. Every adjacent
query pair in the query history is either part of a super query, or not; in the latter case, we call the adjacent query pair
a “normal” adjacent query pair; we also say a single query is “normal” to indicate it is not part of a super query.5

Moreover, we keep track, in the query history (e.g. by an additional bit of data attached to each query), of which
queries are normal, and of which queries belong to a super query (with every query being one or the other and not
both).

We say that an adjacent query pair (A,L∥M,R), (A ⊕ c, L∥M,S) is “winning”, or “successful”, if A ⊕ R = U
and A⊕ c⊕ S = V , or if A⊕R = V and A⊕ c⊕ S = U . Thus the adversary obtains a preimage of U∥V precisely
if it obtains a winning adjacent query pair. This can occur in one of two ways: either the winning query pair is part of
a super query, or not. We let SuperQueryWin(Q) denote the event that the adversary obtains a winning query pair that
is part of a super query, and NormalQueryWin(Q) the event that the adversary obtains a winning query pair of normal
queries. It thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any) and over the randomness of the ideal
cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary makes, say, a forward query EL∥M (A),
at most N/2− 2 queries (counting free queries) have been previously answered with the key L∥M , since otherwise a
super query for the key L∥M would have occured. Thus the value R = EL∥M (A) comes uniformly at random from a
set of size at least N/2+2 ≥ N/2, and there is chance at most 2/(N/2) = 4/N that either A⊕R = U or A⊕R = V
(this is also true if U = V). If, say, A ⊕ R = U , there is further chance at most 1/(N/2) = 2/N that the free query
EL∥M (A ⊕ c) returns A ⊕ c ⊕ V , since the answer to the free query comes uniformly at random from a set of size
at least N/2 + 1 ≤ N/2. Other cases (e.g. when A ⊕ R = V , and when the adversary makes a backward query

5 We point out the following discrepancy, which might otherwise cause confusion: a “super query” is a set of N/2 queries in the
query history; but a “normal query” is a single query in the query history.

5

E−1
L∥M (R)) are similarly analyzed, showing that the adversary’s chance of triggering the event NormalQueryWin(Q)

at any given query is at most (4/N)(2/N) = 8/N2. Since the adversary makes q queries total, we therefore have

Pr[NormalQueryWin(Q)] ≤ 8q/N2. (1)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about to occur on key L∥M , meaning that the value
of EL∥M (·) is already known on exactly N/2 points paired into N/4 query pairs. Let A,A ⊕ c be in the domain of
the super query. (We say that a point B ∈ {0, 1}n is “in the domain of the super query” if EL∥M (B) is not yet know,
and will be queried as part of the super query; note that a point A ∈ {0, 1}n is in the domain of the super query if
and only if A⊕ c is in the domain of the super query.) Then the probability that EL∥M (A) = U is either 0 if U is not
in the range of the super query (meaning there is a normal query EL∥M (B) = U already present in the query history
when the super query is made), or else is exactly 2/N , since the value of EL∥M (A) returned by the super query is
uniform at random in a set of size N/2. Thus, by a similar argument on V , the probability that EL∥M (A) ∈ {U, V }
is at most 4/N . Conditioning on the event EL∥M (A) ∈ {U, V }, the probability that EL∥M (A ⊕ c) ∈ {U, V } is
at most 1/(N/2 − 1), since EL∥M (A ⊕ c) is sampled uniformly at random from a set of size N/2 − 1, once the
value EL∥M (A) is known. Thus the probability that the super query returns values such that the adjacent query pair
(A,L∥M, ·), (A ⊕ c, L∥M, ·) is winning is at most 4/N(N/2 − 1). But A,A ⊕ c were two arbitrary paired domain
points; taking a union bound over the N/4 such pairs in the domain of the super query, we find that the probability of
the super query producing a winning pair of adjacent queries is at most

(N/4) · (4/N(N/2− 1)) = 1/(N/2− 1).

We now observe that at most q/(N/4) super queries can ever occur, since each super query requires a “setup” cost of
N/4 queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N(N/2− 1). (2)

Summing (1) and (2) completes the proof. ⊓⊔

Corollary 1. We have

AdvepreHir (2
2n−5) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

Proof. By setting q = cN2 for some 0 < c < 1, the bound from Theorem 1 simplifies to

16c+
16c2

N − 2
.

Again, setting c = 1/32 gives us the claimed result.

4 Preimage security results for Abreast-DM

Abreast-DM, pictured in Figure 3, is one of the classical schemes for turning a 2n-bit key blockcipher into a 3n-
bit to 2n-bit compression function. It was proposed by Lai and Massey in the same paper as Tandem-DM [8]. The
collision resistance of Abreast-DM was independently resolved by Fleischmann, Gorski and Lucks [4] and Lee and
Kwon [9], who both showed birthday-type collision resistance for Abreast-DM. Previously, Hirose [5] had given a
collision resistance analysis for a general class of compression functions that included Abreast-DM as a special case,
but under the assumption that the top and bottom blockciphers of the diagram be distinct. This assumption considerably
simplifies the analysis (see also the later generalization by Özen and Stam [12]).

Previously, Lee and Kwon [9] have shown that Advepre
Abr (q) ≤ 6q/(2n − 6q)2. Although our bound for Abreast-

DM (Theorem 2) is not as tight as our bound for Hirose’s scheme (Theorem 2), it is clear from Corollary 2 below that
our result significantly improves this bound.

6

A
B

B

L

A R

S B⊕S

A⊕R

Fig. 3: The Abreast-DM compression function. The wires A,B,L are the inputs to the compression function. The empty circle at
the left side of the bottom blockcipher denotes bit complementation.

Theorem 2. Let Abr : {0, 1}3n → {0, 1}2n be the blockcipher-based compression function depicted in Figure 3. Let
α > 0 be an integer. Then

AdvepreAbr (q) ≤
16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α

+
4q

αN
.

Proof. Let U∥V be the point to invert, chosen by the adversary before any queries are made to E.
Unlike in the proof for Hirose’s scheme, we do not give the adversary a free query after each query it makes.

However, we still give the adversary “super queries” for free. More precisely, whenever the adversary has made N/2
queries under a given key K∥L, and after the (N/2)-th such query has been answered and placed in the query history,
we give the remaining N/2 queries under the key K∥L for free to the adversary, in any order. In this case, we say that
a super query occurs; every query in the query history is either part of a super query, or not; in the latter case we call
the query a “normal query”. (Thus, in this theorem, normal queries are exactly the non-free queries.) Unlike in the
proof of Theorem 1, there is no notion of an adjacent query pair. However, like in the proof of Theorem 1, we alert the
reader to the fact that a “super query” consists of a set of N/2 queries, whereas a “normal query” is a single query.

We define an event Lucky(Q) on the query history; Lucky(Q) occurs if

|{(X,K∥L, Y) ∈ Q : X ⊕ Y = U}| > 2α,

or if
|{(X,K∥L, Y) ∈ Q : X ⊕ Y = V }| > 2α.

The adversary obtains a preimage of U∥V precisely if it obtains queries of the form (A,B∥L,R), (B,L∥A,S)
such that A ⊕ R = U and B ⊕ S = V , where B is bitwise complementation of B. It is easy to check that these
two queries must be distinct, otherwise one obtains the contradiction B = A = L = B. We call two such queries a
“winning pair” of queries. Note, of course, that the queries in a winning pair need not be adjacent in the query history.
We speak of the “first” and “second” query in a winning pair referring to the order in which they appear in the query
history.

Let WinNormal(Q) be the event that the adversary obtains a winning pair in which the second query is a normal
query. Let WinSuper1(Q) be the event that the adversary obtains a winning pair in which the second query is part of a
super query and the first is either normal or part of a super query, but is not part of the same super query as the second.
Finally let WinSuper2(Q) be the event that the adversary obtains a winning pair in which both queries of the pair are
part of the same super query. It is then clear that if the adversary wins, one of the events

WinNormal(Q),WinSuper1(Q) or WinSuper2(Q)

occurs. In particular, thus, one of the four events

Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q), WinSuper2(Q) ∧ ¬Lucky(Q)

must occur if the adversary wins. We upper bound the probability of each of these four events and sum the upper
bounds in order to obtain an upper bound on the adversary’s advantage.

7

We start by upper bounding Pr[Lucky(Q)]. For this we introduce two new events. Let Qn be the restriction of Q
to normal queries, and let Qs be the restriction of Q to queries that are part of super queries. Let Luckyn(Q) be the
event that either

|{(X,K∥L, Y) ∈ Qn : X ⊕ Y = U}| > α,

or
|{(X,K∥L, Y) ∈ Qn : X ⊕ Y = V }| > α.

The event Luckys(Q) is likewise defined with respect toQs. Obviously, Lucky(Q) =⇒ Luckyn(Q)∨ Luckys(Q), so
it suffices to upper bound Luckyn(Q) and Luckys(Q) and to sum these upper bounds.

Since every answer to a normal query, forward or backward, comes at random from a set of size at least N/2, and
since at most q normal queries are made, we have that

Pr[Luckyn(Q)] ≤ 2 ·
(
q

α

)(
2

N

)α

≤ 2 ·
(
2eq

αN

)α

.

To upper bound Pr[Luckys(Q)], note that there occur at most q/(N/2) = 2q/N super queries, since it costs N/2
queries to setup a super query for a given key. Since each super query contains N/2 queries, we can define random
variables Zi,j for 1 ≤ i ≤ 2q/N and 1 ≤ j ≤ N/2, where Zi,j = 1 if and only if X ⊕ Y = U for the j-th query
(X,K∥L, Y) within the i-th super query. Then we have

Z =
∑
i,j

Zi,j = |{(X,K∥L, Y) ∈ Qs : X ⊕ Y = U}|.

Since E(Zi,j) ≤ 2/N for each i and j, we have E(Z) ≤ (2q/N)(N/2)(2/N) = 2q/N . Therefore, by Markov’s
inequality, the probability that

|{(X,K∥L, Y) ∈ Qs : X ⊕ Y = U}| > α

is at most 2q/αN . Now by a union bound and a symmetric argument (for X⊕Y = V), we obtain that Pr[Luckys(Q)] ≤
4q/αN . Summing the upper bounds for Pr[Luckyn(Q)] and Pr[Luckys(Q)], we thus obtain that

Pr[Lucky(Q)] ≤ 2 ·
(
2eq

αN

)α

+
4q

αN
. (3)

We now upper bound Pr[WinNormal(Q) ∧ ¬Lucky(Q)]. For this we use a “wish list” argument similar to that
of [10]. As the adversary makes queries, we maintain two sequencesWT andWB called wish lists. These are initially
empty. For each query (X,K∥L, Y) added to the query history (whether normal or part of a super query) we update
the wish lists as follows:

1. If X ⊕ Y = U then (K,L∥X,K ⊕ V) is added toWB.
2. If X ⊕ Y = V then (L,X∥K,L⊕ U) is added toWT.

We emphasize thatWB andWT are sequences, not sets. The following properties are easy to check: (i) a query never
“adds itself” to a wish list (namely, the queries inserted into the wish lists—if any—as a result of query (X,K∥L, Y)
being added to the query history, are distinct from (X,K∥L, Y) itself); (ii) the elements ofWT are all distinct from
one another, and the elements ofWB are all distinct from one another—namely, the same triple is never added twice
to a wish list; (iii) the adversary obtains a winning pair precisely if a query is ever added to its query history that is
already a member of one of its wish lists before the updating of the wish lists for that query (by property (i), however,
we could equally well say “after the updating of the wish lists for that query”). Moreover, as long as ¬Lucky(Q) holds,
the wish lists never exceed length 2α.

Let EK∥L(X) be a query made to E during the adversary’s attack (either a normal query, or as part of a super
query). If, at the moment when the query is being made, there is an element of the form (X,K∥L, Y) in (at least)
one of the wish lists for some Y ∈ {0, 1}n, then we say this wish list element is being “wished for” when the query
EK∥L(X) is made. We similarly say the wish list element (X,K∥L, Y) is being “wished for” if the query E−1

K∥L(Y) is
made (note that in this case, the query E−1

K∥L(Y) is necessarily normal, since a super query is, by default, implemented

8

by forward queries). We note, importantly, that any wish list element can only be wished for once, since EK∥L(·) is a
permutation.

Let NormalWishGrantedT,i be the event that a normal query (X,K∥L, Y), when added to the query list, is
equal to the i-th element of WT (presuming WT has length at least i when the query is added). Likewise define
NormalWishGrantedB,i with respect to the listWB. Then by the above remarks

WinNormal(Q) ∧ ¬Lucky(Q) =⇒
2α∨
i=1

NormalWishGrantedT,i ∨
2α∨
i=1

NormalWishGrantedB,i

so by a union bound

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[NormalWishGrantedT,i] +

2α∑
i=1

Pr[NormalWishGrantedB,i].

Because each wish list element can only be wished for once and because a normal query is answered at random
uniformly from a set of size at least N/2, we have

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and therefore

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 2 · (4α/N) = 8α/N. (4)

We now upper bound Pr[WinSuper1(Q)∧¬Lucky(Q)]. We keep the same definition of the wish listsWT,WB as
above. We let SuperWishGranted1T,i be the event that a query (X,K∥L, Y) that is part of a super query is equal to the
i-th element ofWT, whereWT has length ≥ i before any of the super queries under key K∥L have been made. The
event SuperWishGranted1B,i is similarly defined. By the definition of WinSuper1(Q) we have that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[SuperWishGranted1T,i] +
2α∑
i=1

Pr[SuperWishGranted1B,i].

Assume, for a given i, that the i-th element ofWT (say) is (X,K∥L, Y), and that a super query is about to be made
for the key K∥L, and that X is in the domain of the super query. Then the probability that EK∥L(X) = Y is at most
2/N (more precisely, it is exactly 2/N unless Y is not in the super query’s range, in which case it is 0). Thus, arguing
similarly for the listWB, we obtain that

Pr[SuperWishGranted1T,i] ≤ 2/N, Pr[SuperWishGranted1B,i] ≤ 2/N.

Therefore

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (5)

We finally bound Pr[WinSuper2(Q) ∧ ¬Lucky(Q)]. In fact we upper bound Pr[WinSuper2(Q)], and we do not
use a wish list argument. Note the event WinSuper2(Q) can only occur when a super query is made on a key of the
form L∥L, and then occurs only if both L and L are in the domain of the super query and if EL∥L(L) ⊕ L = U ,
EL∥L(L)⊕ L = V . It is easy to see that probability (when the super query is made) that these latter equalities hold is
at most (2/N) · (1/(N/2− 1)). Since at most q/(N/2) super queries are made, we therefore have

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1). (6)

Finally, we obtain the theorem by summing (3), (4), (5) and (6). ⊓⊔

Corollary 2. We have

Advepre
Abr (2

2n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

9

B

B L

A R

R

S B⊕S

A⊕R

Fig. 4: The Tandem-DM compression function. The wires A,B,L are the inputs to the compression function.

Proof. By setting α = q1/2/2 (note that α is allowed to depend on q), the bound from Theorem 2 simplifies to

16q1/2

N
+

8q

N2(N − 2)
+ 2 ·

(
4eq1/2

N

)q1/2/2

.

Suppose that q = (cN)2 for some 0 < c < 1, then this bound can be rewritten as

16c+
8c2

N − 2
+ 2 · (4ec)cN/2

.

For 4ec < 1, this tends 16c, so setting c = 1/32 gives us the claimed result.

5 Preimage security results for Tandem-DM

The Tandem-DM compression function, proposed by Lai and Massey in 1992 [8], is a 3n-bit to 2n-bit compression
function based on two applications of a blockcipher of 2n-bit key and n-bit word length (Figure 4). The first (flawed)
proof of collision security for Tandem-DM (by Fleischmann, Gorski and Lucks [3]) did not appear until 2009. Later,
Lee, Stam and Steinberger [10] gave a correct collision resistance analysis of Tandem-DM showing that indeed it
has birthday-type collision security in the ideal cipher model (necessitating at least 2120.8 queries to break when the
output length is 2n = 256 bits). They also showed preimage resistance up to essentially 2128 queries (for n = 128),
once 0n∥0n is excluded as challenge digest. Our new bound is identical to the bound we gave for Abreast-DM, so in
particular 22n−10 queries are needed to obtain a preimage with probability ∼0.5 (Corollary 3).

Theorem 3. Let Tan : {0, 1}3n → {0, 1}2n be the blockcipher-based compression function depicted in Figure 4. Let
α > 0 be an integer. Then

Advepre ̸=0
Tan (q) ≤ 16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α

+
4q

αN
.

Proof. Let U∥V ̸= 0n∥0n be the point to invert, chosen by the adversary before making any queries to E.
We manage free queries exactly as for Abreast-DM; more precisely, when N/2 queries are made to E under a

given key, we give the remaining N/2 queries under that key for free to the adversary, and this constitutes a “super
query”. No other free queries are given.

In the case of Tandem-DM, the adversary obtains a preimage of U∥V precisely if it obtains queries of the form
(A,B∥L,R), (B,L∥R,S) such that A ⊕ R = U , B ⊕ S = V . It is easy to see these two queries must be distinct,
otherwise we would have A = B = L = R = S and therefore U∥V = 0n∥0n. We call two queries as above a
“winning pair” of queries, where the two elements of a winning pair need not be adjacent in the query history (and
could be in any order). We speak again of the “first” and “second” query in a winning pair referring to the order in
which they appear in the query history.

10

We define the events Lucky(Q), WinNormal(Q), WinSuper1(Q) and WinSuper2(Q) as in the proof of Theorem
2 (but with respect, of course, to the new definition of “winning pair”). If the adversary wins, one of the events

Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q), WinSuper2(Q) ∧ ¬Lucky(Q)

must occur. We upper bound the probability of each of these events separately.
As in the case of Theorem 2, we have

Pr[Lucky(Q)] ≤ 2 ·
(
2eq

αN

)α

+
4q

αN
. (7)

To upper bound Pr[WinNormal(Q)∧¬Lucky(Q)], we again use wish lists. There are two wish lists,WT andWB,
which are initially empty and which are updated after each new query (X,K∥L, Y) placed into the query history,
according to the following rules:

1. If X ⊕ Y = U then (K,L∥Y,K ⊕ V) is added toWB.
2. If X ⊕ Y = V then (L⊕ U,X∥K,L) is added toWT.

The same four properties from Theorem 2 are easy to check: (i) a query never “adds itself” to a wish list (this uses
U∥V ̸= 0n∥0n); (ii) the elements within each wish list are all distinct from one another; (iii) the adversary obtains a
winning pair precisely if it obtains a query that is already in one of its wish lists (at the moment of insertion of that
query into the query history). And by definition of Lucky(Q), the wish lists never exceed length 2α as long ¬Lucky(Q)
holds.

Let NormalWishGrantedT,i, NormalWishGrantedB,i be defined as in (the proof of) Theorem 2. Then, using ex-
actly the same analysis as in the proof of Theorem 2, we have that

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and that

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (8)

Then also arguing word for word as in the proof of Theorem 2, we find that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (9)

We finally bound Pr[WinSuper2(Q) ∧ ¬Lucky(Q)]. Note the event WinSuper2(Q) can only occur when a super
query occurs for a key of the form L∥L, and when that super query results in the triples (U⊕L,L∥L,L), (L,L∥L,L⊕
V) being added to the query history. The probability that EL∥L(U ⊕ L) = L is at most 2/N , and, conditioned on the
event that EL∥L(U ⊕ L) = L, the probability that EL∥L(L) = L ⊕ V is at most 1/(N/2 − 1). Since at most 2q/N
super queries occur, we thus find that

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1). (10)

The theorem follows by summing (7), (8), (9) and (10). ⊓⊔

As for Abreast-DM, we have the following corollary (with the same proof):

Corollary 3. We have

Advepre
Tan (2

2n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

11

References

1. Y. Dodis and J. Steinberger: Message Authentication Codes from Unpredictable Block Ciphers.
Crypto 2009, LNCS 5677, pp. 267–285. Springer, Heidelberg (2010). Full version available at
http://people.csail.mit.edu/dodis/ps/tight-mac.ps

2. E. Fleischmann, C. Forler, M. Gorski and S. Lucks: Collision Resistant Double-Length Hashing. ProvSec 2010, LNCS 6401,
pp. 102–118. Springer, Heidelberg (2010)

3. E. Fleischmann, M. Gorski and S. Lucks: On the security of Tandem-DM. FSE 2009, LNCS 5665, pp. 84–103. Springer,
Heidelberg (2009)

4. E. Fleischmann, M. Gorski and S. Lucks: Security of cyclic double block length hash functions. Cryptography and Coding,
12th IMA International Conference, Cirencester, UK, LNCS 5921 pp. 153–175. Springer, Heidelberg (2009)

5. S. Hirose: Provably secure double-block-length hash functions in a black-box model. ICISC 2004, LNCS 3506, pp. 330–342.
Springer, Heidelberg (2005)

6. S. Hirose: Some plausible constructions of double-block-length hash functions. FSE 2006, LNCS 4047, pp. 210–225. Springer,
Heidelberg (2006)

7. M. Krause, F. Armknecht and E. Fleischmann: Preimage resistance beyond the birthday bound: Double-length hashing revis-
ited. http://eprint.iacr.org/2010/519.pdf

8. X. Lai and J. Massey: Hash function based on block ciphers. Eurocrypt 1992, LNCS 658, pp. 55–70. Springer, Heidelberg
(1993)

9. J. Lee and D. Kwon: The security of Abreast-DM in the ideal cipher model. IEICE Transactions 94-A(1), pp. 104–109. (2011)
Also available at http://eprint.iacr.org/2009/225.pdf

10. J. Lee, M. Stam and J. Steinberger: The security of Tandem-DM in the ideal cipher model.
http://eprint.iacr.org/2010/409.pdf

11. S. Lucks: A collision-resistant rate-1 double-block-length hash function. Symmetric Cryptography, Dagstuhl Seminar Proceed-
ings 07021 (2007)

12. O. Özen and M. Stam: Another Glance at Double-Length Hashing. Cryptography and Coding, 12th IMA International Confer-
ence, Cirencester, UK, LNCS 5921, pp. 94–115. Springer, Heidelberg (2009)

13. M. Rabin: Digitalized signatures. Foundations of Secure Computations, pages 155–166. Academic Press (1978)
14. P. Rogaway and T. Shrimpton: Cryptographic hash-function basics: definitions, implications, and separations for preimage

resistance, second-preimage resistance, and collision-resistance. FSE 2004, LNCS 3017, pp. 371–388. Springer, Heidelberg
(2004)

15. P. Rogaway and J. Steinberger: Constructing cryptographic hash functions from fixed-key blockciphers. Crypto 2008, LNCS
5157, pp. 433–450. Springer, Heidelberg (2008)

16. T. Shrimpton and M. Stam: Building a collision-resistant compression function from non-compressing primitives. ICALP 2008,
Part II. LNCS 5126, pp. 643–654, Springer, 2008.

17. J. Steinberger: The collision intractability of MDC-2 in the ideal-cipher model, Eurocrypt 2007, LNCS 4515, pp. 34–51.
Springer, Heidelberg (2007)

18. M. Stam: Beyond uniformity: better security/efficiency tradeoffs for compression functions, Crypto 2008, LNCS 5157,
pp. 397–412. Springer, Heidelberg (2008)

19. M. Stam: Blockcipher-based hashing revisited, FSE 2009, LNCS 5665, pp. 67–83. Springer, Heidelberg (2009)
20. D. Wagner: Cryptanalysis of the Yi-Lam hash, Asiacrypt 2000, LNCS 1976, pp. 483–488. Springer, Heidelberg (2000)
21. X. Yi and K.-Y. Lam: A new hash function based on block cipher. ACISP 1997, Second Australasian Conference on Information

Security and Privacy, LNCS 1270, pp. 139–146. Springer, Heidelberg (1997)

A Using two distinct blockciphers in parallel

In the main body we applied our new technique of super queries to the analysis of three well-known constructions that
each call the same blockcipher twice. Often the situation where two distinct blockciphers are each called once is easier
to analyze, and indeed it is this scenario that is addressed by Krause et al. [7] (albeit indirectly, by performing explicit
domain separation for a single blockcipher). For comparison, we show how our technique applies to this scenario,
where we adhere to the more general framework as introduced by Özen and Stam [12, 19] (with slighlty different
notation though).

Given two blockciphers E,E′ : {0, 1}m × {0, 1}n → {0, 1}n we define a parallel-call compression6 function
H : {0, 1}m+n → {0, 1}2n by means of three helper functions F, F ′ : {0, 1}m+n → {0, 1}m × {0, 1}n and

6 Actual compression requires m > n, however our result is valid regardless.

12

G : {0, 1}m+n×{0, 1}n×{0, 1}n → {0, 1}2n. If B ∈ {0, 1}m+n is the input to the compression function, the digest
C is computed as (K,X) ← F (B), (K ′, X ′) ← F ′(B), followed by Y ← EK(X), Y ′ ← E′

K′(X ′) and finally
C = G(B, Y, Y ′).

(Since two distinct blockciphers E and E′ are used to create Y respectively Y ′, one obviously needs to use a
slightly different definition of preimage resistance, where the adversary has access to both blockciphers and these are
sampled independently from each other.)

Theorem 4. Let H be a parallel-call compression function using two distinct blockciphers and with the following
structural properties:

P1 F and F ′ are both bijections, thus defining a 1-1 correspondence π between inputs (K,X) and (K ′, X ′) (so
(K ′, X ′) = π(K1, X1)).

P2 G(B, Y, Y ′) as a function from (Y, Y ′) to C is bijective for all B.
P3a G (combined with F) is such that K,Y and C uniquely determine a corresponding X . Namely for all X̃, Y ′ and

B satisfying G(B, Y, Y ′) = C and (K, X̃) = F (B) we have X̃ = X .
P3b G (combined with F ′) is such that K ′, Y ′ and C uniquely determine a corresponding X ′.

P4 F and F ′ are key-consistent, that is there exists a permutation ξ such that if (K ′, X ′) = π(K,X) then K ′ = ξ(K).
(Here we assumed property P1 is already satisfied.)

Then
Advpre

H (q) ≤ 8q/N2.

In particular, an adversary must ask at least N2/16 = 22n−4 queries to have chance 0.5 of obtaining a collision.

Proof. We largely follow the proof we gave for Hirose’s scheme (Theorem 1). Let C be the point that the adversary
has chosen to invert (before gaining access to the blockciphers). On top of the q queries the adversary wants to make,
we give it several queries for free, as follows:

1. (Normal forward query) If the adversary queries EK(X), we also give it for free E′
K′(X ′) where (K ′, X ′) =

π(K,X) (and vice versa, given a query E′
K′(X ′) the appropriate EK(X) query with (K,X) = π−1(K ′, X ′) is

added).
2. (Normal inverse query) Given inverse query E−1

K (Y) with answer X , the corresponding query E′
K′(X ′) is given

for free (and vice versa, given an inverse E′ query, the appropriate E query is added).
3. (Super query) Given N/2 queries to E all using the same key K, all the remaining queries using that key K are

given for free. Moreover, all remaining queries to E′ using the corresponding key K ′ = ξ(K) are given for free
as well.

We note that, as a result of these additional queries, the elements (X,K, Y)E and (X ′,K ′, Y ′)E′ with (K ′, X ′) =
π(K,X) are always added to the query history as a pair. (Here we use subscript notation in the query history to resolve
ambiguity about the relevant primitive.) Moreover, thanks to property P1, any pair uniquely corresponds to some B
(for which (K,X) = F (B) and (K ′, X ′) = F ′(B)) and we call it winning iff H(B) = C, i.e. iff C = G(B, Y, Y ′).

To find a preimage, an adversary needs to create a winning pair in its query history (composed of both the queries
it asks explicitly and the free queries). We can distinguish between three types of winning pairs, depending on the free
queries involved. Let NormalQueryWin(Q) denote the event that the adversary obtains a winning pair that is not part
of a super query and whose first query was a forward query, let InverseQueryWin(Q) denote the event that the winning
pair is not part of a super query whose first query was an inverse query, and finally let SuperQueryWin(Q) denote the
event that the adversary obtains a winning pair that is part of a super query. Then the preimage-finding advantage is
upper bounded by

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)] + Pr[InverseQueryWin(Q)].

(Here the probabilities are over the choice of both E and E′, and over the adversary’s randomness, when present.) We
will bound these three probabilities; a simple sum then leads to the theorem statement.

To bound Pr[NormalQueryWin(Q)], consider a single query pair (EK(X), E′
K′(X ′)). Property P2 implies that

only a single pair (Y1, Y2) can lead to a preimage for C. Since there have been at most N/2 queries to E under K and,

13

similarly, at most N/2 queries to E′ under K ′, the probability of hitting this single value (Y1, Y2) is upper bounded
by 1/(N −N/2)2 = 4/N2 (here we also use that E and E′ are independent).

Bounding Pr[InverseQueryWin(Q)] goes along similar lines. Assume WLOG that the pair has been prompted
by query E−1

K (Y). Then property P3a implies that there exists a unique X that might lead to a preimage. Moreover
(regardless of the actual X̃ obtained), there is a unique answer Y ′ to E′

K′(X ′) (where (K ′, X ′) = π(K, X̃)) that
combines with K,X, and Y to complete the preimage. Since there have been at most N/2 queries to E under K
and, similarly, at most N/2 queries to E′ under K ′, the probability of hitting both X and Y ′ is upper bounded by
1/(N − N/2)2 = 4/N2 (again exploiting independence of E and E′). The case that the pair was prompted by an
(E′)−1

K′ (Y ′) is analogous, based on property P3b.
Note that a query is either a forward or an inverse query (but not both), so by a union bound the (combined) total

contribution of these two events to the adversary’s advantage is at most 4q/N2.
All that is left is bounding Pr[SuperQueryWin(Q)]. We first note that key consistency (property P4) ensures that

only “regular” queries can count towards causing a super query. Since the threshold is N/2, this immediately implies
that an adversary can only ever cause 2q/N super queries. For any individual super query, we claim that the success
probability is upper bounded by 2/N , leading to Pr[SuperQueryWin(Q)] ≤ 4q/N2. A super query considers of N/2
query pairs. For each pair, we can use the exact same derivation as we used for Pr[NormalQueryWin(Q)] to argue
that it succeeds with probability at most 4/N2. A union bound over the N/2 pairs constituting a super query gives the
claimed 2/N bound.

B Optimizing the bounds

In the previous analyses, we have set the threshold that triggers a super query at exactly half the total number of
queries that can be made under a given key, that is, N/2. In general, we can allow a super query to occur right after an
adversary makes (1/2 + θ)N queries for a given key, where −1/2 < θ < 1/2 is a parameter to be optimized later.

Furthermore, event Lucky(Q) appearing in the security proof of Abreast-DM and Tandem-DM can be decomposed
by using a certain parameter, leading to an improved bound on the probability of Lucky(Q). Note that event Lucky(Q)
occurs if

|{(X,K∥L, Y) ∈ Q : X ⊕ Y = U}| > 2α,

or if
|{(X,K∥L, Y) ∈ Q : X ⊕ Y = V }| > 2α.

As before, let Qn be the restriction of Q to normal queries, and let Qs be the restriction of Q to queries that are part
of super queries. For −1/2 < δ < 1/2, we define Luckyn(Q) to be the event that either

|{(X,K∥L, Y) ∈ Qn : X ⊕ Y = U}| > 2

(
1

2
− δ

)
α,

or

|{(X,K∥L, Y) ∈ Qn : X ⊕ Y = V }| > 2

(
1

2
− δ

)
α.

Similarly, Luckys(Q) is the event that either

|{(X,K∥L, Y) ∈ Qs : X ⊕ Y = U}| > 2

(
1

2
+ δ

)
α,

or

|{(X,K∥L, Y) ∈ Qs : X ⊕ Y = V }| > 2

(
1

2
+ δ

)
α.

Since Lucky(Q) =⇒ Luckyn(Q)∨Luckys(Q), we can upper bound Luckyn(Q) and Luckys(Q) and sum these upper
bounds. Using a similar argument to the original proof, we can show that

Pr[Lucky(Q)] ≤ 2 ·

(
eq

2
(
1
2 − δ

) (
1
2 − θ

)
αN

)2(1
2−δ)α

+
q(

1
2 + δ

) (
1
2 + θ

)
αN

. (11)

14

Note that we obtain the original inequality by setting θ = δ = 0.
With the same definition of events WinNormal(Q), WinSuper1(Q) and WinSuper2(Q), we have the following

parameterized bounds.

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 4α(
1
2 − θ′

)
N

, (12)

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤
4α(

1
2 − θ′

)
N

, (13)

Pr[WinSuper2(Q)] ≤
q(

1
2 − θ′

)
N
((

1
2 − θ′

)
N − 1

) (
1
2 + θ′

)
N

. (14)

Here we are using a super query threshold θ′, which is distinct from the parameter θ used in the bound of Pr[Lucky(Q)].
To summarize, we obtain the following theorem.

Theorem 5. Let 0 < θ, θ′ < 1, and let α, α1 and α2 be positive integers such that α1+α2 = 2α. Then for Abreast-DM
and Tandem-DM,

Advepre
Abr (q), Advepre ̸=0

Tan (q) ≤ 8α(
1
2 − θ′

)
N

+
q(

1
2 − θ′

)
N
((

1
2 − θ′

)
N − 1

) (
1
2 + θ′

)
N

+ 2 ·

(
eq

2
(
1
2 − δ

) (
1
2 − θ

)
αN

)2(1
2−δ)α

+
q(

1
2 + δ

) (
1
2 + θ

)
αN

.

HIERARCHICAL OPTIMIZATION. Let

A =
8α(

1
2 − θ′

)
N

, B =
q(

1
2 − θ′

)
N
((

1
2 − θ′

)
N − 1

) (
1
2 + θ′

)
N

,

C = 2 ·

(
eq

2
(
1
2 − δ

) (
1
2 − θ

)
αN

)2(1
2−δ)α

, D =
q(

1
2 + δ

) (
1
2 + θ

)
αN

.

We minimize A+B + C +D by the following steps.

1. B is O(q/N3), which is sufficiently small for q ≈ N2. Therefore, we minimize A by taking θ′ as small as possible.
Setting θ′ = −1/2 + 1/N , we have

A =
8α

N − 1
and B =

q

(N − 1)(N − 2)
.

2. Consider the two factors
(
1
2 − δ

) (
1
2 − θ

)
and

(
1
2 + δ

) (
1
2 + θ

)
, each of which comes from the denominators of

C and D, respectively. For a fixed value of the first factor, the second factor is maximized by setting δ = θ. Then
we have

C = 2 ·

(
eq

2
(
1
2 − θ

)2
αN

)2(1
2−θ)α

and D =
q(

1
2 + θ

)2
αN

.

Here we ignore the exponent appearing in C, assuming it is sufficiently large.
3. For fixed values of N , q and θ, A+D is minimized when A = D. By approximating A = 8α/N , we have

α =

√
q

2
√
2
(
1
2 + θ

) .
Substituting this value into C, we obtain

C = 2 ·

(
e
√
2
(
1
2 + θ

)√
q(

1
2 − θ

)2
N

) (1
2
−θ)√q

√
2(1

2
+θ)

.

15

4. Finally, we would like to maximize θ in order to minimize A and D. As long as

e
√
2

(
1

2
+ θ

)
√
q <

(
1

2
− θ

)2

N,

C would remain negligible. By solving this quadratic inequality, we can set

θ = θ(N, q) =
N + 4

√
q − 4

√
N
√
q + q

2N
.

To summarize, the adversarial advantages AdvepreAbr (q) and Advepre ̸=0
Tan (q) are upper bounded by

4
√
2q(

1
2 + θ(N, q)

)
(N − 1)

+
q

(N − 1)(N − 2)
+ 2 ·

(
e
√
2
(
1
2 + θ(N, q)

)√
q(

1
2 − θ(N, q)

)2
N

) (1
2
−θ(N,q))√q

√
2(1

2
+θ(N,q))

.

This optimized bound is compared to the original one in Fig. 5. Numerically, the optimized bound requires about
2247.6 blockcipher queries to achieve chance 0.5 of inverting a randomly chosen point in the range for Abreast-DM
and Tandem-DM. Thus we have 1.6-bit gain over the original bound.

Fig. 5: Optimized preimage bounds for Abreast-DM and Tandem-DM.

16

