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Abstract

Sequential aggregate signature schemes allow n signers, in order, to sign a message each, at
a lower total cost than the cost of n individual signatures. We present a sequential aggregate
signature scheme based on trapdoor permutations (e.g., RSA). Unlike prior such proposals, our
scheme does not require a signer to retrieve the keys of other signers and verify the aggregate-
so-far before adding its own signature. Indeed, we do not even require a signer to know the
public keys of other signers!

Moreover, for applications that require signers to verify the aggregate anyway, our schemes
support lazy verification: a signer can add its own signature to an unverified aggregate and
forward it along immediately, postponing verification until load permits or the necessary public
keys are obtained. This is especially important for applications where signers must access a
large, secure, and current cache of public keys in order to verify messages. The price we pay is
that our signature grows slightly with the number of signers.

We report a technical analysis of our scheme (which is provably secure in the random oracle
model), a detailed implementation-level specification, and implementation results based on RSA
and OpenSSL. To evaluate the performance of our scheme, we focus on the target application of
BGPsec (formerly known as Secure BGP), a protocol designed for securing the global Internet
routing system. There is a particular need for lazy verification with BGPsec, since it is run
on routers that must process signatures extremely quickly, while being able to access tens of
thousands of public keys. We compare our scheme to the algorithms currently proposed for
use in BGPsec, and find that our signatures are considerably shorter than nonaggregate RSA
(with the same sign and verify times) and have an order of magnitude faster verification than
nonaggregate ECDSA, although ECDSA has shorter signatures when the number of signers is
small.
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1 Introduction

Aggregate signatures schemes allow n signers to produce a digital signature that authenticates
n messages, one from each signer. This can be securely accomplished by simply concatenating
together n ordinary digital signatures, individually produced by each signer. An aggregate signature
is designed to maintain the security of this basic approach, while having length much shorter than
n individual signatures. To achieve this, many prior schemes e.g., [LMRS04, Nev08] relied on a
seemingly innocuous assumption; namely, that each signer needs to verify the aggregate signature
so far, before adding its own signature on a new message. In this paper, we argue that this can
make existing schemes unviable for many practical applications, (in particular, for BGPsec [Lep12]
/ Secure BGP [KLS00]) and present a new scheme based on trapdoor permutations like RSA that
avoids this assumption. In fact, our scheme remains secure even if a signer does not know the
public keys of the other signers.

1.1 Aggregate signatures from trapdoor permutations

Boneh, Gentry, Lynn, and Shacham [BGLS03] introduced the notion of aggregate signatures, in
which individual signatures could be combined by any third party into a single constant-length
aggregate. The [BGLS03] scheme is based on the bilinear Diffie-Hellman assumption in the random
oracle model [BR93]. Subsequent schemes [LMRS04, Nev08] were designed for the more standard
assumption of trapdoor permutations (e.g., as RSA [RSA78]), but in a more restricted framework
where third-party aggregation is not possible. Instead, the signers work sequentially ; each signer
receives the aggregate-so-far from the previous signer and adds its own signature.1

Lysyanskaya, Micali, Reyzin, and Shacham [LMRS04] constructed the first sequential aggregate
signature scheme from trapdoor permutations, with a proof in the random oracle model.2 However,
their scheme has two drawbacks: the trapdoor permutation must be certified (when instantiating
the trapdoor permutation with RSA, this means that each signer must either prove certain prop-
erties of the secret key or else use a long RSA verification exponent), and each signer needs to
verify the aggregate-so-far before adding its own signature. Neven [Nev08] improved on [LMRS04]
by removing the need for certified trapdoor permutations, but the need to verify before signing re-
mained. Indeed, a signer who adds its own signature to an unverified aggregate in both [LMRS04]
and [Nev08] (or, indeed, in any scheme that follows the same design paradigm) is exposed to a
devastating attack: an adversary can issue a single malformed aggregate to the signer, and use the
signature on that malformed message to generate a valid signature on a message that the signer
never intended to sign (Appendix A).

The nonsequential scheme of [BGLS03] does not, of course, require verification before signing.
The only known sequential aggregate scheme to not require verification before signing is the history-
free construction of Fischlin, Lehmann, and Schröder [FLS11] (concurrent with our work), but it,
like [BGLS03], requires bilinear Diffie-Hellman.

Thus, the advantages of basing the schemes on trapdoor permutations (particularly a more
standard security assumption and fast verification using low-exponent RSA) are offset by the dis-
advantage of requiring verification before signing. We argue below that this disadvantage is serious.

1The need for the random oracle model was removed by Lu, Ostrovsky, Sahai, Shacham, and Waters [LOS+06],
who constructed sequential aggregate signatures from the bilinear Diffie-Hellman assumption; however, it is argued
in [CHKM10] that this improvement in security comes at a considerable efficiency cost. See also [RS09, CSC09] for
other proposals based on less common assumptions.

2Bellare, Namprempre, and Neven [BNN07] showed how the schemes of [BGLS03] and [LMRS04] can be improved
through better proofs and slight modifications.
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1.2 The need for lazy verification

In applications with a large number of possible signers, the need to verify before signing can
introduce a significant bottleneck, because each signer must retrieve the public keys of the previous
signers in order to run its signing algorithm. Worse yet, signers need to keep their large caches of
public keys secure and current: if a public key is revoked and a new one is issued, the signer must
first obtain the new key and verify its certificate before adding its own signature to the aggregate.

A key application: BGPsec. Sequential aggregate signatures are particularly well-suited
for BGPsec [Lep12] (formerly known as the Secure Border Gateway Protocol (S-BGP) [KLS00]),
a protocol being developed to improve the security of the global Internet routing system. (This
application was mentioned in several works, including [BGLS03, LOS+06, Nev08], and explored
further in [ZSN05].) In BGPsec, autonomous systems (ASes) digitally sign routing announcements
listing the ASes on the path to a particular destination. An announcement for a path that is n
hops long will contain n digital signatures, added in sequence by each AS on the path.

Notice that the length of a BGPsec message even without the signatures increases at every hop,
as each AS adds its name to the path, as well as extra information to the material in the routing
message, such as its “subject key identifier” — a cryptographic fingerprint that is used to look up
its public key in the PKI [Lep12]. Signatures add to this length. Long BGPsec messages may be
problematic for two reasons: in transit, longer messages lead to packet fragmentation, which is a
known security risk in IP networks (see [GH13] and references therein); and, at rest, routers (which
are often memory constrained) need to store hundreds of thousands of BGPsec announcements
in order to be able to forward them to the next hop whenever needed. Shorter signatures, and
particularly aggregate signatures, can be used to mitigate this problem.

The BGPsec protocol is faced with two key performance challenges:

1. Obtaining public keys. BGPsec naturally requires routers to have access to a large number
of public keys; indeed, a routing announcement can contain information from any of the
41,000 ASes in the Internet [COZ08] (this number is according to the dataset retrieved in
2012). Certificates for public keys are regularly rolled over to maintain freshness, and must
be retrieved from a distributed PKI infrastructure [Hus12]. Caching more than 41,000 public
keys is expensive for a memory-constrained device like a router (which often does not have
a hard drive or other secondary storage [KR06]). Furthermore, whenever a router sees a
BGPsec message containing a key that is not in its cache, it incurs non-trivial delay on
certificate retrieval (from a distant device that hosts the PKI) and verification.

2. Dealing with routing table “dumps”. When a link from a router to its neighboring router
fails, the router receives a dump of the full routing table, often containing more than 300, 000
routes [CID], from it neighbors. Because routers are CPU- and memory-constrained devices,
dealing with these huge routing table dumps incurs long delays (up to a few minutes, even
with plain, insecure BGP [BHMT09]!). The delays are exacerbated if cryptographic signing
and verifying is added to the process, and even more so when a router comes online for the
first time (or after failure) and needs to also retrieve and authenticate public keys for all the
ASes on the Internet.

To deal with these issues, the BGPsec protocol gives a router the option to perform lazy verification:
that is, to immediately sign the routing announcement with its own public key, and to delay
verification until a later time, e.g., when (a) it has time to retrieve the public keys of the other
signers, or (b) when the router itself is less overloaded and can devote resources to verification
[DHS]. It is important to note that lazy verification by one router need not hurt others: if a router
has not verified a given announcement, routers further in the chain can verify it for themselves.
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While there is legitimate concern that permitting lazy verification may cause routers to tem-
porarily adopt unverified paths, the alternative may be worse: forbidding lazy verification can lead
to problems with global protocol convergence (agreement on routes in the global Internet), be-
cause of routers that delay their announcements significantly until they can verify signatures (e.g.,
during routing table dumps, or while waiting to retrieve a missing certificate). Such delays create
their own security issues, enabling easier denial of service attacks and traffic hijacking during the
long latency window. Thus, even though BGPsec recommends that every router eventually verifies
BGPsec messages, requiring that routers always verify before signing and re-announcing BGPsec
messages is considered a nonstarter by the BGPsec working group [Sri12, Section 8.2.1]. Lazy
verification is written into the BGPsec protocol specification as follows [Lep12, Section 7]:

...it is important to note that when a BGPSEC speaker signs an outgoing update mes-
sage, it is not attesting to a belief that all signatures prior to it are valid.

Requirement: No public keys in the signing algorithm! Note that the primary obstacle
here is not only verification time (which can perhaps be improved through batching and, anyway,
can be considerably faster than signing time when using low-exponent RSA), but also the need to
obtain public keys. Thus, lazy verification also requires that prior signers’ public keys are not used
in the signing algorithm (e.g., hashed with the message as in [LMRS04, Nev08]).

Requirement: No security risk from signing unverified aggregates! As we already men-
tioned, a signer who adds its own signature to an unverified aggregate in the schemes of [LMRS04]
and [Nev08] is exposed to a devastating attack (Appendix A). We already discussed how lazy
verification may cause a signer to do so. Moreover, even without lazy verification, BGPsec may
sometimes require a signer to add its own signature to an aggregate that is invalid. One such
situation is when a router knowingly adopts a path that fails verification—for example, if it is the
only path to a particular destination (the specification allows this [Lep12, Section 5]). It will then
add its own signature to the invalid one, because a “BGPSEC router should sign and forward a
signed update to upstream peers if it selected the update as the best path, regardless of whether
the update passed or failed validation (at this router)” [Sri12, Section 8.2.1]. The need to sign a
possibly invalid aggregate also arises in the case each message is signed by two different signature
schemes (as will happen during transition times from one signature algorithm to another), and
“one set of signatures verifies correctly and the other set of signatures fails to verify.” In such a
case the signer should still “add its signature to each of the [chains] using both the corresponding
algorithm suite” [Lep12, Section 7]. Even if all BGPsec adopters avoid lazy verification and always
verify before signing, these guidelines make it impossible to adopt an aggregate signature scheme
that does not permit signing unverified aggregates, because of the possibility of attack. In other
words, lazy verification is still needed for security even if no one uses it for efficiency!

Our goal. We note that lazy verification is permitted by the trivial solution of concatenating
individual ordinary signatures, by aggregate signature schemes defined in [BGLS03], and by history-
free aggregate signature schemes defined in [FLS11]. All of the above schemes do not require the
current signer to know anything about the previous signers: neither their public keys nor the
messages they signed.3 Our goal is to obtain the same advantages, while relying on a more basic

3Identity-based aggregate signatures [YCK04, XZF05, CLW05, CLGW06, Her06, GR06, BGOY07, HLY09,
SVSR10, BJ10] also remove the need for obtaining public keys and have been proposed for use in BGPsec. How-
ever, agreeing on the secret-key-issuing authority for the global Internet seems politically infeasible. Moreover, on a
technical level, the proposals either require interaction among signers or are based on bilinear pairings. Interactive
signatures would significantly complicate the protocol. And if we are willing to rely on bilinear pairings, [BGLS03]
already gives us an excellent choice that allows for lazy verification.
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security assumption than the bilinear Diffie-Hellman of [BGLS03, FLS11] and saving space as
compared to the trivial solution.

1.3 Overview of our contributions

We present a sequential aggregate signature scheme that is secure even with lazy verification,
based on any trapdoor permutation (such as RSA). Moreover, as in the nonsequential scheme of
[BGLS03] and the history-free scheme of [FLS11], our signers do not need to know anything about
each other—not even each other’s public keys. To achieve this, we modify Neven’s scheme [Nev08]
by randomizing the H-hash function with a fresh random string per signer, which becomes a part of
the signature, similarly to Coron’s PFDH [Cor02] (Section 3). Our modification allows each signer
to sign without verifying, and without even needing to know the public keys of all the signers that
came before him, avoiding, in particular, the attack of Appendix A.

Although the ultimate goal in aggregate signatures is to produce schemes whose signature length
is independent of the number of signers, signatures in our scheme grow slightly with the number of
signers. However (as also pointed out by [Nev08]), while a constant-length aggregate signature is a
theoretically interesting goal, what usually matters in practice is the combined length of signatures
and messages, because that’s what verifiers receive: signatures rarely live on their own, separately
from the messages they sign. And the combined length of messages, if they are distinct, grows
linearly with the number of signers, so the total growth of the amount of information received
by the verifier is anyway linear. What matters, then, is how fast this linear growth is; below we
derive parameters that show it to be much smaller than when ordinary trapdoor-permutation-based
signatures are used as in the trivial solution.

We make the following contributions:

Generic randomized scheme. We present the basic version of our scheme, which requires each
signer to append a truly random string to the aggregate (Section 3). Our scheme is as efficient
for signing and verifying (per signer) as ordinary trapdoor-permutation based signatures, like the
Full-Domain-Hash (FDH, [BR93, Section4]). We prove security (Section 4) in the random oracle
model, based on the same assumption of trapdoor permutations (or claw-free permutations for a
tighter security reduction) as in [Nev08]. Our security proof is more involved, because the reduction
cannot know the public keys of other (adversarial) signers during the signature queries. We should
note that our proof technique also shows that Neven’s scheme need not hash other signer’s public
keys in the signing algorithm (however, Neven’s scheme still fails under lazy verification).

Shortening the randomness. We show that the per-signer random string can be shorter if
it is made input-dependent (Section 5), ensuring that a given signer never produces two different
signatures on the same input. The idea of input-dependent randomness has been used before in
signature schemes (e.g., [KW03, Section 4]); however, our application requires a new combinatorial
argument to show security.

Instantiating with RSA. Appendix F shows how to instantiate our schemes with practical
trapdoor permutations like RSA, which have slightly different domains for different signers.

Specification, implementation, benchmarking, and practical considerations. We
develop a full, parameterized step-by-step specification of the truly-random and input-dependent-
random versions of our signature when instantiated with RSA. We then implement our specification

Synchronized aggregate signatures (identity-based ones of [GR06] and regular ones of [AGH10]) also allow for
lazy verification, but require a common nonce for all signers that, if repeated, breaks the security of the scheme.
Implementing such a nonce in BGPsec presents its own challenges, because each signer has to ensure it never reuses
a nonce, or else its secret key is at risk. The schemes are also pairing-based.
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as a module in OpenSSL (Section 6); the specification and implementation are available from
[BGR11]. We compare our implementation’s performance to other potential solutions that allow
for lazy verification; namely, [BGLS03], and the “trivial” solution of using n RSA or ECDSA
signatures (the two algorithms currently proposed for use in implementations of BGPsec [DHS]).
When evaluating signatures schemes for use with BGPsec, we consider compute time as well as
signature length. Thus, we show that our signature is shorter than trivial RSA when there are
n > 1 signers and shorter than trivial ECDSA when there are n > 6 signers. (While our signature
is longer than the constant-length [BGLS03] signature, it benefits from relying on the better-
understood security assumption of RSA.) Moreover, our scheme enjoys the same extremely fast
verify times as RSA.

2 Preliminaries

Sequential aggregate signature security. The security definition for aggregate signatures
(both original [BGLS03] and sequential [LMRS04]) is designed to capture the following intuition:
each signer is individually secure against existential forgery following an adaptive chosen-message
attack [GMR88] regardless of what all the other signers do. In fact, we will allow the adversary
to give the attacked signer arbitrary—perhaps meaningless—aggregate-so-far signatures during the
signature queries, thus making them adaptive “chosen-message-and-aggregate” queries. We also
allow the adversary, which we call “the forger,” to choose the public keys of all the other signers
and to place the single signer who is under attack anywhere in the signature chain in the attempted
forgery. This single attacked signer does not know any public keys other than its own and does not
verify any aggregate-so-far given by the attacker.

Our definition is almost verbatim from [LMRS04], with one important difference needed to
enable lazy verification: the public keys and messages of previous signers are not input to the
signing algorithm. Therefore, each signer, by signing a message, is attesting only to that message,
not to the prior signers’ messages and public keys. At a technical level, this change implies that in
security game the forger, in its query to ith signer, is required to supply only the aggregate-so-far
signature allegedly produced by the first i − 1 signers, but not the messages or public keys with
respect to which this aggregate was allegedly produced. And, of course, to be considered successful,
the forger must use a new message—in other words, it is not enough to change a public key or
message of someone else in the chain before the attacked signer (because such public keys and
messages may not even be well defined during the attack). This definition is exactly the one that
is satisfied by the trivial solution of concatenating n individual signatures (and therefore suffices,
in particular, for BGPsec).

Formally, a sequential aggregate signature scheme consists of three algorithms. Key gen-
eration is a randomized algorithm that (given a security parameter) outputs a public-private
keypair (PK ,SK ). Aggregate signing Sign takes as input a private key SK , a message mi to
sign, and a sequential aggregate signature σi−1 on messages m1, . . . ,mi−1 under respective public
keys PK 1, . . . ,PK i−1 (if i = 1, this signature σ0 is taken to be the empty string, denoted by a special
character ε; note that neither m1, . . . ,mi−1 nor PK 1, . . . ,PK i−1 are given to Sign in our version of
the definition). Sign outputs a sequential aggregate signature σi on all i messages m1, . . . ,mi. The
aggregate verification algorithm is given a sequential aggregate signature σn, messages m1, . . . ,mn,
and public keys PK 1, . . . ,PK n, and verifies the validity of the signature on the given messages
under the given keys. The correctness requirement is the natural one: that an aggregate signature
produced by n successive invocations of Sign on the appropriate inputs should verify as correct.

The security requirement is formulated as follows. The adversary F against such a scheme is
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given a single public key and access to sequential aggregate signing oracle on the corresponding
secret key. The advantage of F , AdvAggSigF , is defined to be its probability of success in the
following game.

Setup. A key pair PK ,SK is generated. The aggregate forger F is provided with PK , the
challenge key.

Queries. F requests sequential aggregate signatures to be produced with SK on messages of
its choice. For each query, it supplies an (alleged) sequential aggregate signature σ and
an additional message m to be signed by the oracle under key SK . It can be adaptive,
i.e., use the results of previous queries in order to decide on the current query.

Response. Finally, F outputs n distinct public keys PK 1, . . . ,PK n for some integer n of its
choice. One of these keys must equal PK , the challenge key. Algorithm F also outputs
messages m1, . . . ,mn, and a sequential aggregate signature σ.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate signature
on messages m1, . . . ,mn under keys PK 1, . . . ,PK n, if PK = PK i∗ for some 1 ≤ i∗ ≤ n, and
if σ is nontrivial, i.e., F never issued a query on the message mi∗ . Note that i∗ need not
equal n: the forgery can be made in the middle of the sequence. The probability is over the
coin tosses of the key-generation algorithm, the signing algorithm, and F .

In the random oracle model, F can also issue adaptive queries to the random oracle during its
attack.

Fischlin, Lehmann, and Schröder [FLS11] propose a stronger security definition for their “history-
free” signatures (building on history-free MACs of [EFG+10]), which prevents certain reordering
and recombining of signatures. Their definition thus has a security property that the trivial so-
lution of concatenating n individual signatures does not have. Although this security property is
not needed in many applications (for example, in BGPsec reordering and recombining of signa-
tures is prevented simply by the protocol message structure, where each message must, for the
purposes of functionality, include all the signed information contained in previous messages), our
signature scheme in fact also prevents reordering and recombining that are of concern to [FLS11]:
see Appendix G.

Cryptographic primitives. We will use pseudorandom function [GGM86] which we define
here for the sake of completeness.

A pseudorandom function family (PRF) [GGM86] is one in which a randomly chosen function
is indistinguishable from a truly random function by an observer of input-output behavior. We
will consider only PRFs with variable input lengths and a fixed output length `r. The formal
definition we need is as follows: if PRFseed : {0, 1}∗ → {0, 1}`r is a family of functions indexed by
seed and D is an adversary that outputs a single bit (also known as distinguisher), consider the
following two experiments. In the first, seed is chosen at random (not shown to D), and D gets
to ask for outputs of PRFseed on inputs of its choice. In the second, a completely random function
f : {0, 1}∗ → {0, 1}`r is chosen at random, and D gets to ask for outputs of f on inputs of its choice.
We will say the insecurity of PRF is the absolute value of the difference between the probabilities
that D outputs 1 in the two experiments. We will denote by εPRF(q, t) the maximum insecurity of
PRF against any D who asks at most q queries and runs in time t.

We assume the reader is familiar with the trapdoor permutations [DH76]. We will say that the
generation algorithm for a trapdoor permutation outputs a description of a bijective function π (the
public easy direction of the trapdoor permutation) and its inverse π−1 (the secret hard direction).
Claw-free permutations [GMR88, Section 6.2] are trapdoor permutations with an additional feature:
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the generation algorithm also outputs a description of a bijective function ρ on the same domain
as π, such that, given π and ρ, it is hard to find a pair x, z with π(x) = ρ(z) (such a pair is a called
a “claw” ).

3 Our basic signature scheme

The intuition behind our construction is as follows. Recall the random-oracle-based Full Domain
Hash signature scheme [BR93], in which a message m is hashed to same length as the domain of a
trapdoor permutation π, and the signature x is computed as π−1 applied to the hash value.
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Figure 1: Full Domain Hash Signature Scheme of [BR93]

In order to aggregate such signatures, Lysyanskaya et al. [LMRS04] had the ith signer XOR the
previous signature xi−1 together with the hash value of the current message mi and then apply
the hard direction of the current signer’s trapdoor permutation π−1i to get the signature xi. The
previous signature xi−1 could then be recovered during verification. Unfortunately, this approach
had two drawbacks: it required (1) that the verification procedure check that each πi is truly a
bijection, and (2) that each signer verify the validity of the signature received from the previous
signer.
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Figure 2: Aggregate Signature Scheme of [LMRS04]

Neven [Nev08] showed that the first drawback can be removed if the previous signature xi−1 is
hashed together with current signer’s message mi. However, such hashing makes it impossible to
recover xi−1 during verification of xi. Neven then utilized the following approach from Bellare and
Rogaway [BR96, Scheme PSS-R]: perform the hashing in two steps, first contracting to get a short
value hi, and then expanding to the domain of πi. If the value hi is available to the verifier, then the
verifier can perform the second hashing step before even knowing xi−1. Neven demonstrated that
hi values can be aggregated together by XORing. Thus, in Neven’s scheme the signature output
consists of two values: the output xi of a trapdoor permutation and the short aggregated hash
value hi. (Neven has additional innovations to save more space and enable variable-size domains
for the permutations πi, which we omit here for simplicity of exposition.)

While the first drawback of the scheme of [LMRS04] is removed in Neven’s scheme, the sec-
ond one is still present: verifying before signing is necessary, because the transformation from
(xi−1, hi−1) to (xi, hi) is deterministic, invertible, and can be performed by the adversary, except
for the inversion of the trapdoor permutation performed at the last step. As we show in Appendix A,
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Figure 3: Aggregate Signature Scheme of [Nev08] (Simplified)

no scheme constructed in this manner can permit lazy verification while protecting against a chosen
message attack. Thus, in our scheme, to enable lazy verification, we require each signer to add a
random string ri to the hash, and concatenate and append these strings to the signature. Because
the adversary lacks a priori knowledge of these random strings, the chosen message attack becomes
useless and we can prove that this is sufficient to enable lazy verification.

1 

πi
 −1 yi xi 

m1, …, mi 
π1, …, πi H 

ηi G ⊕ hi ⊕ 

hi−1 xi−1 

hi 

xi−1 
gi 

πi
 −1 yi xi mi 

πi 
H 

ηi G ⊕ hi ⊕ 

hi−1 xi−1 

hi 

xi−1 
gi 

ri 

πi
 −1 yi xi 

m1, …, mi 
π1, …, πi H ⊕ 

xi−1 

gi 

π −1 
y 

x m H 

r1, …, ri−1 

 

Figure 4: Our Aggregate Signature Scheme

Notation. We now describe the scheme precisely, using the following notation:

• Let mi be the message signed by signer i.

• Let trapdoor permutation πi be the public key of signer i and π−1i be the corresponding secret
key. We assume all permutations operate on bit strings of length `π, i.e., have domain and
range {0, 1}`π . (In Appendix F we remove the assumption that all permutations operate on
the same domain. Section 6 uses this to instantiate π from the RSA assumption, where πi is
the easy direction, and π−1i is the hard direction of the RSA permutation.)

• Let H (resp. G) be a cryptographic hash function (modeled as a random oracle) that outputs
`H -bit (resp. `π-bit) strings.

• Let `r be a parameter denoting the length of the randomness appended by each signer.

• Let the notation ~ai denote a vector of values (a1, a2, ..., ai).

• Let ⊕ to denote bitwise exclusive-or. Exclusive-or is not the only operation that can be used;
any efficiently computable group operation with efficient inverse can be used here.

• ε is a special character denoting the empty string; we assume ε⊕ x = x for any x.
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Sign: The ith Signer’s algorithm

Require: πi, π
−1
i ,mi, xi−1, hi−1 (where

xi−1, hi−1 = ε, ε if i = 1).

1: Draw ri
R← {0, 1}`r

2: ηi ← H(πi,mi, ri, xi−1)
3: hi ← hi−1 ⊕ ηi
4: gi ← G(hi)
5: yi = gi ⊕ xi−1
6: xi ← π−1i (yi)
7: return ri, xi, hi {Note that xi and
hi go to the next signer; all the ri
values go to the verifier, but only the
last signer’s xi and hi do.}

VerH,G: The Verification Algorithm

Require: ~πn, ~mn, ~rn, xn, hn
1: for i = n, n− 1, ...., 2 do
2: yi ← πi(xi)
3: gi ← G(hi)
4: xi−1 ← gi ⊕ yi
5: ηi ← H(πi,mi, ri, xi−1)
6: hi−1 ← hi ⊕ ηi
7: if h1 = H(π1, r1,m1, ε)

and π1(x1) = G(h1) then
8: return 1
9: else

10: return 0

The ith signer’s signing algorithm has no dependency on the number of signers; it takes in only
the ith signers’ own public key and message and the aggregated portion of the signature xi−1, hi−1.
Moreover, the aggregated signature need not be verified before it is signed. For verification, only
a single xi and hi—namely, the one from the last signer—is needed. However, every ri, from the
first signer to the last, is needed.

4 Security proof

We prove our scheme secure if G and H are modeled as random oracles and π is a trapdoor
permutation. The proof is easier to understand if π is additionally claw-free (in particular, any
homomorphic permutation, such as RSA, is claw-free if it is trapdoor). We therefore present the
proof for the claw-free case. The more general case is addressed in Appendix E.

Our proof shows how a forger F on the aggregate signature scheme can be used to construct a
reduction R that finds a claw in claw-free pair (π∗, ρ∗). R has F forge a signature for victim signer
that uses permutation π∗ by running F (π∗), and then uses the resulting forgery (~πn, ~mn, ~rn, xn, hn)
(where π∗ ∈ πn and the value n is chosen by F ) to find a claw in the claw-free pair. The structure
of our reduction is similar to [Nev08]; however, while [Nev08] constructs a “sequential forger” from
forger F and then constructs reduction R from the sequential forger, our reduction must proceed in
one step (since the notion of a sequential forger is undefined if hash queries do not include previous
signers public keys).

Simplifying assumptions about the forger F . The following simplifies our proof:

• We assume that the forger F forges the last signature in the signature chain; in other words,
πn = π∗ and mn is a new message never queried by F to the signing oracle (whose public
key is π∗). Indeed, any F can be easily modified to do so: if π∗ and a new message mn′ are
present in ~πn but at location n′ < n, then we can run the verification algorithm loop for n−n′
iterations to obtain xn′ , hn′ and output (~πn′ , ~mn′ , ~rn′ , xn′ , hn′) as the new forgery, which will
be valid if and only if the original forgery was valid. Note that we do not assume that π∗ (or
any other public key) is present in the signature chain only once.

• We assume that before forger F outputs its forgery and halts, it makes hash queries on all
the hashes that will be computed during the verification of its forgery. Moreover, we assume
that the forger does not output an invalid forgery; instead, it halts and outputs ⊥. Indeed,
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any F can be modified to do so; simply run the verification algorithm upon producing the
forgery, and check that mn is different from every message asked in a sign query.

F ’s queries. Note that when running F , the reduction R needs to be able to answer oracle
queries by F , which are as follows:

• H-Query. F asks query Q = (π,m, r, x) (where x may be ε) and expects to see H(Q) = η.

• G-query. F asks query h, and expects to see g = G(h).

• Sign Query. F asks query (m,h, x) to be signed by π∗, and expects to see r, h′, x′ back,
where r looks uniform, h′ = h⊕H(π∗,m, r, x), and π∗(x

′) = G(h′)⊕ x.

4.1 Description of the reduction R

4.1.1 Data structures used by R

HT and GT tables. The reduction R uses ‘programmable random oracles’, i.e., it chooses
answers for random oracle queries. R keeps track of queries whose answers have already been
decided in two tables: HT for H and GT for G. We say HT(Q) = η if HT stores η as the answer to
a query Q, and HT(Q) = ⊥ if HT has no answer for Q (similar for GT).

The HTree. The key challenge for the reduction is programming G, since G-queries are made on
sums of H-query answers, rather than on individual H-query answers. Thus the reduction keeps
an additional data structure, the HTree, that records responses to H-queries that may eventually
be used as part of forger F ’s forgery. (HTree is inspired by the graph G in [Nev08, Lemma 5.3].)

The HTree is a tree of labeled nodes that stores a subset of the queries in HT. Each node in
HTree (except the root) corresponds to an H-query that could potentially appear in the forger F ’s
final forgery; the queries asked during verification of the forgery will appear on a path from one of
the leaf nodes to the root (unless a very unlikely event occurs). The HTree has a designated root
node that stores the value h0 = 0. We consider the root to be at depth 0. A node Ni at depth
i > 0 stores:

• a pointer to its parent node

• a query Qi = (πi,mi, ri, xi−1) (where xi−1 = ε if and only if i = 1),

• the “hash-response” values ηi = HT(Qi) and hi, computed as the XOR of the values η1, . . . , ηi
on the path from the root to the node Ni (equivalently, hi−1⊕ ηi, where hi−1 is stored in the
parent node),

• an auxiliary value yi that is used to determine how future queries are added to the HTree,
computed as GT(hi)⊕ xi−1 (note that yi is the value to which the signer would apply π−1i ),

• if πi = π∗, an auxiliary value z that may be used to find a claw in (π∗, ρ∗).

Every node at depth i = 2 or deeper satisfies the relation πi−1(xi−1) = yi−1, where πi−1 and yi−1
are stored at the node’s parent. New H-queries Q are added as nodes to the HTree if they can
satisfy this relation; we say that such a query can be tethered to an existing node in the HTree.
Intuitively, a query tethered to Ni becomes a child of Ni in the HTree:

Definition 4.1 (Tethered queries). An H-query Q containing x 6= ε is tethered to node Ni in the
HTree if Ni stores πi, yi such that πi(x) = yi. If x = ε, then Q is tethered to the root of the HTree.
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The HTree’s Lookup function (Algorithm 1) determines the HTree node to which query Q can be
tethered. (Lemma B.3 argues that Lookup finds at most one node with high probability.) The
HTree is populated via the Sim-H algorithm (Algorithm 4). The reduction R adds an H-query Q
to the HTree if and only if it is tethered to some node in the HTree at the time that forger F makes
the H-query. It is possible that some query Q is not tethered at the time it is made, but becomes
tethered at at later time (after some new nodes are added to the HTree). However, Claim B.9
shows that this is highly unlikely.

4.1.2 Algorithms used by R

The reduction R uses the following algorithms (Algorithms 1–5).

G-queries. R answers these queries using a simple algorithm Sim-G (Algorithm 2). Sim-G returns
GT(h) if it is already defined, or, if not, returns a fresh random value and records it in the GT.

Sign-queries The reduction R answers queries (m,h, x) to be signed by π∗ using Sim-S (Al-
gorithm 5). Since the reduction does not know the inverse of the challenge permutation π−1∗ , it
‘fakes’ a valid signature by carefully assigning certain entries in random oracle tables HT,GT, and
ABORTS if these entries in HT,GT have been previously assigned. Later, we argue that Sim-S is
unlikely to abort, since the entries added to HT,GT by Sim-S depend on a fresh random value r
chosen as part of each signature query (Lemma B.7).

H-queries The reduction R answers these queries Q = (π,m, r, x) using Sim-H (Algorithm 4). If
there is an entry for Q in the HT, then Sim-H returns it. Otherwise, it assigns a fresh random value
η as HT(Q). Next, Sim-H needs to prepare for the event that Q could lead to a forgery by the forger
F , and thus needs to be stored in the HTree. To do this, Sim-H uses the Lookup function to check if
Q can be tethered and thus should be added to the HTree. If Q can be tethered, Sim-H adds a new
node to the HTree containing Q, its hash response η, and an auxiliary value y that is used by the
Lookup function to tether future H-queries. In order to ensure that HTree is a tree (Lemma B.3), it
is important to ensure that y is a fresh random value; Sim-H aborts if that’s not the case. Finally,
if Q contains the challenge permutation π∗, Sim-H adds a value z to the HTree node that FindClaw
will use to derive a claw from a valid forgery output by the forger F . To prepare these values,
Sim-H behaves almost as if it is ‘faking’ the answer to a sign-query, except that instead of using the
usual challenge permutation π∗ (as in Sim-S), it uses the challenge permutation ρ∗ applied to z (so
as to benefit from forger F ’s forgery, which would invert π∗ on the output of ρ∗(z), thus producing
a claw). As in Sim-S, this involves carefully assigning certain entries in GT, and aborting if these
entries are already assigned. (Claim B.6 shows that Sim-H is unlikely to abort.)

Finding a claw. Finally, forger F outputs a forgery ~πn, ~mn, ~rn, xn, hn, where πn = π∗. Recall that
our simplifying assumptions mean that the forgery is valid. The reduction R uses FindClaw (Algo-
rithm 3) to find a claw from the forgery. Because we assumed all the queries for verifying the forgery
have already been asked, the query (π∗,mn, rn, xn−1) is in HT. Moreover, if the forgery is valid,
then with high probability it is in the HTree as a child of the node storing (πn−1,mn−1, rn−1, xn−2),
which is in turn a child of the node storing (πn−2,mn−2, rn−2, xn−3), etc. This holds because in a
valid forgery, each H-query made during verification is tethered to the next one, and, by Claim B.9,
all tethered queries are in the HTree with high probability. The value xn (from the forgery) and
value zn (from HTree node of the query Q = (π∗,mn, rn, xn−1)) constitute a claw.
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Algorithm 1 Lookup

Require: x
1: if x = ε then
2: return Root node of HTree
3: else
4: Nodelist = {all nodes N in HTree contain-

ing π, y such that π(x) = y}
5: if Nodelist contains more than one node

then
6: ABORT
7: else if Nodelist is empty then
8: return ⊥
9: else

10: return the single node in Nodelist

Algorithm 2 Sim-G: Answering a G-Query

Require: h
1: if GT(h) = ⊥ then

2: Draw g
R← {0, 1}`π

3: GT(h)← g
4: return GT(h)

Algorithm 3 FindClaw

Require: (~πn, ~mn, ~rn, xn, hn) with πn = π∗
1: Nn ← Lookup(xn)
2: if Nn = ⊥ then
3: ABORT
4: Retrieve zn the node Nn

5: return Claw (xn, zn).

Algorithm 4 Sim-H: Answering an H-Query

Require: Q = (π,m, r, x)
1: if HT(Q) = ⊥ then

2: Draw η
R← {0, 1}`H

3: HT(Q)← η
4: Ni−1 ← Lookup(x)
5: if Ni−1 6= ⊥ then
6: Create new node Ni with parent Ni−1
7: Retrieve hi−1 from parent Ni−1
8: hi ← hi−1 ⊕ η
9: if GT(hi) 6= ⊥ then

10: ABORT
11: if π 6= π∗ then
12: gi ← Sim-G(hi)
13: yi ← gi ⊕ x
14: Populate node Ni with Q, η, hi, yi
15: else
16: Draw zi

R← {0, 1}`π
17: yi ← ρ∗(zi)
18: Populate node Ni with Q, η, hi, yi, zi
19: GT(hi)← yi ⊕ x
20: return HT(Q)

Algorithm 5 Sim-S: Answering a Sign-Query

Require: (m,h, x)

1: Draw r
R← {0, 1}`r

2: Q← (π∗,m, r, x)
3: if HT(Q) 6= ⊥ then
4: ABORT
5: else
6: Draw η

R← {0, 1}`H
7: HT(Q)← η
8: h′ ← η ⊕ h
9: Draw x′

R← {0, 1}`π
10: y′ ← π∗(x

′) .
11: if GT(h′) = ⊥ then
12: GT(h′)← y′ ⊕ x
13: else
14: ABORT
15: return r, h′, x′.
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4.2 Analysis of the reduction

Theorem 4.2. If a forger F succeeds with probability ε, then the reduction R takes time at most
T (F ) + qST (Sim-S) + qHT (Sim-H) + qGT (Sim-G) + T (FindClaw) and finds a claw for (π∗, ρ∗) with
probability at least

ε− (qS + qH)(qS + qG + qH)2−`H − qS(qS + qH)2−`r − q2H2−`π , (1)

where T (·) denotes the running time of an algorithm, and qH is the number of H-hash queries, qG
is the number of G-hash queries, and qS is the number of sign queries made by the forger F .

We prove this theorem in Appendix B. The proof hinges on two key statements about the
HTree. First (Claim B.5), the probability that Lookup(x) finds more than one HTree node is low
(even though Lookup uses the functions π stored in the nodes of the HTree, which do not have to be
permutations, because they are adversarially supplied and not certified like in [LMRS04]). Second
(Claim B.9), an H-query that was not added to HTree is unlikely to become tethered at some later
time. Both statements rely on the fact (proven in Claim B.4) that each time a query is placed on
the HTree, its y value is random and independent of every other y value.

5 Shorter signatures via input-dependent randomness

To shorten our signature, we now show how to reduce `r (the length of the randomness appended
by each signer). To do this, we replace the truly random r from our basic scheme with an r that
is computed as a function of the inputs to the signer, and argue that it can be made shorter than
the random r. Intuitively, we are able to maintain security with a shorter r because a given signer
never produces two different signatures on the same input, thus limiting the information that an
adversary can see and exploit. Of course, this input-dependent r need not be truly random; it
suffices for a r to be a pseudorandom function of the input.

5.1 Modifying the scheme

We now compute r as a pseudorandom function (PRF) over the input (mi, hi−1, xi−1) received by
that signer i. Let PRFseed : {0, 1}∗ → {0, 1}`r be a PRF with seed seed and insecurity εPRF(q, t)
against adversaries asking q queries and running in time t. Add a uniformly chosen seed to the
secret key of the signer and replace line 1 of the signing algorithm with r ← PRFseed(m,h, x).

In the previous section, we found that `r must be long enough to tolerate a security loss of
qS(qH + qS)2−`r (Theorem 4.2). As we show below, `r in the modified scheme can be shorter, since
it needs only to allow for a security loss of approximately (qG + qH + qS + `Hq

2
S)2−`r . This is an

improvement if we assume that qH ≈ qG (since both H and G are hash functions) and qS � qH
(since in practice hash queries can be made offline, while signing queries need access to an actual
signer).

5.2 Key insight for the security proof

Using the reduction of Section 4, we had to choose r long enough to make it unlikely that when
a forger makes a sign query on (π∗,mi, xi−1, hi−1), the algorithm Sim-S draws a random ri that
collides with a previously made H-query Qi = (π∗,mi, ri, xi−1). Indeed, if Qi was answered by ηi
and the forger chooses hi−1 so that hi (which is computed as hi−1 ⊕ ηi) has already been queried
to G, then when r collides, the reduction would be prevented from programming the random
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oracle G(hi). Making r depend on the forger’s input to the signer means that the forger gets only
one chance (rather than qS chances) to make this happen for a given Qi, hi−1, and hi, because
subsequent attempts by the forger will use the same r.

Proof Sketch. The full statement and proof of the security theorem for the modified scheme is in
Appendix C. We modify the reduction R to not abort if HT already contains the relevant H-query.
Specifically, we replace the ABORT on line 4 of Sim-S (Algorithm 5) with

η ← HT(Q) .

(All the rest of R’s algorithms are unchanged.) As such, we must now consider a new case where
Sim-S aborts; namely, if Sim-S draws an r that defines a query Q = (π∗,m, r, x) that is already in
HT and the value h′ = η ⊕ h is already stored in the GT (where recall that η = HT(Q) and h was
given as part of the query to Sim-S). Call such r bad for m,h, x. How likely is it that Sim-S draws
a bad r?

Claim 5.1. Pr[Sim-S ever draws a bad r] ≤ (qS + qH)22−`H + (qG + qH + qS + (`h + 2)q2S)2−`r .

Proof. Consider a matrix ζ whose rows are indexed by queries (i.e., h′) in GT and whose columns are
indexed by queries in HT that start with π∗ (i.e., , there is a column for eachQ = (π∗,m, r, x) ∈ HT).
The entry in row h′ and column Q is h = h′ ⊕ η, where η = HT(Q). Sim-S draws an r that is bad
for m,h, x if and only if it (a) draws an r such that Q = (π∗,m, r, x) ∈ HT, and (b) h exists in the
Qth column of ζ.

Thus, we will say that a column Q = (π∗,m, r, x) of ζ is bad for (m,h, x) if at least one of the
entries in that column is h (denote the set of such columns BAD(m,h, x)). The number of r values
that are bad for a particular triple (m,h, x) is equal to the number of columns that are bad for
that triple, and thus the probability that a bad r is chosen by Sim-S when responding to (m,h, x)
is equal to 2−`r · |BAD(m,h, x)|. Now consider all the queries that have a given h. Note that the
bad columns do not overlap for such queries (because each column is labeled with m and x). By
the union bound, the probability that Sim-S draws a bad r during any signature query with h is
at most 2−`r ·

∑
m,x |BAD(m,h, x)|. Since the bad columns do not overlap,

∑
m,x |BAD(m,h, x)|

is bounded by the number of times h occurs in ζ. Thus, we can bound the overall probability that
Sim-S ever draws a bad r by at most:

2−`r
qS∑
i=1

# of times the ith most frequent entry appears in ζ .

The claim follows from the answer to the following combinatorial problem.

Combinatorial problem. Suppose β values η1, . . . , ηβ are chosen uniformly at random as `H -bit
strings and given to an adversary, who then chooses α distinct values h′1, . . . , h

′
α. The α×β-matrix

ζ is constructed by XORing the η and the h′ values. A collision in ζ is a set of entries that are all
equal. What is the total number of entries in the γ biggest collisions?

Theorem 5.2. With probability at least 1− β22`H , the total size of the γ biggest collisions in ζ is
at most α+ (`h + 2)γ2.

We can use Theorem 5.2 (proved in Appendix D) to bound the probability of choosing a bad r. α
is the size of GT, which is at most qG + qH + qS . β is the number of HT entries, which is at most
qS + qH . γ is at most qS . Then, the claim follows by observing that the probability that Sim-S ever
aborts is at most (a) the probability that the event of Theorem 5.2 doesn’t hold, which is at most
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2048-bit RSA Our scheme 256-bit ECDSA 256-bit BGLS

Signature length (bits) 2048n 2304 + 129n 512n 257

Length for n = 4.5 (bits) 9216 2885 2304 257

Length for n = 7 (bits) 14336 3207 3584 257

Sign time (ms) 11.8 11.9 2.3 1.9

Verify time (ms) 0.3n 0.3n 2.8n ≈ 18.9 + 6.6n

Verify time for n = 4.5 (ms) 1.3 1.3 12.5 47.6

Verify time for n = 7 (ms) 2.1 2.1 19.4 64.8

Table 1: Benchmark results for n signers. Computed on a laptop with a Core i3 processor at 2.4GHz
and 2GB RAM, running Ubuntu. The first three schemes were implemented using OpenSSL [ope]
(with SHA-256 hashing and RSA public exponent of 65537); the BGLS scheme was implemented
using MIRACL [Sco11] (with the curve BN-128 [BN05] and with precomputation on the curve
generator but not on the public keys; further precomputation on the public keys seems to improve
verification performance by up to 20% at the cost of additional storage). Results for specific values
of n are not exactly in proportion due to rounding.

β22−`H = (qS + qH)22−`H , plus (b) the probability that, even though the event of Theorem 5.2
holds, a bad r is chosen, which is at most (α+(`h+2)γ2)2−`r ≤ (qG+qH +qS+(`h+2)q2S)2−`r .

6 Implementation and Evaluation

In Section F we present technical arguments for how our schemes can be instantiated with RSA. We
implemented the input-dependent-r version as a module in OpenSSL [ope]. The full specification
and the code are available from [BGR11].

Overview of our implementation. We instantiate the permutation π with 2048-bit RSA
with public exponent 65537, hash H with SHA-256, full-domain hash G with the industry-standard
Mask Generating Function (MGF) using SHA-256 [RSA02], and the pseudorandom function PRF
with HMAC-SHA-256 [BCK96]. Instead of hashing the permutation π as-is inside the hash function
H, we replace it with a short fingerprint of the RSA public key computed using SHA-256. Thus,
we have parameters `π = 2048, `h = 256, and `r = 128; the `r value is per signer, and each signer
also adds one bit of information to deal with the problem that RSA gives each signer a slightly
different domain (see Section F). Therefore, the length of the aggregate signature for n signers is
2048 + 256 + 129n bits long (see Table 1). We justify this choice of parameters as part of our
specification, available from [BGR11].

Evaluation. We compare the implementation described in the previous paragraph to other
signature schemes that allow for lazy verification. Table 1 contains data on our scheme as well as
the “trivial” solution of using n RSA signatures, the solution of similarly using n ECDSA [Van92,
IEE02] signatures (which are current contenders for adoption in BGPsec [Sri12, Section 4.1]), and
the aggregate scheme of [BGLS03] (we do not compare against [FLS11], because it is a more
complicated version of [BGLS03], so [BGLS03] performs better than [FLS11], anyway). In addition
to providing formulas in terms of the number n of signers, we show results for specific values of
n = 4.5 and n = 7. The value of 4.5 was chosen because it is roughly the average length of an AS
path for a well-connected router on the Internet today (average length fluctuates with time and
vantage point—see, e.g., here [Smi12]). We should note, however, that performance for higher than
average values of n is particularly important: transition to BGPsec is expected to be particularly
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problematic for weaker routers, which are more likely to be located in the less well-connected
portions of the Internet, and that experience longer than average paths. We therefore also show
results for n = 7 (the smallest integer n for which our scheme beats ECDSA in signature length).

The table shows that the [BGLS03] scheme is a clear winner in terms of signature length and
signing time, but has considerably slower verification4. It should be noted, however, that it is not
being considered for the BGPsec standard at this stage [Sri12, Section 4.1]: schemes relying on
bilinear Diffie-Hellman are not considered ready for worldwide deployment on the internet backbone
by the BGPsec working group, because a consensus has not emerged on which curves provide
the right tradeoff between security and efficiency (for example, there is not a NIST-approved set
of curves such as the one contained in [NIS09, Appendix D] for non-pairing-based elliptic-curve
cryptography). It is also important to note that the time required to compute group operations
and bilinear pairings depends very heavily on the curve used; improvements for various curves are
produced frequently, and there is no generally accepted set of curves or algorithms at this point.
We believe that, assuming continued progress to speed-up pairings on specific curves and sufficient
confidence in the security of bilinear Diffie-Hellman on these curves, the scheme of [BGLS03] (as
improved by [BNN07]) should be considered for real applications.

As far as the remaining three schemes are concerned, we observe that ECDSA provides the
shortest signatures when n < 6, while our scheme dominates the three for n > 6 (as we already
mentioned, performance for higher than average n is particularly important.) We also observe
that our scheme has computation time almost identical to simple RSA while having much shorter
signatures (RSA signature length is listed as a particular concern in [Sri12, Section 4.1.2]). While
ECSDA has the fastest signing time, the verification times for RSA and our scheme are an order
of magnitude faster than those of ECDSA. Note that, for a router, the time required to sign does
not depend on n, but the time required to verify grows linearly with n, so verification times are
also of particular importance to weaker routers at the edge of the network.

Thus, if one is interested in a scheme based on the standard assumption of trapdoor permuta-
tions (albeit in the random oracle model), then our proposal fits the bill. Moreover, even if one is
willing to accept security of ECDSA (which is not known to follow from any standard assumptions),
our scheme may be preferable based on fast verify times and comparable-length signatures. Our
scheme also has much faster verifying that pairing-based BGLS.
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A Lazy verification and prior TDP-based proposals

[LMRS04] is a sequential aggregate signature that produces a constant length aggregate xi. Using
the notation of Section 3, the signature algorithm requires the ith signer to compute the aggregate
xi from the aggregate-so-far xi−1 as follows:

xi = π−1i (xi−1 ⊕H(π1, ..., πi,m1, ...,mi)) (2)

The security of [LMRS04] relies on the fact that the ith signer verifies xi−1 before producing xi
as above. We now show how an adversary can forge a valid signature on a message m̂i 6= mi by
adversarially malforming the aggregate-so-far.

Suppose the adversary knows that the ith signer is signing the message mi. In that case, playing
the role of the first i− 1 signers, he sets

x̂i−1 = xi−1 ⊕H(π1, ..., πi,m1, ...,mi)

⊕H(π1, . . . , πi,m1, . . . , m̂i)

where xi−1 is a valid signature on messages m1, . . . ,mi−1. If the ith signer now produces a signature
using the invalid aggregate-so-far x̂i−1, then a little algebraic manipulation shows that the adversary
now possesses a valid signature on messages m1, . . . ,mi−1, m̂i, and thus the security of [LMRS04]
does not hold under lazy verification. The analogue of this attack also works on [Nev08]. Here, the
adversary malforms only the hash value hi−1 as:

ĥi−1 = hi−1 ⊕H(πi,mi, xi−1)⊕H(πi, m̂i, xi−1)

In fact, more generally, consider any scheme that, like [LMRS04] and [Nev08], operates as fol-
lows. The ith signer takes the aggregate-so-far (let’s denote by it si−1), applies some transformation
T to it that depends on the message mi (let’s denote it by ti = Tmi(si−1)), and then applies π−1i to
ti (or a portion of it, as in [Nev08]) to get si. The verifier, for each i, takes si, applies the trapdoor
permutation πi to get ti = πi(si), and inverts Tmi to get si−1 = T−1mi (ti). Invertability of T , which
is required for verification, is exactly the reason that such a scheme is insecure if si−1 is not verified
by signer i. The attack is the same as before: the adversary, playing the role of the first i − 1
signers, computes a valid signature si−1 on messages m1, . . . ,mi−1 and sets ŝi−1 = T−1mi (Tm̂i(si−1)),
thus guaranteeing that Tmi(ŝi−1) = Tm̂i(si−1). Now if signer i produces a signature si on message
mi using adversarially supplied ŝi−1 as “signature” of signer i − 1. then si is a valid signature on
m1, . . . ,mi−1, m̂i), while signer i never intended to sign m̂i.

This problem seems fundamental with the design paradigm: verification recovers every interme-
diate aggregate signature, so the function Tmi needs to be invertible, but its invertability is what
allows the attack. Any approach that tinkers with Tmi will not result in a scheme that permits lazy
verification. We thus need a different design paradigm—changing Tmi to a randomized function is
essentially what our scheme proposes.
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B Proof of Theorem 4.2

Our proof proceeds in two steps. First, we argue that with high probability forger F will not detect
that it is interacting with the reduction R rather than the real oracles. To do so, we define the
view of forger F to be everything F sees during a run, including F ’s input (the public key), F ’s
private coin flips, and the answers F receives to its H, G, and signature queries. The reduction,
unlike the real execution, may abort before F outputs its forgery, in which cases we call the view
of F “aborted.” F ’s inability to detect that it is interacting with the reduction R follows from the
following two lemmas.

Lemma B.1 (Correct Simulation). For every view that is not aborted, the probability that F sees
that view when interacting with the reduction is the same as the probability F sees that view in the
real execution.

Lemma B.2 (Abort Probability). The reduction R aborts (either before or after the forger F
outputs the forgery) with probability at most

Pr[ABORT] ≤ (qS + qH)(qS + qG + qH)2−`H + qS(qS + qH)2−`r + q2H2−`π (3)

Thus, if forger F outputs a forgery with probability ε when interacting with the real signer, then,
by the union bound, the probability that it outputs a forgery and the reduction does not abort is
at least ε−Pr[ABORT ] (indeed, consider the union of two bad events: F doesn’t output a forgery
or the reduction aborts). But if the reduction does not abort, then it outputs a claw (xn, zn). By
Lemma B.8, π∗(xn) = yn, where yn is the value stored with the node Nn. And by construction
of yn on line 17 of Sim-H (Algorithm 4), ρ∗(zn) = yn. Hence, the reduction succeeds in finding a
claw. It suffices to prove the two lemmas, which we do below.

B.1 Proof of Correct Simulation Lemma B.1

The public key given to forger F and F ’s private coin flips are the same in the simulation and in
the real execution. Thus, it remains to show that the reduction R correctly simulates H-queries,
G-queries, and Sign-queries. Indeed, consider a not aborted view of F obtained during interaction
with reduction R.

• H-queries. For every H-query in the view, the answer was placed into HT by Sim-H (Algo-
rithm 4) or Sim-S (Algorithm 5). Each produced the HT entry by drawing an independent
uniformly random η, just like the real execution random oracle. The probability of that
particular answer is 2−`H in both cases.

• G-queries. Consider a G-query in the view. Sim-G responded to that G query by returning a
value from the GT. Values are assigned to the GT by Sim-G,Sim-H, and Sim-S, so it suffices to
show that each of these algorithms assigns a fresh uniformly random value to the GT, which
would guarantee that the particular value seen in the view was assigned with probability 2−`π ,
just like the real execution random oracle. First, Sim-G assigns values g to GT by choosing
them uniformly at random (Algorithm 2). Next, Sim-H assigns the value g(hi) = ρ∗(zi) ⊕ x
to the GT, where zi is a fresh random value, and ρ∗ is a permutation (Algorithm 4). Since
the domain of ρ∗ is equal to the range of G, and ρ∗ is a permutation, it follows that ρ∗(zi) is
uniformly random in the range of G. It therefore follows that g is a uniform random value.
Similarly, Sim-S assigns the value g(h′) = π∗(x

′) ⊕ x, for a fresh random value x′ and a
permutation π∗, so g(h′) is also a uniform random value.
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• Sign-queries. Observe that, given the answers to the relevant H and G queries and the
input (m,h, x), there is a unique correct pair h′, x′ for every r. The value r appears in the
view as the result of a uniformly random choice in both the simulated execution and the
real one. The answers to the relevant H and G queries are also results of uniformly random
choices in both cases, by the arguments made for H- and G-queries. And h′, x′ are the unique
correct values in both cases.

B.2 Proof of Abort Probability Lemma B.2

It suffices to compute the probability that Lookup, Sim-H, Sim-G, Sim-S, and FindClaw abort and
to add them up by union bound. Sim-G never aborts. The following four lemmas address the
remaining four algorithms, in order.

Lemma B.3. The probability that Lookup ever aborts during the whole execution is at most

q2H
2

2−`π . (4)

Proof. Lookup(x) aborts when the HTree contains two nodes, N1 and N2, such that a Lookup
collision occurs, i.e.,

π1(x) = y1 and π2(x) = y2 . (5)

Because the size of the HTree is bounded by qH , it suffices to show that, for every pair of nodes
N1, N2, the probability that there exists x such that Equation 5 holds is at most 2−`π . We will do
so by proving two claims.

Claim B.4. When a node Ni storing πi, yi is added to the HTree, then yi is chosen uniformly at
random and independent of all prior choices made in the interaction between the forger F and the
reduction R.

Proof. Recall that nodes are added to the HTree by Sim-H. From Sim-H, if πi = π∗, then we can
think of yi as fresh random value, since yi ← ρ∗(zi), where zi is a fresh random value and ρ∗ is a
permutation. If πi 6= π∗, then yi is chosen in a slightly more complex manner. Note from Sim-H
that yi ← Sim-G(hi) ⊕ x. Sim-G returns a uniform random value for each new input, and so it
follows that yi will be a fresh random value as long as GT is not defined on hi. But if GT is defined
on hi, then Sim-H will abort, so Ni will not be added to the tree, anyway.

Lookup(x) is unlikely to find more than one node. Next, we need to show that the
probability that there exists an x such that Equation 5 holds is small. To do this, we need to
bound the probability that there are nodes N1 and N2 in HTree storing π1, y1 and π2, y2 such
that there exists x with π1(x) = y1 and π2(x) = y2. Note that forger F can adversarially-choose
π1, π2 stored in nodes N1 and N2 (since F issues a H-query that sets the πi stored at each HTree
node). Indeed, we have the following process: F chooses π1 first, and then is given a independent
random y1, then chooses π2 with knowledge of π1, y1, and finally is given independent random y2
(Claim B.4). Thus, we cannot assume that π1, π2 are permutations; however, we may assume that
they are functions:

Claim B.5. For any two functions π1, π2 with domain {0, 1}`π , and two uniformly random values
y1, y2 in {0, 1}`π , there exists x such π1(x) = y1 and π2(x) = y2 with probability at most 2−`π .
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Proof. Define the set of preimages of y1 under π1 as Sy1 = {x | π1(x) = (y1)}. Suppose |Sy1 | = α.
Then there are at most α choices of y2 that will result in the event that there exists x such π1(x) = y1
and π2(x) = y2, because each element x ∈ Sy1 gives rise to at most one y2 = π2(x). Because y2 is
chosen uniformly from a set of size 2`π , the probability that x satisfying π1(x) = y1 and π2(x) = y2
exists is at most α2−`π . Thus, the desired probability is at most∑

α

α2−`π Pr
y1

[|Sy1 | = α] = 2−`π
∑
α

α · |{y1 s.t. |Sy1 | = α}|
2`π

.

Observing that
∑

α α · |{y1 s.t. |Sy1 | = α}| = |Domain(π1)| = 2`π , we get the desired bound.

Lemma B.3 follows by combining Claims B.4 and B.5.

Lemma B.6. A single invocation of Sim-H aborts on line 10 with probability at most (qS + qG +
qH)2−`H .

Proof. From Algorithm 4, we see that Sim-H aborts only if GT already stores some value for hi.
First observe that there are at most qG+qS +qH queries stored in the GT. (There are qG G-queries,
and every signing and H-query query adds at most one additional entry to GT.) Next, observe that
hi = hi−1 ⊕ η where η is a fresh random value. Thus, the probability that hi collides with a value
already in GT is bounded by (qG + qS + qH)2−`H .

Lemma B.7. A single invocation of Sim-S aborts with probability at most (qH + qS)2−`r + (qS +
qG + qH)2−`H .

Proof. There are two cases in which Sim-S aborts.

Abort due to H-collision. Sim-S on input (m,h, x) will abort on line 4 if it draws a random value
r such that Q = (π∗,m, r, x) exists in the HT. The number of entries in HT cannot exceed qH + qS ,
because those are the only queries that add entries (at most one each) to HT. Because ri is a fresh
random value, the probability it collides with one of these entries is bounded by (qH + qS)2−`r .

Abort due to G-collision. Sim-S will abort on line 14 if GT already stores some value for h′. The
same argument as in Lemma B.6 shows that this happens with probability at most (qS + qG +
qH)2−`H .

Lemma B.8. The probability of abort on line 3 of FindClaw is at most
q2H
2 2−`π . And if the abort

does not happen, then π∗(xn) = yn, where yn is stored with Nn.

Proof. Suppose the forger F outputs a forgery (~πn, ~mn, ~rn, hn, xn) with πn = π∗ that is valid relative
to HT,GT, which means that FindClaw is invoked.

Consider running the verification algorithmVerHT,GT with the forgery as input. The verifi-
cation algorithm asks a sequence of H-queries Qn, ..., Q1, where Q1 = (π1, r1,m1, ε) and Qi =
(πi,mi, ri, xi−1) for every i = 2...n. We know that all these queries have been asked by forger F
and are therefore in HT. Let ηn, . . . , η1 be the answers to these queries. Note that these queries
could not have been placed into HT by Sim-S, because mn is different from every message queried
to Sim-S with π∗. Thus, they were asked by the forger to Sim-H.

The verification algorithm also asks a sequence of G-queries hn, . . . , h1, where hn−1 = hn⊕ηn−1,
hn−2 = hn−1 ⊕ ηn−1, . . . , h1 = h2 ⊕ η2. Because the forgery is valid, h1 = η1, and therefore
hi =

⊕i
j=1 ηj . Note that all these G queries are in GT.

Note that Q1 is tethered to the root of the HTree by Definition 4.1, and will therefore be placed
in the HTree by Sim-H with the value h1 = η1. Because the forgery is valid, the x1 value in Q2
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must satisfy π1(x1) = y1, where y1 = G(h1). Thus, Q2 is tethered to Q1. That does not necessarily
mean that Q2 itself is in the HTree. However, if it is, then it has the values h2 = h1 ⊕ η2 and
y2 = G(h2 ⊕ x1) stored in it. Thus, if Q2 is in the HTree, then Q3 is tethered to Q2, because
x2 in Q3 must satisfy π2(x2) = y2, because that condition on Q3 is necessary in order for the
verification algorithm to query Q2. Similarly, if Q3 is in the HTree, then Q4 must be tethered
to it. By induction, either there exists i > 1 such that Qi is tethered to Qi−1 but is not in the
HTree, or all Q1, . . . , Qn are in the HTree. In the latter case, Lookup(xn), if it does not abort, will
return the node for the query Qn (because Qn was asked during verification, which happens only
if πn(xn) = yn), and thus FindClaw will not abort.

H-queries are unlikely to get tethered after they are asked. Thus, we have shown that,
if FindClaw doesn’t abort, then πn(xn) = yn (note that πn = π∗), and that FindClaw will never
abort unless there exists a query Q that was asked to Sim-H, is tethered to another query in HTree,
but is not in the HTree. The following claim bounds the probability that this happens to a single
H-query. To bound the probability that a tethered H-query exists outside the HTree, we add up

over all qH queries, to obtain
q2H
2 2−`π by the union bound.

Claim B.9. If an H-query did not get added to HTree (equivalently, if it was untethered at the
time it was asked to Sim-H), then the probability it will ever become tethered is at most q′H2−`π ,
where q′H is the number of H queries made after it.

Proof. Consider queries as they are added to HT in order. Suppose j0-th query Q = (π,m, r, x)
was added as the result of a query to Sim-H and was untethered at the time it was asked, i.e., the
HTree was such that Lookup(x) = ⊥. Now suppose that Q first becomes tethered after some j1-th
query, Q′ = (π′,m′, r′, x′), is placed in HT. From the definition of a tethered query, Q′ must have
been added to the HTree. Thus, we must have j1 > j0, because we never remove nodes from HTree
(i.e., we cannot have j1 < j0) and Q itself is not added to the HTree (thus, j1 6= j0). Since nodes
are added to the HTree only when Sim-H is called on a new query, it follows that Q′ was added to
HTree after forger F asked a new H-query, so that the following collision occurs:

π′(x) = y′ . (6)

But, y′ is a uniform random value that is independent of π′ and x (Claim B.4), so the collision in
equation (6) occurs with probability 2−|y| = 2−`π . This holds for each of the q′H queries that could
have been asked after j0, and the claim follows by the union bound.

This concludes the proof of Lemma B.8

Finally, Sim-H is called at most qH times, Sim-S is called at most qS times, FindClaw is called
once and thus Lemma B.2 holds by a union bound.

C Analysis of the Scheme with Input-Dependent Randomness

We present only the parts of the proof that are different from Theorem 4.2.

Changes to the reduction R. We will assume that forger F never makes the same signature
query twice, because it would get the same result, anyway (formally, we can always modify F not
to ask the same signature query twice by keeping a table of previously requested signature queries).
Reduction R uses the same algorithms as before, except that we replace the ABORT on line 4 of
Sim-S (Algorithm 5) with η ← HT(Q).
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Theorem C.1. If a forger F succeeds in forging a signature for the modified scheme with probability
ε, then the modified reduction R finds a claw for (π∗, ρ∗) in about the same running time as F with
probability

ε− 2(qS + qH)(qS + qG + qH)2−`H − q2H2−`π − (qG + qH + qS + (`h + 2)q2S)2−`r − εPRF(qS , t) ,

where qH is the number of H-hash queries, qG is the number of G-hash queries, qS is the number
of sign queries made by the forger F , and t is the running time of the forger and the reduction
combined.

Changes to Lemma B.1. Because Line 1 of Sim-S uses a truly random rather than a pseudo-
random r, the probabilities of non-aborting views are no longer the same. However, by a standard
reduction to the security of the PRF, the probability that forger F produces a forgery from a
nonaborting view in the simulation must be at least ε− εPRF.

Changes to Lemma B.2. This lemma changes only in Lemma B.7. The new version is:

Lemma C.2. The probability that, during any of the qS queries, Sim-S aborts is at most

qS(qS + qG + qH)2−`H + (qS + qH)22−`H + (qG + qH + qS + (`h + 2)q2S)2−`r .

Proof. When does the modified Sim-S abort? When h′ = η⊕h is in GT. There are two cases. First,
if η (and thus h′) is a fresh random value, then the same argument used in Lemma B.7 holds, so
abort probability is at most (qS + qG + qH)2−`H .

However, we must now consider a new case where Sim-S aborts; namely, if η is not a fresh
random value. η will not be a fresh random value if Sim-S is given a sign query (π∗,m, x, h) and
draws an r that defines a query Q = (π∗,m, r, x) that is (a) already in HT and (b) the value
h′ = η⊕h is already stored in the GT (where recall that η = HT(Q) and h was given as part of the
query to Sim-S). Call such r bad for the sign-query’s m,h, x. In Claim 5.1 we argued that Sim-S
draws a bad r with probability at most (qG + qH + qS + (`h + 2)q2S)2−`r

D Combinatorial interlude: A proof of Theorem 5.2

Here we solve the combinatorial problem of Section 5. We start with a prelude problem:

A Prelude Problem. Suppose β values η1, . . . , ηβ are chosen uniformly at random as `H -bit
strings and the β × β matrix θ is computed as θij = ηi ⊕ ηj . The diagonal of θ has all zero entries.
Can we bound the size Cθ of the biggest nonzero collision within θ?

Lemma D.1. With probability at least 1−β22−`H , all the ηj values are distinct and Cθ ≤ 2`h + 4.

Proof. Since we are not considering the 0 collision, we can remove the diagonal from our consider-
ation and, in fact, focus only on the upper triangle of elements above the diagonal (the elements
below the diagonal are equal to them, so we will get a nonzero collision of size 2k in θ if and only
if we have k elements colliding in the upper triangle). Note that entries in a given row or given
column are always distinct, unless ηi = ηj for some i 6= j, which happens with probability no more

than β2

2 2−`H . Consider the event that there is a collision of size k in the upper triangle or the ηj
values are not distinct; let pk be its probability. We can consider all subsets of k entries of the
upper triangle in two parts: those subsets in which at least two elements share a row or a column
(which, taken altogether, are covered by the case of nondistinct ηj values), and those in which all
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columns are distinct and all rows are distinct. Taking a union bound over all k-element subsets
then gives us

pk ≤
β2

2
2−`H +

∑
0≤j1<···<jk≤β;

distinct i1<j1,...,ik<jk

Pr[ηi1 ⊕ ηj1 = · · · = ηik ⊕ ηjk ] . (7)

The constraint i1 < j1, . . . , ik < jk comes from the fact that we are only considering the upper
triangle. Because, for every a, the index ja is greater than j1, . . . , ja−1 and therefore also greater
than i1, . . . , ia, and the value ηja was chosen uniformly at random, we get that the value ηja is
independent of ηi1 ⊕ ηj1 = · · · = ηia−1 ⊕ ηja−1 , and of ηia , and therefore the ath element ηia ⊕ ηja of
the subset is independent of all the previous elements of the subset. This implies that (subject to
the distinctness requirement on the ias and jas), Pr[ηi1 ⊕ ηj1 = · · · = ηik ⊕ ηjk ] = 2−`H(k−1).

We have thus bounded the probability that a given k-element subset with distinct rows and
distinct columns is a collision. That is, we bounded each addend of the sum in Equation 7. How
many such subsets are there? There are β rows, β columns, and we are choosing k distinct rows
and k distinct columns, so there are at most

(
2β
2k

)
of them. Thus, the sum has at most

(
2β
2k

)
addends.

Substituting into the above formula, we get

pk ≤ β2

2
2−`H +

(
2β

2k

)
2−`H(k−1)

≤ β2

2`H+1
+

(
βe

k

)2k

2−`H(k−1)

=
β2

2`H+1
+

(
β2e2

k22`H

)k−1
β2e2

k2

=
β2

2`H+1

(
1 +

(
β2e2

k22`H

)k−1
e22`H+1

k2

)

Observe that we can assume β2/2`H < 1 (otherwise, the statement of the lemma is vacuous).

So if k ≥ 4, then k2 > 2e2 and thus β2e2

k22`H
< 1

2 . So set k = `H + 2 ≥ 4. We get

pk <
β2

2`H+1

(
1 +

(
1

2

)`H+1 e22`H+1

k2

)
<

β2

2`H+1
· 2 =

β2

2`H
.

Thus we have that with probability < β2

2`H
, we have a collision in the upper triangle of size `H + 2.

The lemma follows because of the symmetry of the matrix.

We are now ready to solve the combinatorial problem of Section 5:

Proof of Theorem 5.2. Assume the event of Lemma D.1 happens (it happens with probability 1−
β22−`H ). Consider the largest collision in ζ; suppose its size is c1 and its value is v1. It has all
distinct rows (because ηj values are distinct by the assumption that Lemma D.1 holds). Therefore,
without loss of generality, we can assume that the collision occurs in rows 1, . . . , c1 of ζ (this is
just for convenience of notation). Call rows 1, . . . , c1 the first layer of ζ. Consider the ith row of
the first layer and the entry in that row that participates in the collision. That entry has value
v1, and therefore h′i = ηj ⊕ v1 for some ηj . Thus, each of the values h′1, . . . , h

′
c1 is simply some η

value shifted by v1, and therefore the first layer of ζ corresponds to some c1 distinct rows of the
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matrix θ from the prelude problem (distinct because the problem statement requires the h′ values
to be distinct), except with v1 added to all values. Therefore, every collision that does not have
value v1 in the first layer of ζ is also a nonzero collision in θ; by the assumption that the event of
Lemma D.1 holds, it has size at most Cθ.

Consider now the second largest collision in ζ, of size c2 and value v2. By the same argument
as before, it has c2 distinct rows. This time, some of these rows may be in the first layer of ζ;
however, there are no than Cθ such rows, because the first layer of ζ has no collisions with value
not equal to v1 of size greater than Cθ. Let c′2 be the remaining rows; we know c2 ≤ c′2 + Cθ and
can assume without loss of generality that these rows are c1 + 1, . . . , c1 + c′2 (again, this is just
for convenience of notation). Call these rows the second layer of ζ. Suppose some other collisions
occur in the second layer of ζ. Using the same argument we made for the first layer, it follows that
these collisions correspond to nonzero collisions in θ (obtained by adding v2 to all the values) and
thus have size at most Cθ.

In general, if we consider the ith largest collision in ζ of size ci, up to Cθ(i− 1) of its rows can
be from previous layers (i.e., up to Cθ from each of the previous layers). Let c′i be the remaining
rows (call them the ith layer); we have ci ≤ c′i + Cθ(i− 1). No other collision in the ith layer is of
size more than Cθ.

Thus, the total size of γ collisions is at most c1+· · ·+cγ ≤ c1+c′2+· · ·+c′γ+Cθ(1+2+· · ·+γ−1).
Because c1, c

′
2, . . . , c

′
γ refer to sizes of nonoverlapping layers, their sum is at most α. The theorem

follows by observing that 1 + 2 + · · · + γ − 1 < γ2/2 and by substituting Cθ ≤ `h + 2 from
Lemma D.1.

E Proving Security without the Claw-Free Assumption

Our security proofs so far assumed that (π, ρ) is a claw-free pair. They need a slight adjustment
if π is only a trapdoor permutation and ρ does not exist (see [DR02] for a discussion of the differ-
ences between claw-free and trapdoor permutations when used with random-oracle-based signature
schemes).

In such a case, the goal of the reduction is to invert π∗ on a given input y. The reduction
changes as follows: Line 17 of Sim-H, instead of picking yi using ρ∗, picks yi at random, except for
one randomly chosen H-query, when yi is set to equal y. When the forger produces a forgery, the
value xn in the forgery will satisfy π(xn) = yi for some yi chosen on Line 17 of Sim-H. This holds
for the same reasons as in the claw-free case. With probability 1/qH , this yi is equal to y, and so
π∗(xn) = y, and the reduction can output xn as a successful inversion of π∗ on y.

Thus, the reduction and its analysis remain essentially the same, except that the security is no
longer tight: the probability of success of the reduction is reduced by a factor of 1/qH . Therefore,
the statements of Theorems 4.2 and C.1 can be easily modified if the assumption changes from
claw-free to trapdoor permutations: the probability formula simply needs to be reduced by a factor
of qH .

F Handling Permutations with Different Domains, such as RSA

Similarly to the schemes of [LMRS04] and [Nev08], our scheme extends to the case when each
signer’s permutation has its own domain, as long as no domain is much larger than the intersection
of all the domains. For instance, if we instantiate our scheme with RSA using 2048-bit moduli, then
each signer’s permutation domain will be a subset of {0, 1}2048. The intersection of all the domains,
however, will be at least the set of all 2048-bit strings that begin with 0, and thus no domain is more
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than twice the intersection of all the domains. (Following ideas of Zhu, Bao and Deng [ZBD05], the
scheme can also be generalized to the case of domains of very different sizes, such as when different
signers use RSA moduli of different lengths; we do not present this generalization here, because we
expect all the moduli to be of the same standardized length in a typical deployment.)

Changes to the Scheme To explain how we modify the scheme, we need to fix some notation. We
will assume that the domains of all permutations are subsets of {0, 1}`π , and that the intersection
of all the domains contains some set D closed under ⊕ (recall that the operation does not have
to be exclusive-or—any group operation over D will do). Furthermore, we will assume that there
is an efficient and efficiently invertible bijection SPLIT that takes an element X of {0, 1}`π and
produces two values b, x, with x ∈ D and b ∈ {0, 1}`b with `b close to `π − log2 |D|. (For the case
of RSA described above, `b = 1. The function SPLIT sets b = 1, x = X − 22047 if X ≥ 22047, and
b = 0, x = X otherwise.)

We will change G to output elements of D instead of {0, 1}`π . We will change Step 6 of the
signing algorithm as follows:

Xi ← π−1i (yi); (bi, xi)← SPLIT(Xi)

The signing algorithm will output bi in addition to xi. The entire vector ~bn will be input to the
verifying algorithm, which will be modified as follows: Step 2 will be replaced with

Xi ← SPLIT−1(bi, xi); yi ← πi(Xi) .

Changes to the Reduction The security reduction needs to modified as follows. Recall that the
reduction relies on the HTree, which is built up so that a child node is always tethered to a parent
node. We will change the definition of “tethered” (Definition 4.1): an H-query Q containing x 6= ε
will be tethered to some node Ni in the HTree if that node contains πi, yi such that there exists
b ∈ {0, 1}`b for which πi(SPLIT−1(b, x)) = yi.

Lookup (Algorithm 1) and FindClaw (Algorithm 3) will need to try all possible values of b to
combine with the given x in order to find X to which π can be applied. Thus Step 4 of Lookup
becomes

Nodelist = {all nodes N in HTree containing π, y
such that ∃b ∈ {0, 1}`b such that π(SPLIT−1(b, x)) = y} .

Step 5 of FindClaw becomes

Find b ∈ {0, 1}`b such that π∗(SPLIT−1(b, xn)) = ρ∗(zn)};
return claw (SPLIT−1(b, xn), zn).

Sim-H and Sim-S (Algorithms 4 and 5) need to search for yi and y′, respectively, that are in
D. Thus, Steps 16 and 17 in Sim-H need to be repeated until yi ∈ D (also, zi should be drawn

from Domain(π∗) rather than {0, 1}`π). Similarly, Steps 9 and 10 need to repeatedly draw X ′
R←

Domain(π∗) until y′ = π∗(X
′) is in D; the output of Sim-S should include (b′, x′) = SPLIT(X ′).

Finally, Step 2 of Sim-G (Algorithm 2) should draw g from D rather than {0, 1}`π .

Changes to the Analysis The above changes to the reduction will cause it to run 2`b times
slower (thus, twice as slow for the RSA example).

The analysis undergoes the following changes. Lemma B.1 remains true, but the proof is a bit
more delicate: when arguing about the correct simulation of G queries, we need to rely on the fact
that the new procedures in Sim-H and Sim-S still produce an output for G that is uniform in D,
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because yi in Sim-H and y′ in Sim-S are uniform in D, because they are produced by sampling a
uniform distribution until an element of D is found. Claim B.4 also remains true, using the same
argument.

Equation 5 and Claim B.5 change as follows.

Claim F.1. Given two functions π1, π2 whose domains are subsets of {0, 1}`π = SPLIT−1({0, 1}`b×
D) and two uniformly chosen random values y1, y2 in D, the probability that there exists x, b1, b2
such that

π1(SPLIT−1(b1, x)) = y1 and π2(SPLIT−1(b2, x)) = y2 (8)

holds is at most 23`b−`π .

Proof. Define the set of preimages of y1 as Sy1 = {(b1, x) such that π1(SPLIT−1(b1, x)) = y1}.
Suppose |Sy1 | = α. Then there are at most 2`b · α choices of y2 for which there exist x, b1, b2
satisfying Equation 8, because each triple in (x, b1, b2) with b2 ∈ {0, 1}`b and (b1, x) ∈ Sy1 gives rise
to at most one y2 = π2(SPLIT−1(b2, x)). Because y2 is chosen uniformly from a set of size |D|, the

probability that x, b1, b2 satisfying Equation 8 exist is at most 2`b ·α
|D| . Thus, the desired probability

is at most ∑
α

2`b · α
|D|

Pr
y1

[|Sy1 | = α] =
2`b

|D|
∑
α

α · |{y1 s.t. |Sy1 | = α}|
|D|

.

Observing that
∑

α α · |{y1 s.t. |Sy1 | = α}| =
∑

y1
|Sy1 | = |Domain(π1)|, and that |Domain(π1)|/|D|

≤ 2`b , we get that the probability is at most 22`b/|D|. Further observing that |D| ≥ 2`π−`b , we get
the desired bound.

This change results in the corresponding change in Lemma B.3: the
q2H
2 2−`π probability gets

replaced by
q2H
2 23`b−`π .

Finally, Claim B.9 needs modification. Equation 6 gets replaced with

∃b ∈ {0, 1}`b such that π′(SPLIT−1(b, x)) = y′,

which is satisfied with probability 2`b−`π . Thus, the probability in the statement of Claim B.9
changes to q′H2`b−`π and the probability that FindClaw aborts (bounded in Lemma B.8) changes to
q2H
2 2`b−`π

The above changes result in the the qH2−`π term in the formulas of Lemma B.2 and Theorems 4.2
and C.1 being replaced with qH23`b−`π . Because `b is much smaller than `π, this change has no
material impact on the security of the scheme.

G Our Scheme and History-Free Signatures

The definition of mezzo aggregation unforgeability satisfied by history-free signatures [FLS11] re-
quires that the signature scheme, in addition to preventing forgery on new messages, should also
prevent certain “reordering and recombining.” To be precise, it means that the scheme should
prevent the adversary from outputting an aggregate signature on messages (m1, . . . ,mn) such that

• there are two consecutive uncorrupted signers i, i+ 1, and

• signer i was asked by the adversary to produce a signature on mi and output σi in response,
and
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• signer i + 1 was asked by the adversary to produce a signature on mi+1, but not with the
value σi as the aggregate-so-far.

(the authors of [FLS11] formulate their requirements differently, but this formulation can be easily
seen equivalent).

Such a strict requirement cannot possibly be satisfied by any scheme in which signer i+1 ignores
some components of σi, because the adversary could simply modify those components of σi when
querying signer i + 1. Thus, our scheme, in which σi contains ri (which could be sent directly to
the verifier and simply bypass signer i + 1) does not satisfy the definition of [FLS11] simply for
syntactic reasons.

Nevertheless, our scheme satisfies the definition of [FLS11] in spirit: it ensures mi was queried
to signer i before mi+1 was queried to signer i + 1, and that the output of signer i was used as
an input to signer i + 1. Thus, our scheme also makes the same “reordering and recombining” of
signatures impossible. We outline how this can be shown by a small case analysis.

Suppose the adversary outputs a forgery; let i be the first location where the reordering condition
is violated. Let xi be the value computed as part of the verification process. If xi was never queried
to signer i + 1, then our security reduction still works for signer i + 1 (a forgery on a new xi will
work just as well as a forgery on a new mi+1, since xi is also input to H, so Lemma B.8, which
is the only place where we use that mi+1 is new, still holds). Thus, xi must have been queried to
signer i+ 1.

Suppose, then, that xi was output in response to a sign query for signer i after it was queried
to signer i+ 1. The probability of such an event is very low: in responding to the signature query,
signer i will pick a fresh r value, which will ultimately determine the x value output by the signer.
(To bound this probability, observe that in order for the adversary to hit the correct xi, it has to
either get a collision on the input to G during a signature query, which is already accounted for in
our reduction, or get G to output the correct `π-bit string on a fresh random input, which happens
with probability 2−`π .)

The only remaining case is that xi was never output in response to a signature query for signer
i. That means that when signer i was queried on mi and xi−1, either the ri value output by signer i
or the hi−1 value supplied with the query was different from the one in the forgery. If ri is different
in the forgery than in the signing query, our security reduction still goes through for signer i, since
a forgery on a new ri will work just as well as a new mi in Lemma B.8. Finally, if ri is the same
and hi−1 is different in the forgery than in the signing query, we observe that the query to signer
i must have been on an invalid hi−1. We therefore modify Sim-S (Algorithm 5) as follows: if the
hash query Q is tethered, but not to the input value h, then produce η using Sim-H. Thus, the hash
query that is involved in the forgery—namely, the query (πi,mi, ri, xi−1) will be answered using
Sim-H and therefore Lemma B.8 still goes through. The modification results in a tiny increase in
the abort probability because of the possibility of an additional GT collision during the signature
query and a slightly larger GT.
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