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A Perfectly Binding Commitment Scheme
Against Quantum Attacks

Zeng Bing, Chen Liang, and Tang Xueming

Abstract—It’s known that perfectly binding quantum computationally hiding commitment schemes can be constructed
from any quantum one-way permutation. Since no quantum one-way permutations are known, it has been unknown by
far whether we can get such a concrete commitment scheme. In this paper, we give a positive answer. Specifically, we
present such a lattice-based commitment scheme, which is built from the results gained by Gentry et al.

Index Terms—Commitment scheme, zero-knowledge, lattice, quantum attack.
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1 INTRODUCTION

A commitment scheme is a two-phase two-
party interactive protocol: in the commit

phase, a sender P1 sends a commitment to a receiv-
er P2, where the security property hiding should
prevent P2 from knowing the committed value; in
the reveal phase, P1 reveals the committed value,
where the security property binding should prevent
P1 from revealing a value that is different from the
committed value.

Commitment schemes are one of the most basic
building blocks for cryptographic protocols. For ex-
ample, assuming the existence of perfectly binding
commitment schemes, the well-known Goldreich-
Micali-Wigderson protocol for graph 3-coloring is
zero-knowledge [7], which implies the existence of
a computational zero-knowledge proof system for
any language in NP under the same assumption.
In 2009, Watrous furthers this result to hold in the
quantum setting under a stronger assumption that
there exists perfectly binding commitment schemes
with security against quantum attacks [14].

We remark that using statistically binding ones
with corresponding security level in the protocols
of [7], [14] is appropriate too, this is justified by
observing that later Goldreich in fact uses a sta-
tistically binding one to restate the protocol for
graph 3-coloring and its proof in [Gol01, Section
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4.4]. A concrete statistically binding scheme with
security against quantum attacks can be obtained
by combining the works of [2], [11] which respec-
tively present an efficient pseudo-random generator
with security against quantum attacks and a way to
construct statistically binding bit-commitment from
any pseudo-random generator.

However, to our best knowledge, there doesn’t
exist a perfectly binding commitment scheme that
is known to be secure against quantum attacks. The
main difficulties are, first, it’s impossible to build
such schemes from quantum information alone [8],
[9], and so a basis of computational hardness as-
sumptions is necessary. Second, the computation-
al hardness assumptions of factoring integers and
finding discrete logarithms don’t hold in the quan-
tum setting because of Shor’s beautiful work [13].
Third, though such schemes can be built from any
quantum one-way permutation [1], no the one-way
permutation is known. Therefore, other approach is
needed.

1.1 Our Contribution

In this paper, based on the hardness assumption
of lattice problem learning with errors (LWE), we
present a perfectly binding commitment scheme.
Since the hardness of LWE is implied by the worst-
case hardness of any one of standard lattice prob-
lems SIVP and GapSVP [12] which are generally be-
lieved to resist quantum attacks [10], our scheme is
the first perfectly binding commitment known to be
secure against quantum attacks. As an independent
contribution, we proves that a folklore that there is
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no commitment scheme that is both information-
theoretically binding and information-theoretically
hiding is true.

Our scheme makes use of Regev’s LWE-based
public-key cryptosystem [12] or its variant pre-
sented by [3]. The main idea is that, turning to
ciphertext-indistinguishability of the cryptosystem-
s, we gain property computational hiding against
quantum attacks for our schemes; turning to an
efficient deterministic algorithm that can be used
to verify that a given legal public key indeed
corresponds to a unique private key [3], we gain
property perfectly binding.

1.2 Organization
This paper is organized as follows. In Section
2, we describe the notations used in this paper,
briefly introduce the notions of various types of
commitments, and clarify their names. In Section
3, we prove the folklore mentioned previously is
true. In Section 4, we construct a perfectly binding
commitment scheme.

2 PRELIMINARIES

2.1 Basic Notations
We denote an unspecified positive polynomial by
poly(.); denote the set consists of all natural num-
bers and the set consists of all prime numbers by N
and P respectively; denote security parameter used
to measure security and complexity by k.

A function µ(.) is negligible in k, if there ex-
ists a positive constant integer n0, for any poly(.)
and any k which is greater than n0, it holds that
µ(k) < 1/poly(k). A probability ensemble X

def
=

{X(1k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of ran-
dom variables indexed by (k, a), where a represents
various types of inputs used to sample the instances
according to the distribution of the random variable
X(1k, a).

Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two probability ensembles.
They are said to be computationally indistinguish-
able, denoted X c

= Y , if for any non-uniform proba-
bilistic polynomial-time (PPT) algorithm D with an
infinite auxiliary information sequence z = (zk)k∈N
(where each zk ∈ {0, 1}∗), there exists a negligible
function µ(.) such that for any sufficiently large k,
any a, it holds that

|Pr(D(1k, X(1k, a), a, zk) = 1)−
Pr(D(1k, Y (1k, a), a, zk) = 1)| 6 µ(k)

They are said to be equal, denoted X ≡ Y , if for
any sufficiently large k, any a, the distributions of
X(1k, a) and Y (1k, a) are identical. Obviously, if
X ≡ Y then X

c
= Y .

2.2 Commitment Scheme
For historical reasons, there are no standard names
for various types of commitment schemes. Even
the same author would give the same name to
two different type commitment schemes in differ-
ent literature, let alone different authors refer to
the same type commitment scheme using different
names. For example, Goldreich names both the
commitment scheme with perfectly hiding property
in [4, Page 279] and the commitment scheme
with statistically hiding property in [6, Page 175]
perfectly hiding commitment.

To eliminate those confusions, it’s necessary to
clarify names for various types of commitment
schemes. We start by defining the perfectly binding
commitment scheme. To our end, a non-strict ver-
sion suffices. For the strict definition and the details,
please see [4], [6], [14].

Definition 1 (perfectly binding commitment
scheme, non-strict description). A commitment
scheme is a two-party protocol involving two phases.
• Initial Inputs. At the beginning, all parties know

the public security parameter k. The unbounded
sender P1 holds a randomness r1 ∈ {0, 1}∗, a value
m ∈ {0, 1}poly(k) to be committed to, where the
polynomial poly(.) is public. The PPT receiver P2

holds a randomness r2 ∈ {0, 1}∗.
• Commit Phase. P1 computes a commitment, de-

noted α, based on his knowledge, i.e., α ←
P1(1k,m, r1), then P1 send α to P2.

– The security for P1 is implied by the proper-
ty computationally hiding, which prevents P2

from the knowledge of the value committed by
P1. That is, for any PPT P2, any m1,m2 ∈
{0, 1}poly(k), it holds that

{V iewCP2
(< P1(m1), P2 > (1k))}k∈N

c
= {V iewCP2

(< P1(m2), P2 > (1k))}k∈N,
(1)

where V iewCP2
(.) denotes P2’s view in the

commit phase.
• Reveal Phase. P1 computes and sends a de-

commitment, which typically consists of m, r1, to
P2 to let P2 know m. Receiving de-commitment,
P2 checks its validity. Typically P2 checks that
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α = P1(1k,m, r1) holds. If de-commitment pass
the check, P2 knows and accepts m.

– The security for P2 is implied by the property
perfectly binding, which guarantees that for
any unbounded P1, any m1,m2 ∈ {0, 1}poly(k)

such that m1 6= m2, the probability that P2

accepts m2 while P1 commits to m1 is 0,
where the probability is taken only over the
randomness used by P2.

If the probability regarding the binding in Defini-
tion 1 is relaxed to be negligibly small, the resulting
scheme is said to be statistically binding. In the
setting that P1 is PPT and P2 is unbounded, if the
distributions of P2’s views in the commit phase
of distinct executions are statistically indistinguish-
able (see [4] for the meaning of statistical indistin-
guishability), the scheme is said to be statistically
hiding; if the distributions of P2’s views in the
commit phase of distinct executions are identical,
the scheme is said to be perfectly hiding.

If a property is secure against unbounded ad-
versaries, the property is said to be information-
theoretically/unconditionally secure. It’s easy to
see that perfect or statistical properties are
information-theoretically secure. We will show in
Section 3 that there is no commitment scheme
that is both information-theoretically binding and
information-theoretically hiding. Thus, there is no
need to explicitly refer to computationally secure
properties in their names for schemes holding a
information-theoretically secure property. We re-
mark that computationally hiding and computa-
tionally binding commitment schemes also exist.

3 AN IMPOSSIBILITY RESULT ON COMMIT-
MENT SCHEME

There is a folklore that there is no commitment
scheme that is both information-theoretically bind-
ing and information-theoretically hiding. However,
we are not aware of any related full proof having
appeared before and so prove here that this folklore
indeed holds.

Theorem 2. There is no commitment scheme that is
both information-theoretically binding and information-
theoretically hiding.

Proof: We begin by proving that there is no
commitment scheme that is both perfectly binding
and perfectly hiding. Assume H is a perfectly hid-
ing commitment scheme, then for any two distinct

values m1 and m2 of the same length l, we have

{V iewCP2
(< P1(m1), P2 > (1k))}k∈N
≡ {V iewCP2

(< P1(m2), P2 > (1k))}k∈N.

Because there exists 2l values of length l, for any
transcript viewed by P2 in the commit phase, there
exists 2l legal interpretations. Thus, perfectly bind-
ing is impossible.

Regarding the case of statistically binding and
statistically hiding, the case of statistically binding
and perfectly hiding, and the case of perfectly
binding and statistically hiding, the proof is similar
and so we omit it.

4 CONSTRUCTING A PERFECTLY BINDING
COMMITMENT SCHEME

In this section, we construct a lattice-based perfectly
binding commitment scheme, which is built from
the results of [3], [12]. Since lattice-based cryptogra-
phy is generally believed to resist quantum attacks
[10], our scheme meets Watrous’s need in [14].

4.1 Background

In lattice, the modulo operation is defined as x

mod y
def
= x−xx/yyy. Let α be an arbitrary positive

real number. Let Ψα be a probability density func-
tion whose distribution is over [0, 1) and obtained
by sampling from a normal variable with mean 0
and standard deviation α/

√
2π and reducing the

result modulo 1, more specifically

Ψα : [0, 1)→ R+,

Ψα(r)
def
=

∞∑
k=−∞

1

α
exp(−π(

r − k
α

)2).

Given an arbitrary integer q ≥ 2, an arbitrary
probability destiny function φ : [0, 1) → R+, the
discretization of φ over Zq is defined as

φ̄ : Zq → R+,

φ̄(i)
def
=

∫ (i+1/2)/q

(i−1/2)/q
φ(x)dx.

The problem learning with errors can be formu-
lated as follows.

Definition 3 (learning with errors). Let q ∈ P,
α = α(k) ∈ (0, 1) such that αq > 2

√
k. Learn-

ing with errors (LWEq,Ψ̄α
) is a problem that giv-

en (q,m, Ψ̄α, (~ai, bi)i∈[m]), finds ~s with non-negligible
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probability, where the input and the output is specified
in the following way.
• m ← poly(1k), ~s ∈U (Zq)

k. For each i ∈
{1, 2, . . . ,m}, ~ai ∈U (Zq)

k, ei ∈Ψ̄α
Zq, bi ←

~sT · ~ai + ei mod q.

LWEq,Ψ̄α
is an average-case problem, however,

[12] shows that its hardness is implied by the worst-
case hardness of any one of standard lattice prob-
lems SIVP and GapSVP for quantum algorithms.
In other words, any algorithm breaking LWEq,Ψ̄α

also is a algorithm breaking both SIVP and GapSVP
which are hard at present even for quantum algo-
rithms.

The perfectly binding commitment scheme,
which we will present soon, needs to use a
LWEq,Ψ̄α

-based public key cryptosystem presented
by [3], which is a slight variant of [12]’s cryptosys-
tem. This cryptosystem is described as follows.
• Message space: {0, 1}.
• Setup(1k): q ← q(1k)∧q ∈ P∧q ∈ [k2, 2k2], m←

(1 + ε)(k+ 1) log q ( where ε > 0 is an arbitrary
constant), Ψ̄α ← Ψ̄α(k) ∧ α(k) = o(1/(

√
k log k))

(e.g., α(k) = 1√
k(log k)2

). para ← (q,m, Ψ̄α),
finally outputs para.

• KeyGen(1k, para): A ∈U (Zq)
m×k, ~s ∈U (Zq)

k,
~e ∈Ψ̄α

(Zq)
m (which means each entry of ~e is in-

dependently drawn from Zq according to Ψ̄α),
~b← A~s+ ~e mod q, pk ← (A,~b), sk ← ~s, finally
outputs a public-private key pair (pk, sk).

• Enc(.), Dec(.): Since Enc(.), Dec(.) are imma-
terial to understand this paper, we omit their
detailed procedure here.

[3, Section 8] shows that the cryptosystem holds
the following properties.

Lemma 4 ( [3]). If LWEq,Ψ̄α
is hard, choosing appro-

priate parameters, the public-key cryptosystem provides
semantical security against chosen plaintext attacks.

Lemma 5 (summary of Proposition 8.8 and Lem-
ma 8.9 in [3]). For the LWEq,Ψ̄α

-based cryptosystem
mentioned early, there exists an efficient determinis-
tic algorithm such that, for all but at most negligible
fraction of public key generated by KeyGen, given a
trapdoor for the matrix A and a public key (A,AT~s+~e),
it can efficiently extract the unique private key ~s. For the
implementation of the algorithm, please see [3].

4.2 A Perfectly Binding Commitment Scheme
The commitment scheme is described as follows.

Construction 6 (a perfectly binding commitment).

• Common inputs: All entities know the public secu-
rity parameter k, the length of values l = poly(k),
and the public-key cryptosystem mentioned previ-
ously.

• Private inputs: The unbounded sender P1 holds a
randomness r1 ∈ {0, 1}∗, a value m ∈ {0, 1}l
to be committed to. The PPT receiver P2 holds a
randomness r2 ∈ {0, 1}∗.

• The protocol proceeds as follows.
1) Commit phase.

a) P1: para ← Setup(1k); chooses a
public-private key pair ((A,~b), ~s) ←
KeyGen(1k, para) along with a trapdoor
T of the matrix A; checks that ~s is ex-
tractable by using the extraction algorithm
guaranteed by Lemma 5. If not, P1 repeats
choosing until a extractable public-private
key pair is gained. Then, P1 takes this
public-private pair.
Note that following Lemma 5, the fraction
of legal key pairs that are not extractable
is negligible, so P1 can efficiently find a
extractable key pair.

b) Let mi denote the i-th bit of m. Let
E
A,~b

(m) denote

(E
A,~b

(m1), E
A,~b

(m2), . . . , E
A,~b

(ml)).

P1 sends the commitment
(para, (A,~b), E

A,~b
(m)) to P2.

2) Reveal phase.
a) P1 sends the committed value m, the ran-

domness r1 used in commit phase, and the
trapdoor T of the matrix A to P2.

b) P2 checks that the commitment
(para, (A,~b), E

A,~b
(m)) is legally

generated by using r1, that the private
key is extractable, and that the extracted
private key ~̃s is equivalent to the private
key ~s generated by using r1. P2 accepts
value m if and only if all checks pass.

Theorem 7. Assuming LWEq,Ψ̄α
is hard, the commit-

ment scheme described in Construction 6 is computa-
tionally hiding and perfectly binding.

Proof: First, we claim that the commitment
scheme is computationally hiding in the case that
P1 is honest and P2 is malicious.

Without loss of generality, for any two val-
ues m1,m2, for the corresponding executions <
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P1(m1), P2 > (1k) and < P1(m2), P2 > (1k), let

V iewCP2
(< P1(mi), P2 > (1k)) =

(parai, (Ai,~bi), EAi,~bi(mi)),

where i = 1, 2. It’s easy to see that the distribution
of (para1, (A1,~b1)) and that of (para2, (A2,~b2)) are
identical. It’s known that if a public-key cryptosys-
tem is semantically secure under chosen plaintext
attack, then it is ciphertext-indistinguishable for
multiple messages under chosen plaintext attack
(see [5, Section 5.4.3]). Thus following Lemma 4,
the distribution of E

A1,~b1
(m1) and that of E

A2,~b2
(m2)

are computationally indistinguishable. Getting all
together, our first claim holds, i.e., the commitment
scheme satisfies Equation (1).

Second, we claim that the commitment scheme
is perfectly binding in the case that P1 is malicious
and P2 is honest.

Note that the extraction algorithm guaranteed by
Lemma 5 is deterministic. This implies that for a
given legal public key, whether the algorithm can
extract its private key only depends the public key
itself. Construction 6 uses the extraction algorithm
as a filter to screen out the public keys whose
private keys aren’t extractable. For any resulting
legitimate public key, the corresponding private key
is extractable and unique. Thus, the value com-
mitted by an encryption relative to such legitimate
public keys is perfectly binding. Further, our second
claim holds.

4.3 Extension

For simplicity in presentation in Construction 6,
we takes [3]’s cryptosystem, however, the cryp-
tosystem of original version, i.e., [12]’s cryptosys-
tem, is also appropriate. The only difference be-
tween two cryptosystems is their encryption algo-
rithm. Observe that the original cryptosystem is
ciphertext-indistinguishable. For a public-key cryp-
tosystem, this also implies that it is ciphertext-
indistinguishable for multiple messages (see [5,
Section 5.2.2]), which suffices to hold property com-
putationally hiding as a commitment scheme in our
construction. What’s more, Lemma 4 also applies to
the original cryptosystem, as it depends only on the
distribution of public keys, and not on the distri-
bution of the randomness used in encryption. Thus
taking the original cryptosystem doesn’t influence
the binding of the constructions.
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