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Abstract

We undertake a general study of hash functions secure under correlated inputs, meaning that
security should be maintained when the adversary sees hash values of many related high-entropy
inputs. Such a property is satisfied by a random oracle, and its importance is illustrated by study of
the “avalanche effect,” a well-known heuristic in cryptographic hash function design. One can interpret
“security” in different ways: e.g., asking for one-wayness or that the hash values look uniformly
and independently random; the latter case can be seen as a generalization of correlation-robustness
introduced by Ishai et al. (CRYPTO 2003). We give specific applications of these notions to password-
based login and efficient search on encrypted data. Our main construction achieves them (without
random oracles) for inputs related by polynomials over the input space (namely Zp for a prime number
p), based on corresponding variants of the q-Diffie Hellman Inversion assumption. Additionally, we
show relations between correlated-input secure hash functions and cryptographic primitives secure
under related-key attacks. Using our techniques, we are also able to obtain a host of new results for
such related-key attack secure cryptographic primitives.

1 Introduction

In practice, it is often useful to view a cryptographic hash function like a random oracle, as formalized
in the random oracle model [BR93]. However, as random oracles do not exist in reality (and indeed, in
general, the random oracle model may lead to insecure schemes [CGH04]), an important line of research
suggested by [CGH04] seeks to formalize various useful properties satisfied by a random oracle and
construct hash functions meeting them under standard assumptions. In this paper, we do so for what we
call correlated-input security, meaning that (various notions of) security should be maintained when the
adversary sees hash values of many related high-entropy inputs.

The importance of correlated-input security in practice is illustrated by the so-called avalanche effect,
a well-known heuristic in cryptographic hash function design. (The name “avalanche effect” was coined
by Feistel [Fei73], although the idea goes back to Shannon’s notion of diffusion [Sha49].) Roughly, the
avalanche effect states that making any change to an input should result in a drastically different hash
value. Clearly, such a hash function should satisfy a notion of correlated-input security. Our results help
to shed light on whether or not this is feasible from a theoretical perspective.

1.1 Notions of Correlated-Input Security

We get different specific notions of correlated-input security depending on how we interpret “security.”
We first discuss the different interpretations we consider and and how we formalize the resulting notions.
∗Work done in part while visiting Microsoft Research, India.
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Three Notions The first and most basic interpretation we consider is “one-wayness.” To formalize
one-wayness under correlated-inputs, we consider a hash function H and circuits C1, . . . , Cn, where each
Ci takes as input some random coins and outputs a point in the domain of H. The adversary is given
hash values H(x1), . . . ,H(xn), where each xi is the output of Ci(r) for random coins r. Note that each
Ci is run on the same random coins. Therefore, the xi are correlated.1 The adversary’s goal is to output
an x′ such that H(x′) = H(xi) for some i. Informally, we say that H is one-way under correlated inputs
for a class of circuits {C} if, for any n and any choice of C1, . . . , Cn from {C}, any efficient adversary
succeeds with small (negligible) probability.

The next interpretation we consider is “unpredictability.” To formalize unpredictabililty under corre-
lated inputs, we consider a hash function H and circuits C1, . . . , Cn+1, where each Ci is as before. Now
the adversary is given hash values H(x1), . . . ,H(xn) and tries to output H(xn+1), where each xi is Ci(r),
the value output by the circuit, as explained before. The notion is defined for a class of circuits {C}
analogously to the one-wayness case. It mainly serves as a stepping-stone to our final notion, described
next.

Finally, the last interpretation we consider is “pseudorandomness.” To formalize pseudorandomness
under correlated-inputs, we consider a hash function H and circuits C1, . . . , Cn+1, each Ci is as before.
Now the adversary is given hash values H(x1), . . . ,H(xn) as well as a “challenge” value that is either
H(xn+1) or a random string of appropriate length, where each xi is the output of Ci(r) as before. (This
of course requires the circuits to have distinct outputs.) Again, the notion is also defined with respect to
a class of circuits {C} analogously.

Discussion We make a few observations about these notions. One is that they are only achievable for
a class of circuits {C} such that C(r) for random r has sufficient min-entropy for any C in the class. In
fact, it is not hard to show that a random oracle satisfies our notions for the class of all such circuits.
However, in the standard model they are in general only achievable by a keyed hash function H. To
see this, fix an unkeyed hash function H and consider circuits C1, C2 where C1(r) outputs r and C2(r)
outputs H(r). Clearly, no fixed H is even one-way under correlated-inputs for these circuits. By a similar
argument, the circuits must not depend on the choice of the hash key. We stress that in our notions the
hash function key is public. Similar counter-examples show that in general pseudorandom generators and
functions do not necessarily meet our notions (note that the latter has a secret key) (see Appendix C for
more details).

Another important point is that when considering non-uniform inputs, these notions are non-standard
even in the case of a single input. This case has been a subject of prior work, however. For example,
it is known that a one-way function that is sufficiently hard to invert on uniform inputs is also hard to
invert on non-uniform inputs with enough min-entropy, and [DP08, RTTV08] show a similar (but more
technically challenging) result for pseudorandom generators. Additionally, we note that, in our setting of
correlated inputs, for any a priori bounded number of circuits, pseudorandomness can be met statistically
(i.e., against unbounded adversaries). This follows from a generalization of the classical Leftover Hash
Lemma [HILL99] to a bounded number of correlated sources as in [O’N10, KPSY09]. However, this
approach is basically impractical as both the key-size of the hash function as well as the min-entropy
requirement on each individual input depend on the bound. We emphasize that the focus of our work
is therefore on an unbounded number of correlated inputs in the computational setting. Indeed, some of
our results concern the natural case where each (correlated) input is individually uniform, which isolates
the issue of correlations from the orthogonal one of non-uniformity.

1.2 Applications

We now discuss some specific practical applications for our new notions.
1For example, the xi’s might agree in most bit positions but vary in the others. It may even be the case that a single

input xi completely determines the rest.
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Password-based login An application of our notion of one-wayness under correlated-inputs is password-
based login. For example, UNIX maintains a “password” file that, for each user in the system, stores
a hash of his password. Then, when someone claiming to be some user supplies an input for the user’s
password, the hash value of the supplied input is compared against the stored hash value. If they do not
match, he is not allowed to login. Here, the goal is to prevent an adversary with access to the password
file from gaining the ability to impersonate a user. Informally, it is often said that the property of the
hash function needed to ensure this is one-wayness. But the standard notion of one-wayness is obviously
insufficient in such scenarios. Passwords, while they should contain entropy, are certainly not uniformly
random. Moreover, passwords are typically correlated, both across different users, and across the same
user on different systems (and the adversary may recover the password file for multiple systems).

This issue seems to be largely ignored in prior work. A paper (which we already mentioned) that
considers the relevance of one-way functions for high entropy inputs to this application is [WG00]; however,
they do not consider multiple related inputs and relations among them. Our notion of one-wayness under
correlated input seems to be an appropriate security notion for this application.2

Efficient search on encrypted data An application of our notion of pseudorandomness under
correlated-inputs is efficient search on encrypted data. It is becoming increasingly common for com-
panies to store large amounts of data remotely on servers maintained by an untrusted third party. To
provide privacy for the client, the data should be encrypted. However, we still want to allow search on
the data without retrieving and decrypting the entire database. Techniques like public-key encryption
with keyword search [BCOP04] make search possible, but it takes linear time in the database size. On
the other hand, practitioners require search time to be comparable to that for unencrypted data.

This problem was first studied from a cryptographic perspective by Bellare et al. [BBO07], who
introduced deterministic encryption and the more general concept of efficiently searchable encryption
(ESE) as a solution. The basic idea is to attach a hash of each keyword to an encrypted file. Keywords
are obviously not uncorrelated, and thus our notions are natural to apply.

1.3 Our Construction and its Security

Next we turn to whether our security definitions can be achieved and under what cryptographic assump-
tions.

Our Construction We propose the following construction: Letting G be a group of prime order p,
the hash key is a random generator g ∈ G and random c ∈ Zp, and the evaluation of the hash on input
x ∈ Zp is g1/(x+c), where 1/(x+ c) denotes the inverse of x+ c modulo p.

Security of the Above Construction We show that this construction is secure under each of our
three notions of security assuming (appropriate variants of) the q-Diffie-Hellman inversion assumption
(q-DHI). Roughly speaking, this assumption says that given gα, gα

2
, . . . , gα

q
, it is hard to compute g1/α.

An assumption of this form was first introduced by Boneh and Boyen [BB04a], who considered it in groups
with a a bilinear map (pairing) e and asked that it be hard to compute (or distinguish from random)
e(g, g)1/x instead of g1/x. However, since our hash function is deterministic and thus automatically
publically verifiable, we do not need bilinear maps here.

The class of circuits we consider in our proofs are the ones that are (efficiently) representable by a
polynomial over Zp (the input space of the hash function). In other words, each xi = fi(x), where fi is a
polynomial over Zp and x is randomly chosen but fixed for all i. This is quite a broad class; for instance,
taking f1 to be the identity polynomial covers the well-known attacks on RSA [CFPR96].

2For simplicity, this ignores “salting” the passwords, which can be viewed as considering a randomized hash function
instead of a deterministic one. However, this circumvents the core issue that in practice a deterministic cryptographic hash
function is assumed to satisfy correlated-input security; indeed, salting passwords is only meant to prevent dictionary or
“rainbow” attacks.
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First, we show that our inversion hash is one-way under correlated inputs for this class of circuits
assuming the q-strong discrete logarithm (q-SDL) assumption (which is weaker than q-DHI in that it need
only be hard to compute α itself).3 For unpredictability and psuedorandomness, we require an additional
assumption that each input to the hash function is individually uniform.4 However we stress that given
other inputs, an input may even be fully computable. For this class of polynomials, we show the inversion
hash is unpredictable under correlated inputs assuming q-DHI. Using standard hardcore bit techniques
this already gives a construction with small output length achieving pseudorandomness under correlated
inputs with the same assumption. However, we directly show pseudorandomness under correlated inputs
of our construction for the same class of polynomials assuming the decisional version of q-DHI.

Discussion Our construction is inspired by the Boneh-Boyen short signature scheme [BB04b] and Dodis
and Yampolskiy (verifiable) pseudorandom function [DY05]. In particular, as previously explained by
Bellare and Cash [BC10], one can show the latter achieves security under related-key attacks (for certain
relation classes), and as we observe below security under related-key attacks turns out to in some sense
be a “dual” of correlated-input pseudorandomness (so similarity of the constructions is ultimately not
surprising). On the other hand, our results also concern other security notions like one-wayness, pertain to
different relation classes than suggested by [BC10], and use more standard assumptions without bilinear
maps.

We build on the proof techniques introduced in [BB04b] and incorporate some new ideas. A direct
adaptation of the proof techniques from [BB04b] is not sufficient for our purposes. In more detail, in
[BB04b], the public value (the message) changes with each evaluation and is chosen by the adversary
while in our scenario, the public value (the constant c) is chosen by the challenger and remains the same
throughout. The secret value in [BB04b] (the secret key of the signature scheme) remains the same
throughout while in our scenario, the secret value (the message x) changes with each evaluation and
different messages may be related with each other. Consequently, while our construction is inspired by
[BB04b], the actual proof is quite different and the security is proven under a different assumption (i.e.,
decisional q-DHI as opposed to q-SDH).

We also note that our security proofs are under a notion of “selective” security where the circuits that
sample the inputs do not depend on the public hash key. As we mentioned, in general this restriction is
inherent. However, for restricted classes of circuits (such as arithmetic circuits we consider) which are
not able to efficiently compute the hash function in question, it may be possible to achieve an adaptive
notion of security even by using an unkeyed hash function. We discuss a positive result for this case
below.

Finally, we note that our construction as defined is not compressing. However, once we obtain a
construction meeting any of our notions, it is easy to obtain one which is also compressing. In the case of
one-wayness we can apply a collision-resistant hash to the output, and in the case of pseudorandomness
we can truncate the output. It can be shown that the resulting (compressing) hash function retains
correlated-input security.

1.4 Relations to Related-Key Attacks and Additional Results

Security under related-key attacks (RKA), first formalized by [BK03] in the context of pseudorandom
functions/permutations, is a well-established notion that, like correlated-input security, asks for security
to be maintained under related values of a “secret” input. We explore relations between hash functions
for which outputs satisfy pseudorandomness under correlated-inputs (which we simply call CI-secure hash
functions from hereon) and RKA-security of various cryptographic primitives.

3In fact, for this result the c component of the hash key can be any fixed element in Zp (for instance, set c = 0).
4This translates to the requirement that the polynomials individually have uniform output on uniform input (e.g., this

is the case for permutation polynomials). By making non-standard assumptions, it may be possible to drop this restriction.
However, considering individually uniform but correlated inputs to the hash function is natural, and we focus on results
under standard assumptions.

4



Equivalence to One-Input RKA-wPRF We first observe that a CI-secure hash is in some sense
equivalent to what we call a “one-input RKA-secure weak pseudorandom function (RKA-wPRF).” To
define such a wPRF F , the adversary is given an input-output pair (x, F (K,x)) for random x and may
query for for other outputs of the form F (φ(K), x) for relations φ of its choosing. (Note that the same x is
re-used each time.) Following [HLO10], we note that as compared to a CI-secure hash, the role of the key
and the input are simply “switched.”5 Note that a one-input RKA-wPRF is implied by an RKA-PRF;
in fact, if we start with an RKA-PRF (rather than wPRF), the resulting CI-secure hash does not need a
public key. The latter is significant because the recent breakthrough work of Bellare and Cash [BC10] gives
RKA-secure PRFs under the decisional Diffie-Hellman assumption for adaptively chosen, group-induced
relations (i.e., multiplication by a constant). We thus obtain an unkeyed adaptively-secure CI-secure
hash for the corresponding class of circuits.

A General Transformation from CI-hash to other RKA-secure cryptographic primitives
Additionally, we propose a transformation to “bootstrap” any cryptographic primitive to one that is
RKA-secure: simply hash the coins used to generate the secret key for the former. (This can be seen as
replacing a random oracle (RO) in this transformation with a CI-secure hash.) Note, however, that in
the case the CI-secure hash has a public key, an authentic version of the latter is then needed by any
algorithm that uses the secret key (e.g., the signing algorithm for a signature scheme), which may not
always be practical.

Adaptively secure RKA-secure weak PRF and symmetric key encryption Our main con-
struction of CI-secure hash is selectively secure, leading to selective security under RKA (i.e., the adver-
sary chooses the relations before seeing the public parameters). However, by using our techniques in a
non-blackbox way, we can sometimes achieve adaptive security instead and without any public key. In
particular, in Appendix 6 we show how to do this for “multi-input” RKA-wPRFs (where a fresh random
input is selected for each query). Building on that construction, we further show how to construct a
RKA-secure symmetric encryption, a primitive introduced concurrently to our work in [AHI10];6. For
these primitives we are able to handle the entire class of (non-zero) polynomials over Zp. Note that the
construction of RKA-secure symmetric encryption provided in [AHI10] could only handle the classes of
correlations represented by additions in Zp.

1.5 Other Related Work

Our work is related to several other lines of research, as we now discuss.

Realizing Random Oracles As we mentioned earlier, our work can be seen as extending a research
agenda proposed by Canetti, Halevi, and Goldriech [CGH04], in which one identifies and realizes useful
properties of a RO. Indeed, by using the techniques of [BBO07, Theorem 5.1] one can show that a RO
meets all the security definitions we consider (which is why we have sought realizations under standard
cryptographic assumptions). Other useful properties of a RO that have undergone a similar treatment
include perfect one-wayness [Can97, CMR98] and non-malleability [BCFW09]. We note that none of
these works address security under multiple correlated inputs.

In fact, a significant prior work of Ishai et al. [IKNP03, Definition 1] considered a notion of “correlation-
robustness” for pseudorandom hash functions, with the motivation of instantiatng the RO in their obliv-
ious transfer protocols. Their notion is more restrictive than our notion of pseudorandomness under
correlated-input, as the former is defined only for hash functions that output a single bit and considers
inputs obtained by computing the exclusive-or’s of a “master” random input s with public random values.

5Note, however, in correlated-input security it may be the case that none of the considered circuits output the identity,
whereas in related-key security the identity relation is always considered.

6We obtained this result after seeing [AHI10], but the rest of our work was concurrent.
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Finally, we note that while realizing the “avalanche effect” satisfied by a RO forms a major motivation
for considering correlated-input security, it is not the only way the latter could be formalized. In partic-
ular, it talks only about the change in the output behavior relative to any change to an unknown input.
The notion of “(multiple input) correlation intractability” due to [CGH04] is a possible formalization the
effect without this restriction. On the other hand, the latter notion seems harder to work with and more
difficult to achieve.

Deterministic Encryption Our security notions can be viewed as relaxations or variants of the notions
of privacy proposed for deterministic encryption (DE) in [BBO07, BFO08, BFOR08, O’N10] (that seek
to hide partial information) in the case of hash functions rather than encryption schemes. Indeed, the
results of of [BBO07, BFO08, BFOR08, O’N10] show that in some sense the “hard part” of realizing DE
without random oracles is dealing with correlations among the inputs. Our work studies this issue at a
more basic level, asking whether it is feasible even without supporting decryption and for weaker security
notions like one-wayness.

Related Security Notions Recently, Rosen and Segev [RS09] introduced the notion of correlated-
product secure trapdoor functions (TDFs). Correlated-product security was later considered for hash
functions in [HLO10]. Correlated-product security differs from our notions in that the former refers to
security when related inputs are evaluated under independent instances of the function; in other words,
there does not exist a single function which is evaluated on related inputs (as is the case for correlated-
input security). Indeed, our techniques are quite different and unrelated to those in [RS09, HLO10].

The recent work of Goldenberg and Liskov [GL10] also considers a form of correlated-input security
(which they call “related-secret” security) for various primitives. While their work has some similarities to
ours (for example, they consider related-secret one-way functions), there are some important differences.
Namely, they focus on hardcore bits and pseudorandom functions rather than hash functions, and they
follow the definitional framework for related-key attacks introduced in [BK03] (indeed the latter are the
main motivation for their work). Additionally, their results are mainly negative in nature.

Independent Work Independently of our work, Bellare, Cash, and Miller [BCM11] undertake a more
general study of RKA security for various cryptographic primitives including wPRFs, PRFs, signatures,
and encryption (symmetric, public-key, and identity-based). They study relations between these primi-
tives, what classes of relations are achievable for them in principle, and also show applications to security
under key-dependent messages. The overlap to our work is that they also consider RKA security for
wPRFs and signatures, and to achieve RKA-secure signatures they use a construction similar to our
“coin hashing” one (but instead of a hash function they use a form of RKA-secure PRG).

2 Preliminaries

Notations. For a finite set X, |X| denotes the size of the set X. |x| denotes the length of a binary

string x. x
$←− X denotes the operation of selecting a random element x from X. x ← y denotes

assignment of a value y to x. Let FF(X,Y, Z) be the set of all families of functions F : X × Y −→ Z.
For sets X,Y , let Fun(X,Y ) be the set of all functions mapping X to Y . For brevity, we say that an
algorithm outputs a set/function as a shorthand to mean that it outputs their descriptions. Let λ denote
the security parameter.

Complexity Assumptions. We first state our complexity assumptions, namely q-DHI [BB04a, BB04b],
which is weaker than q-BDHI [BB04a] as well as q-SDH [BB04b], and we introduce what we call the q-
Strong Discrete Logarithm (q-SDL) assumption which is weaker than all of q-DHI, q-BDHI, and q-SDH
assumptions.

Let GrpGen be a PPT algorithm that takes as input the security parameter 1λ and outputs parameters
for some cyclic multiplicative group G, including the group order p which is a poly(λ)-bit integer, a
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generator g, and an efficient algorithm (e.g., circuit) for multiplication (and thus also exponentiation).
We denote it as (G, p, g)← GrpGen(1λ).

q-Strong Discrete Logarithm (q-SDL) Problem The q-SDL problem in G is defined as follows:
given a (q + 1)-tuple (g, gx, gx

2
, . . . , gx

q
) ∈ (G?)q+1 for some unknown x ∈ Z?p, output x.

An algorithm A solves the q-SDL problem in the group G with advantage ε if

SDL-AdvA,q := Pr[A(g, gx, gx
2
, . . . , gx

q
) = x] ≥ ε

where the probability is over the random choice of generator g ∈ G?, the random choice of x ∈ Z?p, and
the random bits consumed by A.

Definition 1 We say that the (q, t, ε)-SDL assumption holds in G (or GrpGen satisfies the (q, t, ε)-SDL
assumption) if no probabilistic t-time algorithm has advantage at least ε in solving the q-SDL problem in
G.

It is easy to see that the 1-SDL assumption is equivalent to the standard Discrete Logarithm assump-
tion.

q-Diffie-Hellman Inversion (q-DHI) Problem The q-DHI problem [BB04a, BB04b] in G is defined

as follows: given a (q+ 1)-tuple (g, gx, gx
2
, . . . , gx

q
) ∈ (G?)q+1 for some unknown x ∈ Z?p, output g

1
x ∈ G.

An algorithm A solves the q-DHI problem in the group G with advantage ε if

DHI-AdvA,q := Pr[A(g, gx, gx
2
, . . . , gx

q
) = g

1
x ] ≥ ε

where the probability is over the random choice of generator g ∈ G?, the random choice of x ∈ Z?p, and
the random bits consumed by A.

Definition 2 We say that the (q, t, ε)-DHI assumption holds in G (or GrpGen satisfies the (q, t, ε)-DHI
assumption) if no probabilistic t-time algorithm has advantage at least ε in solving the q-DHI problem in
G.

q-DHI Problem can be equivalently stated as follows [BB04b]: given a (q+2)-tuple (g, gx, gx
2
, . . . , gx

q
, c) ∈

(G?)q+1 × Zp\{−x} for some unknown x ∈ Z?p, output g
1

x+c ∈ G. This definition also clearly points out
the distinction between the q-DHI problem and the q-SDH problem: in case of the q-DHI problem, the
value of c is prescribed in the problem instance itself, whereas in case of the q-SDH problem, the solver

is free to choose c ∈ Zp and output a pair, (c, g
1

x+c ). Obviously, the q-DHI assumption is weaker than
the q-SDH assumption.

Decisional q-Diffie-Hellman Inversion (Decisional q-DHI) Problem The decisional q-DHI prob-
lem in G is defined as follows: given a (q+1)-tuple (g, gx, gx

2
, . . . , gx

q
) ∈ (G?)q+1 for some unknown x ∈ Z?p,

distinguish between g
1
x and a random element R

$←− G.
An algorithm A solves the decisional q-DHI problem in G with advantage ε if

DDHI-AdvA,q :=|Pr[A(g, gx, gx
2
, . . . , gx

q
, g

1
x ) = 1]

− Pr[A(g, gx, gx
2
, . . . , gx

q
, R) = 1]|

≥ε

where the probability is over the random choice of generator g ∈ G?, the random choice of x ∈ Z?p, the
random choice of R ∈ G?, and the random bits consumed by A. The distribution on the left is referred
to as PDDHI and the distribution on the right as RDDHI .
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Definition 3 We say that the decisional (q, t, ε)-DHI assumption holds in G (or GrpGen satisfies the
decisional (q, t, ε)-DHI assumption) if no probabilistic t-time algorithm has advantage at ε in solving the
decisional q-DHI problem in G.

3 Our Model: Correlated Input Security

In this section we define our new notion of security for cryptographic hash functions. We would be
interested in preserving various properties of hash functions (like one-wayness and pseudo-randomness)
when the function maybe evaluated on a tuple of inputs which maybe be correlated in an arbitrary
way. Standard notions of security do not provide any guarantee in such a setting. In Appendix C, we
discuss examples of functions which are secure in the standard sense but may be completely insecure
when evaluated on multiple inputs which are correlated.

Before we go further, we first discuss how we represent correlations among a tuple of inputs (m1, . . . ,mn).
In general, such an input tuple maybe generated by a polynomial-size sampler circuit Samp. In other
words, Samp takes a random tape r (of appropriate length) as input and outputs (m1, . . . ,mn) ←
Samp(r). Note such a sampler circuit can generate the input tuple for any type of polynomial-time
computable correlations. Equivalently, one can generate the (correlated) tuple of inputs using a tuple of
polynomial-size circuits (C1, . . . , Cn) when initialized on the same random tape. In other words, fix a
random string r and set mi ← Ci(r). It is easy to see that both these sampling procedures are equivalent.
For the rest of the paper, we shall stick to the latter mode of using a tuple of circuits.

Also, it will be understood that the range of every circuit considered is a subset of the input-space
(or keyspace) in question. We refer to an adversary as {C}-restricted, if every circuit it queries belongs
to the class {C}.

We first define the syntax for a general function family (or a hash function family if the functions are
compressing). We will then move on to formalize the various security properties such a function family
might satisfy.

Definition 4 (Function Family) A family of deterministic functions H is specified by a PPT algorithm
Gen. The algorithm Gen, given input 1λ, outputs a parameter set Ih, domain Dh, and range Rh, and
outputs c ∈ Ih as a description of a function hc : Dh −→ Rh. The sizes of the domain and range sets are
each exponential in the security parameter.

Now, we shall discuss our first notion of security called correlated-input one-wayness. Informally, we
consider a function h(·) such that given (h(m1), . . . , h(mn)), where inputs (m1, . . . ,mn) maybe correlated,
it is hard for any PPT adversary to output any valid preimage mi. This can be viewed as a generalization
of the standard notion of one-way functions. We allow the adversary to specify the correlations to the
challenger by giving a tuple of circuits (C1, . . . , Cn), where each circuit is from a class of correlated-input
circuits {C}. Note that, for this definition to be satisfiable, each circuit Ci,∈ {C} individually should
have high min-entropy output distribution for uniform random input distribution. 7 Thus, we quantify
only over such circuits in our definition. We discuss it under both selective and adaptive security notions.
More details follow.

In the following we shall only formalize the selective notion. The definitions for adaptive notions are
given in Appendix A.

The Selective Correlated-Input Inverting experiment ExpsCI−invA,H,{C}. For a family of deterministic

functions H, an adversary A, and a family of efficiently-computable correlated-input circuits {C}, we
define the following game between a challenger and the adversary A.

7This requirement is similar to one in the standard notion of one-way functions. If the input does not have sufficient
min-entropy, it is easy to see that an adversary can guess a preimage and succeed with noticeable probability.
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• Setup Phase 1. Challenger runs the Gen algorithm of H for a security parameter input 1λ and
gets hc : Dh −→ Rh. Challenger gives Dh to A.

• Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the challenger n circuits
{Ci}i∈[n] ⊂ {C}.

• Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform random string of appropriate
length.

• Response Phase. ∀i ∈ [n], challenger responds via hc(Ci(r)).

• Invert Phase. A outputs (k̂, ŷ) for k̂ ∈ [n] and ŷ ∈ Dh.

The output of the experiment is defined to be 1 if hc(ŷ) = hc(Ck̂(r)) and 0 otherwise.
We define the advantage of an adversary A in the above game as:

AdvsCI−invA,H,{C}(λ) = Pr[ExpsCI−invA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 5 A family of functions H is said to be selective correlated-input one-way with respect to a
family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl, such
that:

AdvsCI−invA,H,{C}(λ) ≤ negl(λ)

We now consider two more correlated-input security notions where we talk about unpredictability of
the output as opposed to that of the input. Informally, we consider a function hc : Dh −→ Rh
with the following properties. Consider a tuple of correlated inputs (m1, . . . ,mn+1). The adversary
is given the function outputs (hc(m1), . . . , hc(mn)) and it tries to compute hc(mn+1). In the first se-
curity notion called correlated-input unpredictability (CI-unpredictability), we require that it should be
hard for the adversary to output hc(mn+1). In the next notion called correlated-input pseudorandom-
ness (CI-pseudorandomness), we require that the adversary should not be able to distinguish hc(mn+1)
from a random element in Rh, given (hc(m1), . . . , hc(mn)). It is easy to show that this notion of CI-
pseudorandomness is equivalent to a notion where an adversary gets either (hc(m1), . . . , hc(mn+1)) or
n + 1 independent random elements in Rh and is required to distinguish the two cases. Note that, for
any of these notions to be satisfiable, besides the requirement that each circuit Ci ∈ {C} individually
should have high min-entropy output distribution for uniform random input distribution, we also require
that, for every two distinct circuits Ci and Cj in {C}, and for a uniform random input r of appropriate
length, Ci(r) = Cj(r) happens only with negligible probability over the choice of r.

In trying to give more power to the adversary (thus making our definition stronger), we allow the
adversary to specify the correlation by giving a tuple of circuits (C1, . . . , Cn+1), where Ci ∈ {C}, to the
challenger, as before. In addition, for the selective case, for a tuple of inputs (m1, . . . ,mn+1), we allow
the adversary to get outputs on n adaptively chosen input indices before trying to predict the remaining
output.8 More details follow.

8By incurring a security loss of a factor of n, this definition can actually be shown to be equivalent to a weaker definition
where the adversary is required to predict the output specifically on input mn+1 fixed after it presents its queries but before
it reveives the responses. However, working directly with this definition might lead to better concrete security guarantees in
the real world.
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The Selective Correlated-Input Predicting experiment ExpsCI−predA,H,{C} . For a family of deterministic

functions H, an adversary A, and a family of efficiently-computable correlated-input circuits {C}, we
define the following game between a challenger and the adversary A.

• Setup Phase 1. Challenger runs the Gen algorithm of H for a security parameter input 1λ and
gets hc : Dh −→ Rh. Challenger gives Dh to A.

• Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the challenger n + 1
distinct circuits {Ci}i∈[n+1] ⊂ {C}.

• Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform random string of appropriate
length.

• Partially Adaptive Query-Response Phase. A presents n queries, where an ith query is an
index ki ∈ [n+ 1]. Challenger responds to it via hc(Cki(r)).

• Predict Phase. The adversary outputs ŷ ∈ Rh.

Let the index corresponding to the unqueried circuit be kn+1 (i.e., kn+1 ∈ [n+1] be such that kn+1 6= ki
∀ i ∈ [n]). The output of the experiment is defined to be 1 if ŷ = hc(Ckn+1(r)) and 0 otherwise.
We define the advantage of an adversary A in the above game as:

AdvsCI−predA,H,{C} (λ) = Pr[ExpsCI−predA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 6 A family of functions H is said to be selective correlated-input unpredictable with respect
to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl,
such that:

AdvsCI−predA,H,{C} (λ) ≤ negl(λ)

The Selective Correlated-Input Distinguishing experiment ExpsCI−distA,H,{C} (b). For a family of deter-
ministic functions H, an adversary A, and a family of efficiently-computable correlated-input circuits
{C}, and a random bit b, we define the following game between a challenger and the adversary A.

• Setup Phase 1. Challenger runs the Gen algorithm of H for a security parameter input 1λ and
gets hc : Dh −→ Rh. Challenger gives Dh to A.

• Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the challenger n + 1
distinct circuits {Ci}i∈[n+1] ⊂ {C}.

• Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform random string of appropriate
length.

• Partially Adaptive Query-Response Phase. A presents n queries, where an ith query is an
index ki ∈ [n+ 1]. Challenger responds to it via hc(Cki(r)).

• Challenge Phase. Let kn+1 ∈ [n + 1] be the index of the unqueried circuit. Let z0
$←− Rh and

z1 := hc(Ckn+1(r)). Challenger gives zb to A.

• Guess Phase. The adversary outputs a guess b̂ of b.
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b̂ is defined to be the output of the experiment.
We define the advantage of an adversary A in the above game as:

AdvsCI−distA,H,{C} (λ) = |Pr[ExpsCI−distA,H,{C} (1) −→ 1]− Pr[ExpsCI−distA,H,{C} (0) −→ 1]|

The probability is over the random bits used by the challenger and the adversary.

Definition 7 A family of functions H is said to be selective correlated-input pseudorandom with respect
to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl,
such that:

AdvsCI−distA,H,{C} (λ) ≤ negl(λ)

In general, we sometimes refer CI-pseudorandom functions as CI-secure functions.

4 Proposed Construction

In the sequel we give the construction of our function and prove that it is correlated-input secure for
a class of polynomials over Zp (where p is a prime number) in the sense of each of the three selective
security models defined above.

Our construction is given in Figure 1.

Gen(1λ). Run GrpGen: (G, p, g)← GrpGen(1λ), where p is a prime number. Gen uniformly
samples a random element c from Zp and a random generator g of group G. It outputs g, c
and a function h : Zp −→ G defined by,

h(m) := g
1

m+c

for any m ∈ Zp (where 1
m+c is computed mod p).

Figure 1: Our Construction

Our proposed function is extremely simple and efficient to compute. The cost of computation is
dominated by a single exponentiation operation. The construction can be seen as similar to a short
signature scheme by Boneh and Boyen [BB04b]. Our main novelty can be seen in the proofs of security.
Indeed, interestingly, our proofs show that the original signature scheme of Boneh and Boyen is secure
even if an adversary is allowed to obtain messages signed by various correlated secret signing keys, where
the correlations are from a set of polynomials over Zp. A detailed description of this implication is given
in Appendix D.

4.1 Analysis of the above Construction.

We prove that our construction is selectively secure with respect to a class of correlations computable by
polynomials over Zp. In what follows, we introduce some more notations that will be used in the rest of
the paper and then discuss the three security games with correlated-input circuits computing polynomials
over Zp.

Notations Let deg[f(X)] denote the degree of a polynomial f(X) over Zp. If the output distribution
of a polynomial is uniform in Zp (or, in other words, if the range of the polynomial is Zp itself), then we
refer to the polynomial as uniform-output polynomial. On the other hand, if the output distribution of
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a polynomial has high min-entropy in Zp, then we refer to the polynomial as high-min-entropy-output
polynomial (every non-zero polynomial of degree polynomial in the λ has a range of size exponential in
the λ). We shall only consider polynomials of degree at least 1 and polynomial in λ.

Now we go in more detail. In the selective Correlated-Input Inverting experiment, we let the adversary
choose any polynomially many non-zero polynomials over Zp, {fi(X)}i ⊂ Zp[X]. Let n denote the total
number of queries (where, we emphasize, the value of n is adversarially chosen as opposed to the case in
any n-wise independent functions where the maximum number of queries is fixed as n for the function).

Once the challenger receives these n polynomials, it chooses x
$←− Zp, and computes the inputs as

mi := fi(x), ∀i ∈ [n]. And the rest of the experiment remains the same.
Similarly, in the selective Correlated-Input Predicting and distinguishing experiments, the adversary

chooses n + 1 distinct uniform-output polynomials {fi(X)}i∈[n+1] (again, for an adversarially chosen

value of n). The challenger receives these n + 1 polynomials from the adversary, chooses x
$←− Zp and

computes the inputs as mi := fi(x),∀i ∈ [n+ 1]. And the rest of the experiment remains the same.

We now propose a simple lemma that would be used later in our proofs.

Lemma 1 Let p be a prime number of size λ and f1(X) and f2(X) be two distinct univariate polynomials

over Zp such that deg[f1(X)] and deg[f2(X)] are each polynomial in λ. Then, for r
$←− Zp, the probability

that f1(r) = f2(r) is negligible in λ.

Proof: The values of x ∈ Zp for which f1(x) = f2(x) are precisely the roots of the polynomial f1(X)−
f2(X) in Zp, and f1(X)− f2(X) has at most deg[f1(X)− f2(X)] roots in Zp. As deg[f1(X)− f2(X)] ≤
max(deg[f1(X)], deg[f2(X)]),

Pr[r
$←− Zp : f1(r) = f2(r)] ≤ max(deg[f1(X)], deg[f2(X)])

p

which is negligible in λ.

4.2 Selective Correlated-Input one-wayness

Theorem 2 Suppose that (q, t′, ε)-SDL assumption holds in G. Let {C} be a set of non-zero polyno-
mials over Zp. Then, for H as in Figure 1, there exists no probabilistic t-time adversary A for which
AdvsCI−invA,H,{C}(λ) is at least ε provided that

d ≤ q and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees of the polynomials that A queries upon and τ is the
maximum time for an exponentiation in G and Zp.

Proof: Let there exist a polynomial-time adversaryA with an advantage ε in the selective Correlated-Input Inverting
game with respect to the class of non-zero polynomials over Zp. We build an algorithm B that interacts
with A and solves a given random instance of q-SDL problem, with the same advantage ε, as follows.

Algorithm B is given a random instance (g′, (g′)x, (g′)x
2
, . . . , (g′)x

q
) ∈ (G?)q+1 of the q-SDL problem

in G, for some unknown x ∈ Z?p. The objective of B is to output x. B invokes A and interacts with it as
follows.

Let us denote (g′)x
i

by gi for i ∈ [q], and g′ by g0.
Setup Phase 1: B gives p to A.
Query Phase: A chooses a positive integer n (= poly(λ)), and gives to the challenger, n non-zero
polynomials over Zp, {fi(X)}i∈[n].
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Setup Phase 2: B uniformly chooses a random element c
$←− Zp.

Let us define a polynomial f(X) :=
∏n
i=1(fi(X) + c). Recall that

∑n
i=1 deg[fi(X)] ≤ d. So f(X)

can be expanded as f(X) =
∑d

j=0 αjX
j where αj ∈ Zp are the co-efficients of the polynomial f(X). B

computes
∏d
j=0(gj)

αj and sets:

g ←−
d∏
j=0

(gj)
αj .

Thus g = (g′)f(x). g has correct distribution provided that f(x) 6= 0 (in other words, g is a random
generator of G). If, however, f(x) = 0 (or, equivalently, if x is a root of f(X)), then B can easily
recover x by computing the roots of f(X) in Zp with any of the known probabilistic polynomial time
methods [BO81].9 Thus, B can recover the secret x and hence solve the given instance of the q-SDL
problem with no further help from the adversary A.

If f(x) 6= 0, then the algorithm B proceeds to interact with A and gives g and c to A as a description

of the function h(·), where, for any m ∈ Zp, h(m) := g
1

m+c .
Response Phase: Let us define polynomials f ′i(X) = f(X)/(fi(X)+c), ∀ i ∈ [n]. As before, we expand

them as f ′i(X) =
∑deg[f ′i(X)]

j=0 βijX
j , where βij ∈ Zp. ∀i ∈ [n], B computes

ai ←−
deg[f ′i(X)]∏

j=0

(gj)
βij .

and gives ai to A.
Note that ai is the valid image of fi(x) under the specified function h(·), since ai = (g′)f

′
i(x) =

(g′)
f(x)

fi(x)+c = g
1

fi(x)+c = h(fi(x)).
Invert Phase: A returns (k, y), where k ∈ [n] and y ∈ Zp, such that y = fk(x) with probability ε.

In the event that y = fk(x), (or, in other words, x is a root of the polynomial fk(X) − y), then B
can compute the roots of fk(X) − y in Zp, choose that root s for which the equality (g′)s

i
= gi holds ∀

i ∈ [q], and conclude its own game by outputting s.
Thus, if A outputs fk(x) with probability ε, B outputs the solution to the given instance of q-SDL

problem with probability at least ε.
The claimed bounds are evident by the construction of the reduction. This completes the proof of

Theorem 2.
We note that our proof works even if, in the construction, we set c to any constant value in Zp (say,

for eg., c = 0 so that h(m) := g
1
m ).

4.3 Selective Correlated-Input Unpredictability

Theorem 3 Suppose that (q, t′, ε′)-DHI assumption holds in G. Let {C} be a set of uniform-output
polynomials over Zp. Then, for H as in Figure 1, there exists no probabilistic t-time adversary A for

which AdvsCI−predA,H,{C} is at least ε provided that

d ≤ q + 1, ε ≥ 2(n+ 1)ε′ and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees the polynomials that A queries upon and τ is the
maximum time for an exponentiation in G and Zp.

Proof: Let there exist a polynomial-time adversaryA with an advantage ε in the selective Correlated-Input Predicting
game with respect to the class of uniform-output polynomials over Zp. We build an algorithm B that

9For a d-degree polynomial, Ben-Or’s algorithm uses O((log p)d2+e) expected operations in Zp.
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interacts with A and solves a given random instance of q-DHI problem with the advantage at least ε′, as
follows.

Algorithm B is given a random instance (g′, (g′)s, (g′)s
2
, . . . , (g′)s

q
) ∈ (G?)q+1 of the q-DHI problem

in G, for some unknown s ∈ Z?p. The objective of B is to output (g′)
1
s . B invokes A and interacts with it

as follows.
Setup Phase 1: B gives p to A.
Query Phase: A chooses a positive integer n (= poly(λ)), and gives to the challenger, n + 1 distinct
uniform-output polynomials over Zp, {fi(X)}i∈[n+1].

Setup Phase 2: B uniformly chooses a random element r
$←− Zp. Let x := s + r. B computes (g′)x

i

from the given values, (g′)s
i
, i ∈ [q].

Let us denote (g′)x
i

by gi for i ∈ [q], and g′ by g0.

B then uniformly samples a random element k
$←− [n + 1] and sets c ←− −fk(r). (Note that, since

each polynomial fi(X), and in particular, fk(X), evaluates to a uniform random element in Zp for a
uniform random assignment of its variable in Zp, the resulting distribution of c is uniformly random in
Zp, as required.)

Let us define a polynomial lk(X) := (fk(X)+c)/(X−r) (Observe here that fk(X)+c = fk(X)−fk(r)
has a factor (X − r)). Also define another polynomial,

f(X) :=
∏

i∈[n+1]−{k}

(fi(X) + c) · lk(X). (1)

Let f(X) be expanded as f(X) =
∑d−1

j=0 αjX
j where αj ∈ Zp (as

∑n+1
i=1 deg[fi(X)] ≤ d and deg[lk(X)] =

deg[fk(X)]− 1). B computes
∏d−1
j=0(gj)

αj and sets:

g ←−
d−1∏
j=0

(gj)
αj .

Thus g = (g′)f(x). g has correct distribution provided that f(x) 6= 0 (in other words, g is a random
generator of G). If, however, f(x) = 0 (or, equivalently, if x is a root of f(X)), then B can easily recover
x by computing the roots and hence solve the given instance of the q-DHI problem with no further help
from the adversary A.

If f(x) 6= 0, then the algorithm B proceeds to interact with A and gives g and c to A as a description

of the function h(·), where, for any m ∈ Zp, h(m) := g
1

m+c .
Partially Adaptive Query-Response Phase: Now let us define polynomials f ′i(X) := f(X)/(fi(X)+

c), ∀ i ∈ [n + 1] − {k}. Let them be expanded as f ′i(X) =
∑deg[f ′i(X)]

j=0 βijX
j , where βij ∈ Zp. When A

presents an ith query as an index ki ∈ [n+ 1] for i ∈ [n+ 1], B responds as follows.
If ki = k, then B terminates the simulation, and concludes its own game by outputting a random

element r? in G. If ki 6= k, then B computes

aki ←−
deg[f ′ki

(X)]∏
j=0

(gj)
βkij .

and gives aki to A.

Note that aki is the valid image of fki(x) under the specified function h(·), since aki = (g′)
f ′ki

(x)
=

(g′)
f(x)

fki
(x)+c = g

1
fki

(x)+c = h(fki(x)).
Predict Phase: Let k ∈ [n + 1] such that k 6= ki ∀ i ∈ [n]. A returns y ∈ G, such that y = h(fk(x))
with probability ε.
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Let f ′(X) := f(X)/lk(X) (Observe through Equation (1) that lk(X) completely divides f(X)). It
follows that

h(fk(x)) = g
1

fk(x)+c

= (g′)
f(x)

fk(x)+c

= (g′)
f ′(x)·lk(x)

fk(x)+c

= (g′)
f ′(x)·lk(x)

(x−r)·lk(x)

= (g′)
f ′(x)
x−r .

Let f ′(X) be rewritten as f ′(X) = l′k(X)(X − r) + c?, where l′k(X) ∈ Zp[X] and c? ∈ Zp. Let l′k(X)

be expanded as l′k(X) =
∑deg[l′k(X)]

j=0 µjX
j , where µj ∈ Zp.

In the ensuing discussion, we proceed with the assumption that c? 6= 0, and at the end of the proof
show that c? 6= 0 with all but negligible probability.
B first computes

(g′)l
′
k(x) =

deg[l′k(X)]∏
j=0

(gj)
µj

and then sets
g? ←− (y · (g′)−l′k(x))

1
c?

where 1
c? is computed mod p. B concludes its own game by outputting g?.

If A correctly predicts the image of fk(x) under h(·), i.e., if y = h(fk(x)), then,

g? = ((g′)
f ′(x)
x−r · (g′)−l′k(x))

1
c?

= ((g′)l
′
k(x)+ c?

x−r · (g′)−l′k(x))
1
c?

= (g′)
1

x−r

= (g′)
1
s

which is the solution for the given instance of q-DHI problem.
Now we compute the probability with which B outputs this solution.
If B aborts the simulation, then B outputs the valid solution with at most negligible probability (1

p).
If B does not abort, then the probability that B outputs the solution is ε. Let δ denote the probability
that B does not abort. Then, the actual probability that B outputs the right solution to the problem
instance is at least δ · ε.

It is easy to observe that the view of A for B’s choice k (in the Setup Phase 2) is identically
distributed to the view of A for B’s choice k′ 6= k. This immediately implies that the probability that
ki 6= k in an ith query is at least 1

2(n+1) ; i.e., δ ≥ 1
2(n+1) . Hence, B outputs the solution (g′)

1
s , to the

given q-DHI problem instance with probability at least 1
2(n+1) · ε = ε′.

Now we return to the proof of the claim that c? 6= 0 with all but negligible probability. Let P denote
the probability that c? = 0. If c? = 0, then (X− r) completely divides f ′(X); in other words, (as the ring
of polynomials over a finite field is a unique factorization domain), f ′(X) =

∏
i∈[n+1]−{k}(fi(X) + c) has

a factor (X − r), and there exists j ∈ [n+ 1]− {k}, such that fj(X) + c has a factor (X − r); i.e., r is a
root of fj(X) + c or fj(r) + c = 0. Recall that c = −fk(r). Thus, in effect, c? = 0 implies fj(r) = fk(r).

Now recall that r was sampled uniformly at random in Zp. Since the polynomials fj(X) and fk(X)
are distinct, from Lemma 1, we conclude that the probability that fj(r) = fk(r), and in turn c? = 0, is

at most
max(deg[fj(X)],deg[fk(X)])

p , which is negligible in λ.
The claimed bounds are evident by the construction of the reduction. This completes the proof of

Theorem 3.
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4.4 Selective Correlated-Input pseudorandomness

Theorem 4 Suppose that decisional (q, t′, ε′)-DHI assumption holds in G. Let {C} be a set of uniform-
output polynomials over Zp. Then, for H as in Figure 1, there there exists no probabilistic t-time adversary
A for which AdvsCI−distA,H,{C} (λ) is at least ε provided that

d ≤ q + 1, ε ≥ 2(n+ 1)ε′ and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees of the polynomials that A queries upon and τ is the
maximum time for an exponentiation in G and Zp.

Let there exist a polynomial-time adversary A with an advantage ε in the selective Correlated-Input
Distinguishing game with respect to the class of uniform-output polynomials over Zp. We build an algo-
rithm B that interacts with A and solves a given random instance of decisional q-DHI problem with the
advantage at least 1

2(n+1) · ε, as follows.

Algorithm B is given a q+ 2-tuple (g′, (g′)s, (g′)s
2
, . . . , (g′)s

q
, R) ∈ (G?)q+2 for some unknown s ∈ Z?p,

where the tuple is either sampled from PDDHI (i.e., R = (g′)
1
s ) or from RDDHI (i.e., R is uniform and

independent in G). The objective of B is to output 1 if R = (g′)
1
s and 0 otherwise. B invokes A and

interacts with it as follows.
The reduction is similar to that for the selective Correlated-Input Predicting game in Theorem 3. So

we shall only highlight the differences in the following.
Setup Phase 1, Query Phase, Setup Phase 2, and Partially Adaptive Query-Response Phase re-
main exactly the same as in the proof of Theorem 3, but in any Queryi, if ki = k then B terminates the

simulation and concludes its own game by outputting a random bit b?
$←− {0, 1}.

Next, B presents the challenge output as follows.
Challenge Phase:

We define polynomials l′k(X) := f(X)/lk(X) and f ′k(X) := f(X)/(fk(X) + c). Observe that f ′k(X) =
f(X)

lk(X)·(X−r) =
lk(X)l′k(X)

lk(X)(X−r) =
l′k(X)

(X−r) . Let l′k(X) be rewritten as l′k(X) = Q(X) · (X − r) + c?, where

Q(X) ∈ Zp[X] and c? ∈ Zp. Hence, f ′k(X) = Q(X) + c?

(X−r) . As seen in the proof of Theorem 3, we know

that c? 6= 0 with all but negligible probability.

Let Q(X) be expanded as Q(X) =
∑deg[Q(X)]

j=0 µjX
j , where µj ∈ Zp. B first computes (g′)Q(x) as∏deg[Q(X)]

j=0 (gj)
µj and then sets

z ←− (g′)Q(x) ·Rc?

B gives z to A.

Observe that if R = (g′)
1
s = (g′)

1
x−r (when the input q + 2-tuple is sampled from PDDHI), then

z = (g′)Q(x) · (g′)
c?

x−r

= (g′)f
′
k(x)

= (g′)
f(x)

fk(x)+c

= g
1

fk(x)+c

= h(fk(x))

That is, if R = (g′)
1
s , then z is a valid image of fk(x) under h(·). On the other hand, if R is uniform and

independent in G (when the input q + 2-tuple is sampled from RDDHI), then z is a random element in
G.
Guess: A outputs a guess b′ ∈ {0, 1}.
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Eventually, B concludes its own game by outputting its guess as b′ itself, meaning R = zb′ where
z1 = (g′)

1
s and z0 is a random element in Zp.

Now to compute the probability with which B outputs the right guess, let δ denote the probability
that B does not abort the simulation.

If B aborts, then it outputs the right guess with probability 1
2 and the corresponding advantage, Adv1,

of B in solving the given decisional q-DHI problem instance is

Adv1 = |Pr[b = b′]− 1

2
|

=
1

2
− 1

2
= 0

If it does not abort, then the probability that B outputs the right guess is at least 1
2 + δ · ε, and the

corresponding advantage, Adv2, of B is

Adv2 = |Pr[b = b′]− 1

2
|

≥ |(1

2
+ δ · ε)− 1

2
|

= δ · ε

.
Further, by the same argument as in Theorem 3, we have that δ ≥ 1

2(n+1) .
Thus,

AdvsCI−distB,H,{C} (λ) =| 1
n

n∑
i=1

Pr[B({hc(Ci(k))}i∈[w−1], hc(Cw(k))) −→ 1|w = i]

− 1

n

n∑
i=1

Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = i]|

=
1

n
|Pr[B({hc(Ci(k))}i∈[w−1], hc(Cw(k))) −→ 1|w = n]

− Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = 1]|

=
1

n
|Pr[k

$←− K : AO
weak
F (k,·)(·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : AO

weak
G(k,·)(·) −→ 1]|

=
1

n
AdvaRKA−wPRFA,{F},{C},1 (λ)

(2)

|Pr[A(g′, (g′)s, (g′)s
2
, . . . , (g′)s

q
, (g′)

1
s ) = 1]

− Pr[A(g′, (g′)s, (g′)s
2
, . . . , (g′)s

q
, R) = 1]|

= Adv2 + Adv2

≥ 2(n+ 1)ε

(3)

and hence, the total advantage of B in solving the given decisional q-DHI problem instance is at least
1

2(n+1) · ε ≥ ε
′.

The claimed bounds are evident by the construction of the reduction. This completes the proof of
Theorem 4.
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5 Relations between CI-Security and RKA-Security

In this section we examine relations between correlated-input secure hash functions and security under
related-key attacks, whose formal treatment was initiated by [BK03]. The latter asks that security of
a cryptographic primitive (e.g., a pseudorandom function) maintains security when used with related
secret keys. In this section we only consider our notion of pseudorandomness under correlated-inputs, so
“CI-security” below refers by default to this notion.

5.1 Relations to RKA-Secure Weak PRFs

We start by showing an equivalence between CI-secure hash functions and some form of RKA-security
for weak PRFsthat we introduce later. The idea, following [HLO10], is to “switch” the input and key for
these primitives.

RKA-Secure Weak PRFs Recall that weak PRFs [NR99], as opposed to normal ones, handle only
random inputs. In defining RKA-security for this primitive, a modeling choice we need to consider is
whether, when the adversary queries for a value of the function under a related key, a new random
input is chosen (or the previous random-input re-used). We give general definitions that capture the
possibilities. (However, for our results we only use a notion where the same random input is re-used.)
We also consider both “selective” and “adaptive” security notions; in the former, the adversary chooses
the relations applied to the secret key before receiving any responses.

Note that although some of the related works (e.g., [BC10]) represent the correlations by functions
(called “related-key deriving (RKD) functions therein”), we continue to represent the correlations by
circuits for ease of comparison with CI-security. For example, by {C}-RKA-PRF we refer to an RKA-
PRF where the correlated secret keys are sampled according to circuits in {C} (executed on a common
random input). A subtlety to note is that while it is meaningful to consider CI-security for a class of
circuits that do not contain circuit for the identity function, for certain RKA-secure primitives, we require
that the circuit for the identity function be always included. (Correlated-input security is more general
in this sense.)

We also note that a PRF function family is specified by an efficient probabilistic parameter-generation
algorithm Genprf which takes as input a security parameter 1λ and outputs the description of a function
including a description of the function’s keyspace, domain and range. However, for simplicity of exposi-
tion, we only consider a single PRF function in most part of the following discussion as long as there is
no ambiguity.

Definition 8 (qinp − {C}-sRKA-wPRF.) Let F : K ×D −→ R be an efficiently computable function.
Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F is said to be qinp − {C}-sRKA-PRF, if, ∀A ∈ PPT,
AdvsRKA−wPRFA,F,{C},qinp

(λ) is negligible, where,

AdvsRKA−wPRFA,F,{C},qinp
(λ)

:=|Pr[k
$←− K, xj

$←− D : {(indi, Ci)}i∈[n](⊂ ([qinp], {C}))← A,
A({(xindi , F (Ci(k), xindi)))}i∈[n] −→ 1]

−Pr[k
$←− K, G $←− FF(K,D,R), xj

$←− D :

{(indi, Ci)}i∈[n](⊂ ([qinp], {C}))← A,A({(xindi , G(Ci(k), xindi)))}i∈[n] −→ 1]|

(4)

Definition 9 (qinp − {C}-aRKA-wPRF.) Let F : K×D −→ R be an efficiently computable function.
Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F is said to be qinp − {C}-aRKA-wPRF, if, ∀A ∈ PPT,
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AdvaRKA−wPRFA,F,{C},qinp
(λ) is negligible, where,

AdvaRKA−wPRFA,F,{C},qinp
(λ) :=|Pr[k

$←− K : AO
weak
F (k,·)(·,·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : AO

weak
G(k,·)(·,·) −→ 1]|

(5)

Here, the related-key-wprf oracle Oweakf(k,·)(·) takes (indi, Ci) ∈ ([qinp], {C}) as input and outputs (xindi ,

f(Ci(k), xindi)), where xindi
$←− D.

The Equivalence In the following we show an equivalence between a one-input RKA-Secure wPRF for
{C} and a CI-secure hash function for {C}. (The equivalence holds respectively in the cases of selective
and adaptive security notions.) First, we construct a family of functions {F} from a family of functions H
and show that if H is a {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom function
family) then {F} is a 1-{C}-aRKA-wPRF (resp. 1-{C}-sRKA-wPRF).

Let H be a family of functions specified by Gen. A family of functions {F} is defined by the
following parameter-generation algorithm:

Genprf (1λ). Genprf runs Gen(1λ) that outputs the description of a parameter set D, c ∈ D,
and a function hc : K −→ R. Genprf outputs K, D and R for keyspace, domain and range,
respectively, of a function F defined by,

F (k, x) := hx(k)

for any k ∈ K and x ∈ D.

Figure 2: Construction of 1-{C}-(s/a)RKA-wPRF Family from {C}-(s/a)CI-pseudorandom Function
Family

Theorem 5 {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom function family) im-
plies 1-{C}-aRKA-wPRF (resp. 1-{C}-sRKA-wPRF).

Proof: We shall only present the proof for the adaptive case. The proof for the selective case follows
on similar lines.

Suppose A ∈ PPT is a {C}-restricted adversary against 1-{C}-RKA-wPRF security of {F} as in Fig-
ure 2. Then, we show that there exists a {C}-restricted adversary B against adaptive CI-pseudorandomness
of H such that

AdvaRKA−wPRFB,{F},{C},1 (λ) = n.AdvaCI−distA,H,{C} (λ)

B makes at most as many queries as A does and has the same running time as that of A.

Let bci
$←− {0, 1}. Let c

$←− D and k
$←− K. In its own game, B is given c, D, K and R. It can present

an adaptive ith query Ci ∈ {C} to which it receives hc(Ci(k)). Let n′ denote its total number of queries.

It presents a challenge query Cn′+1 to which it receives zbci , where z0
$←− R and z1 := hc(Cn′+1(r)). The

objective of B is to guess bci. B invokes A and interacts with it as follows:
Let n be the maximum number of queries of A. We define n+ 1 hybrids, H i

n, for 0 ≤ i ≤ n as follows.
H i
n: a sequence of n elements, where the first i elements are outputs of the PRF function and the rest

are uniform and independent random elements in R. Since qinp = 1, we shall represent A’s queries only
by the circuits and ignore the co-ordinate for index.

1. Choose w
$←− [n]. Give K, D and R to A to specify the wPRF.
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2. For i < w, when A presents its ith query Ci, query the challenger with the same, and respond to
A via (c, hc(Ci(k)), where (hc(Ci(k)) is output by the challenger.

3. For i = w, when A presents its wth query Cw, present the same as the challenge query to the
challenger, and respond to A via (c, zbci), where zbci is output by the challenger.

4. For i > w, respond to A’s query Ci via (c, ri), where ri
$←− R.

5. When A finally outputs its guess b̂ci, output the same.

Note that, for i < w, (c, hc(Ci(k)) = (c, F (Ci(k), c)) is a valid wPRF output, and for i > w, (c, ri) is
a random output. For i = w, (c, zbci) is a valid wPRF output if zbci = 1 and a random output, otherwise.
Thus, the resulting hybrid is Hw

n if zbci = 1, otherwise it is Hw−1
n .

Let rw
$←− R. Observe that

Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = 1]

= Pr[k
$←− K, G $←− FF(K,D,R) : AO

weak
G(k,·)(·,·) −→ 1],

(6)

and, for any 1 < j ≤ n,

Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = j]

= Pr[B({hc(Ci(k))}i∈[w−1], hc(Cw(k))) −→ 1|w = j − 1]
(7)

Thus, we have,

AdvsCI−distB,H,{C} (λ) =| 1
n

n∑
i=1

Pr[B({hc(Ci(k))}i∈[w−1], hc(Cw(k))) −→ 1|w = i]

− 1

n

n∑
i=1

Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = i]|

=
1

n
|Pr[B({hc(Ci(k))}i∈[w−1], hc(Cw(k))) −→ 1|w = n]

− Pr[B({hc(Ci(k))}i∈[w−1], rw) −→ 1|w = 1]|

=
1

n
|Pr[k

$←− K : AO
weak
F (k,·)(·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : AO

weak
G(k,·)(·) −→ 1]|

=
1

n
AdvaRKA−wPRFA,{F},{C},1 (λ)

(8)

This completes the proof of Theorem 5.
Next, we construct a family of functions H from a family of functions {F} and show that if {F}

is 1-{C}-aRKA-wPRF (resp. (resp. 1-{C}-sRKA-wPRF) then H is {C}-aCI-pseudorandom function
family (resp. {C}-sCI-pseudorandom function family).

Theorem 6 1-{C}-aRKA-wPRF (resp. 1-{C}-sRKA-wPRF) implies {C}-aCI-pseudorandom function
family (resp. {C}-sCI-pseudorandom function family).

Proof: We shall only present the proof for the adaptive case. The proof for the selective case follows
on similar lines.

Suppose A ∈ PPT be a {C}-restricted adversary against adaptive CI-security of H. Then, we show
that there exists a {C}-restricted adversary B against aRKA-wPRF security of F such that

AdvaCI−distA,H,{C} (λ) ≤ 2AdvaRKA−wPRFB,{F},{C},1 (λ)
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Let {F} be a family of functions specified by Genprf . A family of functions H is defined
through the following parameter-generation algorithm:

Gen(1λ). Gen runs Genprf (1λ) to get F : K ×D −→ R. It outputs D as the parameter set,

chooses i
$←− D, and outputs i, K and R to specify the function hi : K −→ R defined by,

hi(k) := F (k, i)

for any k ∈ K.

Figure 3: Construction of {C}-(s/a)CI-pseudorandom Function Family from 1-{C}-(s/a)RKA-wPRF
Family

B makes one query more than A does and has the same running time as that of A.
B is given access to a related-key-wPRF oracle Oweakf(k,·)(·, ·), which either instantiates the PRF F :

K × D −→ R for a random key k
$←− K or instantiates a random function G, where k

$←− K and

G
$←− FF(K,D,R). The objective of B is to output 1 in the former case and 0 in the latter case. B

invokes A and interacts with it as follows.

1. Choose C ′
$←− {C} and query the oracle with C ′. Let (c, f(C ′(k), c)) be the response received.

Give c, K and R to A as a description of the function hc : K −→ R.

2. When A presents an ith query Ci ∈ {C}, respond via ai, where ai ← Oweakf(k,·)(1, Ci).

3. When A finally outputs its guess b̂, output the same.

Let n denote the total number of A’s queries. Let r
$←− D and r1, . . . , rn+1

$←− R.

AdvsCI−distA,H,{C} (λ) = |Pr[A({hc(Ci(r))}i∈[n], hc(Cn+1(r))) −→ 1]

−Pr[A({hc(Ci(r))}i∈[n], rn+1) −→ 1]|
≤ |Pr[A({hc(Ci(r))}i∈[n], hc(Cn+1(r))) −→ 1]

−Pr[A({ri}i∈[n], rn+1) −→ 1]| (9)

+|Pr[A({ri}i∈[n], rn+1) −→ 1]

−Pr[A({hc(Ci(r))}i∈[n], rn+1) −→ 1]| (10)

From the above reduction, the Term (9) is exactly the advantage of B in its own adaptive PRF-RKA
game; i.e.,

|Pr[A({hc(Cj(r))}j∈[n], hc(Cn+1(r))) −→ 1]− Pr[A({rj}j∈[n], rn+1) −→ 1]|

=|Pr[k
$←− K : BO

weak
F (k,·)(·,·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : BO

weak
G(k,·)(·,·) −→ 1]|

=AdvaRKA−wPRFB,{F},{C},1 (λ)

Now, let bprf
$←− {0, 1}. Term (10) is exactly the advantage of A in a game ExpaCI−dist−randA,H,{C} (bprf )

defined as follows: If bprf = 1, then ∀i ∈ [n], the ith query Ci is responded via hc(Ci(r)), and the final

challenge query is responded via rn+1
$←− R; otherwise, ∀i ∈ [n], the ith query Ci is responded via

ri
$←− R, and the final challenge query is responded via rn+1

$←− R; the advantage of any adversary
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A′ in this game is |Pr[ExpaCI−dist−randA′,H,{C} (1) −→ 1] − Pr[ExpaCI−dist−randA′,H,{C} (0) −→ 1]|. As this game can
be easily simulated by B such that the simulated game is for bprf = 1 if its related-key-wPRF oracle
instantiates the PRF and for bprf = 0 if its related-key-wPRF oracle instantiates a random function,
Term (10) is also upper-bounded by the advantage of B in its own game; i.e.,

|Pr[A({ri}i∈[n], rn+1) −→ 1]− Pr[A({hc(Ci(r))}i∈[n], rn+1) −→ 1]|
≤ AdvaRKA−wPRFB,{F},{C},1 (λ)

(11)

leading us to
AdvaCI−distA,H,{C} (λ) ≤ 2AdvaRKA−wPRFB,{F},{C},1 (λ)

This concludes the proof of Theorem 6.

New CI-Secure Hash Functions As an application of the above equivalence, we obtain new CI-secure
hash functions. In particular, note that an adaptive one-input RKA-secure wPRF for a class of circuits
{C} is trivially implied by an RKA-Secure PRF for {C} (Here, the latter is defined as expected, namely
as in prior work except cast in our framework of circuits). We can therefore use the recent constructions
of RKA-Secure PRFs by Bellare and Cash [BC10] to obtain adaptive CI-secure hash functions. Namely,
the latter are secure under the standard DDH assumption for class of circuits computing multiplications
by a group elements or under exponential-hardness of DDH for additions by a group elements.

Though the resulting CI-secure hash functions are secure for weaker classes of relations as compared
to our main construction, they are remarkable in that they are both adaptively secure and do not need
a public key. (They do not even need any randomly-generated global parameters, as the constructions
of [BC10] work in a fixed group.) The latter is because in the case that we start with an RKA-secure
PRF (rather than wPRF), our construction of CI-secure hash can be modified by applying the PRF to
any fixed value in the domain of the latter (still using the input as the key).

5.2 CI-secure Functions Imply Other RKA-secure Primitives

In this section we discuss a general technique for building RKA-secure cryptographic primitives from a
CI-secure hash function. The idea is to hash the coins used to generate keys for the the former, using a
CI-secure hash functions.

Informally, let Ψ be a scheme for a cryptographic primitive. Let KeyGen be a PPT algorithm for Ψ,
and let l(λ) be the length of the randomness it uses. Our transformation uses a {C}-CI-pseudorandom
function family H specified by Gen, and the transformation involves modifying KeyGen(1λ; r) where

r
$←− {0, 1}l(λ) to KeyGen(1λ;h(r′)) where r′

$←− {0, 1}t(λ) and (h : {0, 1}t(λ) −→ {0, 1}l(λ))← Gen(1λ).
More concretely, we exemplify the above technique for digital signatures. We give our formalization

of RKA-security for signatures in Appendix B.
In what follows we show that {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom

function family) implies {C}-aRKA-unforgeable scheme (resp. {C}-sRKA-unforgeable scheme). The
transformation is given in Figure 4.

Theorem 7 {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom function family) im-
plies {C}-aRKA-unforgeable scheme (resp. {C}-sRKA-unforgeable scheme).

Proof: We shall only present the proof for the adaptive case. The proof for the selective case is similar,
and is hence skipped.

Consider the construction in Figure 4. For any {C}-restricted adversary A ∈ PPT against aRKA-
security of Σ, we show that there exists a {C}-restricted adversary Bci ∈ PPT against adaptive correlated-
input security of H and an adversary Bforge ∈ PPT against existential unforgeability of Σ′, such that

AdvaRKA−forgeA,Σ,{C} (λ) ≤ 2n(AdvaCI−distBci,H,{C}(λ) + AdvforgeBforge,Σ′(λ)),
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Let H be a function family specified by Genwith output length l(λ). Let
Σ′ = (KeyGen′,Sign′,Verify′) be a signature scheme such that l(λ) is the length of the
randomness used by KeyGen′. The signature scheme Σ = (KeyGen,Sign,Verify) is defined by:

•• KeyGen(1λ): (h : {0, 1}t(λ) −→ {0, 1}l(λ))← Gen(1λ); sk
$←− {0, 1}t(λ);

(sk′, pk′)← KeyGen′(1λ;h(sk)); output sk as the secret key, and pk := (h, pk′) as the
public key.

• Sign(sk,m): Run KeyGen′(1λ, h(sk)) to obtain sk′. The signature on message m is set as
σ ← Sign′(sk′,m).

• Verify(pk,m, σ): Output valid if Verify′(pk′,m, σ) = valid and output invalid otherwise.

Figure 4: Construction of RKA-secure Signature Scheme from CI-secure Pseudorandom Functions

where AdvforgeBforge,Σ′(λ) denotes the advantage of Bforge against the existential unforgeability of Σ′.

Let bci
$←− {0, 1}. In its own game, for (hc : {0, 1}t(λ) −→ {0, 1}l(λ)) ← Gen(1λ) and sk

$←−
{0, 1}t(λ), Bci can present {Ci}i∈[n′+1] to its challenger who responds via ({hc(Ci(sk))}i∈n′ , zbci), where

z1 = hc(Cn′+1(sk)) and z0
$←− {0, 1}l(λ). The objective of Bci is to guess bci. Bci invokes A and interacts

with it as follows:

1. Let n be the total number of distinct RKDs on which A queries. Choose w
$←− [0, n− 1]. Choose

ri
$←− {0, 1}l(λ) for i ∈ [w + 2, n]. Query the challenger with the circuit Cid corresponding to the

identity function. Let aid := hc(Cid(sk)) = hc(sk). Compute (sk′, pk′) ← KeyGen′(1λ; aid); give
pk := (h, pk′) as the public key to A.

2. When A presents a query (Ci,mij), if i ≤ w, query the challenger with Ci. Let ai := hc(Ci(sk))
be the response received from the challenger. Compute (sk′i, pk

′
i) ← KeyGen′(1λ; ai). Respond via

σij ← Sign′(sk′i,mij).

3. When A presents a query (Cw+1,mw+1j), present the challenge query Cw+1. Let aw+1 be the
response received from the challenger. Compute (sk′w+1, pk

′
w+1)← KeyGen′(1λ; aw+1). Respond via

σ(w+1)j ← Sign′(sk′w+1,m(w+1)j).

4. When A presents a query (Ci,mij), if i > w + 1, compute (sk′i, pk
′
i) ← KeyGen′(1λ; ri). Respond

via σij ← Sign′(sk′i,mij).

5. When A outputs b̂ci, output the same.

Let ExpsRKA−forge−randA,Σ,{C} (b) be an experiment which is similar to ExpaRKA−forgeA,Σ,{C} except that a query

(Ci,mij) is responded via σij ← Sign′(sk′i,mij) where (sk′i, pk
′
i) ← KeyGen′(1λ;hc(Ci(sk))) if b = 1, and

via σij ← Sign′(sk′i,mij) where (sk′i, pk
′
i) ← KeyGen′(1λ; ri) otherwise. Observe that, in view of A,

ExpsRKA−forge−randA,Σ,{C} (1) is identical to ExpaRKA−forgeA,Σ,{C} . Let rw+1
$←− {0, 1}l(λ). Observe that

AdvsRKA−wPRFA,F,{C},qinp
(λ)

:=|Pr[k
$←− K, xj

$←− D : {(indi, Ci)}i∈[n](⊂ ([qinp], {C}))← A,
A({(xindi , F (Ci(k), xindi)))}i∈[n] −→ 1]

−Pr[k
$←− K, G $←− FF(K,D,R), xj

$←− D :

{(indi, Ci)}i∈[n](⊂ ([qinp], {C}))← A,A({(xindi , G(Ci(k), xindi)))}i∈[n] −→ 1]|

(12)
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Pr[Bci({hc(Ci(sk))}i∈[w], hc(Cw+1(sk))) −→ 1|w = n− 1]

= Pr[ExpsRKA−forge−randA,Σ,{C} (1) −→ 1],
(13)

Pr[Bci({hc(Ci(sk))}i∈[w], rw+1) −→ 1|w = 0]

= Pr[ExpsRKA−forge−randA,Σ,{C} (0) −→ 1],
(14)

and, for any 1 ≤ j < n,

Pr[Bci({hc(Ci(sk))}i∈[w], rw+1) −→ 1|w = j]

= Pr[Bci({hc(Ci(sk))}i∈[w], hc(Cw+1(sk))) −→ 1|w = j − 1]
(15)

Thus, we have,

AdvsCI−distBci,H,{C}(λ)

=|Pr[ExpsCI−distBci,H,{C}(1) −→ 1],

− Pr[ExpsCI−distBci,H,{C}(0) −→ 1]|

=| 1
n

n−1∑
i=0

Pr[Bci({hc(Ci(sk))}i∈[w], hc(Cw+1(sk))) −→ 1|w = i]

− 1

n

n−1∑
i=0

Pr[Bci({hc(Ci(sk))}i∈[w], rw+1) −→ 1|w = i]|

=
1

n
|Pr[Bci({hc(Ci(sk))}i∈[w], hc(Cw+1(sk))) −→ 1|w = n− 1]

− Pr[Bci({hc(Ci(sk))}i∈[w], rw+1) −→ 1|w = 0]|

=
1

n
|Pr[ExpsRKA−forge−randA,Σ,{C} (1) −→ 1]− Pr[ExpsRKA−forge−randA,Σ,{C} (0) −→ 1]|

From the triangle inequality, it holds that

AdvaRKA−forgeA,Σ,{C} (λ) = |Pr[ExpsCI−distBci,H,{C}(1) −→ 1],

= Pr[ExpaRKA−forgeA,Σ,{C} −→ 1]

= Pr[ExpsRKA−forge−randA,Σ,{C} (1) −→ 1]

≤ |Pr[ExpsRKA−forge−randA,Σ,{C} (1) −→ 1]

−Pr[ExpsRKA−forge−randA,Σ,{C} (0) −→ 1]|

+ Pr[ExpsRKA−forge−randA,Σ,{C} (0) −→ 1] (16)

Evidently, there exists an adversary Bforge against the existential unforgeability of Σ′ such that Term

(16) is upper bounded by AdvforgeBforge,Σ′(λ). From the above reductions, we have,

AdvaRKA−forgeA,Σ,{C} (λ) ≤ 2n(AdvaCI−distBci,H,{C}(λ) + AdvforgeBforge,Σ′(λ)).

This concludes the proof of the Theorem 7.

Remark 7.1 Note that we implicitly assume the existence of a existentially unforgeable scheme Σ′ in
the above consturctions of {C}-(s/a)RKA-unforgeable schemes, since the former is implied by any {C}-
(s/a)CI-speudorandom function family.
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Discussion In the case that the starting CI-secure hash function has a public key, the above transfor-
mation results in a cryptographic primitive for which algorithms operating on the secret key also need
to access an authentic public key. In some scenarios, e.g. smart cards, this may not always be practical.
Moreover, our main construction of CI-secure hash is only selectively-secure, resulting in a selectively
RKA-secure the cryptographic primitive. On the other hand, it is sometimes possible to use our tech-
niques (in a “non-blackbox” way) to design an RKA-secure scheme without a public key and that is
adaptively secure. In particular, we show this for RKA-secure symmetric-key encryption recently intro-
duced in [AHI10] in the full version. We also mention that using the CI-secure hash functions derived
from the Bellare-Cash RKA-secure PRFs [BC10] avoid these issues, but for a weaker class of relations.

Relation to Tampering Attacks We also note that RKA-security for a cryptographic primitive can
also be used to to protect against tampering attacks [GLM+04], where, for instance, the secret key stored
by a smart card is tampered with and its behavior is observed while it acts using the tampered secret,
with an objective of gaining advantage against the security of the functionality of the smart card when
using the original secret. However, as discussed in [AHI10], security against tampering attacks is easier
to achieve in general, through some kind of “sanity check” on the secret key (for instance, by including
a signature on the secret key as a part of the public key, which is verified by any algorithm using the
former); although, as discussed above, this approach may not always be practical. This does not work for
RKA-security, since we actually want related secret keys to function like independently generated ones.

6 Adaptive RKA-secure wPRF and Symmetric-Key Encryption Schemes

In this section, we give a number-theoretic construction of {C}-aRKA-CPA symmetric-key encryption
scheme, where {C} is the set of all non-zero polynomials over Zp. This, we do so, by first giving a
construction of poly(λ) − {C}-aRKA-wPRF for the same class of related-key circuits and then showing
how to tranform the same to {C}-aRKA-CPA symmetric-key encryption scheme.

Notations. Let M denote a message space and let mfix be any fixed message in M.
We next state our complexity assumption that will be used in the proofs that follow.

Decisonal Truncated q-ADHE Problem The Decisonal Truncated q-ADHE problem in G is defined
as follows: given a (q + 1)-tuple (g, gx, gx

2
, . . . , gx

q
) ∈ (G?)q+1 for some unknown x ∈ Z?p, distinguish

between gx
q+1

and a random element R
$←− G.

An algorithm A solves the decisional truncated q-ADHE problem in G with advantage ε if

DTADHE-AdvA,q := |Pr[A(g, gx, gx
2
, . . . , gx

q
, gx

q+1
) = 1]

−Pr[A(g, gx, gx
2
, . . . , gx

q
, R) = 1]| ≥ ε

where the probability is over the random choice of generator g ∈ G?, the random choice of x ∈ Z?p, the
random choice of R ∈ G?, and the random bits consumed by A. The distribution on the left is referred
to as PDT ADHE and the distribution on the right as RDT ADHE .

Definition 10 We say that the decisional truncated (q, t, ε)-ADHE assumption holds in G (or Grp-
Gen satisfies the decisional truncated (q, t, ε)-ADHE assumption) if no probabilistic t-time algorithm
has advantage at least ε in solving the decisional truncated q-ADHE problem in G.

6.1 Construction of {C}-aRKA-CPA Symmetric-Key Encryption Scheme

In the following, we give our number-theoretic construction of {C}-aRKA-CPA symmetric-key encryption
scheme Π, where {C} is the set of all non-zero polynomials over a finite field Zp.
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The symmetric-key encryption scheme Π = (KeyGen,Enc,Dec) is defined by:

•• KeyGen(1λ): Let (G, p, g)
$←− GrpGen(1λ). Sample k

$←− Zp. Set G as the message space.
Output (G, p, g) as public parameters params and k as the secret key.

• Encparams(k,mi): Sample gi
$←− G. Output (gi, gi

k.mi).

• Decparams(sk, c): For c = (c1, c2), output (c1
k)−1.c2.

Figure 5: Our Construction of {C}-aRKA-CPA Symmetric-Key Encryption Scheme

Before we prove the adaptive RKA-security of the above scheme, for the sake of simplicity of exposi-
tion, we shall first give a construction of a function which we prove to be poly(λ) − {C}-aRKA-wPRF,
and then prove that the above scheme is {C}-aRKA-CPA secure as a corollary.

Construction of poly(λ)− {C}-aRKA-wPRF for Polynomial RKD Circuits. The construction
of the proposed function follows.

Let (G, p, g′) $←− GrpGen(1λ). We define a family of functions F : Zp ×G −→ G as follows.
The function with key k, Fk(·), is defined by:

for any input g ∈ G,
Fk(g) := gk.

The distribution of functions in F is induced by the uniform random distribution of the key k
in Zp.

Figure 6: Our Construction of poly(λ)− {C}-aRKA-wPRF

We now show that F as defined in the above construction is a weak-PRF which is secure against
adaptive related-key-attacks with respect to {C}, where {C} is the set of all non-zero polynomials over
a finite field Zp, and the adversary is allowed to query for polynomially-many RKD circuits. Infact, we
show this for a slightly weaker form of security than of poly(λ) − {C}-aRKA-wPRF where each query
is responded for a freshly chosen random input. However, as we shall see, this suffices for us to give
{C}-aRKA-CPA symmetric-key encryption scheme. The proof of security follows.

Theorem 8 Let F be a family of functions as defined in Figure 6 and {C} be the set of all non-zero
polynomials over Zp. If Decisonal Truncated q-ADHE assumption holds in G, then F is a poly(λ)−{C}-
aRKA-wPRF, provided q upper bounds the degree of the polynomials in {C}.

Proof: Suppose there exists a {C}-restricted adversary A ∈ PPT against RKA-wPRF security of F
with advantage greater than ε(λ) (i.e., AdvaRKA−wPRFA,F,{C},poly(λ)(λ) > ε(λ)). Then we build an algorithm B that
interacts with A and solves a given random instance of Decisonal Truncated q-ADHE problem such that

DTADHE-AdvB,q(λ) >
1

n
.ε(λ).

Algorithm B is given a q+ 2-tuple (g′, (g′)x, (g′)x
2
, . . . , (g′)x

q
, T ) ∈ (G?)q+2 for some unknown x ∈ Z?p,

where the tuple is either sampled from PDT ADHE (i.e., T = (g′)x
q+1

) or from RDT ADHE (i.e., T is a
uniform and independent random element in G). The objective of B is to output 1 if T = (g′)x

q+1
and 0

otherwise. Denote (g′)x
i

by g′i for i ∈ [q], and g′ by g′0.
Let n be the maximum number of queries of A. We define n+1 hybrids, H i

n, for 0 ≤ i ≤ n: a sequence
of n elements, where the first i elements are outputs of the PRF function and the rest are uniform and
independent random elements in G.
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B invokes A and interacts with it as follows:

1. Choose w
$←− [n].

2. For i < w, respond to a query fi(X) =
∑q

j=0 αjX
j as follows: choose ri

$←− Zp and compute the
pair (gi, prfi) as

gi ←− (g′0)r
i

prfi ←− (

q∏
j=0

(g′j)
αj )ri

3. For i = w, respond to a query fw(X) =
∑q

j=0 αjX
j as follows: choose a random polynomial

f(X)
$←− Zp[X] such that d := deg(f(X)) = q + 1 − deg(fw(X)). (Note that d ≥ 1). Let

f(X) =
∑d

j=0 βjX
j and f(X)fw(X) =

∑q+1
j=0 δjX

j . Choose rw
$←− Zp and compute the pair

(gw, prfw) as

gw ←− (

d∏
j=0

(g′j)
βj )rw

prfw ←− (

q+1∏
j=0

(g′j)
δj )rw

4. For i > w, respond to a query fi(X) =
∑q

j=0 αjX
j as follows: set the pair (gi, prfi) as

gi
$←− G

prfi
$←− G

Note that for i < w, gi
$←− G and prfi = (gi)

fi(x), and for i > w, gi and prfi are uniformly and
independently random in G. If T = (g′)x

q+1
, then gw = (g′0)f(x) and prfw = (gw)fw(x). As f(X) is a

random non-zero polynomial, gw is uniformly and independently random in G. If T is independently
random element in G, then gw and prfw are uniformly and independently random elements in G. Thus,
the resulting hybrid is Hw

n if T = (g′)x
q+1

, otherwise, it is Hw−1
n .

Observe that

Pr[B(PDT ADHE) −→ 1|w = n] = Pr[k
$←− K : AOF (k,·)(·) −→ 1],

Pr[B(RDT ADHE) −→ 1|w = 1] = Pr[k
$←− K, G $←− FF(K,D,R) : AOG(k,·)(·) −→ 1],

and, for any 1 ≤ j < n,

Pr[B(PDT ADHE) −→ 1|w = j] = Pr[B(RDT ADHE) −→ 1|w = j + 1]

Thus, we have,
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DTADHE AdvB,q(λ) = |Pr[B(PDT ADHE) −→ 1]− Pr[B(RDT ADHE) −→ 1]|

= | 1
n

n∑
i=1

Pr[B(PDT ADHE) −→ 1|w = i]

− 1

n

n∑
i=1

Pr[B(RDT ADHE) −→ 1|w = i]|

=
1

n
|Pr[B(PDT ADHE) −→ 1|w = n]− Pr[B(RDT ADHE) −→ 1|w = 1]|

=
1

n
|Pr[k

$←− K : AOF (k,·)(·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : AOG(k,·)(·) −→ 1]|

>
1

n
.ε(λ).

This completes the proof of Theorem 8.
Using the above theorem, we now show that the above scheme Π (as defined in Figure 5) is {C}-

aRKA-CPA symmetric-key encryption scheme, where {C} is the set of all non-zero polynomials over
Zp.

Corollary 8.1 Let Π be a symmetric-key encryption scheme as defined in Figure 5 and {C} be the set of
all non-zero polynomials over Zp. If Decisonal Truncated q′-ADHE assumption holds in G, then Π is a
{C}-aRKA-CPA symmetric-key encryption scheme, provided q upper bounds the degree of the polynomials
in {C}.

Proof: Suppose there exists a {C}-restricted adversary A ∈ PPT against aRKA-CPA security of Π.
Then we build an algorithm B against aRKA-wPRF security of F such that

AdvaRKA−CPA−symmA,Π,{C} (λ) ≤ 2AdvaRKA−wPRFB,F,{C},poly(λ)(λ)

Algorithm B is given an oracleOF ′(k,·)(·) which either instantiates the wPRF F (specified by (G, p, g′)←
GrpGen(1λ)) for a uniformly random key k

$←− K or a random function G for k
$←− K and G

$←−
FF(K,D,R). The objective of B is to output 1 in the former case represented by bprf = 1 and 0 in

the latter case represented by bprf = 0. B chooses bmsg
$←− {0, 1}, invokes A, and runs the experiment

ExpaRKA−CPAA,Π,{C} (bprf , bmsg) defined as follows:

1. Give (G, p, g′) to A as the specification of the public parameters.

2. When A presents its ith query (Ci,mi), query the oracle with Ci. Let (gi, zi) be the response of
the oracle. Respond to A via ci := (gi, zi.mi).

3. When A outputs its guess b̂msg, output the same.

AdvaRKA−CPA−symmA,Π,{C} (λ)

= |Pr[ExpaRKA−CPA−symmA,Π,{C} (1) −→ 1]− Pr[ExpaRKA−CPA−symmA,Π,{C} (0) −→ 1]| (17)

= |Pr[ExpaRKA−CPAA,Π,{C} (1, 1) −→ 1]− Pr[ExpaRKA−CPAA,Π,{C} (1, 0) −→ 1]| (18)

≤ |Pr[ExpaRKA−CPAA,Π,{C} (1, 1) −→ 1]− Pr[ExpaRKA−CPAA,Π,{C} (0, 1) −→ 1]| (19)

+|Pr[ExpaRKA−CPAA,Π,{C} (0, 1) −→ 1]− Pr[ExpaRKA−CPAA,Π,{C} (0, 0) −→ 1]| (20)

+|Pr[ExpaRKA−CPAA,Π,{C} (0, 0) −→ 1]− Pr[ExpaRKA−CPAA,Π,{C} (1, 0) −→ 1]| (21)
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Equation (18) follows from the fact that, in the view ofA, ExpaRKA−CPA−symmA,Π,{C} (b) and ExpaRKA−CPAA,Π,{C} (1, b)
are identical.

In ExpaRKA−CPAA,Π,{C} (0, b), each response ci := (gi, zi.m
′
i) is independent of the message encrypted in the

view ofA, since gi and zi are uniform and independent random elements in G. Hence, ExpaRKA−CPAA,Π,{C} (0, 1)

is information-theoretically indistinguisable from ExpaRKA−CPAA,Π,{C} (0, 0). Hence, Term (20) is 0. Further, it

is easy to see that Term (19) and Term (21) are upper-bounded by AdvaRKA−wPRFB,F,{C},poly(λ)(λ). This completes
the proof of Corollary 8.1.
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A Adaptive Correlated-Input Security Definitions

The Adaptive Correlated-Input Inverting experiment ExpaCI−invA,H,{C} . For a family of deterministic

functions H, an adversary A, and a family of efficiently-computable correlated-input circuits {C}, we
define the following game between a challenger and the adversary A.

• Setup Phase. Challenger runs the Gen algorithm of H for a security parameter input 1λ and gets
hc : Dh −→ Rh. It gives hc to A and chooses r, a uniform random string of appropriate length.

• Adaptive Query-Response Phase. A presents polynomially-many adaptive queries, where, an
ith query is Ci ∈ {C}. Challenger responds to it via hc(Ci(r)).

• Invert Phase. Let n denote the total number of A’s queries. A outputs (k̂, ŷ) for k̂ ∈ [n] and
ŷ ∈ Dh.

The output of the experiment is defined to be 1 if hc(ŷ) = hc(Ck̂(r)) and 0 otherwise.
We define the advantage of an adversary A in the above game as:

AdvaCI−invA,H,{C}(λ) = Pr[ExpaCI−invA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 11 A family of functions H is said to be adaptive correlated-input one-way with respect to a
family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl, such
that:

AdvaCI−invA,H,{C} (λ) ≤ negl(λ)

The Adaptive Correlated-Input Predicting experiment ExpaCI−predA,H,{C} . For a family of deterministic

functions H, an adversary A, and a family of efficiently-computable correlated-input circuits {C}, we
define the following game between a challenger and the adversary A.

• Setup Phase. Challenger runs the Gen algorithm of H for a security parameter input 1λ and gets
hc : Dh −→ Rh. It gives hc to A and chooses r, a uniform random string of appropriate length.

• Adaptive Query-Response Phase. A presents polynomially-many adaptive queries, where, an
ith query is Ci ∈ {C}. Challenger responds to it via hc(Ci(r)).

• Predict Phase. Let n denote the total number of A’s queries. A outputs (Cn+1, ŷ) ∈ ({C},Rh).
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The output of the experiment is defined to be 1 if Cn+1 6= Ci for all i ∈ [n] and ŷ = hc(Cn+1(r)), and
0 otherwise.
We define the advantage of an adversary A in the above game as:

AdvaCI−predA,H,{C} (λ) = Pr[ExpaCI−predA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 12 A family of functions H is said to be adaptive correlated-input unpredictable with respect
to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl,
such that:

AdvaCI−predA,H,{C} (λ) ≤ negl(λ)

The Adaptive Correlated-Input Distinguishing experiment ExpaCI−distA,H,{C} (b). For a family of deter-
ministic functions H, an adversary A, and a family of efficiently-computable correlated-input circuits
{C}, and a random bit b, we define the following game between a challenger and the adversary A.

• Setup Phase. Challenger runs the Gen algorithm of H for a security parameter input 1λ and gets
hc : Dh −→ Rh. It gives hc to A and chooses r, a uniform random string of appropriate length.

• Adaptive Query-Response Phase. A presents polynomially-many adaptive queries, where, an
ith query is Ci ∈ {C}. Challenger responds to it via hc(Ci(r)).

• Challenge Phase. A presents a challenge circuit Cn+1 ∈ {C} such that Cn+1 6= Ci for all i ∈ [n].

Let z0
$←− Rh and z1 := hc(Cn+1(r)). The challenger responds via zb.

• Guess Phase. The adversary outputs a guess b̂ of b.

b̂ is defined to be the output of the experiment.
We define the advantage of an adversary A in the above game as:

AdvaCI−distA,H,{C} (λ) = |Pr[ExpaCI−distA,H,{C} (1) −→ 1]− Pr[ExpaCI−distA,H,{C} (0) −→ 1]|

The probability is over the random bits used by the challenger and the adversary.

Definition 13 A family of functions H is said to be adaptive correlated-input pseudorandom with respect
to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible function negl,
such that:

AdvaCI−distA,H,{C} (λ) ≤ negl(λ)

B Definitions of RKA-Secure Primitives

We now give definitions of RKA-secure PRFs.

Definition 14 (qinp − {C}-aRKA-PRF) Let F : K × D −→ R be an efficiently computable function.
Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F is said to be qinp − {C}-aRKA-PRF, if, ∀A ∈ PPT,
AdvaRKA−PRFA,F,{C},qinp

(λ) is negligible, where,

AdvaRKA−PRFA,F,{C},qinp
(λ) :=|Pr[k

$←− K : AOF (k,·)(·,·) −→ 1]

− Pr[k
$←− K, G $←− FF(K,D,R) : AOG(k,·)(·,·) −→ 1]|

(22)

Here, the related-key-prf oracle Of(k,·)(·, ·) takes two inputs, Ci ∈ {C} and xi ∈ D, and outputs f(Ci(k), xi).
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Definition 15 (qinp − {C}-sRKA-PRF.) Let F : K × D −→ R be an efficiently computable function.
Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F is said to be qinp − {C}-sRKA-PRF, if, ∀A ∈ PPT:

AdvsRKA−PRFA,F,{C},qinp
(λ) := |Pr[k

$←− K : {(Ci, xi)}i∈[n] ← A,A({F (Ci(k), xi))}i∈[n] −→ 1]−Pr[k
$←− K, G $←−

FF(K,D,R) : {(Ci, xi)}i∈[n] ← A,A(G(Ci(k), xi)) −→ 1]|
is negligible in λ, where Ci ∈ {C} and xi ∈ D, and |{(xi)}i| ≤ qinp.

We now give definitions of RKA-secure symmetric-key encryption.

The Selective RKA - CPA Symmetric-Key experiment ExpsRKA−CPA−symmA,Π,{C} (b). For a symmetric-

key encryption scheme Π = (KeyGen,Enc,Dec), an adversary A, a family of efficiently-computable RKD
circuits {C}, and a random bit b, we define the following game between a challenger and the adversary
A.

• Setup Phase 1. Challenger runs KeyGen(1λ), gets params including a description of a keyspace

Kλ, and chooses k
$←− Kλ. The challenger specifies Kλ to A.

• Challenge Phase. A chooses a positive integer n(= poly(λ)), and gives to the challenger n circuits
Ci ∈ {C}, i ∈ [n].

• Setup Phase 2. The challenger gives params to A.

• Partially Adaptive Query-Response Phase. The adversary A presents the adaptive ith query,
(j,mi) ∈ ([n],M) and the challenger responds via:

ci =

{
Encparams(Cj(k),mi), if b=1
Encparams(Cj(k),mfix), if b=0

• Guess Phase. The adversary outputs a guess b̂ of b, which is also the output of the experiment.

We define the advantage of an adversary A in the above game as:

Adv sRKA−CPA−symm
A,Π,{C} (λ)

= |Pr[ExpsRKA−CPA−symmA,Π,{C} (1) −→ 1]− Pr[ExpsRKA−CPA−symmA,Π,{C} (0) −→ 1]|

The probability is over the random bits used by the challenger and the adversary.

Definition 16 A symmetric-key encryption scheme Π is said to be secure against selective RKA-CPA
attack with respect to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible
function negl, such that:

AdvsRKA−CPA−symmA,Π,{C} (λ) ≤ negl(λ)

We shall call such a scheme, {C}-sRKA-CPA symmetric-key encryption scheme.

The Adaptive RKA - CPA Symmetric-Key experiment ExpaRKA−CPA−symmA,Π,{C} (b). For a symmetric-

key encryption scheme Π = (KeyGen,Enc,Dec), an adversary A, a family of efficiently-computable
correlated-input circuits {C}, and a random bit b, we define the following game between a challenger and
the adversary A.

• Setup Phase. The challenger runs KeyGen(1λ), gets params including a description of a keyspace

Kλ, and chooses k
$←− Kλ. The challenger specifies Kλ to A.
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• Adaptive Query-Response Phase. A presents the adaptive ith query, (Ci,mi) ∈ ({C},M), for
1 ≤ i ≤ n, and the challenger responds via ci:

ci =

{
Encparams(Ci(k), (mi) if b=1
Encparams(Ci(k),mfix) if b=0

• Guess Phase. The adversary outputs a guess b̂ of b, which is also the output of the experiment.

We define the advantage of an adversary A in the above game as:

Adv aRKA−CPA−symm
A,Π,{C} (λ)

= |Pr[ExpaRKA−CPA−symmA,Π,{C} (1) −→ 1]− Pr[ExpaRKA−CPA−symmA,Π,{C} (0) −→ 1]|

The probability is over the random bits used by the challenger and the adversary.

Definition 17 A symmetric-key encryption scheme Π is said to be secure against adaptive RKA-CPA
attack with respect to a family of correlated-input circuits {C}, if for all A ∈ PPT there exists a negligible
function negl, such that:

AdvaRKA−CPA−symmA,Π,{C} (λ) ≤ negl(λ)

We shall call such a scheme, {C}-aRKA-CPA symmetric-key encryption scheme.

Remark 8.1 Our definitions of {C}-sRKA-CPA symmetric-key encryption (resp. {C}-aRKA-CPA
symmetric-key encryption) are stronger than the adaptive (resp. passive) RKA-secure symmetric-key
encryption of [AHI10] in the following sense: While in [AHI10], the challenger chooses the RKD circuits,
in our definitions, we let the adversary choose them in both selective and adaptive cases (with the adver-
sary declaring the number of distinct related-key circuits that it would adaptively query, before it presents
those queries).

We now give definitions of RKA-secure signature scheme.
For a signature scheme Σ = (KeyGen, Sign,Verify) we denote by SKλ and PKλ the sets of secret keys

and public keys that are produced by KeyGen(1λ). Let {C} ⊆ Fun(SKλ,SKλ) be a set of RKD functions.

The Adaptive RKA Signature-Forging experiment ExpaRKA−forgeA,Σ,{C} . For a signature scheme Σ, an

adversary A, and a family of efficiently-computable RKD circuits {C}, we define the following game
between a challenger and the adversary A.

• (sk, pk)←− KeyGen(1λ).

• (m,σ)←− AaRKA-Signsk(·,·)(pk)

where, aRKA-Signsk(·, ·), the aRKA-Signing oracle, takes as input a function C ∈ {C} and a message
m and outputs Sign(C(sk),m).

The output of the experiment is defined as 1 if Verify(pk,m, σ) = valid and if for no A’s oracle query
of the form (id,m), the response was signature σ; otherwise, the output is 0.

Definition 18 A signature scheme Σ = (KeyGen,Sign,Verify) is existentially unforgeable against adaptive
related-key-attacks with respect to {C}, if for all A ∈ PPT there exists a negligible function negl, such
that:

AdvaRKA−forgeA,Σ,{C} (λ) := Pr[ExpaRKA−forgeA,Σ,{C} −→ 1] ≤ negl(λ).

We call such a scheme {C}-aRKA-unforgeable.
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The Selective RKA Signature-Forging experiment ExpsRKA−forgeA,Σ,{C} . For a signature scheme Σ, an

adversary A, and a family of efficiently-computable RKD circuits {C}, we define the following game
between a challenger and the adversary A.

• (sk, pk)←− KeyGen(1λ).

• {(Ci,mi)}i ←− A(pk)

• (m,σ)←− A({σi}i)

where, σi ← Sign(Ci(sk),mi).
The output of the experiment is defined as 1 if Verify(pk,m, σ) = valid and if for no A’s oracle query

of the form (id,m), the response was signature σ; otherwise, the output is 0.

Definition 19 A signature scheme Σ = (KeyGen,Sign,Verify) is existentially unforgeable against selective
related-key-attacks with respect to {C}, if for all A ∈ PPT there exists a negligible function negl, such
that:

AdvsRKA−forgeA,Σ,{C} (λ) := Pr[ExpsRKA−forgeA,Σ,{C} −→ 1] ≤ negl(λ).

We call such a scheme {C}-sRKA-unforgeable.

C Inadequacy of Existing Security Notions

Here, we demonstrate that the primitives, one-way functions and pseudo-random generators are not
necessarily correlated-input secure, by illustrating an example each of:

1. a one-way function that is not correlated-input one-way;

2. a pseudo-random generator that is neither correlated-input unpredictable nor correlated-input uni-
form.

One-Way Function vs Correlated-Input one-way functions: Let f : {0, 1}n −→ {0, 1}n be
any one-way function, where n ∈ N. Consider a function f̂ : {0, 1}2n −→ {0, 1}2n defined as f̂(x1 ‖ x2) =
x1 ‖ f(x2), where x1, x2 ∈ {0, 1}n. Evidently, the function, f̂(·) is one-way.

For any x1, x2
$←− {0, 1}n, let y1 = x1 ‖ x2 and y2 = x2 ‖ x1. We have, f̂(y1) = x1 ‖ f(x2) and

f̂(y2) = x2 ‖ f(x1). Given f̂(y1) and f̂(y2), one can easily recover x1 and x2, and hence, invert f̂(Y ) at
both Y = y1 and Y = y2.

Hence, given the images of any two inputs of f̂(·) that are correlated such that the first n bits
of one input is equal to the last n bits of the other, it is possible to invert both the images, thus
demonstrating that the one-way function, f̂(·), is not correlated-input one-way for the aforementioned
class of correlations.

One-Way Function vs Correlated-Input Unpredictable and Pseudorandom Functions:
Let G : {0, 1}n −→ {0, 1}l(n) be any pseudo-random generator, where n ∈ N and l : N −→ N such that
l(n) > n, ∀n ∈ N. Consider a function Ĝ : {0, 1}3n −→ {0, 1}2n+l(n) defined as Ĝ(x1 ‖ x2 ‖ x3) = x1 ‖
x2 ‖ G(x3), where x1, x2, x3 ∈ {0, 1}n. Evidently, the function, Ĝ(·) is a pseudo-random generator.

For any x1, x2, x3
$←− {0, 1}n, lety1 = x1 ‖ x2 ‖ x3, y2 = x2 ‖ x3 ‖ x1 and y3 = x1 ‖ x3 ‖ x2. We have,

Ĝ(y1) = x1 ‖ x2 ‖ G(x3) and Ĝ(y2) = x2 ‖ x3 ‖ G(x1). Given Ĝ(y1) and Ĝ(y2), one can easily recover
x1, x2 and x3, and hence, can recover the seed y3, with which Ĝ(y3) can be generated.

Hence, given the outputs Ĝ(·) for any two seeds, y1 and y2, one can not only distinguish the output
of Ĝ(·) for a seed y3 that is correlated to y1 and y2 as aforementioned (each of the three n-bit parts of
y3 is in at least one of first 2n bits of y1 and y2), but also can recover the seed y3 itself, and hence can
predict its output. This demonstrates that the pseudo-random generator, Ĝ(·), is neither correlated-input
unpredictable nor correlated-input pseudorandom.
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D sRKA-security of Boneh-Boyen Signature Scheme

We now discuss one implications of our main results on designing primitives secure against related key at-
tacks. Using our techniques, it can be proven that a slight modification of Boneh-Boyen [BB04b] signature
scheme gives a selectively secure RKA-secure signature scheme where the correlations are polynomials
over a finite field Zp. We require that the polynomials be distinct even “ignoring the constant term” (i.e.,
the difference between any two polynomials should not just be in the constant term). For the modified

scheme, the signature on a message m ∈ Zp is defined as g
1

x+m+c for the public parameters g and c and

for the secret signing key x (instead of g
1

x+m as in the Boneh-Boyen scheme). Further analysis follows.
The adversary gives to the challenger n polynomial - message pairs {(fi(X),mi)}i, 10 where {fi(X)}i

are uniform-output polynomials over Zp and distinct even ignoring the constant term (otherwise, it can
be seen that the signatures on two different messages with two different keys may be identical). Now the

challenger uniformly samples a random generator g
$←− G and a random element c

$←− Zp for the public

parameters and x
$←− Zp for the signing key.

To respond to the queries, the challenger computes {g
1

fi(x)+mi+c }i∈[n]. Note that:

1. {g
1

fi(x)+mi+c }i∈[n] represent the n signatures on the messages m1, . . . ,mn using correlated keys
{fi(x)}i∈[n] under the modified Boneh-Boyen signature scheme.

2. These values further represent the output of the hash function (specified by (g, c)) on n correlated
inputs for the correlations specified by distinct polynomials {fi(X) +mi}i∈[n].

Observation (2) above implies that, by theorem 3, each of above n strings is unpredictable given the
rest. This implies security (unforgeability) of the modified Boneh-Boyen signature scheme under such
correlated key attacks.

A similar result can be shown for the Dodis and Yampolskiy [DY05] verifiable pseudo-random function.

10We require the messages to be signed to be fixed in advance as in the original signature scheme [BB04b].
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