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Abstract

This paper takes a new step towards closing the troubling gap between pseudoran-
dom functions (PRF) and their popular, bounded-input-length counterparts. This gap
is both quantitative, because these counterparts are more efficient than PRF in various
ways, and methodological, because these counterparts usually fit in the substitution-
permutation network paradigm (SPN) which has not been used to construct PRF.

We give several candidate PRF Fi that are inspired by the SPN paradigm. This
paradigm involves a “substitution function” (S-box). Our main candidates are:

F1 : {0, 1}n → {0, 1}n is an SPN whose S-box is a random function on b bits given
as part of the seed. We prove unconditionally that F1 resists attacks that run in time
≤ 2ǫb. Setting b = ω(lg n) we obtain an inefficient PRF, which however seems to be
the first such construction using the SPN paradigm.

F2 : {0, 1}n → {0, 1}n is an SPN where the S-box is (patched) field inversion, a
common choice in practical constructions. F2 is computable with Boolean circuits of
size n · logO(1) n, and in particular with seed length n · logO(1) n. We prove that this
candidate has exponential security 2Ω(n) against linear and differential cryptanalysis.

F3 : {0, 1}n → {0, 1} is a non-standard variant on the SPN paradigm, where
“states” grow in length. F3 is computable with size n1+ǫ, for any ǫ > 0, in the
restricted circuit class TC0 of unbounded fan-in majority circuits of constant-depth.
We prove that F3 is almost 3-wise independent.

F4 : {0, 1}n → {0, 1} uses an extreme setting of the SPN parameters (one round,
one S-box, no diffusion matrix). The S-box is again (patched) field inversion. We prove
that this candidate fools all parity tests that look at ≤ 20.9n outputs.

Assuming the security of our candidates, our work also narrows the gap between the
“Natural Proofs barrier” [Razborov & Rudich; JCSS ’97] and existing lower bounds,
in three models: unbounded-depth circuits, TC0 circuits, and Turing machines. In
particular, the efficiency of the circuits computing F3 is related to a result by Allender
and Koucky [JACM ’10] who show that a lower bound for such circuits would imply a
lower bound for TC0.
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1 Introduction

This paper takes a new step towards closing the troubling gap between pseudorandom func-
tions ([GGM86], cf. [Gol01, §3.6]) and their popular, bounded-input-length counterparts.
These counterparts are mostly obtained in two ways. One is to use bounded-input-length
hash functions such as the SHA-1 compression function, or block ciphers such as the Ad-
vanced Encryption Standard (AES) by Daemen and Rijmen [DR02]. We note that the latter
satisfy the additional constraint of computing permutation functions.

This gap is both quantitative and methodological. It is quantitative because all candi-
date pseudorandom functions (hereafter, PRF) based on complexity-theoretic assumptions
(e.g. [GGM86, HILL99, NR04, HRV10, VZ12]) have seed length at least quadratic in the in-
put length n, which also implies a quadratic lower bound on the circuit size of such PRF. In
contrast, bounded-input-length constructions often have seed length which equals the input
length. This is for example the case with the 128-bit version of AES.

It is methodological because many modern bounded-input-length hash functions and
block ciphers follow the substitution-permutation network (SPN) paradigm. This is for ex-
ample the case with two of the finalists for the ongoing SHA-3 cryptographic hash function
competition, namely Grøstl [GKM+11] and JH [Wu11], and also the AES block cipher. An
SPN is computed over a number of rounds, where each round “confuses” the input by divid-
ing it into bundles and applying a substitution function (S-box) to each bundle, and then
“diffuses” the bundles by applying a matrix with certain “branching” properties (cf. [Sha49]).
No piece of this structure appears to have been used to construct PRF. In fact, until the
present paper no asymptotic analysis of the SPN structure was given. This is in stark con-
trast with the seminal work of Luby and Rackoff [LR88] that gave such an analysis for the
so-called Feistel network structure (which in particular was the basis for the block cipher
DES, the predecessor to AES). Moreover the SPN structure is tailored to resist two general
attacks on block ciphers which appear to be ignored in the PRF literature, namely linear
and differential cryptanalysis.

In this paper we give several candidate PRF that are inspired by the SPN structure,
though unlike popular constructions we do not require that an SPN computes a permutation
function. Each of the many hash functions and block ciphers based on the SPN structure
(e.g. those mentioned above) suggests different choices for the parameters, S-boxes, and
diffusion matrices. As a first step we choose to follow the design considerations behind the
AES block cipher, and particularly its S-box. We do this for two reasons. First, it is a
well-documented, widely-used block cipher that has been around for over a decade. Second,
the algebraic structure of its S-box lends itself to an asymptotic generalization; we exploit
this fact in some of our results. We hope that future work will systematically address other
available bounded-input-length constructions.

Some of our candidates have better parameters than previous candidates, where by pa-
rameters we refer to the seed length and the resources required to compute each function in
various computational models:

1. We first consider an SPN with a random S-box (specified as part of the seed). We prove
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unconditionally that this resists attacks that run in time less than the seed length. For
example we can set the seed length to nc and withstand attacks running in time nc′ for
sufficiently large c and c′ = Θ(c). (Note that being a PRF means that the seed length
is nc and that the function withstands all attacks running in time nc′ for any c′.)

This result is analagous to that of Luby and Rackoff, who analyzed the Feistel net-
work structure when a certain component is instantiated with a random function, and
indeed we prove the same level of security (exponential in the input size of the ran-
dom function). The techniques used are similar to those in the work by Naor and
Reingold [NR99] that followed Luby and Rackoff’s. To our knowledge this is the first
construction of a (provably secure, inefficient) PRF using the SPN structure.

2. Using the AES S-box and a strengthened version of the AES diffusion matrix, we give
a candidate computable with Boolean circuits of size n · logO(1) n, and in particular
with seed length O(n log2 n). We prove that this candidate has exponential security
2Ω(n) against linear and differential cryptanalysis by extending a result due to Kang et
al. [KHL+01].

3. Again using the AES S-box and a different diffusion matrix, we give a candidate com-
putable with size n1+ǫ, for any ǫ > 0, in the restricted circuit class TC0 of unbounded
fan-in majority circuits of constant-depth. The diffusion matrix used here blows up the
state to size O(n), and we output a single bit by taking the inner product of this state
with a random string. We prove that this candidate is almost 3-wise independent.

4. We give another single-bit output candidate which uses an extreme setting of the SPN
parameters (one round, one S-box, no diffusion matrix). This can be viewed as a
slightly modified version of the Even-Mansour cipher [EM97] that uses the AES S-box
in place of a random permutation. We prove that this candidate fools all parity tests
that look at ≤ 20.9n outputs.

5. Our final candidate is a straightforward generalization of AES, and may be folklore.
We show that it is computable by size O(n2), depth O(n) Boolean circuits, and we
further show that for each fixed seed k it is computable in time O(n2) by a single-tape
Turing machine with O(n2) states. We do not have any proof of security, but the
(heuristic) arguments underlying AES’s security also apply to this candidate.

For context, we mention that Hoory, Magen, Myers and Rackoff [HMMR05] and Brodsky
and Hoory [BH08], building on work by Gowers [Gow96], study the random composition of
a family of permutations. The SPN structure can be seen as falling into this framework,
by taking each round as an individual permutation chosen randomly by the key. However,
the permutations constructed in these works do not have the form of an SPN round, and
furthermore the circuit complexity of the composed permutations is not of interest to them
(their constructions have size and depth Ω(n3)).
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Natural proofs. The landscape of circuit lower bounds remains bleak, despite exciting
recent results [Wil11]. Researchers however have been successful in explaining this lack of
progress by pointing out several “barriers,” i.e. establishing that certain proof techniques
will not give new lower bounds [BGS75, RR97, AW08].

Of particular interest to us is the Natural Proofs work by Razborov and Rudich [RR97].
They make the following two observations. First, most lower-bound proofs that a certain
function f : {0, 1}n → {0, 1} cannot be computed by circuits C (e.g., C = circuits of size
n2) entail an algorithm that runs in time polynomial in N := 2n and can distinguish truth-
tables of n-bit functions g ∈ C from truth-tables of random functions (i.e., a random string
of length N). (For example, the algorithm corresponding to the restriction-based proof that
Parity is not in AC0, given f : {0, 1}n → {0, 1}, checks if there is one of the 2O(n) = NO(1)

restrictions of the n variables that makes f constant.) Informally, any proof that entails
such an algorithm is called “natural.”

The second observation is that, under standard hardness assumptions, no algorithm such
as the above one exists when C is a sufficiently rich class. This follows from the existence of
PRF with security 2s

Ω(1)
where s is the seed length (e.g. [GGM86, HILL99, NR04, HRV10,

VZ12]) and by setting s := nc for a sufficiently large c.
The combination of the two observations is that no natural proof exists against circuits

of size nc, for some constant c ≥ 2.
Moreover, the PRF construction [NR04] by Naor and Reingold is implementable in TC0,

pushing the above second observation “closer” to the frontier of known circuit lower bounds.
For completeness we also mention that this PRF achieves seed length s = O(n2) and is a
candidate to having hardness 2Ω(n) under elliptic-curve conjectures.

The gap between lower bounds and PRF. However, the natural proofs barrier still
has a significant gap with known lower bounds, due to the lack of sufficiently strong PRF.
For example, there is no explanation as to why one cannot prove superlinear-size circuit
lower bounds. For this one would need a PRF fk : {0, 1}n → {0, 1} that is computable by
linear-size circuits (hence in particular with |k| = O(n)) and with exponential hardness 2n.
(So that, given n, if one had a distinguisher running in time 2O(n), one could pick a PRF on
inputs of length bn for a large enough constant b, to obtain a contradiction.)

A recent work by Allender and Koucký [AK10] brings to the forefront another setting
where the Natural Proofs barrier does not apply: proving lower bounds on TC0 circuits of
size n1+ǫ and depth d, for any ǫ > 0 and large enough d = d(ǫ). (As mentioned above,
the Naor-Reingold PRF requires larger size.) This setting is especially interesting because
[AK10] shows that such a lower bound for certain functions implies a “full-fledged” lower
bound for TC0 circuits of polynomial-size. Moreover even if the first lower bound were
natural, the latter would not be, thus circumventing the Naor-Reingold PRF.

Another long-standing problem is to exhibit a candidate PRF in ACC0.
Of course, circuit models such as the above ones are only some of the models in which

the gap between candidate PRF and lower bounds is disturbing. Other such models include
various types of Turing machines, and small-space branching programs. For example, there is
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Linear transformation
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S(x) := x2b−2

Figure 1: One round of an SPN

no explanation as to why the lower bounds for single-tape Turing machines stop at quadratic
time, cf. [KN97, §12.2].

Assuming the (exponential) security of some of our candidates, our work narrows this
gap in three ways. First, Candidate 2 is computable by quasilinear-size Boolean circuits.
Second, Candidate 3 is computable by TC0 circuits of size n1+ǫ and depth d = d(ǫ) for any
ǫ > 0. Third, for each fixed seed k Candidate 5 is computable in time O(n2) by a single-tape
Turing machine with O(n2) states (note that the fixed-seed setting suffices for the Natural
Proofs connection).

1.1 Background on SPNs

To formally define our candidates, we begin by reviewing the SPN structure (refer to Fig-
ure 1). The notation introduced in this section will be used throughout the paper.

An SPN Ck : {0, 1}n → {0, 1}n is indexed by a key k = (k0, . . . , kr) ∈ ({0, 1}n)r+1, and
is specified by the following three parameters and two functions:

• r ∈ N, the number of rounds

• b ∈ N, the S-box input size

• m ∈ N, the number of S-box invocations per round

• S : GF(2b) → GF(2b), the S-box

• M :
(
GF(2b)

)m →
(
GF(2b)

)m
, the linear transformation.
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The input/output size of Ck is given by n := mb. Throughout this paper, we assume a
fixed canonical mapping between {0, 1}b and GF(2b).

Ck is computed over r rounds. The ith round (1 ≤ i ≤ r) is computed over three steps:
(1) m parallel applications of S; (2) application of M to the entire state; (3) xor of the
entire state with the round key ki. Note that each round is identical except for step (3).1

On input x, Ck(x) gives x⊕k0 as input to the first round; the output of round i becomes
the input to round i+ 1 (for 1 ≤ i < r), and Ck(x)’s output is the output of the rth round.

Security against linear and differential cryptanalysis. We now briefly review how
the security of an SPN is evaluated against two general attacks on block ciphers: linear and
differential cryptanalysis. Resistance to these attacks is typically seen as the main security
feature of SPNs. Full details are deferred to Appendix A. Note that we consider here the
basic versions of these attacks, and we leave to future work understanding the resistance of
our candidates to more sophisticated attacks (such as those considered by Knudsen [Knu94]).

For both linear and differential cryptanalysis, a crucial property in the security proof is
that the linear transformation M has maximal branch number, defined as follows.

Definition 1.1. Let M : Fm → Fm be a linear transformation acting on vectors over a field
F. The branch number of M is

Br(M) = min
α6=0m

(w(α) + w(M(α))) ≤ m+ 1

where w(·) denotes the number of non-zero elements.

Linear cryptanalysis [Mat94] exploits the existence of linear correlations to attack a block
cipher Ck. For a function f : {0, 1}n → {0, 1}n and input/output parities Γx,Γy ∈ {0, 1}n,
define the correlation of f with respect to Γx and Γy as

CorΓx,Γy(f) := 2 · Pr
x
[〈Γx, x〉 = 〈Γy, f(x)〉]− 1.

For a block cipher Ck, the parameter of interest for linear cryptanalysis is

pLC(Ck) := max
Γx,Γy 6=0

(
Ek

[
CorΓx,Γy (Ck)

2]) .

Specifically, the attack requires an expected number of plaintext/ciphertext pairs propor-
tional to 1/pLC(Ck).

Differential cryptanalysis [BS91] attacks a block cipher Ck by exploiting the relationship
between the xor difference of two inputs to Ck and the xor difference of the corresponding
outputs. For a function fk : {0, 1}n → {0, 1}n parameterized by a key k, and input/output
differences ∆x,∆y ∈ {0, 1}n, define the difference propagation probability (DPP) of fk with
respect to ∆x and ∆y as

DPP∆x,∆y(fk) := Pr
x,k

[fk(x)⊕ fk(x⊕∆x) = ∆y].

1SPNs are sometimes defined more generally, e.g. by allowing the S-box to vary across rounds or by
allowing a more complex interaction with k than xor.
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(If f is not parameterized by a key, k is ignored in this definition). For a block cipher Ck,
the parameter of interest for differential cryptanalysis is

pDC(Ck) := max
∆x,∆y 6=0

(
DPP∆x,∆y (Ck)

)
.

Specifically, the attack requires an expected number of plaintext/ciphertext pairs propor-
tional to 1/pDC(Ck).

The following theorem, due to Kang et al. [KHL+01], gives a bound on pLC and pDC for
2-round SPNs with maximal branch number.

Theorem 1.2. ([KHL+01], Thms. 5 & 6) Let Ck : {0, 1}n → {0, 1}n be an SPN with
r = 2 rounds and S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy (S)

2) denote the maximum squared
correlation of S, and let p := max∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
denote the maximum DPP of S.

If Br(M) = m+ 1, then pLC(Ck) ≤ qm and pDC(Ck) ≤ pm.

For typical S-boxes, such as the one used in AES, one can have q = p = 2−b+2, and so
the theorem guarantees security exponential in n = mb. (For completeness we note that one
cannot directly apply the above theorem to AES because it is a more complicated SPN.)

We extend this result to r > 2 rounds in the following theorem.

Theorem 1.3. Let Ck : {0, 1}n → {0, 1}n be an SPN with r = 2ℓ rounds for some ℓ ≥ 1 and
S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy (S)

2) denote the maximum squared correlation of S,
and let p := max∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
denote the maximum DPP of S. If Br(M) = m+1,

1. pLC(Ck) ≤ qℓm · 2(ℓ−1)n. 2. pDC(Ck) ≤ pℓm · 2(ℓ−1)n.

Intuitively, the S-box provides security q (resp. p) against linear (resp. differential) crypt-
analysis, and this security multiplies across “active” S-boxes (instances of S that are evalu-
ated with a non-zero input). The branch number Br(M) guarantees that there exist ≥ m+1
such active S-boxes in any pair of consecutive rounds, hence the term qℓm = q(r/2)m. We note
that the factor 2(ℓ−1)n seems to be an artifact of our extension of [KHL+01], and it is open
to get a tighter bound on pLC and pDC for r > 2 rounds ([KHL+01] only consider r = 2).
Such an extension has been considered before, for example by Keliher et al. [KMT01] and
Cho et al. [CSK+04], but their results only apply in the fixed-parameter setting because they
require extensive computer calculation. We are not aware of any other “closed form” bound
for r > 2.

Security against degree-exploiting attacks. While resistance to linear and differential
cryptanalysis is the main security feature of the SPN structure (and indeed, “the most
important criterion in the design” of AES [DR02, p. 81]), considerations are usually also taken
to prevent attacks that would exploit algebraic structure in the cipher. In our candidates
2-5, we adopt essentially the same S-box that is used in AES.2 This S-box is defined by

2Besides the obvious difference that in AES the value b is fixed to be 8, we omit the GF(2)b-affine function
that is included in the AES S-box. Adding such a function would not affect the (asymptotic) circuit size
of our candidates, and removing it does not affect resistance to linear/differential cryptanalysis. To our
knowledge there are no known attacks against the AES variant that uses this “reduced” S-box.
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S(x) := x2b−2 and was chosen to allow the computation to have high degree when considered
as a multivariate polynomial over GF(2). Specifically, the use of x 7→ x2b−2 results in each
of S’s output bits having (near-maximum) degree b − 1. Using instead x 7→ x3 would not
diminish resistance to linear and differential cryptanalysis, but it would result in degree
(only) 2 [Pie91, Nyb93, Kop11].

We need the degree of each output bit of our candidates (as a multivariate GF(2)-
polynomial) to be ≥ ǫn, for some constant ǫ, to resist attacks that exploit the degree of
this polynomial. For completeness we present such an attack, showing that a PRF that
has degree o(n) cannot have hardness 2n. The proof of the following theorem is deferred to
Appendix B.

Theorem 1.4. Let F = {fk : {0, 1}n → {0, 1}}k be any set of functions such that, for
each key k, the polynomial representation of fk over GF(2) has degree o(n). Then there is
an adversary that runs in time ≤ 2O(n) and distinguishes a random fk ∈ F from a random
function with advantage ≥ 1− 2−2Ω(n)

.

The only non-linear operation in the entire cipher is the S-box, which for Candidates
2-5 has degree b − 1, and thus the maximum possible degree of each output bit for these
candidates is (b− 1)r. Hence we make sure that

br ≥ n

in each of our candidates. (The distinction between (b−1)r ≥ ǫn and br ≥ n is unimportant,
as in our candidates we can always increase r by a constant factor, except in Candidate 4
where we have b = n and r = 1.) We do not know if br ≥ n is sufficient to guarantee degree
Ω(n), and it is an interesting research direction to understand what restrictions (if any) on
the SPN parameters ensure that the function has high degree.

Finally, although a block cipher’s security is often measured against key-recovery attacks,
we share many researchers’ viewpoint that distinguishing attacks are the correct model. We
also note that there is often an intimate connection between the two types, as many key
recovery techniques, including linear and differential cryptanalysis, construct a distinguishing
algorithm which is then used to select the correct round keys from a set of potential keys.

1.2 Our candidates

We now describe our candidates. Candidates 1, 2, and 5 output n bits, while Candidates
3 and 4 output 1 bit. We use Fi to refer to the function computing Candidate i. In each
candidate, the (r + 1) n-bit round keys are chosen independently and uniformly at random.
(Popular constructions typically employ a so-called “key schedule” that generates the round
keys from a key of size ≪ n(r + 1).)

Candidate 1. Our first candidate F1 is an r-round SPN with an S-box that is chosen
uniformly at random (i.e. specified as part of F1’s key) from the set of all functions mapping
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GF(2b) to itself. (Analyzing this candidate when S is a random permutation is a natural
research direction which we do not address here.) The only restriction we make on F1’s
linear transformation M is that it is invertible and has all entries 6= 0; we observe that this
holds for any M with maximal branch-number. We show that any adversary A has small
advantage in distinguishing F1 from a random function F .

Theorem 1.5. If A makes at most q total queries to its oracle, then

∣∣∣∣PrF
[
AF = 1

]
− Pr

F1

[
AF1 = 1

] ∣∣∣∣ < O(r2m3q3) · 2−b.

The bound achieved here is similar to that of Luby and Rackoff [LR88] in the sense that
it is exponentially small in the size of the random function, with a polynomial loss in the
number of queries. (The fact that security degrades with the number of rounds, contrary to
what one might expect, seems to be an artifact of the proof.) The proof of this theorem is
very similar to that of [NR99, Thm. 3.2], and proceeds by bounding the collision probability
between any two inputs to S in the final round. However we face an additional hurdle,
namely that the inputs to the random function S in the final round depend on outputs of S
in previous rounds.

By setting b = ω(logn) and r = logn, we get an inefficient PRF (with security nω(1)). We
also note that by setting b = c logn for some sufficiently large constant c, F1 is computable
in time nO(c) and has security nc′ for some c′ = Ω(c).

Finally, note that Theorem 1.5 implies corresponding bounds on pLC(F1) and pDC(F1).

Candidate 2. In this candidate we set b = Θ(log n), and we use the AES S-box on b bits
(recall that it maps x 7→ x2b−2). We use a linear transformation M with maximal branch
number, and M is constructed from an error-correcting code in a similar manner to the
linear transformation in AES. (AES’s linear transformation does not have maximal branch
number however, a choice that was made to reduce computation time.) We set the number
of rounds r = Θ(log n) (observe that br ≥ n).

We prove that Candidate 2 is computable by Boolean circuits of quasilinear-size Õ(n) :=
n · logO(1) n. To show this, note that since r is logarithmic it is enough to show how to
compute each round with these resources. Moreover, since b is logarithmic, computing the
S-boxes comes at little cost.

Our main technical contribution in this candidate is to show how to efficiently compute
the linear transformationM ; specifically, we show that it can be computed with size Õ(n), for

a total circuit size of r·
(
bO(1) + Õ(n)

)
= Õ(n). A common method for constructing maximal-

branch-number linear transformations is to use the generator matrix G of an m → 2m
maximum distance separable (MDS) code; specifically, if GT = [I |A], then M := A has
maximal branch number. Our method for computing M efficiently has two parts. First, we
use a result by Roth and Seroussi [RS85] that if G generates a Reed-Solomon code (which
is well-known to be MDS), then M forms a t× t Cauchy matrix (a type of matrix specified
by O(t) elements). We then use a result by Gerasoulis [Ger88] to compute the product of

8



a vector (consisting of bundles of the state) and a Cauchy matrix in quasilinear time; this
requires a simple adaptation of the algorithm in [Ger88] to fields of characteristic 2.

By combining Theorem 1.3 with a theorem of Nyberg [Nyb93], we show that this candi-
date has exponential security against linear and differential cryptanalysis.

Theorem 1.6. 1. pLC(F2) ≤ 2−Ω(n). 2. pDC(F2) ≤ 2−Ω(n).

We do not know how to get a candidate computable by circuits of size O(n).

Candidate 3. In the previous candidate, the components S and M remain essentially
unchanged from AES. In Candidate 3, we also keep S the same (aside from the increase in
input/output size), but we modify the linear transformation M .

Our observation is that the rationale for using a linear transformation with maximal
branch number is just that it allows one to lower bound the number A of so-called “active” S-
boxes, which can be defined as follows. Let C be an SPN which uses the identity permutation
for S and which has ki := 0 for 0 ≤ i ≤ r. Let wb :

(
{0, 1}b

)m → N be the function that
counts the number of non-zero b-bit bundles in its input. Then,

A := min
0n 6=x∈{0,1}n

r∑

i=1

wb(state of C(x) at the beginning of round i).

This number A is crucial in evaluating the security of SPNs against linear and differential
cryptanalysis (cf. [KHL+01, DR02]). With a simple modification toM , we get that a constant
fraction of the S-boxes in each round are active. Specifically we use the full generator matrix
of an error correcting code with minimum distance Ω(n), which comes at the expense of
expanding the state from n bits to O(n) bits at each round. To counteract the fact that
such codes may have some output positions fixed to constant values (leading to a simple
distinguishing attack), the computation of Candidate 3 concludes by taking the inner product
of the state with a uniform O(n)-bit vector that is given as part of the seed. Candidate 3
therefore outputs a single bit.

We take b = nǫ and r = O(1/ǫ) for arbitrarily small ǫ > 0, and so each round is
computable in size

n

b
· poly(b) = n1+O(ǫ),

and the whole circuit also in size n1+O(ǫ).
We further show that Candidate 3 is computable even by TC0 circuits of size n1+O(ǫ) for

any ǫ > 0 (with depth depending on ǫ), cf. §“The gap between lower bounds and PRF” above.
The main technical difficulty in implementing this candidate with the required resources is
that the S-box requires computing inversion in a field of size 2b (recall b = nΩ(1)). To
implement this in TC0 we note (cf. [HV06]) that inverting the field element α(x) can be
accomplished as:

α(x)2
b−2 = α(x)

∑b−1
i=1 2i =

b−1∏

i=1

α(x)2
i

=

b−1∏

i=1

α
(
x2i

)
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where the last equality follows from the fact that we are working in characteristic 2. By
hard-wiring the ≤ b powers x, x2, . . . , x2b−1

of x in the circuit, and using the fact that the
iterated product of poly(n) field elements is computable by poly(n)-size TC0 circuits (see
e.g. [HAB02, Corollary 6.5] and cf. [HV06]), we obtain a TC0 circuit.

Because Candidate 3 deviates somewhat from the SPN structure, we cannot use The-
orem 1.2, and indeed it is not clear how to define differential cryptanalysis for functions
which output only one bit. However, we are able to leverage a technique from differential
cryptanalysis to prove that Candidate 3 is almost 3-wise independent. We were unable to
determine if this candidate is 4-wise independent.

Definition 1.7. A function f : {0, 1}n → {0, 1} parameterized by a key k is (d, ǫ)-wise in-
dependent if for any distinct x1, . . . , xd ∈ {0, 1}n, the distribution (f(x1), . . . , f(xd)) induced
by a uniform choice of k is ǫ-close to Ud in statistical distance.

Theorem 1.8. F3 is (3, 2−Ω(n))-wise independent.

Finally, we mention that implicit in an assumption that Candidate 3 is indeed hard
is the assumption that field inversion cannot be computed by unbounded fan-in constant
depth circuits with parity gates AC0[⊕]. For otherwise, it can be shown that the whole
candidate would be in that class, in contradiction with an algorithm in [RR97, §3.2.1] which
distinguishes truth tables of AC0[⊕] functions from random ones in quasipolynomial time.
(M can be seen to be a linear operation over GF(2), hence it can be computed easily with
parity gates.) The question of whether field inversion is in AC0[⊕] was raised by Healy and
Viola in [HV06]. Their work, and later Kopparty’s [Kop11], do show that several functions
related to field inversion are not in AC0[⊕].

Candidate 4. In this candidate, we use the extreme setting of parameters b = n and
r = 1. In other words, Candidate 4 consists of one round, and this round contains only a
single S-box (and in particular no linear transformation). This construction can be seen as
a concrete instantiation of the Even-Mansour block cipher [EM97], using the AES S-box in
place of the random permutation oracle. While this setting does indeed preserve resistance
to linear and differential cryptanalysis, we exhibit a simple attack, inspired by Jakobsen and
Knudsen [JK01], in which we exploit the algebraic structure to recover the key with just 4
queries.

We then put forth a related candidate F ′
4 where we only output the Goldreich-Levin bit

[GL89]: F ′
4(x) := 〈(x + k0)

2b−2, k1〉. We prove that this candidate is a d-wise small-bias
generator with error d/2n (cf. [NN93, AGHP92]), i.e. that it fools all parity tests that look
at ≤ 20.9n outputs.

Theorem 1.9. For any choice of d ≤ 2n, F ′
4 is a d-wise small-bias generator with error

d/2n. That is, for any distinct a1, . . . , ad ∈ {0, 1}n:
∣∣∣∣∣ Prk0,k1

[
d∑

i=1

F ′
4(ai) = 0

]
− 1

2

∣∣∣∣∣ <
d

2n
.
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Using Braverman’s result [Bra09] (cf. [Baz09, Raz09]) we obtain that this candidate also

fools small-depth AC0 circuits of any size w = 2n
o(1)

(that look at only w fixed output bits
of the candidate).

Using the same ideas for Candidate 3, this candidate is also computable by poly-size TC0

circuits. For unbounded-depth circuits, a more refined size bound Õ(n2) follows from the
exponentiation algorithm in [GvzGPS00].

Candidate 5. Our final candidate is a straightforward generalization of AES, and may be
folklore. We set b = 8 as in AES and we again use AES’s S-box. We also use the same linear
transformation as in AES (which is slightly different from that of Candidate 2, cf. §2.5),
except for the necessary increase in the input/output size. We set the number of rounds
r = n, and thus the size of the seed is |k| = n(n+ 1).

Candidate 5 is computable by size O(n2), depth O(n) Boolean circuits. For each fixed
seed k, Candidate 5 is also computable in time O(n2) by a single-tape Turing machine with
O(n2) states.

We do not know how to get a candidate computable in time O(n) on a 2-tape Turing
machine.

Organization. In §2 we construct our PRF candidates described above. We conclude
and mention some future directions in §3. Appendix A contains the details regarding linear
and differential cryptanalysis that were omitted above (and the proof of Theorem 1.3), and
Appendix B presents an attack on low-degree PRF (proving Theorem 1.4).

2 New PRF candidates

In this section we give the details of the candidate PRFs described in §1.2. Recall that we
denote Candidate i by Fi.

2.1 Candidate 1

We first analyze the pseudorandomness of the SPN structure when the S-box is a uniformly
random function. The results of this section are of a similar flavor, and use similar techniques,
as those of Luby and Rackoff [LR88] and the following work by Naor and Reingold [NR99].
One notable difference is that we study SPNs as pseudorandom functions, and in particular
we do not allow inverse queries to the SPN. (Indeed, if the S-box is not a permutation then
the SPN may not be either, in which case inverse queries are not well-defined.) Adapting this
proof to handle bidirectional queries is a natural research direction which is not addressed
here.

Our analysis in this section holds for SPNs in which the linear transformation M is
invertible and has all entries 6= 0. We observe that this includes all matrices with maximal
branch number.

11



Claim. Let M ∈ (GF(2b))m×m be any matrix with maximal branch number m + 1. Then,
all entries of M are non-zero and M is invertible.

Proof. Assume for contradiction that Mi,j = 0 for some i, j ≤ m. Let x ∈ (GF(2b))m be
the vector such that xj = 1 and xj′ = 0 for j′ 6= j. Then (Mx)i = 0, and so Br(M) ≤
w(x) + w(Mx) ≤ m.

To see that M is invertible, simply note that if Mx = My for x 6= y, then M(x+y) = 0m.
Since x+ y 6= 0m, we would again have Br(M) ≤ m.

For the remainder of this section, fix any invertible M ∈ (GF(2b))m×m such that all
entries are non-zero. For any function S : GF(2b) → GF(2b) and any set of round keys
(k0, . . . , kr−1) ∈ ({0, 1}n)r, let F1 = F1(S, k0, . . . , kr−1) be the r-round SPN on n := mb bits
defined by these components, where the final round consists only of S-boxes (i.e. the final
round omits the linear transformation and the key addition).

Let A : (N,N) → {0, 1} denote an adversary with oracle access to a function mapping
(GF(2b))m to itself; A’s input is simply (1m, 1b) which we omit from now on. We will show
that A has small advantage in distinguishing between the case when its oracle is a uniformly
random function F , and when its oracle is F1 for a uniform choice of (S, k0, . . . , kr−1).

Theorem 1.5. If A makes at most q total queries to its oracle, then

∣∣∣∣PrF
[
AF = 1

]
− Pr

F1

[
AF1 = 1

] ∣∣∣∣ < O(r2m3q3) · 2−b.

2.1.1 Proof overview

The proof proceeds in two stages. In the first stage, we consider any set of distinct queries
x1, . . . , xq, and we show that there is a low-probability event bad over the choice of (S, k0, . . . ,
kr−1) such that, conditioned on ¬bad, {F1(xi)}i≤q is uniformly distributed. Essentially, bad
is the event that any two SPN queries induce the same query to some S-box in the final round.

In the second stage, we consider the distribution over transcripts of A’s interaction with
its oracle; we use the results of the first stage in a probability argument to show that the
transcripts are distributed nearly identically in either setting, and thus that A’s distinguish-
ing advantage is small. This framework has been used in a number of other works, e.g.
[NR99, RR00, GR04].

The first stage actually shows that F1 is almost q-wise independent, or alternatively that
it is pseudorandom against adversaries that make ≤ q non-adaptive queries. The technique
used in the second stage is a rather generic way of extending the proof to adaptive queries;
however we note that it crucially relies on the existence of the event bad, and indeed it is not
the case that any almost q-wise independent function is pseudorandom against adversaries
making q adaptive queries.3 A different method (that does not give a useful bound in our

3This can be seen for example by considering the distribution over functions f : [N ] → [N ] in which
each output is selected uniformly and independently with the restriction that f(f(0)) := 0. This is almost
pairwise-independent, but trivially distinguishable with two adaptive queries.
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setting) for obtaining adaptive security from non-adaptive security is given by Hoory et
al. [HMMR05, Prop. 3].

We will analyze the first (r − 2) rounds of F1 in a different way from the final 2 rounds,
and to this end we define the following two functions. Let ρ = ρ(S, k0, . . . , kr−3) compute
everything in F1 before the xor with kr−2, and let ρ′ = ρ′(S, kr−2, kr−1) compute the re-
mainder of F1. So, F1(x) = ρ′(ρ(x)). As handling ρ′ will be the more involved part of the
analysis, we note that it can be written as

ρ′(x) := S∗ (M · S∗(x+ kr−2) + kr−1)

where for any x = x(1) · · ·x(m) we define S∗(x) :=
(
S(x(1)), . . . , S(x(m))

)
.

2.1.2 Stage 1

Fix distinct x1, . . . , xq ∈ (GF(2b))m. We view (S, k0, . . . , kr−1) being chosen as follows:

1. Uniformly choose k0, . . . , kr−3.

2. Run the computation of ρ(xi) for all i ≤ q, and each time the S-box is evaluated on a
previously-unseen input, choose the output uniformly at random. Let H ⊆ GF(2b) be
the set of at most qm(r − 2) S-inputs whose output is determined after this step.

3. Uniformly choose kr−2.

4. Uniformly choose the output of S on each block of each (ρ(xi) + kr−2) whose output is
not already determined.

5. Uniformly choose kr−1.

6. Uniformly choose the output of S on all remaining inputs.

It is clear that, for any x1, . . . , xq, this distribution is uniform. Our analysis will use the state
of the SPN’s computation immediately before the final round of S-boxes, and we denote this
state for the ith query by

zi := M · S∗(ρ(xi) + kr−2) + kr−1.

We now define the event bad. Informally bad holds if, after step 5, any of the S-inputs
that need to be evaluated (i.e. the blocks of the zi) collide either with each other or with one
of the inputs selected in steps 2 and 4. To reduce notation, we use the following definition.

Definition 2.1. Let x, y ∈ (GF(2b))m, and denote x = x(1) · · ·x(m) and y = y(1) · · · y(m).
Then, we say that x and y collide if ∃ℓ, ℓ′ : x(ℓ) = y(ℓ

′). Further, for any T ⊆ GF(2b), we
say that x and T collide if ∃ℓ ≤ m, t ∈ T : x(ℓ) = t. Finally, we say that x self-collides if
∃ℓ 6= ℓ′ : x(ℓ) = x(ℓ′).

13



Now, let bad = bad(x1, . . . , xq) be the set of all (S, k0, . . . , kr−1) such that at least one
of the following holds:

(a) ∃h, h′ ∈ H : S(h) = S(h′).

(b) ∃i < q : zi and H collide.

(c) ∃i, i′ ≤ q : zi and (ρ(xi) + kr−2) collide.

(d) ∃i ≤ q : zi self-collides.

(e) ∃i 6= i′ ≤ q : zi and zi′ collide.

It is crucial for us that determining whether bad holds can be checked after step 5 in
choosing (S, k0, . . . , kr−1).

We now prove two lemmas showing that bad occurs with low probability, and that the
query answers are uniformly distributed when conditioned on ¬bad. In the remainder of
this subsection, we will simply use bad to mean (S, k0, . . . , kr−1) ∈ bad.

Lemma 2.2. Pr
S,k0,...,kr−1

[bad] < O(r2m3q3) · 2−b.

Proof. We start by bounding the probability of items (a)-(d) individually.
First, we have PrS,k0,...,kr−3[(a)] < (qm(r − 2))2 · 2−b by a union bound over all pairs of

S-box instances in the first r − 2 rounds.
We analyze (b)-(e) starting after step 2, so for these let k0, . . . , kr−3, H , and S(H) be

fixed arbitrarily.
Fix any kr−2 and the outputs of S on the blocks of (ρ(xi) + kr−2) for all i, which fixes

z̃i := M · S∗(ρ(xi) + kr−2); note that zi = z̃i + kr−1. Then, Prkr−1[(b)] ≤ qm · qm(r− 2) · 2−b

by a union bound over each block of each z̃i and each element of H .
By the same argument as for (b), Prkr−1[(c)] ≤ (qm)2 ·2−b, where the union bound is now

over each block of each zi and each block of each (ρ(xi) + kr−2).
Let the z̃i be defined as above; then for each i, Prkr−1[(zi = z̃i+kr−1) self collides] < m2·2−b

by a union bound over pairs of blocks. So, Prkr−1[(d)] < qm2 · 2−b.

We will now bound Pr[(e)] | ¬(a)]. Note that ¬(a) implies that each component of ρ is
injective and thus that each ρ(xi) is distinct (this is where we use M ’s invertibility).

Fix any i 6= i′ ≤ q and ℓ, ℓ′ ≤ m. We will show that Pr[z
(ℓ)
i = z

(ℓ′)
i′ | ¬(a)] < O(rmq) · 2−b,

and then a union bound over i, i′, ℓ, ℓ′ gives Pr[(e)] | ¬(a)] < O(rm3q3) · 2−b. (We remark
that the non-trivial case is when ℓ = ℓ′, i.e. when comparing the same final-round S-box for
distinct xi, xi′, because in this case the same block of kr−1 affects both S-inputs. If ℓ 6= ℓ′

then one can proceed similarly to (a)-(d), but the following works for either case.)

From the definition of zi we have z
(ℓ)
i = z

(ℓ′)
i′ iff

k
(ℓ)
r−1 +

m∑

s=1

Mℓ,s · S(ρ(xi)
(s) + k

(s)
r−2) = k

(ℓ′)
r−1 +

m∑

s=1

Mℓ′,s · S(ρ(xi′)
(s) + k

(s)
r−2). (1)
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Let t be such that ρ(xi)
(t) 6= ρ(xi′)

(t), which must exist because ρ(xi) 6= ρ(xi′). Arbitrarily fix

k
(s)
r−2 for all s 6= t, the outputs of S on the input set I :=

{
(ρ(xi)+kr−2)

(s), (ρ(xi′)+kr−2)
(s)
}
s 6=t

,

and k
(ℓ)
r−1 and k

(ℓ′)
r−1. This fixes an α ∈ GF(2b) such that (1) holds iff

Mℓ,t · S(ρ(xi)
(t) + k

(t)
r−2) + Mℓ′,t · S(ρ(xi′)

(t) + k
(t)
r−2) = α. (2)

If neither ρ(xi)
(t) + k

(t)
r−2 nor ρ(xi′)

(t) + k
(t)
r−2 are in (I ∪H), then (2) holds with probability

= 2−b over the choice of S on these two inputs (this is where we use the fact that all
entries of M are non-zero). Further, these two inputs fall inside (I ∪ H) with probability

≤ 2 · (qm(r−2)+2(m−1)) · 2−b over the choice of k
(t)
r−2, by a union bound over the elements

of (I ∪H). Thus Pr[z
(ℓ)
i = z

(ℓ′)
i′ | ¬(a)] = O(rmq) · 2−b as promised.

Finally, we have Pr[(a)∨· · ·∨(e)] ≤ Pr[(a)]+· · ·+Pr[(d)]+Pr[(e) | ¬(a)] < O(r2m3q3)·2−b.

Lemma 2.3. For any distinct x1, . . . , xq and any y1, . . . , yq:

Pr
S,k0,...,kr−1

[
∀i ≤ q : F1(xi) = yi

∣∣ ¬bad
]
= 2−qmb.

Proof. After running steps 1 through 5 in the process of choosing (S, k0, . . . , kr−1), if we

condition on ¬bad then the qm elements of the set {z(ℓ)i }i,ℓ are unique and were not used
as inputs to S in steps 2 or 4. Thus, each element has a 2−b probability (independent from
the other elements) of being mapped by S to the corresponding output (i.e. a block of a yi),
and the lemma follows.

2.1.3 Stage 2

We now show that even adversaries that make adaptive queries have small distinguishing
advantage, i.e. we prove Theorem 1.5. We make the standard assumption that the adversary
A is deterministic, computationally unbounded, and never queries an oracle twice with the
same input.

To prove Theorem 1.5, we extend the results of the previous section by considering the
distribution over transcripts of A’s interaction with its oracles. A transcript is a sequence
σ = [(x1, y1), . . . , (xq, yq)] that contains the query/answer pairs arising from A’s interaction
with its oracle. We use TF to denote the transcript of AF , and we use A(σ) to denote A’s
output after seeing transcript σ. (So note for instance that PrF [A

F = 1] and PrF [A(TF ) = 1]
are semantically equivalent.)

Because A is deterministic, there is a deterministic function QA that determines its next
query from the partial transcript so far. For a transcript σ, denote its prefixes by σi :=
[(x1, y1), . . . , (xi, yi)]. We say a transcript σ is possible for A if for all i < q: QA(σi) = xi+1.
Clearly for any impossible transcript σ, Pr[TF = σ] = 0 regardless of the distribution from
which F is chosen. Also note that the assumption that A never makes the same query twice
implies that in any possible transcript, xi 6= xj for all i 6= j.

We now prove Theorem 1.5 with a probability argument similar to [NR99, Thm. 3.2].
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Proof of Theorem 1.5. Let Γ be the set of possible transcripts such that A(σ) = 1 ⇔ σ ∈ Γ.
Then,

∣∣∣∣PrF
[
AF = 1

]
− Pr

S,k0,...,kr−1

[
AF1 = 1

] ∣∣∣∣

=

∣∣∣∣
∑

σ∈Γ

(
Pr
F
[TF = σ]− Pr

S,k0,...,kr−1

[TF1 = σ]

) ∣∣∣∣

≤
∣∣∣∣
∑

σ∈Γ

Pr
S,k0,...,kr−1

[bad] ·
(
Pr
F
[TF = σ]− Pr

S,k0,...,kr−1

[TF1 = σ | bad]
) ∣∣∣∣ (3)

+

∣∣∣∣
∑

σ∈Γ

Pr
S,k0,...,kr−1

[¬bad] ·
(
Pr
F
[TF = σ]− Pr

S,k0,...,kr−1

[TF1 = σ | ¬bad]
) ∣∣∣∣. (4)

Lemma 2.3 implies that (4) = 0, because PrF [TF = σ] = 2−qmb for any possible transcript σ.
We rewrite (3) as
∣∣∣∣
∑

σ∈Γ

(
Pr

S,k0,...,kr−1

[bad] · Pr
F
[TF = σ]

)
−

∑

σ∈Γ

(
Pr

S,k0,...,kr−1

[bad] · Pr
S,k0,...,kr−1

[TF1 = σ | bad]
) ∣∣∣∣.

Each of the two summations is bounded by α := max
σ∈Γ

(
Pr

S,k0,...,kr−1

[bad]

)
, since each is a

convex combination of numbers that are bounded by α. Thus, the absolute value of their
difference is bounded by α as well, and α < O(r2m3q3) · 2−b by Lemma 2.2.

2.2 Candidate 2

Our next candidate PRF F2 : {0, 1}n → {0, 1}n is parameterized by a key k of length
O(n log2 n) and is computable by circuits of size ≤ n logO(1) n. We will show that it has
security 2−Ω(n) against linear and differential cryptanalysis via Theorem 1.3. The SPN
defining F2 closely follows AES.

Definition of F2. F2 is an SPN as defined in §1.1; our parameter choices are as follows.
For any b ∈ N let m := 2b−1, r := ⌈b/10⌉ and n := mb.

For the S-box, we use essentially the same function used in AES. Namely, S : GF(2b) →
GF(2b) is defined by S(x) := x2b−2. Note that x 7→ x2b−2 is simply inversion in GF(2b) with
0−1 := 0. The bounds on pLC and pDC from Theorems 1.2 and 1.3 are stated in terms of
bounds on the correlation and the DPP, respectively, of the S-box. The results of Nyberg
[Nyb93] and the references therein establish these bounds, stated in following theorem.

Theorem 2.4. Let S : GF(2b) → GF(2b) be defined by S(x) := x2b−2. Then:

1. max
Γx,Γy 6=0

(
CorΓx,Γy (S)

2) ≤ 2b−2. 4 2. max
∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
≤ 2b−2.

4[Nyb93] actually bounds a related quantity known as the non-linearity of S, but it translates directly to
the stated result.
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For the linear transformation M : GF(2b)m → GF(2b)m, the crucial property is that it
has maximal branch number Br(M) = m+ 1. Let G be the 2m ×m generator matrix of a
Reed-Solomon code over GF(2b). (Note that 2b ≥ 2m is sufficient to guarantee the existence
of such a code.) Take G to be in reduced echelon form, i.e. take GT = [I |M ] where I is the
m ×m identity matrix. Then, because G generates a maximum-distance-separable (MDS)
code, it can be verified that the operation defined by left multiplication with M has branch
number m + 1. This use of MDS codes to create maximal-branch-number transformations
is widespread, and dates at least to [Dae95].

Security of F2. The security of F2 is given by the following theorem (restated).

Theorem 1.6. 1. pLC(F2) ≤ 2−Ω(n). 2. pDC(F2) ≤ 2−Ω(n).

We note that this security is “as good” as what is available for AES, i.e. AES on 128-bit
inputs is believed to have security ≈ 2128. (In fact, AES’s security relies on some heuristic
arguments which we avoid.) Furthermore, resistance to linear and differential cryptanalysis
is essentially the only type of security currently available for SPNs.

Given the choices of b, r, and m, Theorem 1.6 follows immediately from Theorem 2.4
and Theorem 1.3, restated below. (We defer the proof of Theorem 1.3 to Appendix A, as it
requires a more extensive technical analysis of the SPN structure.)

Theorem 1.3. Let Ck : {0, 1}n → {0, 1}n be an SPN with r = 2ℓ rounds for some ℓ ≥ 1 and
S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy (S)

2) denote the maximum squared correlation of S,
and let p := max∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
denote the maximum DPP of S. If Br(M) = m+1,

1. pLC(Ck) ≤ qℓm · 2(ℓ−1)n. 2. pDC(Ck) ≤ pℓm · 2(ℓ−1)n.

By varying the constant 10 in r := ⌈b/10⌉, pLC(F2) and pDC(F2) can be bounded by
2−(1−ǫ)·n for any fixed ǫ > 0.

We also note that a bound of pLC(Ck) ≤ 2−Ω(n) incorporates the same bound on each
Fourier coefficient of each output bit of Ck. In turn, this implies that each output bit
depends on Ω(n) input bits. (Otherwise it can be verified that it would have too large a
Fourier coefficient by Parseval’s identity.)

Efficiency of F2. We now explain how to compute F2 in quasilinear size. The “tricky”
component is multiplication by M . Roth and Seroussi [RS85, Theorem 1] show that when
the Reed-Solomon matrix G is put into reduced echelon form, i.e. when GT = [I |M ], then
M is a generalized Cauchy matrix, defined as follows.

Definition 2.5. Let F be any field of characteristic 2. A matrix C ∈ Fm×m is a Cauchy
matrix if there exist 2m distinct values α1, . . . , αm, β1, . . . , βm ∈ F such that Ci,j = (αi+βj)

−1.
Furthermore, a matrix M ∈ Fm×m is a generalized Cauchy matrix if it can be written as
M = BCD, where C is a Cauchy matrix and B,D ∈ F

m×m satisfy Bi,j = 0 ⇔ i 6= j and
Di,j = 0 ⇔ i 6= j.
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Gerasoulis [Ger88] shows that multiplication of a vector by an m×m Cauchy matrix can

be done with Õ(m) operations when the underlying field is C. (Multiplication with B and D
in the above definition can be done with O(m) operations, so we will focus on multiplication
by C.) This algorithm can also be made to work over GF(2b), as we now show. We stress
that we are using the same algorithm from [Ger88]; the purpose here is to show that it works
over GF(2b).

Theorem 2.6. Let C ∈ GF(2b)m×m be a Cauchy matrix defined by the (distinct) elements
{αj, βj}j∈[m]. Then, given any vector z ∈ GF(2b)m, the product C · z can be computed with
O(m · log2 m · log logm) operations over GF(2b).

Proof. Define the following polynomial.

f(x) :=
m∑

j=1

zj(x+ βj)
2b−2

Then we have C · z = (f(α1), . . . , f(αm)), and so it suffices to evaluate f at the points {αi}i.
Now define the following three polynomials.

g(x) :=
m∏

j=1

(x+ βj)

h(x) :=

m∑

i=1

[
zi(x+ βi)

2b−1 ·
∏

j 6=i

(x+ βj)

]

h∗(x) :=

m∑

i=1

zi
∏

j 6=i

(x+ βj)

Then we have f(x) = h(x)/g(x) as formal polynomials. Furthermore, for any y 6∈ {βj}j we
have h(y) = h∗(y), using the identity y2

b−2 = 1 valid for any y 6= 0. Since our goal is to
evaluate f(αi) for all i, this is now seen to be equivalent to evaluating h∗(αi)/g(αi) because
αi 6= βj for all i, j.

Notice that, for each βj , we have h∗(βj) = zj · g′(βj), where g′(x) =
∑

i∈[m]

∏
j 6=i(x+ βj)

is the derivative of g. So, another way to view h∗(x) is that it is the unique degree ≤ m− 1
polynomial interpolating the points {(βj , zj ·g′(βj)}j∈[m]. The algorithm is now the following:

1. Compute g(x) and g′(x) in coefficient form.

2. Evaluate g′(βj) for each βj .

3. Compute all values of zj · g′(βj).

4. Interpolate the points {(βj , zj · g′(βj)} to obtain h∗(x) in coefficient form.

5. Evaluate both g(αj) and h∗(αj) for each αj .
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6. Compute each value of f(αj) = h∗(αj)/g(αj).

We note that steps 1 and 2 do not involve the vector z and thus can be pre-processed, and
that steps 3 and 6 can easily be done with m operations over GF(2b) each. For the remaining
steps, we use the following results which can be found in (for example) [vzGG03, Ch. 10]
and which hold for any commutative ring with unity R.

Theorem 2.7 ([vzGG03], Corollary 10.8). Evaluation of a polynomial in R[x] of degree < m
at m points can be done with O(m · log2m · log logm) operations in R.

Theorem 2.8 ([vzGG03], Corollary 10.12). Given m distinct values u1, . . . , um ∈ R and
m arbitrary values v1, . . . , vm ∈ R, the unique polynomial in R[x] of degree < m which
interpolates {(ui, vi)}i can be computed in coefficient form with O(m · log2m · log logm)
operations in R.

As a result, steps 4 and 5, and thus the entire multiplication by C, can be performed
with the stated number of operations in GF(2b).

One round of F2 consists of the following three steps:

(1) m parallel instances of exponentiation in GF(2b) (i.e. x 7→ x2b−2).

(2) One instance of multiplication by M ∈ GF(2b)m×m.

(3) One instance of the round key xor.

Because finite field arithmetic and affine transformations are computable by polynomial size
circuits, step (1) can be computed by a circuit with at most m · bO(1) wires. For step (2), we
have size at most m · log3m · bO(1) by Theorem 2.6. Step (3) can clearly be done with O(mb)
wires. Thus, given the choices of m, b, and r above, the r rounds of F2 : {0, 1}n → {0, 1}n
are computable by a circuit of size n · logO(1) n, and the key size is |k| = mbr = O(n log2 n).

2.3 Candidate 3

In this section we define a candidate PRF F3 : {0, 1}n → {0, 1} parameterized by a key of
length O(n) and computable by TC0 circuits of size O(n1+ǫ) for arbitrarily small constant
ǫ > 0. The construction is again inspired by the SPN structure, and the S-box S is defined
identically to that of F2, but the linear transformation M takes a somewhat different form.

The linear transformation M . M is constructed using a good error correcting code
as before; specifically, we use codes given by the following theorem, which follows from
[GHK+12, Theorem 1].

Theorem 2.9. For any constant ǫ > 0, there exist constants c, δ > 0 such that for sufficiently
large ℓ, there exists a linear code Cǫ : {0, 1}ℓ/c → {0, 1}ℓ which has distance ≥ δ · ℓ and is
computable by a TC0 circuit of size O(ℓ1+ǫ).
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Rather than using a portion of Cǫ’s generator matrix as with F2 however, M consists of
the entire matrix that generates Cǫ. As a result, the internal state grows by a factor of c
during each round, and thus the M used at round i will be a cin× ci−1n matrix.

To see the advantage that this has over the previous choice ofM , consider an input vector
to M in which all b-bit bundles are non-zero. If we use only the fact that M has maximal
branch number (Definition 1.1), then we are only guaranteed that M ’s output will have one
non-zero bundle. However if we instead take M = Cǫ, then we are guaranteed that at least
δ ·m of the output bundles will be non-zero (where n = mb), even if all input bundles were
non-zero.

Definition of F3. Let m, b, r ∈ N be arbitrary for now, and set n := mb. Fix any ǫ > 0; let
c, δ, Cǫ be given by Theorem 2.9, and for 1 ≤ i ≤ r let M (i) be the matrix that generates Cǫ

when ℓ := cin in Theorem 2.9. Let k = (k0, . . . , kr+1) denote the key of F3, where |ki| = cin
for 0 ≤ i ≤ r and |kr+1| = |kr| = crn.

F3 : {0, 1}n → {0, 1} is computed over r rounds. For 1 ≤ i ≤ r, round i maps {0, 1}ci−1n

to {0, 1}cin, and is computed over three steps: (1) ci−1m parallel applications of S; (2)
application of M (i) to the entire state; (3) XOR of the entire state with the round key
ki. (Note that this is exactly the same structure as an SPN, except that M is no longer a
permutation, though it is still injective.)

On input x, F3(x) gives x⊕k0 as input to the first round; the output of round i becomes
the input to round i + 1 (for 1 ≤ i < r), and F3(x) outputs 〈y, kr+1〉 ∈ {0, 1} where y
denotes the output of round r. (The inner product with kr+1 is the second way in which this
candidate deviates from the SPN structure.)

Efficiency of F3. We now show that F3 can be computed by TC0 circuits of size O(n1+ǫ).
For 1 ≤ i ≤ r, round i consists of the following:

(1) ci−1m parallel instances of exponentiation in GF (2b) (i.e. x → x2b−2).

(2) One instance of multiplication by M (i).

(3) One instance of the round key xor.

Step (1) is computable by a TC0 circuit of size ci−1 ·m·bO(1), using the technique described
in §1.2. Step (2) is computable with size O(c(1+ǫ)i · n1+ǫ) by Theorem 2.9. Step (3) can be
computed with size O(cin). The final inner product with kr+1 can be computed with size
O(crn).

Putting it together, there exists a constant κ such that the entire function can be com-
puted by a threshold circuit of size O

(
r · (crmbκ + c(1+ǫ)rn1+ǫ)

)
and depth O(r). Let b ∈ N

be sufficiently large, and set m := ⌈b(κ−ǫ−1)/ǫ⌉ and r := ⌈κ/ǫ⌉. With n := mb, this ensures
that mbκ ≤ n1+ǫ (and also that br ≥ n). Thus, the entire function is indeed computable by
a TC0 circuit of size O(n1+ǫ), where both the depth and the hidden constant depend on ǫ.
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Security of F3. Here we are able to leverage techniques from differential cryptanalysis to
prove that F3 is almost 3-wise independent. (Specifically, the proof below uses a technique
from Nyberg’s proof of Theorem 2.4. [Nyb93])

Theorem 1.8. F3 is (3, 2−Ω(n))-wise independent.

Proof. We will show that F3 is a 3-wise 2−Ω(n)-bias generator, i.e. that for every d ≤ 3 and
any distinct x1, . . . , xd ∈ {0, 1}n, |Prk [

∑
iF3(xi) = 0]− 1/2| < 2−Ω(n). By a well-known fact

(cf. [AGHP92, Lemma 1]) this implies the theorem.
For any input x, let F∗

3 (x) ∈ {0, 1}crn denote the state just before the final inner product;
that is, F3(x) = 〈F∗

3 (x), kr+1〉. Then,
∑

i F3(xi) = 〈
∑

i F∗
3 (xi), kr+1〉. So, we will show that

for any d ≤ 3 and any distinct x1, . . . , xd ∈ {0, 1}n

Pr
(k0,...,kr)

[
∑

i

F∗
3 (xi) = 0c

rn

]
< 2−Ω(n)

which will complete the proof because z 6= 0 ⇒ Prkr+1[〈z, kr+1〉 = 0] = 1/2.
For d = 2, this probability is 0 simply because x1 6= x2 ⇒ F∗

3 (x1) 6= F∗
3 (x2) because each

component of F3 is injective.
Fix distinct x1, x2, x3 ∈ {0, 1}n. Fix any values for (k0, . . . , kr−2), the round keys used

prior to round r − 1. Let yi ∈ {0, 1}cr−1n denote the state of the computation of F3(xi)
immediately prior to the xor with round key kr−1 in round r − 1, and let ∆i := y1 ⊕ yi
denote the differences of the yi. Let z1, z2, z3 be jointly-distributed random variables, over a
uniform choice of kr−1, defined by zi := yi⊕kr−1; note that (z1, z2, z3) is uniformly distributed
over all tuples with differences ∆i.

Fix any j ≤ m, and let z1 denote the jth bundle of z1 and ∆i denote the jth bundle of
∆i. We wish to bound

Pr
kr−1

[
(z1)

2b−2 +
(
z1 +∆2

)2b−2
+
(
z1 +∆3

)2b−2
= 0

]
(5)

the probability that the outputs of the jth S-box in round r sum to 0. If ∆1 = ∆2 = 0, then
the equation is satisfied iff z1 = 0, in which case (5) = 2−b. Now assume that at least one of
∆1,∆2 are not zero. If we assume that z1 6∈ {0,∆1,∆2}, then we may multiply both sides
of the equation by

∏
i

(
z1 +∆i

)
6= 0 to get a quadratic polynomial in z1. Thus, there are

at most 5 values of z1 for which the equation is satisfied (including {0,∆1,∆2}), so we can
bound (5) < 6/2b.

Finally, because each bundle of kr−1 is chosen independently, and because the remaining
steps in round r are linear, we have

Pr
(k0,...,kr)

[
∑

i≤3

F∗
3 (xi) = 0c

rn

]
<

(
6

2b

)cr−1m

= 2−Ω(n).
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Note that this proof does not use any properties of the code Cǫ aside from injectivity.
We remark why this proof does not show that F3 is almost d-wise independent for d ≥ 4.
When the number of inputs d is even, the equation in (5) is satisfied for all values of z1 iff
∆1, . . . ,∆d can be partitioned into d/2 pairs such that the two values in each pair are equal.
Indeed, for even d ∈ (2, 2b] it is possible to construct a set {∆1, . . . ,∆d} which admits such
a partition for all j and yet satisfies the minimum-distance property of Cǫ (which guarantees
that ≥ δcr−1m bundles of each ∆i are non-zero for i > 1, and further that ≥ δcr−1m bundles
of (∆i ⊕ ∆j) are non-zero for all i 6= j). However, it seems counterintuitive that that the
differences at round r would satisfy such a specialized property with noticeable probability,
and we believe that this proof can be extended to higher values of d.

2.4 Candidate 4

For our next candidate, we choose the extreme setting of b = n and r = 1, which means
that the function is computed over one round and essentially consists of just a single S-box.
More specifically, the function is indexed by a seed (k0, k1) ∈ {0, 1}2n, and is computed as

F4(x) := (x+ k0)
2n−2 + k1.

Though F4 does indeed preserve resistance to differential and linear cryptanalysis, we note
that the seed can be recovered with four known plaintext/ciphertext pairs, using an attack
similar in spirit to the so-called interpolation attack of [JK01].

Claim. Let F4 be the above function indexed by k0, k1 ∈ {0, 1}n. Let {(pi, ci)}1≤i≤4 be any
set such that ci = F4(pi) for all i and pi 6= pj for i 6= j. Then, with probability (1− 1/2n−2)
over k0, the values of k0 and k1 can be recovered from {(pi, ci)}i.

Proof. The attack is performed by using the four pairs to create two equations over GF(2n)
that are linear in the seed, as follows. Assume that k0 6∈ {pi}i, which happens with proba-
bility (1− 1/2n−2). Then the equation

(ci + k1) · (pi + k0) = 1

holds for 1 ≤ i ≤ 4. We can rewrite these equations as

k0k1 + cik0 + pik1 + cipi = 1. (6)

If we sum (6) for i = 1, 2, the quadratic terms cancel and we obtain

(c1 + c2)k0 + (p1 + p2)k1 + (c1p1 + c2p2) = 0.

Summing (6) for i = 3, 4 gives another linear equation in k0, k1. The attack concludes by
solving the two linear equations.
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The function F4 can be seen as a concrete instantiation of the Even-Mansour cipher
[EM97] where the random permutation is replaced with (the asymptotic version of) the AES
S-box. This cipher is easily breakable as we have just observed, but we now consider a slight
modification to F4 that is not susceptible to this simple attack, and furthermore fools all
parity tests that look at ≤ 20.9n outputs. The modified function F ′

4 : {0, 1}n → {0, 1} is
defined as follows:

F ′
4(x) :=

〈
(x+ k0)

2n−2, k1
〉
.

In other words, we combine the AES S-box with the Goldreich-Levin hardcore predicate
[GL89]. Note that we now output only a single bit. This modification – replacing the second
xor with an inner product – can also be applied to the Even-Mansour cipher. We consider it
an interesting question to what extent the assumptions necessary for the pseudorandomness
of Even-Mansour can be relaxed in this setting. (In their setting, the assumption is that all
parties have oracle access to a truly random permutation.)

The next theorem shows that F ′
4 fools all parity tests that look at ≤ 20.9n outputs. This

result is reminiscent of the “exponentiation” small-bias generator in [AGHP92], where the
x-th output bit is 〈kx

0 , k1〉. Indeed, our proof is inspired by theirs. However we face the extra
difficulty that the polynomials we work with are not of low degree.

Theorem 1.9. For any choice of d ≤ 2n, F ′
4 is a d-wise small-bias generator with error

d/2n. That is, for any distinct a1, . . . , ad ∈ {0, 1}n:
∣∣∣∣∣ Prk0,k1

[
d∑

i=1

F ′
4(ai) = 0

]
− 1

2

∣∣∣∣∣ <
d

2n
.

Proof. Fix any distinct choices of a1, . . . , ad. Then, identifying elements of GF (2n) with
elements of {0, 1}n, we have

∑

i≤d

F ′
4(ai) =

∑

i≤d

〈
(ai + k0)

2n−2, k1
〉

=

〈
p(x) :=

∑

i≤d

(ai + k0)
2n−2, k1

〉
.

We now show that the polynomial p(x) =
∑

i≤d(ai + x)2
n−2 has at most 2d − 1 dis-

tinct roots. This will conclude the proof because when k0 is not a root of p(x), we have
Prk1 [〈p(k0), k1〉 = 0] = 1/2. Therefore,

∣∣∣∣∣ Prk0,k1

[
d∑

i=1

F ′
4(ai) = 0

]
− 1

2

∣∣∣∣∣ ≤
1

2
Pr
k0
[p(k0) = 0] <

d

2n
.
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To show the bound on the number of roots, define the following polynomials:

p(x) := p(x) ·
∏

i≤d

(ai + x) =
∑

i≤d

[
(ai + x)2

n−1
∏

j 6=i

(aj + x)

]
,

p∗(x) :=
∑

i≤d

∏

j 6=i

(aj + x).

Observe that any root y of p(x) is also a root of p(x). Moreover, note for any y 6∈ {aj :
j ≤ d}, p(y) = p∗(y), using the identity y2

b−2 = 1 valid for any y 6= 0.
Also observe that p∗(x) is not identically zero. Indeed, by inspection, the constant term

of the polynomial p∗(x+ a1) is
∏

j 6=1(aj + a1), which is non-zero because the aj are distinct;
therefore p∗(x+ a1) is not identically zero, and so neither is p∗(x). Since p∗(x) is a non-zero
polynomial of degree d− 1, it has at most d− 1 distinct roots.

So, if p(x) has r roots, also p has r roots. At least r − d of these do not belong to
{aj : j ≤ d}, and so they are also roots of p∗(x). Therefore, r− d ≤ d− 1, or r ≤ 2d− 1.

By Braverman’s result [Bra09] (cf. [Baz09, Raz09]), we obtain that F ′
4 also fools small-

depth AC0 circuits of any size w = 2n
o(1)

(that look at only w fixed output bits of the
candidate).

Indeed, fix any function w = 2n
o(1)

and any constant d = O(1); let N := 2n. By
Theorem 1.9, any w output bits have bias < w/N . By [AGM03], for any k ≤ w, the output
distribution on those w bits is wkw/N -close to a k-wise independent distribution. By [Bra09],

k = lgO(d2) w ≤ no(1) is sufficient to fool circuits of depth d with error 1/w. Hence the overall

error will be 1/w = 1/2n
o(1)

plus

wkw

N
=

(
2n

o(1)
)no(1)

N
≤ 1√

N
,

for a total of 1/w + 1/
√
N = O(1/w).

Efficiency. As noted in §1.2, F ′
4 is computable by Boolean circuits of size Õ(n2) and TC0

circuits of size nO(1).

2.5 Candidate 5

Our final candidate F5 preserves the structure of AES almost exactly. For any n that is a
multiple of 32, we set b = 8, m = n/8, and r = n, and we use S(x) := x2b−2. The linear
transformation M is of a slightly different form than that of the previous candidates, which
we explain now.

M is computed in two (linear) steps. In the first step, a permutation π : [m] → [m] is
used to shuffle the b-bit bundles of the state; namely, bundle i moves to position π(i). π is
computed as follows. First, the m bundles are placed column-wise into a 4 ×m/4 matrix.
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Then row i of the matrix (0 ≤ i < 4) is shifted circularly to the left by i places, and finally
the bundles are extracted column-wise from the new matrix.

In the second step, a maximal-branch-number matrix φ ∈ GF(28)4×4 is applied in parallel
to each consecutive group of 4 bundles.

Efficiency: small circuits. In each round, the O(n) instances of S and φ each perform
computations on a constant number of bits; because permuting the bundles and adding the
round key can also be done with O(n) wires, each round of F5 can be computed by a circuit
of depth d = O(1) and size w = O(n). Thus the entire (r-round) circuit for F5 has depth
d = O(n) and size w = O(n2).

Efficiency: fast Turing machines. Similarly, for any fixed seed k, each round of F5 can
be computed in time O(n) on a single-tape Turing machine with O(n2) states. To do so, we
encode the bundles on the tape so that the matrix used by π is written column-wise. As
before, the O(n) instances of S and φ in a single round can be done in time O(n). To see
that π can also be computed in time O(n), note that due to the column-wise representation
each bundle needs to move ≤ 3 places away, except for the 6 bundles which are shifted
circularly to the other end of the tape. Finally, encoding the O(n2)-bit seed in the TM’s
state transitions, the addition of each round key also takes time O(n). Therefore, the r = n
rounds of F5 can be computed in time O(n2).

Alternatively, consider the Turing machine variant with two tapes, in which the first tape
is read-only and contains the n-bit input followed by the n(n+ 1)-bit seed, the second tape
is read/write, and the TM has O(1) states. Then F5 can again be computed in time O(n2)
exactly as described above, because in round i only bits in + 1, . . . , in + n of the seed are
used.

3 Conclusion and future work

Two obvious directions for future work are to extend the analysis of F1 to handle inverse
queries (necessarily choosing the S-box as a random permutation), and to extend Theorem 1.8
to prove almost d-wise independence of F3 for d > 3. A more foundational question left
unanswered is to understand how the degree of each output bit of an SPN (as a polynomial
in the input bits) is affected by the degree of the S-box and by the “mixing” properties of
the linear transformation.

Exploring other choices of the S-box besides inversion may lead to more efficient construc-
tions, and utilizing other properties of the linear transformation besides maximal-branch-
number may allow stronger proofs of security. This could potentially give a (plausibly secure)
SPN computable by circuits of size O(n). Recall from §1 that a PRF computable with size
O(n) and with security 2n would bring the Natural Proofs barrier to the current frontier of
lower bounds against unbounded-depth circuits.

Abstracting from the SPN structure, one may arrive to the following paradigm for con-
structing PRF: alternate the application of (1) an error-correcting code and (2) a bundle-wise
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application of any local map that has high degree over GF(2) and resists attacks correspond-
ing to linear and differential cryptanalysis. This viewpoint may lead to a PRF candidate
computable in ACC0, since for (1) one just needs parity gates, while, say, taking parities of
suitable mod 3 maps one should get a map that satisfies (2). However a good choice for this
latter map is not clear to us at this moment.

We believe a good candidate PRF should be the simplest candidate that resists known
attacks. As noted in [DR02], some of the choices in the design of AES are not motivated by
any known attack, but are there as a safeguard (for example, one can reduce the number of
rounds and still no attack is known). While this is comprehensible when having to choose
a standard that is difficult to change or when deploying a system that is to be widely used,
one can argue that a better way for the research community to proceed is to put forth the
simplest candidate PRF, possibly break it, and iterate until hopefully converging to a secure
PRF. We view this paper as a step in this direction.

Acknowledgments. We thank Guevara Noubir for helpful discussions, and Salil Vad-
han for mentioning AES. We also thank the anonymous referees for very helpful feedback,
including pointing us to [KHL+01].
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A Security against linear/differential cryptanalysis

In this section we fill in the missing details from §1.1 on how the security of an SPN is
evaluated against linear and differential cryptanalysis, and we prove Theorem 1.3 via an
inductive extension of the results of Kang et al. [KHL+01].

A.1 Linear cryptanalysis

Recall the following two definitions from §1.1.

CorΓx,Γy(f) := 2 · Pr
x
[〈Γx, x〉 = 〈Γy, f(x)〉]− 1

pLC(Ck) := max
Γx,Γy 6=0

(
Ek

[
CorΓx,Γy (Ck)

2])

To bound pLC(Ck), the concept of a linear trail is used. Let ρik denote the ith round
function of an SPN Ck, i.e. Ck(x) = ρrk(ρ

r−1
k (· · · (ρ1k(x⊕ k0)) · · · )). A linear trail is a vector

Γ = (Γ0, . . . ,Γr) ∈ ({0, 1}n)r+1, and the correlation of Ck with respect to Γ is (cf. [DR02,
Eqn. 7.59])

CorΓ(Ck) :=
r∏

i=1

CorΓi−1,Γi
(ρik).

This equation is defined for a fixed key k, but in fact for SPNs only the sign of this product
is affected by the value of the key [DR02, §7.9.2]. In particular, CorΓ(Ck)

2 is the same for
every key k.

For any pair of input/output parities Γx,Γy, we have the following theorem.

Theorem A.1 ([DR02], Thm. 7.9.1).

Ek

[
CorΓx,Γy (Ck)

2] =
∑

Γ: Γ0=Γx,Γr=Γy

CorΓ(Ck)
2.

A näıve evaluation of this sum would lead to a useless bound on pLC (i.e. a bound ≥ 1)
due to the large number of vectors Γ that have the specified first and final elements. Kang
et al. [KHL+01] give an exponentially small bound on this sum (Theorem 1.2) in the case
where r = 2 and the linear transformation M has maximal branch number.

A.2 Differential cryptanalysis

Recall the following two definitions from §1.1.

DPP∆x,∆y(fk) := Pr
x,k

[fk(x)⊕ fk(x⊕∆x) = ∆y]

pDC(Ck) := max
∆x,∆y 6=0

(
DPP∆x,∆y (Ck)

)
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Similarly to how linear trails were used in the previous subsection, differential trails are
used to bound pDC(Ck). A differential trail is a vector ∆ = (∆0, . . . ,∆r) ∈ ({0, 1}n)r+1.

For any SPN Ck, again let ρik denote its ith round function, and let C
(i)
k (x) denote the

output of the ith round of Ck(x), with C
(0)
k (x) := x ⊕ k0. That is, for any i ≤ r, C

(i)
k (x) =

ρik(ρ
i−1
k (· · · (ρ1k(x⊕ k0)) · · · )).
Then for any ∆0,∆r, we have

DPP∆0,∆r(Ck) =
∑

∆1,...,∆r−1

Pr
x,k

[
r∧

i=1

[
ρik

(
C

(i−1)
k (x)

)
⊕ ρik

(
C

(i−1)
k (x⊕∆0)

)
= ∆i

]]
.

This can be seen by noting that for any fixed values of x, k,∆0 and ∆r there is at most one
tuple (∆1, . . . ,∆r−1) for which the conjunction evaluates to true. To simplify this equation,
we use the following two facts.

• The independence of the round keys ensures that, conditioned on two inputs to round
i having xor difference ∆i−1, the inputs are uniformly distributed over all pairs with
difference ∆i−1, and are independent of the inputs to all previous rounds.

• xoring the round key does not affect the DPP of a given round. That is, letting ρ
denote the round function without the key xor, we have DPP∆x,∆y(ρ) = DPP∆x,∆y(ρ

i
k)

for all i,∆x,∆y.

Using these facts and an application of the chain rule, we have

DPP∆0,∆r(Ck) =
∑

∆1,...,∆r−1

r∏

i=1

DPP∆i−1,∆i
(ρ).

[KHL+01] again give an exponentially small bound when r = 2 (Theorem 1.2).

A.3 Proof of Theorem 1.3

We now prove Theorem 1.3 via an inductive extension of Theorem 1.2. We restate both
theorems for convienience.

Theorem 1.2. ([KHL+01], Thms. 5 & 6) Let Ck : {0, 1}n → {0, 1}n be an SPN with
r = 2 rounds and S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy (S)

2) denote the maximum squared
correlation of S, and let p := max∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
denote the maximum DPP of S.

If Br(M) = m+ 1, then pLC(Ck) ≤ qm and pDC(Ck) ≤ pm.

Theorem 1.3. Let Ck : {0, 1}n → {0, 1}n be an SPN with r = 2ℓ rounds for some ℓ ≥ 1 and
S-box S. Let q := maxΓx,Γy 6=0

(
CorΓx,Γy (S)

2) denote the maximum squared correlation of S,
and let p := max∆x,∆y 6=0

(
DPP∆x,∆y (S)

)
denote the maximum DPP of S. If Br(M) = m+1,

1. pLC(Ck) ≤ qℓm · 2(ℓ−1)n. 2. pDC(Ck) ≤ pℓm · 2(ℓ−1)n.
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Proof. We prove part 1; part 2 is essentially identical.
We proceed inductively on ℓ. The base case ℓ = 1 is given by Theorem 1.2. Fix ℓ > 1,

and let Γ0,Γ2ℓ be any non-zero input/output parities. Then,

pLC(Ck) =
∑

Γ=(Γ0,...,Γ2ℓ)

CorΓ(Ck)
2

=
∑

Γ1,...,Γ2ℓ−1

2ℓ∏

i=1

CorΓi−1,Γi
(ρki)

2

=
∑

Γ1,...,Γ2ℓ−2

2ℓ−2∏

i=1

CorΓi−1,Γi
(ρki)

2
∑

Γ2ℓ−1

2ℓ∏

i=2ℓ−1

CorΓi−1,Γi
(ρki)

2

≤ qm ·
∑

Γ1,...,Γ2ℓ−2

2ℓ−2∏

i=1

CorΓi−1,Γi
(ρki)

2 (7)

= qm ·
∑

Γ2ℓ−2




∑

Γ1,...,Γ2ℓ−3

2ℓ−2∏

i=1

CorΓi−1,Γi
(ρki)

2




≤ qm ·
∑

Γ2ℓ−2

q(ℓ−1)m · 2(ℓ−2)n (8)

= qℓm · 2(ℓ−1)n (9)

where (7) is by Theorem 1.2, (8) is by the inductive hypothesis and (9) is by the fact that
there are 2n choices for Γ2ℓ−2.

B Distinguishing o(n)-degree PRFs

In this section, we show (in Theorem 1.4 below) that any PRF fk : {0, 1}n → {0, 1} that is
computable by an o(n)-degree polynomial over GF(2) cannot have hardness 2n. This just
follows from the fact that in time 2n one can write down the polynomial representation of f
restricted to Ω(n) input bits. Details follow.

For simplicity, we instead show that any such PRF can be broken in time 2O(n). This
implies the desired goal, for if we had a PRF fk : {0, 1}n → {0, 1} with hardness 2n we could
consider it over bn input bits, note that the degree would still be o(n) = o(bn), and obtain
a contradiction.

To start, let f : {0, 1}n → {0, 1} be any function, and define the following three values:

• Tf ∈ {0, 1}2n is the truth table of f ; i.e. (Tf)i := f(i), identifying a natural number
with its binary representation.

• Cf ∈ {0, 1}2n is the coefficient vector of f , defined as follows. Fix some ordering on the
2n possible multilinear monomials in n variables. Then, (Cf)i = 1 iff the ith monomial
appears in the polynomial representation of f over GF(2).
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• A ∈ {0, 1}2n×2n is the matrix with rows indexed by the set {0, 1}n and columns indexed
by the set of degree ≤ n multilinear monomials (as with Cf), defined by Aij := 1 iff
monomial j has value 1 under input i.

Note that A is independent of the function f . Furthermore, A is invertible because it has
full rank, which follows from the fact that any two linear combinations of A’s columns give
the truth tables of two distinct polynomials. We now show how to distinguish a low-degree
PRF using the fact that A · Cf = Tf for all f .

Theorem 1.4. Let F = {fk : {0, 1}n → {0, 1}}k be any set of functions such that, for
each key k, the polynomial representation of fk over GF(2) has degree o(n). Then there is
an adversary that runs in time ≤ 2O(n) and distinguishes a random fk ∈ F from a random
function with advantage ≥ 1− 2−2Ω(n)

.

Proof. For any function f : {0, 1}n → {0, 1}, we can use Cf to check if the polynomial
representation of f contains a monomial of degree ≥ n/2. Clearly this will be false for any
fk drawn from the PRF, and for a uniformly random function F we have

Pr
F
[F has a monomial of degree ≥ n/2] ≥ 1− 2

−( n
n/2) ≥ 1− 2−2Ω(n)

which can be seen by viewing F as being randomly chosen by including each possible mono-
mial independently with probability 1/2. Finally, note that Cf can be computed from the
truth table of f in time 2O(n) as Cf = A−1 · Tf .
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