Protecting Drive Encryption Systems Against Memory Atsck

Leo Dorrendorf
Safend Ltd
Ha-Barzel st. 32, Tel Aviv, Israel
leo.dor@gmail.com

May 6, 2011

Abstract

Software drive encryption systems are vulnerable to membagks, in which an attacker gains phys-
ical accesses to the unattended computer, obtains thepdieerkeys from memory and consequently
decrypts the drive. We reviewed the currently existing gaitions and have found that they provide only
partial protection, and none of them protect against tHednlge of memory attacks. We propose a new
method for protecting encryption systems against memaagled, by converting them to use two tiers of
keys, a single Master Key and a set of File or Sector keys. Whenomputer is unattended, the Master
Key and part of the second-tier keys are erased from memdrg. nfethod is secure against any type
of memory attack, including attackers who gain completetrabiof the unattended system. Compared
to previous methods of protection, which erase keys and dgtwh the computer, our method allows
to keep the computer operational by a combination of cryiolgic and operating systems techniques.
Applications may continue running, and can access any uppted data as well as a chosen subset of
the encrypted data, at the cost of leaving that data unsgag&inst memory attacks. We first describe
the application of the method to file-based encryption systevhere we have implemented and tested
it in practice, and then describe a possible adaptatiorstoloiised encryption systems.

1 Introduction

Drive encryption systems attempt to provide data confidétytiagainst an attacker with physical access.
Memory attacks break drive encryption systems by extrgdtie decryption keys from RAM on a run-
ning or recently turned off computer. This paper proposeswa method of protection against memory
attacks on drive encryption systems. The method erasegpioer keys to protect data from any attacker.
Contrary to simpler methods of protection, where the coepigt shut down after erasing keys, we de-
scribe cryptographic and operating system methods to Kezjgdmputer operational. The administrator
may choose a trade-off between functionality and secuwsélectively making encrypted data available to
running programs at the cost of making it vulnerable to mgnadtacks. We have converted an existing
drive encryption system to implement the method. In thisspaye describe the theoretical background and
practical considerations that determine its design.

Based on the range of existing memory attacks we reviewddspaper, we have concluded that an at-
tacker can gain full control of the unattended computer.ré@foee, we designed our method of protection to
withstand an attacker with unlimited access, without ddpenon the properties of any particular memory
attack.

1.1 Requirements

Our design requires two conditions to protect an encrypsigstem from memory attacks. First, the com-
puter must be able to detect when it is left unattended by titigosized user. This is necessary because
our protection limits the computer’s functionality, andglitould be inactive in the user’s presence, while the
computer is safe against physical access by an attackern WWkeecomputer is left unattended, it switches
over to the protected mode. In practice, there is a shorogeiter the authorized user leaves and before
the computer recognizes his absence. The computer will petetted during that time. For the purposes
of this paper, we ignore this period, as it can be made ariytighort at the cost of some usability. We will
address this topic in detail in Section 3.1.

The second condition is that the authorized user must lo@ ¢imet computer with a password or some
recognizable digital token that can be used as input to @agyaphic function. The possession of this token
is the difference between an authorized user and an attatkkough this requirement is satisfied in most
authentication systems, some systems that fail this rexpgint are biometric techniques that use approxi-
mate authentication tokens,and techniques that relyysoteperforming zero-knowledge proofs (normally
using secure devices such as smart cards). Such system$scareaadapted to produce a recognizable
digital token.

The protection method requires no hardware additions anehadifications to the operating system,
except for the installation of intermediate drivers, asested in an encryption system. In our experience,
the method of protection incurs a negligible performanc& doiring transitions to and from the protected
state. The changes to the encryption system'’s architeictcue some computational costs due to longer key
setup, but these are negligible when compared to the timelewity involved in regular disk I/O operations.

Our method of protection against memory attacks is platfmependent. The requirements and de-
sign considerations we present are independent of the topesystem and the file system involved. Our
experience is based on implementing the protection in awedt, commercially deployed, software-only
drive encryption system with a file-based architecture Waks under the Windows operating system and
the NTFS file system. We have covered the design considesatiod requirements in detail, and hope to
make it obvious that none of them depend on the platform. dty &nce in our implementation we were
limited to acting as an independent software vendor, ilsgedoftware but never modifying the core operat-
ing system, and only using official operating system APIis fossible that implementers who can modify
the OS for better cooperation, may make better use of opgratistem facilities. We only used the official
facilities provided by the OS to encryption systems.

1.2 Benefits

Compared to previous attempts to defend against memorgkattshis paper’s main contribution is the
protection against memory attacks in the powered-on, emdéid state. In contrast with the simpler method
of erasing encryption keys and shutting down the computarnmethod is designed to protect a working
computer. The encryption system can be customized to leawe processes fully functional, at the cost
of exposing their data to the memory attacker. The remainfithe encrypted data is secured. Beside
the working state, the protection also helps erase andesé&eys during shutdown, hibernation, and sleep
states. During shutdown, the encryption keys are simplgegt#@o protect them from theft. For hibernation
and sleep, the protection is activated during the powerrdstage and resumes when the computer returns to
power, protecting the encryption keys and sensitive datihithe authorized user logs on. Simpler methods
of protection do not cover hibernation and sleep.

Any process, daemon or application that can run usefullynwhmattended can benefit from our method.
Examples include keeping web servers and LAN shares alaitabline, and keeping long processing jobs
running including audio processing, video rendering, reatétical and cryptographic computations. On

the other hand, programs which are unproductive when urdtk such as text editors, e-mail clients, and

other interactive applications need not continue runninghe user’'s absence. Such applications handle
confidential information more commonly than non-intenaetapplications, and they can benefit from the

added level of protection.

1.3 Hardware encryption systems

We consider hardware-only encryption systems secure stgaiemory attacks, and therefore have not cov-
ered them in this article. Hardware encryption systems nepime more widespread with time, but for
now we have focused on securing the software systems.

The rest of the paper is laid out as follows. Section 2 is artieeth overview, revisiting memory attacks,
describing a combined model of the attacker’s capabiliggamining the limitations of existing mitigation
techniques, and reviewing the architectures of disk-basetl file-based encryption systems. Section 3
describes in detail the implementation of the protectiothoe, as applied to a file-based encryption system.
Section 4 deals with applying the protection to disk-baseslesns. We propose several items for future
research in Section 5.

2 Technical Overview

2.1 Memory Attacks on Drive Encryption Systems

A memory attack is a type of side-channel attack on drive ygriimm systems in which an attacker with
physical access to a computer obtains the decryption key R&M, and proceeds to decrypt the complete
contents of the hard drive. Memory attacks destroy thetglafidrive encryption systems to protect the data
on a computer even after an attacker gains physical accésgteere are several types of memory attacks,
each with a different set of requirements and effects, asisariss below.

The Cold Boot Attack received wide attention in 2008, with gublication by [11]. Itis the first memory
attack which requires no specialized hardware, whose nuimimequirement to obtain memory contents is
a reboot. The authors provide downloadable software, wiidts the computer into a small program that
dumps the contents of the physical memory to external storAdditional tools then search the dump for
encryption keys and key schedules, and help recover keysievbhe presence of some bit flip errors. The
attack relies on the memory remanence properties of RAKMoatih power to the RAM chips is temporarily
lost, their most recent contents can be recovered. The ldhggpower loss, the more degradation occurs
in the data. The remanence property has been the subjectlief easearch in several types of memory,
including Static RAM and Dynamic RAM [24, 10].

At lower temperatures, memory contents last longer. Optionprovements to the attack involve cool-
ing the RAM chips by spraying them with compressed air, theysjzally removing them from the target
PC and further cooling them with liquid nitrogen before gmalg them in the attacker’s computer.

Other attacks use memory remanence to create a snapsha ofeh session active at the time of
reboot [5], then resume that session live with modificatiggng the attacker full visibility and control.

Memory attacks devised before Cold Boot used peripheralsiirect Memory Access (DMA) capabil-
ities, such as Firewire [3, 4, 20] or USB [2] to dump the tagm@nhputer's memory. The DMA attacks cause
no power interruptions and therefore no data degradatiwhirafact do not rely on memory remanence. On
the downside, they require connecting a specially prograthexternal device. Once connected, the device
can manipulate physical memory directly. As a result, thecier gains full visibility and control, including
the ability to run his code with system privileges.

In another attack scenario, the attacker induces eitharidbion or a crash on the target computer.
When entering hibernation or creating a crash dump, the atenpnakes an orderly snapshot of all virtual

3

memory to a file. The attacker can recover the file and obt&tlyinal memory contents, including drive
decryption keys, without corruption. Making the situatisarse, on Microsoft Windows the hibernation and
crash dump files are written using a special I/O path that $sgmmost drivers, including disk encryption
drivers, and is therefore difficult to encryptAll this makes computers that have hibernation and crash
dumps enabled more vulnerable to the attacker.

Together, the scenarios give rise to a more powerful modefttacker with physical access to the
computer. The attacker can obtain an exact snapshot of atlamyecontents, without degradation. He or
she may observe the system and choose the time to make ttehehand even scan memory repeatedly.

We have found that all the existing mitigations, which weéhdetailed in the next section, are defeated
by at least one of attacks above. The only encryption syssafiesagainst memory attacks are the ones fully
implemented in hardware, since they never place the key iMR®@ur goal is to protect software encryp-
tion systems that place the keys in RAM against an attacker aain obtain the complete and undegraded
contents of memary, can run arbitrary code with full prigis, and can attack at the timing of his or her
choice as long as the computer is unattended.

We note that there is a different class of attacks, which megirbwith memory intrusion but work
by modifying the system [22, 15]. In those scenarios, thec&tr installs a hidden software agent on the
computer, waiting for the authorized user to enter his ardis, then stealing the credentials and sending
them over the network to the attacker. The attacker can @serdtdentials to decrypt a previously made
copy of the drive. These attacks affect hardware encrygiahsoftware encryption equally, and generally
cannot be prevented by the encryption system alone. Addasysem integrity mechanisms are needed to
counter these attacks. Those are not memory attacks, andtaide the scope of this article.

2.2 Current Mitigations

Software encryption systems are vulnerable to memorylkatthecause they place the decryption keys in
memory. That can be avoided by implementing the encryptiomardware, but the use of hardware gen-
erally incurs a cost and delays the time to market, limiting ¢urrent penetration of hardware encryption
systems to a small share of the market. In this section, veaislisexisting mitigations for software systems.
These include mitigation by configuration; relocating,tsréng, and obfuscating the keys; leakage-resilient
cryptography; hardware-assisted key deletion; and offitgad

Changing the computer’s configuration can make some atz@kasios harder to execute. Blocking
Firewire and USB ports can help prevent DMA attacks. Lingjtimoot device options and configuring the
BIOS to overwrite memory on reboot makes rebooting lessfhletp the attacker. Disabling hibernation
denies the attacker access to a high-quality snapshot of RAlktre are hardware-assisted techniques to se-
curely wipe encryption keys during a sudden temperaturagar power-off [17, 8]. All those techniques
are useful, but each one prevents a specific attack scenait®leaving the other scenarios open. The tech-
niques rely on particular properties of hardware and softwand all of them are liable to be circumvented.
Worst of all, an attacker who gains control of a system caarrfigure it to remove those mitigations before
proceeding with memory attacks.

Obfuscation techniques make it difficult for the attacketdoate a secret. Cryptographic keys have
higher entropy (wider statistical byte distributions) theode, strings, and other non-random data, so an
attacker can normally use an entropy scan to locate keys [@Bfuscations make the key less obvious
by hiding it behind a layer of complex code, which distritaiie across memory, stores it in an altered
representation, and collects and recomputes it when ne€@igfdscation forces an attacker to use reverse-
engineering methods to locate and extract the keys from aanedump. Unskilled attackers may be
deterred by obfuscation, but skilled attackers will at testlelayed. Since attackers with access to memory

Before Vista, Windows did not provide third parties with oféil APIs to encrypt the hibernation file. See an account by
Truecryptatht t p: / / wwv. t ruecrypt. or g/ docs/ ?s=hi bernation-file.

4

can obtain the obfuscated data along with the de-obfustatide, any secret protected by obfuscation can
be exposed by simulating the de-obfuscation code.

Key scattering works by inflating the amount of key materegaed to restore the actual key. For exam-
ple, ak-byte key may be stored as a thousand pseudo-raridbgte buffers, which yield the original key
when XOR-ed together. If the attacker faces memory degmadas with the Cold Boot attack, then scat-
tering decreases his chances of successfully computirgtegof the key. In all the other attack scenarios,
the attacker obtains the information without degradatiédong with the code needed to reconstruct the key.
The attacker can then simulate the reconstruction and ctentipel original key.

Obfuscation and scattering can only protect the kegst of the time. Because the encryption system
needs to use the keys, it must at some point collect the relelztia and reconstruct the keys in memory. An
attacker who happens to dump the RAM at the right time wilbobthe keys in cleartext. An attacker who
can time his attack to coincide with the reconstruction,egre@t it as needed until successful, can simply
bypass both obfuscation and scattering.

Leakage-resilient cryptography can strengthen encnygiiotocols against the leakage of a limited part
of the key [1, 18], but cannot protect against memory attdecause they expose the whole key to the
attacker.

Hardware-assisted key deletion techniques [8] allow egaspecific areas of RAM on sudden power
loss or temperature drop. While they help against the Colat Btiack, they do not prevent DMA attacks.

Offloading techniques try to protect encryption keys by mgwhem outside of RAM. One approach is
to use the regular CPU registers for temporary storage ¥g.disadvantage of that approach, as with key
scattering, is that the key has to be reconstructed in meimefigre use. Another approach is to place the
keys in special purpose registers where they are usedlgjr@senabled by the Intel AES Instruction Set [9].
The weakness of that approach is that copies of the keysmstilup in RAM, when spilled from the registers
during context switches. Another option, demonstratechiorgoing research project, is to use one of the
CPU’s caches for key storage [19]. Currently, the CPU cachstiime put in a special mode of operation,
and the impact on the computer’s performance is cripplintheBOtechniques offload the encryption from
the CPU to other commodity hardware, such as the graphioakpsing unit [14]. None of those techniques
include a mechanism to keep an informed attacker from véigethe keys from the offloaded storage. In
order to secure encryption keys, they should be placed inas&ardware module that would never expose
the key to the CPU. The hardware would then have to performettoeyption itself, which brings us to
hardware-only encryption systems.

To summarize, every method of protection short of hardwaoeyption or erasing the encryption key,
fails to protect against the combined abilities of the infed attacker.

2.3 Drive Encryption System Architectures

Most drive encryption systems deployed today are impleatkint software, although hardware solutions
are available. We make the distinction between softwarehandware according to the placement of the
encryption key: in hardware systems, the key is located ¢nrechardware and cannot be accessed by the
CPU, and consequently the encryption system is securesaga@mory attacks. If the key is accessed by the
CPU during encryption or decryption, we consider the systesoftware system, and vulnerable to memory
attacks.

Some systems use hardware to a small extent. For exampl®lichesoft Windows Bitlocker [7] can
use the Trusted Platform Module (TPM) for authenticatiod ey management; however, the TPM cannot
deal with the computational load imposed by encryption, fser @uthentication the encryption keys are
placed in RAM where they are accessible to an attacker.

The next most important distinction is the encryption systechitecture. There are disk-based and file-
based encryption systems. Both architectures operateseytimg intermediate drivers in the appropriate

intermediate file

system driver D

FK;
2 systel
MK — D
i
Ii1le system E(FKI) F]
dis disk
Sy| | S| Sk| | Si| o |Ss T T I O P
(a) File-based encryption system (b) Disk-based encryption system

Figure 1. Comparison of encryption system architectures, showingcaygtion operation. On the left, the
file F;, stored in several disk sectds8s is decrypted using the File K&K ;. E(FK;) is the stored File Key,
encrypted by the Master Key. On the right, a disk se§ois decrypted using the Master K&K and
transformed by a tweak, denoted based on the sector numher

driver stack. The intermediate drivers process read ang wperations, so that the data resides encrypted
on the storage layer below, but appears unencrypted to dtwase layer above. The difference is that
file-based solutions work on the higher file operation layat process file system operations such as file
open, read and write requests, while disk-based systenitsamothe underlying disk operations layer and
process disk operations such as sector read and write tsgques

Disk-based systems typically encrypt the whole drive, ilegwunencrypted only a small piece of code
that initializes the encryption system. This code must eniibate the user, install itself as part of the disk
services, and then pass control to the operating systermslbdader. Once the OS loads the regular disk
drivers, encryption duties are handed off to an intermedéisk driver, along with the encryption keys.
From that point on, the driver intercepts and processessexad and write operations.

File-based encryption systems intercept and process &kt aad write operations. They can choose
which files to encrypt and which to leave unencrypted. Mogil@mentors leave the operating system un-
encrypted, including the boot loader, any system drivard,the programs and configuration files necessary
for the operating system to initialize up to the user autleation prompt. Since the operating system’s
binaries are non-secret, there is no loss of security. Theflieof this approach is that the user does not
need to authenticate during boot, but only needs to giverkidentials as usual on the log-on prompt.

Encryption systems typically employ one key, which we denbeMaster Key, the access to which is
granted to authorized users. To connect the key with auhiion credentials they either derive it directly
from user credentials, or decrypt a stored copy of it withragerary key derived from the credentials. The
latter method easily accommodates for multiple users widnging credentials.

Using a single key for encryption could expose similarita@sl correlations in the encrypted data. The
ciphertext of files or sectors with identical prefixes woulin identically. Therefore, a unique token,
associated with each file or sector, must be mixed into theyption process. The extra token may be used
to modify the encryption key, the plaintext, the ciphertekie Initialization Vector in cipher-chaining or
feedback modes, or any combination of these.

Disk-based systems use the sector number as the extra sgiaging it through a “tweak” function to
the plaintext and ciphertext. We discuss tweaks in mordldet8ection 4.

File-based systems normally cannot use the file paths axtizeteken, because files may be moved or
hard-linked, destroying the one-to-one relationship leemfile path and contents. Accordingly, file systems
attach unique tokens to each file, in a hidden header, famtarseparate data stream. The tokens are copied
and moved along with the file, and also preserve their vahresigh linking operations. File-based systems
use the token to derive the encryption key for a file or to set¥hWe have not encountered in practice any
file-based systems that use the token to directly transfbenplaintext or ciphertext.

We have implemented our protection in a system that usesthi#@ig@ token to derive the encryption key
for file contents. In order to tie the access to file contentsstr authentication, the per-file token stores the
File Key encrypted with the Master Key. A benefit of this architectigrthat once the File Key is decrypted,
the Master Key is no longer required to access the file. Weheed our advantage, as shown in the next
sections, erasing the Master Key to protect it from thefintbhoosing a set of File Keys to keep in memory
in order to allow access to chosen files.

For a file-based encryption system to be protected, we dépliequire that the file encryption key
be derived from a unique per-file token. For the purposes thfaaization, the encryption key should be
a function of the Master Key. For reasons of security, it magtreveal the Master Key or other tokens.
Finally, we require that File Keys for open files be retainednemory, so that the Master Key is not needed
to access an already open file.

Formally:

e Each File Key FK must be a function of the stored file token and the Master Key.
e Each File Key FK must not reveal the Master Key.
e Each File Key FK must not reveal FK fori # j.

e Each File Key FK must be retained in memory while its file i§ open.

Any existing file-based encryption system can be convedadé this architecture, which is illustrated
in Figure 1a. Disk-based systems can also be adapted to ageets of keys, with Sector Keys instead of
File Keys, but they present additional challenges. We disthieir adaptation in section 4.

3 The Protection Method in Detall

Our method of protection can be summarized as follows. iaets in the unattended state when it detects
that all authorized users have stopped interacting withctimaputer. It erases the master encryption key,
securing it and any unopened files against the attackerelit tises a second tier of decryption keys, one
key per file, to keep the open files available. To keep the systable, it blocks file open requests to
unopened encrypted files. To secure some of the open filededtwely erases their keys from the second
tier, suspending non-vital processes and taking othereptede measures to ensure that those files not be
accessed, and the keys not be needed. Once an authorizegttuses and logs in to the computer, the
encryption system uses his credentials to restore the mdsteyption key; it then resumes suspended
processes and returns the computer to regular functignalit

3.1 Defining the Unattended State

Memory attacks require physical access, and assume the basdeft the target computer unattended. A
common target is a stolen laptop in the locked, sleep or hiiEm states. More rarely, the target is a laptop,
desktop or server computer under full power. The target ctergnay have been performing tasks the user
defined for it, precluding the option of powering it down.

7

Our technique protects from memory attacks by taking spewgasures, which could disrupt hormal
system functionality, but are acceptable when the autbdrirsers are away. The ideal protection would
activate at the moment the owner leaves the computer udatierin practice, the encryption system must
define criteria for identifying the unattended state. Thteda should include all power state changes, as
well as active users logging out, locking their sessionmgmto screensavers or just timing out. Because
a single computer can host multiple concurrent user sessgame of them remote, the encryption system
must keep track of the number of active sessions. As the Misteis shared by all sessions on a computer,
the protection must be activated when no active sessionaimem

To resume normal functionality after the unattended staie design requires the user to authenticate.
As explained below, the authentication token is used tormexgae erased keys, providing the means to
resume normal operation. Some unattended states, inyartigcreensavers, might not end with a log-
on prompt, so the encryption system must ensure a log-ongirbgnchanging system configurations or
actively locking the user session.

Our implementation combines a counter of active sessiotls power state notifications, a screensaver
detector, and an idle-time detector. We have implementtdrelint protections for different power state
transitions. For instance, on shutdown, all processesamirtated, whereas on hibernation, the operating
system suspends the processes before turning power offthandresumes them after power-on. In the
first case, there is no need to preserve process functiptditond clean termination. In case of sleep or
hibernation, the protective measures are interrupted twepdown and continue after the power is restored,
to secure the computer until the authorized user returnensare a log-on prompt after screensavers, the
system is configured to lock the session after a screensagarsh

3.2 Eliminating the Master Key

Once the encryption system detects the unattended statrshdefensive measure is to erase the Master
Key from memory. The Master Key must be securely wiped, aleitly any auxiliary material, such as ex-
panded key schedules, which can help the attacker recavð We recommend following the guidelines
for key storage and deletion presented in [10].

With the Master Key erased, the computer can continue totresfiles that were already open (earlier
we stated the requirement that File Keys for open files rersi@ired in memory). On the other hand, any
unopened files become inaccessible both to legitimate aserto the attacker, as their File Keys cannot be
derived without the Master Key. The security gains at thégystare that the Master Key and most of the
drive’s contents are safe against the attacker. All memttaglatechniques, including the Cold Boot attack,
full DMA access, exploiting hibernation files and crash dgrapd so on are useless - the Master Key cannot
be stolen.

The computer is now in a safer but limited state. In the nextice, we explain how to keep the computer
stable and operable when it cannot open additional files;ra&&ction 3.5, we show a method to further
reduce the attacker’s access, by purging the File Keys oésufithe open files.

The computer recovers from the protected state once ther@eal user returns and logs in. The en-
cryption system uses the authentication token to resterdtster Key and resume normal function.

An implicit requirement is that the computer must still bdeao present a log-on screen in the absence
of the Master Key. This demands special attention, as waisksio section 3.6.

3.3 Keeping the Computer Operational

In the protected state, the encryption system must impasetions on file operations it cannot properly
process. This section describes two possible ways of mandlich file operations, denial and blocking,
along with possible exceptions and problems that requitedu care.

As discussed above, the file-based encryption systemlmitalf as an intermediate file system driver,
and receives requests to open, read and write files. In thegbed state, the encryption system must deny
requests to open encrypted files, because once a file is agmhand write requests for it may arrive. To
handle these requests, the encryption system needs a jle/Kieh it cannot obtain without the Master Key.
Therefore the first solution is for the encryption systemeaydfile open requests for unopened encrypted
files.

The reason why the encryption system must deny file open séxjuather than read or write requests,
is application stability. Most applications are preparechandle a denied file open request, but expect
unhindered read and write access once they have the file Bpen.so, denying file open requests can have
adverse effects on applications and overall system behavio

To avoid these, the encryption system daock the file open request, which means suspending the
requesting thread indefinitely (instead of returning aoreresult). A file system driver can do so without
tying down system resources. The requesting applicatitinusually wait as long as needed, because file
open requests are not usually associated with a timeoutanath. Once an authorized user returns, and
the encryption system returns to normal, it can satisfy feeofien request, letting the application proceeds
normally.

There are some exceptions - file open operations that caregutoand need not be blocked. If an
application requests to open a file that is already open érs#éime application or in any other process), the
request can be satisfied since the File Key is already in mgmoiother exception can be made for creating
new files. A new file cannot be cryptographically tied to thesiéa Key when the Master Key is unavailable,
so instead, it can be encrypted with a random File Key, andrileekey stored in cleartext. Once the user
returns and the Master Key becomes available again, thedskile Key can be encrypted with the Master
Key. The contents of the file itself do not need to be re-erted/p

Given the above, the operating system faces undesiraltatioms: applications may fail because some
of their threads became blocked, and their other threadadatiéxpect that behavior; applications that the
user expected to run, may be blocked; and the system may faitsent the log-on prompt, because some
of the files involved are unavailable or the necessary psasesannot run. Clearly, such system behavior
is unacceptable. In the following sections, we show how tmlke the problems that have arisen so far.
Section 3.4 describes the methods needed to stop apptisdtam failing because some of their threads are
blocked. Section 3.6 describes the methods of defining #akapplications and files, the access to which
is guaranteed even in the protected state. The end resuitirctoning operating system, with a trade-off
between functionality and security: non-essential apfitis suspended or at the risk of suspension, and
essential applications remaining active but vulnerablaémnory attacks.

3.4 Suspending Applications

In the previous section, we suggested blocking some thrieadeevent file open requests the encryption
system cannot satisfy. This creates a stability issue igpdssible for a process to have some of its threads
blocked and some to continue running. The running threagsaxgect some interaction from the blocked
threads, and may break otherwise. We therefore suggestahsume of suspending a process completely,
first to deal with the stability issue, and later to deriveiiddal security benefits.

In the protected state, the encryption system should sdsg@gnprocess in which it has blocked a thread.
Suspending a process preempts all of its threads from theaDBEyreserves their states so tjat they can be
resumed later. Operating systems provide several wayssfiead processes, including process and thread
management APIs, debugging APIs, and kernel-level thremtbagement procedures.

Whatever the method used, suspending all an applicatioerisrglly safe. In particular, applications
should not break when their threads are suspended by thatmgesystem, because that is the normal
behavior during context switches. Deadlocks are also nbteat because under normal circumstances,

suspending a user process from inside a driver does not atldaci dependencies between any locked
resources. The main risk to suspended processes is thef kisealependent resources, such as timers or
stateful network connections. There is a risk of breakingeapplication’s time-based behavior. We have
not encountered such applications in practice, but if dqdar application breaks because of suspension, it
may be exempted from suspension by the administrator. Vlasighe exempted application in section 3.6.
We derive an additional security benefit from our ability mentionally suspend applications. Sus-
pended applications cannot issue file read and write resjussd therefore we can discard the File Keys for
the files they have open. A memory attacker will then be untbéecess those files. We describe the exact
steps needed in the next section.

3.5 Securing Open Files

In this section, we describe a method to protect open, etemyfiles from memory attacks. The method
includes three steps: suspending applications, flushiagdithes, and erasing File Keys.

In the protected state, the Master Key is erased. We assuemefitgs have their File Keys in memory,
making them vulnerable to memory attacks, while unopened flo not. We can improve the system’s
overall security by forfeiting access to some of the opes fidend erasing their File Keys.

File Keys are needed to satisfy read and write requests to filjgs. To discard File Keys, we must
ensure no read and write requests arrive. The two sourcesadfand write requests are the application
holding the file open, and the the virtual memory manageraresiple for caching the contents of an open
file in memory.

As we have mentioned above, denying read and write requastses stability issues. Blocking such
requests is also impossible, because the virtual memonagesirexpects its requests to be satisfied imme-
diately and will crash the system otherwise. Therefore,isoatd File Keys, we must ensure no read and
write requests be sent to the relevant files from any appicatholding the file open, as well as the virtual
memory manager.

The encryption system first suspend the applications hgldifile open, as described in the previous
section. Afterwards, the encryption system uses virtuahorg APIs to flush the file’'s cached portions to
disk. At that point, and until the applications resume exeaw no read or write requests will arrive for the
file. The encryption system can now erase the File Key from argrand secure the file’s contents against
a memory attack.

The choice of files to secure and applications to suspend ts tigg administrator. In our implementa-
tion, after entering the unattended state the encryptistesy suspends any application holding encrypted
files open. Should any application attempt to open an enedyfile, it is suspended as well. This approach
is simple, but it reliably identifies all applications haindl confidential data and is well suited to systems
where operating system data is unencrypted. A list of esdeqtplications, which are never suspended, is
centrally managed.

After suspending applications, the encryption systemestguthe virtual memory manager to clear the
file caches, and then erases the File Keys. Having erasedmatist File Keys from memory, the encryption
system secures all or most of the data against memory attiactee next section, we discuss the exceptions:
applications that must continue running and files that mersiain available.

3.6 Defining Essential Applications and Files

There are processes and applications that cannot be sashleechuse they are vital to the operating system,
important to the user, or are known to break when suspendeleficryption system must maintain a list of
essential processes, and exempts them from suspensies bElbnging to those processes and applications
must have their File Keys preserved when entering the urdsdte state. Ideally, the encryption system

10

should guarantee accessaiy encrypted file an essential application might need, eveheruhattended
mode. Managing the list of essential applications and fdekérefore challenging.

The first type of essential processes are those needed bpédhatiog system to recover from the unat-
tended state. These are the processes involved in prasehéinuser with a log-on dialog, and in user
authentication. On the Windows operating system, thatidesdwinlogon.exe andlsass.exe.

The second type of essential processes are the applicétienser expects to continue running while
he or she is away. The user or administrator should expliigt them as essential processes. The same
treatment is needed for processes known to break when silesphen

Identifying all the files needed by an essential applicat®otheoretically impossible. Simply listing
all files an application has open when transitioning to thatt@mded state is not enough, as an application
may request to open any additional file at any time. Applyiegristics, such as listing all files in the
application’s installation directory or its work direcypmprovides good results in practice, but leaves the
theoretical risk of failing to log-on or suspending an esiséapplication if an unexpected file is requested.

Another complication is the need to guarantee that es$aqtdications are able to access encrypted
files that were not open at the time of transition to the undtd state. The encryption system must have
the File Keys ready for such a case. Because the Master Ke&eded to decrypt the stored File Keys, the
encryption system must prepare in advance, collectingegltied File Keys before erasing the Master Key.

Evidently, making every file on the disk available to essdrdpplications is impractical: having the
File Keys for every encrypted file in memory would not only quetely ruin security by exposing all files
to memory attacks, but would waste a significant amount of ttmd memory. The practical alternative is
to keep the list of essential files extremely limited. In auplementation, we have relied on the selective
encryption property of file-based encryption systems: operating system files and applications’ working
directories are left unencrypted, whereas all data fileseapeypted and considered non-essential unless
explicitly marked as such. Only the system processes androgrocesses are listed as essential. Any
application the user wishes to list as essential, should hawvata files exempted from encryption, or listed
as essential explicitly. Application recognition methpsisch as installer package parsing, help determine
the files associated with an application.

We stress that defining applications or files as essentialsiscarity trade-off. Because the keys to
essential files must reside in memory in the unattended, sisgential files are exposed to memory attacks.
If memory attacks were the only type of attack, listing filssasential would be equivalent to leaving them
unencrypted. Because that is not so, it is preferable to hdile encrypted and listed as essential. An
application defined essential will continue running in thattended state, but will be vulnerable to memory
attacks.

4 Protecting Disk-Based Encryption Systems

So far we have addressed the case of file-based encryptitens;swhere we require two tiers of keys,
with a File Key for every encrypted file. Disk-based encrgptsystems cannot be protected the same way:
as long as a single Master Key encrypts all sectors, it caerra® erased. To extend our protection to
disk-based encryption system, we isolate the needed piepef file-based systems, and apply them to
disk-based systems. Although we have not implemented thegiion in a disk-based system, we can
define the requirements and propose a realistic design.

We note that all disk encryption modes currently acceptestasdard - XTS, XEX, LRW, CMC, and
EME [6, 21, 16, 13, 12] directly use the Master Key in all ciploperations. The modes above differ
mostly in the tweaking schemes they use to transform thatebdi and ciphertext. The tweak operations
involve XOR, multiplication, and sometimes exponentiatimodulo a finite field, and their specifics are
unimportant for this discussion. To enable erasing the dtdsey, we must change the encryption to use

11

sK;

Figure 2: Disk-based encryption system architecture with the pregesodifications.

two tiers of keys instead of one.
We propose to use a set 8éctor Keys as an extra tier below the Master Key. The following key
management requirements must be satisfied to protect agaénsory attacks:

e Each Sector Key SKmust be a function of the sector number and the Master Key.
e Each Sector Key SKmust not reveal the Master Key.
e Each Sector Key SKmust not reveal SK for i # j.

e Each Sector Key SKmust be retained in memory for the duration of the unattemdede, for every
needed sector.

These requirements are similar to those of the file-basddrags
The first three requirements are easy to satisfy, if we de§ik@ by using a one-way pseudo-random
function H of the Master Key and the sector number,

SK; = H(MK, 4)

Suitable options fo{ are encrypting with the Master Key, or using the HMAC construction instanti
ated with a strong hash function to hashith the Master Key.

The change above only covers key derivation. Similar remuémts apply to tweaking schemes: they
must not use the Master Key as a direct input, and they museéxpmise it. The first requirement makes
the tweaking schemes usable in the unattended state. Toredsemjuirement means that tweaking schemes
which use the Master Key must switch to a one-way function, @frito another, unrelated key. Some of the
existing tweaking schemes do not use the Master Key, anegtean be adapted easily.

By mandating the use of different encryption keys per seaterincur a computational cost. For ciphers
using a key expansion stage, the standard disk encryptisterag set up a single instance of the cipher,
and have to go through key expansion only once. We now requied? operation and one key expansion
operation per sector processed.

There are several complications which disk-based systamssaddress. First of all, instead of the issue
of essential files as discussed in Section 3.6, disk-bass#drag must address the issue of essential sectors,
the sectors containing data from essential files. The disleth system can map essential files to a list of
their sectors by using file system APIs. At first glance, thek @incryption system must collect the Sector
Keys for all essential sectors before entering the unagigrstiate, and retain them for the duration of that
state. However, disk-based encryption systems typicaltyypt the whole disk, including operating system
files. The set of essential files for disk-based systems wmyliefault encompass the whole file system.

12

Making matters worse, write operations may increase thedia file, spreading it to new sectors. To
support the encryption of new sectors without a Master Kay,ancryption system must precompute and
store a set of Sector Keys for some or all the free sectorsekample, with AES-256 and a typical hard
drive geometry, the space cost is 32 bytes for each 512-legtersof the hard drive. That would take up
roughly 6% of the drive, or 64 gigabytes for a terabyte hamded(assuming the whole drive consists of
essential files and free space). It would be impossible td ablSector Keys in memory and they would
have to be kept on disk, occupying some of the disk space.

To avoid the complications, we propose to eliminate the rieedtoring sector keys for free space and
non-essential files.

Note that free sectors are equivalent to newly created pteshfiles in the file-based setting. By defining
a separate Master Key just for them, it is possible to elitairibe need to keep all of their sector keys in
memory. There would be two different Master Keys: one forutag sectors (MK), and one for free
sectors (MK). MK, would not be erased when entering the unattended statehiBenéthod to work, the
encryption system must distinguish sectors encrypted MKh from those encrypted with MK It could
use a bitmap to do so, consuming some disk space. A bettdiosois possible if the encryption system
can cooperate with the disk sector allocation algorithma:. @xample, by allocating regular sectors from
the beginning of the disk and newly occupied sectors frometig, it can use just two counters to keep
track of the areas encrypted with each key. In the unattestddd, newly written sectors should initially be
encrypted with MK, and can be moved to the regular area and re-encrypted withdvike the user logs
back on.

Similarly, a separate Master Key can be used for essentsl. fiThe key would not be erased in the
unattended state. The reasoning then proceeds as in thmatagtraph, and in fact, the same key used for
free sectors (MK) can be used for sectors belonging to essential files. A<ifildtbased setting, essential
files are not protected against memory attacks.

The proposed measures reduce the number of sector keys weamestain. The encryption system
would only need to retain sector keys corresponding to openessential files, and only if it does not
intend to suspend the applications holding those files opée.reduced space requirements should allow
for a practical implementation.

5 Open Issues and Future Work

This section discusses two types of data left unsecuredstgaemory attacks: some system files remaining
exposed to the attacker, and applications retaining cantfadedata in their address space.

There are special files to which the encryption system casheimy access, most obviously the page file,
constantly used by the virtual memory manager to swap mepaggs out to disk and back. Those mem-
ory pages may contain confidential information from an agion’s memory space. The virtual memory
manager is directly in charge of this file, and may accessangttime. Memory-mapped files are treated
the same way. The encryption system must keep these fildaldeaiand therefore their contents will be
vulnerable to memory attackers.

Finally, confidential data may be kept in application menspsce, where memory attacks would expose
it. An encryption system could suspend an application arict @& address space to disk, where it can
encrypt the data. When returning to normal, the encryptigsiesn would restore the original memory
contents and then resume the application. We have not petpiied to implement such a system.

13

6 Conclusion

We have described a technique which protects the keys aaddatirive encryption system against memory
attacks. We have defined a combined model of the attackerdetaided the steps needed to withstand
memory attacks in a file-based encryption system, whileikgeimne computer in a limited but operational
state. Finally, we have described the steps needed to inepteonir protection in disk-encryption systems.

If hardware-based drive encryption systems receive wideg@atance, we expect the impact of memory
attacks to decline. Until then, we propose a solution whidvides protection against memory attacks at
no hardware cost.

Acknowledgements

The author would like to thank Pavel Berengoltz and Adam CGafi8afend Ltd. for their contributions and
reviews. Special thanks to Dr. Benny Pinkas from Haifa Ursiltg for his review and advice on publication,
and to Dr. Yaron Sella for his review and suggestions. Thankkilie Feinberg for her language review,
and to the anonymous reviewers for providing pointed andvaiing feedback.

References

[1] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanath&mmultaneous hardcore bits and cryptogra-
phy against memory attacks. TiCC ' 09: Proceedings of the 6th Theory of Cryptography Conference
on Theory of Cryptography, pages 474-495, Berlin, Heidelberg, 2009. Springer-gerla

[2] Darrin Barral and David Dewey. Plug and root: The USB keythe kingdom. http://
frozencache. bl ogspot. coni, 2005.

[3] Michael Becher, Maximilian Dornseif, and Christian e Firewire: all your memory are belong to
us. InProceedings of CanSecWest, 2005.

[4] Adam Boileau. Hit by a bus: Physical access attacks wittwiire. Presentation at RUXCON 2006,
Australia, 2006.

[5] Ellick M. Chan, Jeffrey C. Carlyle, Francis M. David, ReEarivar, and Roy H. Campbell. Bootjacker:
compromising computers using forced restartsC@5’ 08: Proceedings of the 15th ACM conference
on Computer and communications security, pages 555-564, New York, NY, USA, 2008. ACM.

[6] Morris Dworkin. Recommendation for block cipher moddsoperation: The XTS-AES mode for
confidentiality on block-oriented storage devices. NIS€&al Publication 800-38E, 2009.

[7] Niels Ferguson. AES-CBC + Elephant diffuser. A disk gmdtion algorithm for Windows Vista.
http://go. mcrosoft.conl fwink/?Li nkl d=82824, 2006.

[8] Trusted Computing Group. PC client work group platformset attack mitigation specifica-
tion. https://wwv. trustedconputi nggroup. org/resources/pc_client_work_
group_platformreset _attack_mtigation_specification_ version_10/,

2008.
[9] Shay Gueron. Advanced encryption standard (AES) igstru
tions set. http://software.intel.conlen-us/articles/

advanced- encryption- st andar d- aes-i nstructions-set/,2009.

14

[10] Peter Gutmann. Data remanence in semiconductor devic€SYM’ 01: Proceedings of the 10th con-
ference on USENIX Security Symposium, pages 4—4, Berkeley, CA, USA, 2001. USENIX Association.

[11] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, isill Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Appelbaum, and EdwardéNMen. Lest we remember: cold-
boot attacks on encryption keySommun. ACM, 52(5):91-98, May 2009.

[12] Shai Halevi and Phillip Rogaway. A parallelizable epfwring mode. IfProc. RSA Conference 2004
Cryptographers Track, pages 292—-304. Springer-Verlag, 2003.

[13] Shai Halevi and Phillip Rogaway. A tweakable enciphgrimode. InAdvances in Cryptology -
CRYPTO 2003, pages 482-499. Springer-Verlag, 2003.

[14] Owen Harrison and John Waldron. Practical symmetric dgptography on modern graphics hard-
ware. InSS08: Proceedings of the 17th conference on Security symposium, pages 195-209, Berkeley,
CA, USA, 2008. USENIX Association.

[15] Peter Kleissner. Stoned bootkiit t p: / / ww. st oned- vi enna. cont , 2009.

[16] Moses Liskov, Ronald L. Rivest, and David Wagner. Twada& block ciphers. Iidvances in Cryp-
tology CRYPTO 2002, pages 31-46. Springer-Verlag, 2002.

[17] Patrick McGregor, Tim Hollebeek, Alex Volynkin, and Kiaew White. Braving the cold: New
methods for preventing cold boot attacks on encryption keylstt ps://ww. bl ackhat .
com present ati ons/ bh-usa- 08/ MG egor/BH _US _08_MG egor _Col d_Boot _

At t acks. pdf , 2008. BitArmorSystems,Inc.

[18] Moni Naor and Gil Segev. Public-key cryptosystemsliesi to key leakage. '€RYPTO '09: Pro-
ceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, pages
18-35, Berlin, Heidelberg, 2009. Springer-Verlag.

[19] Jurgen Pabel. Frozen cache: A blog about the developafi@general-purpose solution for mitigating
cold-boot attacks on full-disk-encryption solutionst t p: / / f r ozencache. bl ogspot . cont ,
20009.

[20] David R. Piegdon. Hacking in physically addressablemmog/: A proof of concept. Seminar of
Advanced Exploitation Techniques, 2007.

[21] Phillip Rogaway. Efficient instantiations of tweakaldlockciphers and refinements to modes OCB
and PMAC. InAdvances in Cryptology - AS ACRYPT 2004, pages 16—-31. Springer-Verlag, 2004.

[22] Joanna Rutkowska. Why do | miss Microsoft BitLockerfit t p: //t hei nvi si bl et hi ngs.
bl ogspot . con’ 2009/ 01/ why- do-i - mi ss-ni crosoft-bitlocker. htm,2009.

[23] Adi Shamir and Nicko van Someren. Playing "hide and $ð stored keys. If-C’99: Proceedings
of the Third International Conference on Financial Cryptography, pages 118-124, London, UK, 1999.
Springer-Verlag.

[24] Sergei P. Skorobogatov. Data remanence in flash menesiges. INCHES, volume 3659 ol ecture
Notes in Computer Science, pages 339-353. Springer, 2005.

15

