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ABSTRACT. An n-word y over a finite alphabet of cardinality q is called a descendant of a set of t

words x1, . . . , xt if yi ∈ {x1
i , . . . , xt

i} for all i = 1, . . . , n. A code C = {x1, . . . , xM} is said to
have the t-IPP property if for any n-word y that is a descendant of at most t parents belonging to the
code it is possible to identify at least one of them. From earlier works it is known that t-IPP codes of
positive rate exist if and only if t ≤ q − 1.

We introduce a robust version of IPP codes which allows unconditional identification of parents
even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values
from the alphabet, or become completely unreadable. We show existence of robust t-IPP codes for all
t ≤ q − 1 and some positive proportion of such coordinates. The proofs involve relations between
IPP codes and combinatorial arrays with separating properties such as perfect hash functions and hash
codes, partially hashing families and separating codes.

For t = 2 we find the exact proportion of mutant coordinates (for several error scenarios) that
permits unconditional identification of parents.

1. IPP AND FINGERPRINTING CODES

1-A. Introduction. Codes with the identifiable parent property (IPP codes) were introduced by
Hollmann et al. [23]. They are used in the design of traitor-tracing schemes [16, 29, 9, 14] and digital
fingerprinting codes [15, 5, 32, 4, 3]. Some of our terminology is motivated by these applications.

Let Qn be the set of all n-words (vectors) over a finite alphabet Q of size q. A subset C of Qn
is called a code of length n. A t-subset U = {u1, . . . , ut} ⊂ C is called a coalition of size t. In
applications, the elements of C serve as fingerprints of the users of the system. A collusion attack
occurs when several uses (pirates) form a coalition U to create a new fingerprint y with the purpose
of making it impossible to identify any members of U based on observing y. The vector y is formed
as a function of U (the attack map). The general problem considered in the paper is design of codes
resilient to collusion attacks. To give a formal definition of the attack, we need to introduce several
concepts.

Let Ui = {u1
i , . . . , u

t
i} be the set of the ith coordinates of the elements of U . Coordinate i, 1 ≤

i ≤ n is called undetectable for U if all vectors in U have the same value in it, i.e., if |Ui| = 1, and
is called detectable otherwise. Denote by D(U) the set of detectable coordinates for the coalition
U .

Let U ⊂ C be a coalition. Suppose that yi ∈ Ui for all i ∈ [n]. Under this restriction the set of
possible attack vectors for U forms the subset

〈U〉 = {(y1, . . . , yn) ∈ Qn : yi ∈ Ui, i ∈ [n]}(1)
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called the narrow-sense envelope of the coalition and denoted by 〈U〉. The elements of 〈U〉 are
called descendants of U, and for any of the descendants y ∈ 〈U〉 the elements of U are called its
parents. The t-envelope of the code C is defined as follows:

〈C〉t = ∪U⊂C, |U |≤t〈U〉.
Definition 1. (Hollmann et al. [23]) The code C has a t-identifiable parent property (is a t-IPP
code) if for any y ∈ 〈C〉t it is possible to find at least one of its parents, i.e. if

(2)
⋂

U⊂C, |U |≤t, y∈〈U〉

U 6= ∅.

One of the main problems associated with IPP codes is bounding the cardinality of a t-IPP code
C. In this paper we are concerned with the case of large n and fixed q and t. Call the number
R = R(C) , logq |C|/n the rate of the code and let

Rq(n, t) = max{R(C) : C ⊂ Qn is t-IPP}
Rq(t) = lim inf

n→∞
Rq(n, t).

We are interested in establishing conditions for the existence of sequences of codes of increasing
length n and positive rate Rq(t) (called good IPP codes below). It is easily seen that Rq(t) = 0
for t ≥ q. Hollmann et al. [23] proved that Rq(2) > 0 for q ≥ 3. More generally, [6] showed that
Rq(t) > 0 for all q ≥ t + 1. These papers also provided characterizations of 2- and 3-IPP codes,
respectively. An improved lower bound on Rt+1(t) was given by Alon et al. in [1] while upper
bounds on the cardinality of t-IPP codes were derived in [2, 10].

In a related independent work, Boneh and Shaw [15] introduced a broader class of attack maps.
Define the wide-sense envelope of the coalition U as

{(y1, . . . , yn) ∈ Qn ∪ {∗} : yi = ui, i /∈ D(U)}(3)

(any symbols ofQ or erased symbols * are allowed in the detectable coordinates). Codes that support
reliable recovery of the pirates for this problem are called collusion-secure or fingerprinting. As
shown in [15, 5], under this definition, unconditional recovery of pirates is impossible. Moreover,
a single code cannot guarantee low error probability of identification, and it is necessary to use a
family of codes parametrized by a random key. Such code families are somewhat loosely called
fingerprinting codes. Constructions and bounds for fingerprinting codes were studied in [5, 32, 20,
4, 3, 19, 24].

A common feature of the two definitions is the following restriction:

Marking assumption: In forming a collusion attack y the coalition cannot change(4)
the values of its undetectable coordinates.

The object of this paper is a study of an intermediate concept between the IPP and fingerprinting
codes, namely, permitting a limited number of coordinates (mutations) in y that do not follow their
parents in that they deviate from the descent rule (1) by breaking the marking assumption or using
the wide-sense attack (3) or both.

1-B. Robust IPP codes. Call a coordinate i of y a mutation if yi 6∈ Ui. Assume that the coalition
U forms y following the IPP attack rule (1) except for εn coordinates that can deviate from this
rule. Below we consider mutations of two types: erasures, when the value yi is replaced by an
unreadable mark, and arbitrary symbol yi ∈ Q\Ui. We also assume that mutations occur either only
in detectable coordinates or in all coordinates of y. Altogether this accounts for the following 4
types of attacks:
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(I) Only detectable coordinates can mutate (the marking assumption is followed);
(II) Only detectable coordinates can mutate, and the mutant coordinates always

become unreadable marks (erasures);
(III) Any coordinate can mutate to any letter of the alphabet.
(IV) Any coordinate can mutate, and the mutant coordinates always become erasures.

Let U ⊂ Qn, |U | ≤ t be a coalition. Denote by 〈U〉ε the set of all vectors y formed from the
vectors in U so that yi ∈ Ui for n(1−ε) coordinates i and yi is a mutation in at most εn coordinates,
formed using one of the rules (I)-(IV) above.

Definition 2. C ⊂ Qn is a (t, ε)-IPP code (robust t-IPP code) if⋂
U⊂C,|U |≤t,y∈〈U〉ε

U 6= ∅.

In words: the code C guarantees exact identification of at least one member of the pirate coalition
of size at most t for any collusion attack with at most εn mutations

Below when the attack rule is not explicitly mentioned, we mean that the code has the IPP prop-
erty for all the rules (I)-(IV).

Introduce the following quantities:

Rq(n, t, ε) = max{R(C) : C ⊂ Qn is (t, ε)-IPP}
Rq(t, ε) = lim inf

n→∞
Rq(n, t, ε).

Let

(5) εcrit = εcrit(q, t) := sup(ε : Rq(t, ε) > 0)

be the critical value of ε. We use the notation εDcrit, ε
∗,D
crit , εcrit, ε

∗
crit to refer to the critical values for the

attacks of type (I)-(IV), respectively. In the hierarchy of attacks that emerges, the second one is the
weakest. Generally, the following inequalities are obvious:

(6) εcrit(q, t) ≤ ε∗crit(q, t) ≤ ε
∗,D
crit (q, t)

(7) εcrit(q, t) ≤ εDcrit(q, t) ≤ ε
∗,D
crit (q, t).

The problem addressed in this paper is to determine or bound the critical value of ε. We show
that εcrit(q, t) > 0 if and only if q ≥ t + 1, thereby establishing existence of good robust t-IPP
codes. We also find the exact critical values of εcrit for t = 2 in all the four cases defined above.
Note that permitting an unlimited number of erasures in detectable positions rules out the existence
of good IPP codes. Namely it is easy to show that for any code of cardinality at least 2t − 1, the
error probability of identification is close to 1/2; see Prop. 2.6 in [5]. For the wide-sense attack (3),
identification with zero error is also impossible [5].

In establishing our results we rely on properties of combinatorial arrays such as separating fam-
ilies [28], perfect hash families [35, 12] and hash codes [7], and partially hashing families of [6],
all of which are defined formally in the next section. Each of these concepts enforces some kind of
separation properties between groups of rows of the array. These properties were previously used in
establishing existence results of IPP codes [6, 5, 1]. To account for the presence of mutant coordi-
nates, we require that the separation properties hold for a certain number of entries of the rows. This
leads to the notion of separating distance for an array, which in some particular cases was studied
earlier in [26, 28, 7].
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1-C. Prior work on fingerprinting codes. Fingerprinting codes were first described by Wagner
[34] and Blakley et al. [13] and brought to their modern form by Boneh and Shaw [15]. Some of the
earlier works on traitor tracing and collusion-secure codes considered the possibility of unreadable
marks or of relinquishing the marking assumption or both. In particular, unreadable marks were
added to the wide-envelope definition in [15], permitting some of the detectable coordinates to be
erased. However, the present authors observed [5] that this gains no advantage for the pirates.
The possibility of adding mutations at a fixed rate ε (similarly to random errors in information
transmission) was considered by Guth and Pfitzmann [22]. Billet and Phan [9] considered Tardos’s
coding scheme [32] that permits up to εn mutations (erasures or bit flips), and estimated the rate of
fingerprinting codes that support reliable identification of pirates for that scheme (with small, but
positive failure probability), and Sirvent [29] and Boneh and Naor [14] did the same for the Boneh-
Shaw scheme [15]. They also suggested, for codes that can handle mutations, the term robust,
adopted in the present work.

2. SEPARATING SYSTEMS, PARTIALLY HASHING FAMILIES, HASH CODES

In this section we collect results on set systems that satisfy a range of conditions similar to perfect
hashing. We study separating codes (separating hash families), hash codes (extensions of perfect
hash families), and (t, u)-hashing codes (partially hashing families). We begin with a general notion
of separating codes.

Definition 3. A code C ⊂ Qn is separating of type (τ1, τ2, . . . , τm) if for any m-tuple of pairwise
disjoint subsets Uk ⊂ C, |Uk| = τk for all k, there exists a coordinate that separates them: for any
1 ≤ k < l ≤ m and for some i ∈ [n],

(Uk)i ∩ (Ul)i = ∅.

If there are at least d coordinates with this property for each choice of the subsets Uk, k = 1, . . . ,m,
we say that the code has separating distance d.

The first part of this definition appeared already in [17, 31].
Alternatively, a separating code is a familyF of n functions f : Y → Q,where Y is a finite set of

cardinality |Y | = |C|, such that for any pairwise disjoint subsets Uk ⊂ Y, |Uk| = τk, k = 1, . . . ,m,
there exists at least one function f ∈ F such that

{f(y) : y ∈ Ui} ∩ {f(y) : y ∈ Uj} = ∅

for all i 6= j. The condition on the distance is equivalent to the existence of at least d such functions
for each choice of the subsets Uk.

We will use three special cases of this definition. A code of type (t1, t2) is called (t1, t2)-
separating, A code of type (1t) is called a perfect t-hash family, and a code of type (1t, u − t)
is called a (t, u) hashing family (partially hashing family). The corresponding distances will be
denoted by d(t1,t2)

s , dth, and d(t,u)
ph respectively.

Given a separating property P ∈ {s, h, ph}, define

Rq,P(n, δ) = max{R(C) : C ⊂ Qn, dP(C) ≥ δn}

(8) Rq,P(δ) = lim inf
n→∞

Rq,P(n, δ).

A more detailed version of this notation also includes the size of the groups being separated. Thus,
for (t1, t2)-separating codes we write R(t1,t2)

q,s (δ) and so on.
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2-A. Separating codes. Separating codes have been studied for a number of years under different
names. They were introduced in computer science [21], studied using methods of coding theory
and combinatorics (see overviews [28, 17]) and more recently introduced in cryptography under the
name of frameproof and secure frameproof codes [30] (the former correspond to (t, 1) separation
and the latter to (t, t) separation).

We focus on the case of t1 = t2 = 2. The maximum value of the relative (2, 2)-separating
distance for which there exist infinite sequences of codes of positive rate is given in the following
proposition.

Proposition 2.1. (a) Let δ < δ
(2,2)
crit (q), where

δ
(2,2)
crit (q) = (1− q−1)(1− 3q−1 + 3q−2).

Then R(2,2)
q,s (δ) ≥ 2

3 ln q (δ − δ
(2,2)
crit (q))2 > 0. Moreover, if q is a prime power, this claim is also

satisfied by sequences of linear (2, 2)-separating codes.
(b) Any code C ⊂ Qn with d(2,2)

s = d > nδ
(2,2)
crit (q) satisfies

(9) |C| ≤ 6d

d− δ(2,2)crit n
.

In particular, R(2,2)
q,s (δ) = 0 for δ > δ

(2,2)
crit (q).

Part (a) was essentially established in [26], with a small refinement in [27]. Regarding part (b),
[28] establishes a weaker result, namely that R(2,2)

q,s (δ) = 0 for δ > ((q − 1)/q)3. Bound (9) is
proved in the Appendix.

We will also need one extension of the separating property. A code C ⊂ Qn has the restricted
(t1, t2) separation property if for any two its disjoint subsets U, V, |U | = t1, |V | = t2, there exists
a coordinate i such that |Ui| = 1, |Vi| = 1, and Ui 6= Vi (all the vectors in U and in V have the
same value in the separating coordinate i, and these values are different). This version of the separa-
tion property was already considered in [26, 28]. A straightforward application of the probabilistic
method gives the following result.

Proposition 2.2. Let α > 0. Infinite sequences of (2, 2) restricted separating codes exist for all
rates R such that

R+ α ≤ −1/3 logq(1− (q − 1)/q3).

A proof is given in the Appendix.

2-B. Perfect hash families and hash distances of codes. A perfect t-hash family is a set C ⊂ Qn
such that for every t vectors xi1 , . . . , xit ∈ C there exists j ∈ [n] such that |{xi1j , . . . , x

it
j }| = t.

Below we call such j a hash coordinate. Using the language of functions, a perfect hash family is
a set F of n functions f : Y → Q, where Y is a finite set of cardinality |Y | = |C|, such that for
any t-subset X ⊂ Y there exists f ∈ F that is one-to-one on X . We call C a t-hash code, often
omitting the reference to t. The problem of constructing short hash codes of a given cardinality (the
most economical collections of functions) has been extensively studied for the last few decades, see
[12, 35, 31].

A generalization of this concept introduced in [7] studies hash codes with a given value of t-hash
distance d(t)

h . Note the d(2)
h is the usual Hamming distance of the code. We need several results for

t-hash codes with a given value of d(t)
h . These results were announced in [7], but their proofs were

never published. Since we rely on them, and to make this paper self-contained, we give them below.
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Let

(10) πt,q ,
t−1∏
i=1

(1− iq−1)

The following bound is an analog for the hash distance of the Plotkin bound of coding theory [33,
p.66].

Proposition 2.3. [7] Let C ⊂ Qn be a code such that d(t)
h (C) = d. If d > nπt,q then

(11) |C| ≤
(
t

2

)
d

d− nπt,q
.

A proof is given in the Appendix.
In particular, any code C of length n with d(t)

h (C) = d where d/n > πt,q satisfies |C| ≤
(
t
2

)
d.

Bearing in mind our definition (8), we obtain the following proposition.

Proposition 2.4. For all πt,q < δ < 1 we have Rtq,h(δ) = 0.

At the same time, a random choice argument shows that if 0 ≤ δ < πt,q then Rtq,h(δ) > 0.

Proposition 2.5. [7] For any δ < πt,q we have

(12) Rtq,h(δ) ≥ 2((t− 1) ln q)−1(δ − πt,q)2 > 0.

A proof is given in the Appendix. Because of the last two propositions we call the value πt,q the
critical value of the relative t-hash distance of codes.

Corollary 2.6. Let 0 < δ < πt,q, α > 0. There exist infinite sequences of codes with the restricted
(2, 2)-separating property, t-hash distance δn and any rate R that satisfies the inequality

R+ α ≤ min {−1/3 logq(1− (q − 1)/q3), 2((t− 1) ln q)−1(δ − πt,q)2}.

This corollary is proved in the Appendix.
Since most existence results in this section rely on a particular application of the probabilistic

method, we can similarly claim existence of codes that are simultaneously (2, 2)-separating and
hash, or have a certain value of separating distance and of hash distance at the same time. These
claims, whose proofs are analogous to the above corollary, will be freely used in what follows.

It is of interest to show that there exist linear IPP codes. Toward this end, we prove that there
exist linear 3-hash codes of positive rate.

Proposition 2.7. [7] Let α > 0, δ < π3,q and let q be a power of a prime. There exist infinite
sequences of q-ary linear codes of the rate (ln q)−1(δ − π3,q)2 − α that have 3-hash distance at
least δn.

Proof : See Appendix.
We note that for larger t linear hash codes do not exist unless q is sufficiently large [12, 7].

2-C. (t, u)-hashing families. A subset C ⊂ Qn is called (t, u)-hashing [6] if for any two subsets
T,U of C such that T ⊂ U ⊂ C, |T | = t, |U | = u, there is some coordinate i ∈ {1, . . . , n} such
that for any x ∈ T and any y ∈ U, y 6= x, we have xi 6= yi. The coordinates whose existence is
guaranteed by this definition will be again called hash coordinates for given T,U ⊂ C.

As shown in [6], for any u ≥ t+ 1 there exist sequences of good (t, u)-hashing codes. Here we
establish a generalization of this result. As usual, we say that the code C has (t, u)-hash distance
d
(t,u)
ph (C) = d if every pair of subsets T,U has at least d hash coordinates. We have the following

proposition whose proof is given in the Appendix.
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Proposition 2.8. Let u ≥ t+ 1 and let δ < Pq(t, u), where

(13) Pq(t, u) = 1− πt,q(1− tq−1)u−t.

We have
R

(t,u)
q,ph (δ) ≥ ((u− 1) ln q)−1(δ − Pq(t, u))2 > 0.

Remark. In our arguments we have applied the probabilistic method in its simplest form. It is
possible to improve some of the results stated above relying on more refined arguments. For instance,
Alon et al. [1] observed that under biased selection of code symbols, the probability Pt+1(t, u) can
be shown to be 1− t!(u− t)u−tu−u. This number is smaller than the right-hand side of (13), and so
the values of δ for which R(t,u)

t+1,ph(δ) > 0 can be larger than in the above proposition. Better rates of
some binary (t1, t2)-separating codes for t1 6= t2, with no consideration of the separating distance,
were found in [17] (again, biased selection helps).

Several nonasymptotic improvements of the application of the probabilistic method for perfect
hash families and other combinatorial arrays were considered by Blackburn and Wilde [12] and
Deng-Stinson-Wei [18].

3. EXISTENCE OF ROBUST IPP CODES

3-A. Robust IPP codes with traceability property. Denote by dH(x, y) = |{i = 1, . . . , n :
xi 6= yi}| the Hamming distance between vectors x, y ∈ Qn. The minimum distance dH(c, c′)
between distinct codewords c, c′ ∈ C will be called the (Hammng) distance of the code C ⊂ Qn
and denoted dH(C). The value δ = dH(C)/n is called the relative code distance. We also use
the notation sH(x, y) , n − dH(x, y) for the number of equal coordinates in the vectors. Finally
for x ∈ Qn, Y ⊂ Qn we write dH(x, Y ) , miny∈Y dH(x, y). For instance, a descendant y of a
coalition U with e mutant coordinates is any vector y that satisfies dH(y, 〈U〉) = e.

Some of the known results for t-IPP codes can be easily generalized to the new problem. For
instance, [16] showed that any code with Hamming distance d > (1 − t−2)n is a t-IPP code. A
generalization is as follows.

Proposition 3.1. Let C ⊂ Qn be a q-ary code with distance dH(C) = δn such that

(14) δ > 1− t−2 + ε(t−1 + t−2)

where 0 < ε < (t+1)−1. Then for any t-coalition U ⊂ C and any vector y such that d(y, 〈U〉) ≤ εn
there exists at least one vector u ∈ U such that

sH(y, u) ≥ (1− ε)n/t

and for all c ∈ C \ U,
sH(y, c) < (1− ε)n/t.

Proof : Let U = {u1, . . . , ut} be a coalition and let y be a descendant of U with e ≤ εn mutant
coordinates. For any non-mutant coordinate i there exists at least one u ∈ U such that ui = yi.
Therefore ∑

u∈U
sH(y, u) ≥ (1− ε)n,

and hence there exists a vector u0 ∈ U such that sH(u0, y) ≥ n(1− ε)t−1.
On the other hand, let c ∈ C\U . Then for any non-mutant coordinate i the equality yi = ci

implies that ci = ui for some u ∈ U. Therefore the number of non-mutant positions j such that
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yj = cj does not exceed
∑
u∈U sH(u, c). Hence,

sH(y, c) ≤ nε+
∑
u∈U

sH(u, c) ≤ nε+ t(n− dH(C))

< (1− ε)nt−1.

Recall the notion of traceability codes (t-TA codes) [16, 30, 11]: a t-IPP code C has the t-TA
property if for any y ∈ 〈C〉t the vector c ∈ C closest to y by the Hamming distance is always one of
the parents of y, i.e.,

c ∈
⋂

U⊂C, |U |≤t, y∈〈U〉

U.

This implies that a pirate can be provably identified by finding any vector c ∈ C such that c =
arg minx∈C dH(x, y). Note that for t-IPP codes, identification of pirates is substantially more com-
plex, requiring a search over all t-subsets of C as opposed to just finding the closest codevector to
y.

Generalizing this definition to include mutations, call a code C a (t, ε)-TA code (robust TA code)
if the above property holds true even in the presence of εn mutations. We can rephrase the previous
proposition as follows.

Theorem 3.2. For q > t2/(1− ε(t+ 1)) there exist (t, ε)-TA codes with nonvanishing code rate.

Proof : By the Gilbert-Varshamov bound [33, p.66], for any 0 ≤ δ < (q−1)/q there exist sequences
of q-ary codes of growing length n whose relative Hamming distance converges to δ and rate R
converges to a positive number (a function of δ). Using δ < (q − 1)/q in (14) we obtain the
inequality t2

q < 1− ε(t+ 1).

Returning to our main problem, we obtain

Corollary 3.3. For any q > t2 we have

εcrit(q, t) ≥
1

t+ 1
− t2

q(t+ 1)
.

3-B. Existence of robust IPP codes for q ≥ t+ 1. Traceability is a more restrictive property than
IPP: it is shown in [6] there that t-IPP codes with positive rate exist over smaller-sized alphabets
than t-TA codes. More specifically, [6] proves that good t-IPP codes exist for all q ≥ t+ 1, and that
this bound is exact. The following generalization of this result to (t, ε)-IPP codes holds true.

Theorem 3.4. For any q ≥ t+ 1 we have εcrit(q, t) > 0.

For the proof we need the following lemma which is close to Lemma 3.7 from [6].

Lemma 3.5. Let m be an integer. If C has the (t,m(t − m + 2))-hash property for all m =
2, 3, . . . , t+ 1 then it is t-IPP.

Proof : Let X = (X1, . . . , Xm) be a collection of subsets of codewords of a code C with |Xi| ≤
t, i = 1, . . . ,m. Call X a configuration if ∩mi=1Xi = ∅, and call X a minimal configuration if it is
minimal under inclusion.

Suppose the contrary, i.e., that for some y ∈ Qn the set of all subsets X ⊂ C, |X| ≤ t such
that y ∈ 〈X〉 forms a configuration X . Every configuration contains a minimal configuration,
so we can assume that X = (X1, . . . , Xm) is minimal. By minimality, for all j = 1, . . . ,m
there exists an element bj ∈ ∩i 6=jXi, and for distinct indices j the elements bj are different. Let
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B(X ) = {b1, . . . , bm}. We have (B(X )\bj) ⊂ Xj for any j = 1, . . . ,m, and hence m ≤ t + 1.
Let U = ∪X∈XX, then

|U | ≤
∑
i

(|Xi\(B(X )\bi)|) +m

=
m∑
i=1

(|Xi| − (m− 1)) +m

≤ m(t−m+ 2).

Let T ∈ X . By assumption, for T,U thus chosen, there is a (t, u)-hash coordinate i, which means
that xi 6= x′i for all distinct x ∈ T, x′ ∈ U. Moreover, since y ∈ 〈T 〉, there exists an x ∈ T such that
xi = yi, so x is a parent of y. Because of the (t, u)-hash property for all other points x′ ∈ U, we
have yi 6= x′i. Therefore, this vector x is in fact unique, and every T ∈ X contains x, a contradiction.

Remark : Of course, if a code has the (t, u) hashing property for some u ≥ t+ 1, it also has the
(t, u′) hashing property for all t+ 1 ≤ u′ < u. Thus the statement of Lemma 3.5 can be reduced to
one value ofm, the one that gives the maximum of u = m(t−m+2). This value u0 = b(t+2)2/4c
was used in [6] and subsequent works. For our present purposes we need codes that satisfy a set of
conditions for all values of m = 2, . . . , t+ 1, which requires more detailed considerations.

Proof of Theorem 3.4 : Let C be a code. Let X ⊂ C, |X| ≤ t and let y ∈ 〈X〉ε. Let X =
(X1, X2, . . . , Xm) be the set of all coalitions that could generate y with εn mutations. Let U =
∪X∈XX,u = |U |. By the previous lemma, it suffices to show that for any i = 1, . . . ,m the pair
Xi, U contains at least one (t, u)-hash coordinate for all m = 2, . . . , t+ 1.

Let us fix m,u such that 2 ≤ m ≤ t+ 1 ≤ u ≤ m(t−m+ 2). Assume that

(15) 0 < εn ≤ d− 1
m

where d = d
(t,u)
ph (C) is the (t, u)-hash distance of C. Then the total number of mutations that can be

introduced by the coalitions in X is at most d− 1 and therefore there exists at least one (t, u)-hash
coordinate. Then the previous lemma implies the t-IPP property.

Proposition 2.8 implies that as long as δ < Pq(t, u), there exist sequences of codes of rate R
approachingR(t,u)

q,ph (δ) > 0 and (t, u)-hash distance δn. For a givenm it suffices to consider the value

u = m(t−m+2) because d(t,u1)
ph (C) ≥ d(t,u2)

ph (C) if u1 ≤ u2. Let δm < Pq(t,m(t−m+2)),m =
2, . . . , t + 1 be a set of real numbers. By a remark made after Corollary 2.6 there exist codes of
positive rate and (t,m(t−m+ 2))-hash distance ≥ δmn simultaneously for all m = 2, . . . ,m+ 1.

To conclude, for any set of t positive real numbers δm,m = 2, . . . , t + 1 such that δm <
Pq(t,m(t −m + 2)) there exist sequences of codes of positive rate and hash distance δmn. These
codes have the (t, ε) IPP property for all ε that satisfy

0 < ε < min
2≤m≤t+1

δm
m
,

which proves our claim.

4. HASH DISTANCES AND UPPER BOUNDS FOR ROBUST IPP CODES

In this section we derive upper bounds on εcrit under the marking assumption. For that, we show
that for ε > πt+1,q in the case of erasures and for ε > πt+1,q/(t + 1) in the case of arbitrary
mutations, exact identification is impossible, thus rendering Rq(t, ε) = 0 for these values of ε.
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Theorem 4.1.
ε∗,Dcrit (q, t) < πt+1,q,

εDcrit(q, t) < πt+1,q/(t+ 1).

Proof : Consider an arbitrary code C and let d = d
(t+1)
h (C) be its (t + 1)st hash distance. Take a

subset V = {v1, . . . , vt+1} ⊂ C and let A ⊂ [n], |A| = d be the set of its hash coordinates (the
coordinates in which all the vectors of V are different). Form a vector (yi, i ∈ [n]) such that

yi =

{
∗ if i ∈ A
αi if i 6∈ A

,

where αi is the most frequent symbol among v1
i , . . . , v

t+1
i . Since αi = vki at least for two values of

k = 1, . . . , t + 1, we have y ∈ 〈U〉δ for any t-subset U ⊂ V, δ = d/n. Thus, it is impossible to
identify a parent of y with certainty.

Turning to mutant coordinates of arbitrary value (but still following the marking assumption), let
us partition A into t+ 1 disjoint, (almost) equal parts:

A =
t+1⋃
j=1

Aj .

Consider the vector (yi, i ∈ [n]) such that

yi =

{
vji if i ∈ Aj
α if i 6∈ A

,

where α has the same meaning as above. Clearly, y can be generated by any t-subset of V using at
most

max
1≤j≤t+1

|Aj | ≤ d(t+ 1)−1de

mutations.
By Prop. 2.4, any code sequence with positive rate must have d/n < πt+1,q . Together with (5)

this implies our claims.

5. ROBUST 2-IPP CODES

Existence of good (2, ε)-IPP codes for some positive ε has been already established in Theorem
3.4. However its proof uses only a sufficient condition for the robust IPP property, not resulting in
an optimal value of ε. In this section we strengthen this result, finding the exact value of εcrit(q, 2)
for all the four versions of the problem considered.

Hollmann et al. [23] provided a characterization of 2-IPP codes in terms of their separating prop-
erties. We start with extending this analysis to the case of robust IPP codes. We write (a, b) to refer
to a pair of vectors from Qn. We also use an abbreviated notation 〈a, b〉W,W = (I)-(IV) (instead
of 〈(a, b)〉Wε ) to refer to the set of vectors that can be generated by the vectors a, b following (1) in
non-mutant coordinates and following one of the rules (I)-(IV) of Sect. 1 in creating mutations.

For a code C ⊂ Qn we write

〈C〉W =
⋃

(a,b)∈C×C
a 6=b

〈a, b〉W ,

omitting the subscript ε. For a vector y ∈ 〈C〉W consider a graph Gy(V,E), where V = C and
(c1, c2) ∈ E if y ∈ 〈c1, c2〉W . By definition, the code C can identify at least one of the pirates if and
only if for any y the graph Gy is a star (all the edges in E intersect on a point).
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Proposition 5.1. A code C is a robust 2-IPP code if and only if for any vector y ∈ 〈C〉W the graph
Gy has no triangles and any two edges have a common vertex.

This proposition is an easy generalization of Lemma 1 from [23]. According to it, C is t-IPP if it
is simultaneously 3-hash and (2,2)-separating. Switching to the language of graphs, this means that
for any y ∈ 〈C〉W the graph Gy contains no triangles and no parallel edges.

First we study the case when mutations occur only in detectable coordinates.

Theorem 5.2. Assume that the pirates follow the attack rule (I) or (II). For all q ≥ 3,

ε∗,Dcrit(q, 2) =
(
1− 1

q

)(
1− 2

q

)
εDcrit(q, 2) =

1
3

(
1− 1

q

)(
1− 2

q

)
.

Proof : Owing to Theorem 4.1 we only need to prove existence of sequences of the corresponding
(2, ε)-IPP codes. The proof relies on the sufficient conditions for the IPP property of Prop. 5.1. Let
C be a code with the restricted (2, 2) separation property of Prop. 2.2. For two pairs (a, b) and (c, d)
of distinct codevectors let i be a separating coordinate. Since any y generated by (a, b) obeys the
marking assumption (4), clearly y 6∈ 〈c, d〉W . Thus the graph Gy has no parallel edges for either
W = (I) or (II).

Suppose in addition that C has 3-hash distance d. If d ≥ nε+ 1, then for any a, b, c ∈ C

〈a, b〉(II) ∩ 〈b, c〉(II) ∩ 〈a, c〉(II) = ∅.

Indeed, if at most εn erasures have occurred, there will be at least one non-mutant hash coordinate
for (a, b, c). This implies that for any y ∈ 〈C〉(II) the graph Gy is triangle-free. In the case of
εn arbitrary mutations (Case (I)), the absence of triangles is guaranteed by the condition d3

h(C) ≥
3εn+1 because the pairs (a, b), (b, c) and (a, c) together can create at most 3εnmutant coordinates,
so there will be at least one non-mutant hash coordinate, say i. In this coordinate, if yi ∈ {ai, bi}
and yi ∈ {ai, ci}, then yi 6∈ {bi, ci}, so the vertices a, b, c do not form a triangle in Gy.

By the remark after Corollary 2.6 it is possible to construct a sequence of codes of increasing
length n with positive rate that have both the restricted separating property and 3-hash distance δn
for all δ < π3,q. These codes will have the (2, ε)-IPP property for all ε < δ for mutations of type
(II) and ε < (1/3)δ for type (I).

Now suppose that mutations can stray away from the detectable coordinates.

Theorem 5.3. Assume that the pirates follow the attack rule (III) or (IV). For all q ≥ 3,

ε∗crit(q, 2) =
(
1− 1

q

)(
1− 3

q
+

3
q2

)
εcrit(q, 2) =

1
3

(
1− 1

q

)(
1− 2

q

)
.

Proof : The proof is similar to the proof of the previous theorem. We begin with the case of erasures.
Let C ⊂ Qn be a code with (2, 2)-separating distance δn, let y be an attack vector, and let Gy be
the corresponding graph. Let (a, b), (c, d) be two pairs of distinct codewords, (a, b) ∩ (c, d) = ∅.
Any vectors y ∈ 〈a, b〉, y′ ∈ 〈c, d〉 formed according to (1) differ in at least δn coordinates, so even
if εn coordinates of are erased, (c, d) is not an edge of Gy. Assuming in addition that C has the
3-hash distance ≥ εn + 1, we argue as in the previous proof that Gy is triangle-free. By Prop. 2.1
if δ < δ

(2,2)
crit then there exist infinite sequences of codes of positive rate that have (2,2) separating
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distance at least δn. Similarly, by Prop. 2.5 for any δ < π3,q there exist sequences of codes of
positive rate and 3-hash distance δn. Together with the remark after Cor. 2.6 this implies that

(16) ε∗crit(q, 2) ≥ min(π3,q, δ
(2,2)
crit ) =

(
1− 1

q

)(
1− 3

q
+

3
q2

)
(q ≥ 3).

Turning to upper bounds on ε, we have from Theorem 4.1 and (6) that ε∗crit(q, 2) ≤ π3,q. At the
same time, if two pairs of codewords (a, b), (c, d) have (2,2) separating distance δn, and y is an
attack vector in which the δn separating coordinates are erased, then the graph Gy has both edges
(a, b) and (c, d). so exact identification is impossible. However, by (9), the rate of any sequence of
codes with d(2,2)

s > δ
(2,2)
crit n approaches 0. This shows that (16) holds with equality, proving the first

part of the claim.
Now let us consider arbitrarily valued mutations of Case (III). The arguments are analogous to

the first part and lead to the equality

εcrit(q, 2) = min
{π3,q

3
,
δ
(2,2)
crit

2

}
=

1
3

(
1− 1

q

)(
1− 2

q

)
(q ≥ 3).

For instance, assuming that each of the two pairs (a, b), (c, d) can alter at most εn positions, the
condition d(2,2)

s (C) ≥ 2εn+ 1 suffices to rule out parallel edges, so εcrit(q, 2) ≥ δ(2,2)crit /2, etc.

Finally, notice that restricting our choice to linear codes (for field-sized alphabets Q) does not
change the values of εcrit found in the last theorem. This is because standard ensembles of random
linear codes with high probability have both (2, 2)-separating and 3-hash properties as long as the
separating and hash distances are less than their critical values δ(2,2)crit and π3,q , respectively.

In particular, from the last two theorems we get the following values for the critical rate of muta-
tions for q = 3 in (2, ε)-IPP codes:

ε∗,Dcrit (3, 2) = ε∗crit(3, 2) = 2/9, εDcrit(3/2) = εcrit(3, 2) = 2/27.

These critical values can be attained by sequences of ternary linear codes.

APPENDIX

Proof of Prop. 2.1(b) (outline) : Let |C| = M. Count the sum S of (2, 2)-separating distances for
all choices of 4 distinct codewords of the code C. Let λi,α = |{x ∈ C : xi = α}|. The contribution
of the ith coordinate to S equals

Si =
∑
α∈Q

{
λ2
i,α(M − λi,α)2 +

∑
β 6=α

λi,αλi,β(M − λi,α − λi,β)2
}
.

One checks that the maximum of the form Si under the condition
∑
α∈Q λi,α = M is attained for

λi,α = M/q. Therefore,

S =
n∑
i=1

Si ≤ n
(
M
M

q

(
M − M

q

)2

+M
(
M − M

q

)(
M − 2M

q

)2)
= nM4δ

(2,2)
crit (q).

At the same time,

S ≥M(M − 1)(M − 2)(M − 3)d ≥ (M4 − 6M3)d.

Combining the last two equations yields the result.

Proof of Prop. 2.2 : Suppose that the coordinates of codewords of a code C of size M are chosen
from Q uniformly with replacement. The probability that a given coordinate in two given pairs
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(x1, x2) and (x3, x4) of codewords fails the restricted separation condition equals λ = 1 − (q −
1)/q3. Therefore, the expected number of quadruples (more precisely, pairs of unordered pairs) of
codewordsD that violate the condition in a given coordinate is at most

(
M
2

)(
M−2

2

)
λn/4 ≤M4λn/4.

Thus for a random code C

Pr(] bad quadruples of codewords ≥ n−1M) ≤ nM3λn

4
.

Taking M = (4n−2λ−n)1/3, we observe that this probability is bounded above by 1/n. Thus with
probability (n− 1)/n the number of bad quadruples of codewords in a random code of size M does
not exceed n−1M . Deleting one element out of each bad quadruple leaves us with a (2, 2) restricted
separating code of size qnR = (4n−2λ−n)1/3(1− n−1). This concludes the proof.

Proof of Prop. 2.3 : The proof is similar to the proof of Prop. 2.1. Let |C| = M and let λi,α =
|{x ∈ C : xi = α}|. Clearly, ∑

α∈Q
λi,α = M.

Denote
Si =

∑
U⊂C: |U |=t

χi(U)

where χi(U) = 1 if i is a hash coordinate for the subset U and χi(U) = 0 otherwise. We have

(17) Si =
∑

{α1,...,αt}⊂Q

t∏
j=1

λi,αj

where the sum extends to all the t-tuples of distinct symbols from the alphabet. Indeed, choosing
one vector out of each of the t sets λi,αj for a fixed t-tuple {α1, . . . , αt} accounts for an t-tuple
of codevectors U for which i is a hash coordinate. The right-hand side of (17) is maximized if
|λi,β − λi,γ | ≤ 1 for all β, γ ∈ Q, β 6= γ. Indeed, suppose the contrary, i.e., that λi,β − λi,γ ≥ 2
for some β, γ. Then decrease λi,β by one and increase λi,γ by one. As a result, every product term
in the sum in (17) that involves both β and γ will increase. At the same time, for every term that
involves only β the decrease will be compensated by the equal increase of the corresponding term
that involves only α. Therefore,

Si ≤ (M/q)t
(
q

t

)
=
M tπt,q
t!

.

Then (
M

t

)
d ≤

n∑
i=1

Si ≤
nM tπt,q

t!
.

Since M ≥ t by definition,
∏t−1
i=0(M − i) ≥M t −

(
t
2

)
M t−1, and we obtain

dM −
(
t

2

)
d ≤ nMπt,q.

Solving for M concludes the proof.

Below we use the following standard estimate. Let Yi, i = 1, . . . , n be i.i.d. Bernoulli random
variables with Pr(Yi = 1) = p for all i, and let 0 < α ≤ p. Then

Pr[
n∑
i=1

Yi ≤ αn] ≤e−2n(α−p)2 .(18)
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This follows from the Pinsker inequality or alternatively, from the Hoeffding bound (see, e.g., [25]).

Slightly better estimates are possible (the Chernov bound [25] or the estimate e−
n(α−p)2
2p(1−p) [8]), but

we will opt for the above computationally simple bound.

Proof of Prop. 2.5: Consider a random code C of cardinality M whose codeword coordinates are
chosen uniformly and independently from Q. The probability that a given coordinate i is hash for
an t-subset U ⊂ C equals πt,q . Since the events {coordinate i is (T,U)-hash} are independent for
different i, the probability that U is bad (contains fewer than δn hash coordinates) can be bounded
by (18) as follows:

Pb =
δn−1∑
j=0

(
n

j

)
πjt,q(1− πt,q)n−j ≤ e−2n(δ−πt,q)2

The expected number of bad t-tuples equals Pb
(
M
t

)
. From this point on we proceed as in the proof

of Proposition 2.2. As a result, we claim that with probability (1 − 1/n), a random code of size
M = (t!n−2e2n(δ−πt,q)2)

1
t−1 will contain not more than M/n bad t-tuples. Deleting one codeword

from each of them leaves a code of cardinality qRn = M(1 − 1/n) with no bad t-tuples, i.e., with
t-hash distance at least δn.

Proof of Corollary 2.6: Consider a random code C of cardinality

M = min
{
(4n−2(1− (q − 1)/q3)−n)1/3, (t!n−2q2n(ln q)−1(δ−πt,q)2)

1
t−1
}
.

From the proofs of Prop. 2.2 and Prop. 2.5 with probability ≥ (n − 2)/n the code C contains
fewer than M/n quadruples of codewords that fail the restricted separation property and fewer than
M/n t-tuples of codewords that contain fewer than δn hash coordinates. Deleting at most M/2n
codewords from the code C, we obtain a code C′ with the claimed hash and separating properties.
For given α and R we clearly can find n large enough so that the code C′ has rate R.

Proof of Prop. 2.7: Construct a random linear k × n matrix G whose elements are chosen from
Fq independently and uniformly, and consider the Fq-linear space C = {xG : x ∈ Fkq} of cardi-
nality qk. Denote by g1, . . . , gn the columns of G. Then a codevector c = xG can be written as
(c1, . . . , cn), where ci = (x, gi). Consider any three different codevectors c1, c2, c3. Since being
3-hash is a translation invariant property, we assume w.l.o.g. that c3 = 0. Let c1 = aG and c2 = bG,
where a, b ∈ Fkq .

Case 1: If a and b are not collinear, then the probability that a given coordinate is 3-hash equals
(1 − 1/q)(1 − 2/q) = π3,q . Hence, the probability P1 that the triple c1, c2, c3 contains fewer than
δn hash coordinates equals

P1 =
d−1∑
j=0

(
n

j

)
πj3,q(1− π3,q)n−j ≤ e−2n(δ−π3,q)

2
.

Case 2: If b = λa, then the probability that a given i-th coordinate is 3-hash equals 1 − 1/q
and the probability P2 that the triple c1, c2, c3 contains fewer than δn hash coordinates satisfies
P2 ≤ e−2n(δ−(q−1)/q)2 .

Using the union bound, there exists a linear code with 3-hash distance δn if q2k max(P1, P2) < 1,
and at least a 1− 1/n proportion of linear codes have this property if

q2k max(P1, P2) < 1/n.

This yields the following condition on the code rate:

R+ ε < (ln q)−1 min((δ − π3,q)2, (δ − (q − 1)/q)2) = (ln q)−1(δ − π3,q)2.



ROBUST PARENT-IDENTIFYING CODES 15

Proof of Prop. 2.8 The proof proceeds analogously to Prop.2.5 if one observes that, under the
uniform distribution for the selection of the code symbols, the probability that a given coordinate is
not hash for a given pair of subsets T,U depends only on their cardinalities t, u and equals Pq(t, u).
The expected number of bad choices of the subsets equals

Eu,t =
(
M

u

)(
u

t

)
Pq(t, u) ≤

Mu

u

t

u!t!Pq(t, u).

The probability that a random code contains more thanM/n such choices is not more than nEu,t/M
which equals n−1 for M = (u!t!u−tPq(t, u)−n)

1
u−1 . Deleting one vector from each pair of subsets

T ⊂ U, we obtain a (t, u)-hashing code C with d(t,u)
ph ≥ δn and cardinality qnR ≥M(1− n−1).
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