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Abstract. We propose generic declarative definitions of individual and
collective trust relations between interacting agents and agent collections,
and trust domains of trust-related agents in distributed systems. Our def-
initions yield (1) (in)compatibility, implicational, and transitivity results
for trust relationships, including a Datalog-implementability result for
their logical structure; (2) computational complexity results for deciding
potential and actual trust relationships and membership in trust do-
mains; (3) a positive (negative) compositionality result for strong (weak)
trust domains; (4) a computational design pattern for building up strong
trust domains; and (5) a negative scalability result for trust domains in
general. We instantiate our generic trust concepts in five major crypto-
graphic applications of trust, namely: Access Control, Trusted Third Par-
ties, the Web of Trust, Public-Key Infrastructures, and Identity-Based
Cryptography. We also show that accountability induces trust. Our defin-
ing principle for weak and strong trust (domains) is (common) belief in
and (common) knowledge of agent correctness, respectively.

Keywords Access Control; accountability; applied modal logic; CADM;
computational trust; cryptographic-key management; dependable multi-
agent distributed systems; PKI; TTP; Web of Trust.

1 Introduction

The subject matter of this paper is trust in dependable multi-agent distributed
systems. In this section, we introduce the motivation and goal for this matter,
as well as the methodology that we employ to meet our goal.

? Cf. [41] for an early technical-report and [40] for a workshop version of this paper.
?? This, corresponding, author’s contribution was initiated with Grant P 08742 from the

Japan Society for the Promotion of Science, and completed with Grant AFR 894328
from the National Research Fund, Luxembourg, cofunded under the Marie-Curie
Actions of the European Commission (FP7-COFUND), during an invited stay at
the Institute of Mathematical Sciences, Chennai, India.
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Table 1. Functionality guarantee of dependable distributed systems

in spite of thanks to

technology incorrect design & natural forces correct design

agents incorrect behaviour: (un)intentional
incorrect use of the technology—
abuse (misuse)

correct behaviour: correct use of
the technology

1.1 Motivation

Dependable distributed systems guarantee their functionality both in spite of
and thanks to the technologies that implement these systems as well as the man
or machine agents that partake in them (cf. Table 1). Examples of agents are:
threads, processes, processors and their cores, real and virtual machines, system
administrators and users, network nodes, etc. The functionality guarantee is
conditioned on naming (cf. [4, Section 6.4] and [25, Section 19.1]) and number:

Naming on agent identity for the aspects of anonymity and pseudonymity.
Number on a minimal number of correct (or dually, a maximal number of

faulty or corrupt) agents for the aspects of fault tolerance [50] (classical
distributed computation) and corruption tolerance [77] (secure multiparty
computation).

The notion of agent correctness (e.g., as induced by a policy) in turn depends on
the system itself. Examples of correct agent behaviour are given in Table 2, in
various degrees of definitional difficulty. In any case, agent correctness captures
the predictability of each correct partaking agent that guarantees the function-
ality of the system to some or even all, correct or faulty, partaking agents. We
opine that this predictability is ultimately one of agent behaviour rather than
one of the agents’ mental attitudes behind their behaviour. All that ultimately
matters is the behavioural effect of attitudes, which themselves may have no, or
no relevant effect. (A mental attitude that may indeed lead a human agent b to
behave correctly—or to be trustworthy—to another human agent a is when b has
the will [in case b is volitional] and capability [in case there is a need] to control
b’s behaviour in a’s sense.) In sum, system functionality depends on agent cor-
rectness, and agents depend on each other via each other’s correctness. Whence
the social need, called trust, to know whether or not someone—somebody or
something—behaves correctly, i.e., as expected—for something meaning [67]:

according to design and policy, doing what is required—despite envi-
ronmental disruption, human user and operator errors, and attacks by
hostile parties—and not doing other things.

Note that according to game theory [9, Page 70] this need is also rational:

[. . . ] it isn’t rational to trust people without a good reason: [. . . ] trust
can’t be taken on trust.
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Table 2. Examples of agent correctness

– algorithm, game-rule, and protocol compliance
– good book-keeping in audit and control of transactions
– fairness in the scheduling of legitimately requested services
– liveness in the sense of absence of crash, e.g., that the agent, say a, has always

eventually responded to a ping from some other agent, say b, which can be ex-
pressed with a Linear-Temporal Logic [28, 27, 70, 8] formula as follows:

a correct b := �(b pings a→ ♦(a pongs b)),

where a correct b reads as “a is correct as far as b is concerned”, and � is the “so-
far”-modality (i.e., the modality “at all times in the past including the present”)
and ♦ the “eventually”-modality here

– access-control compliance [4, Chapter 4], e.g., that a has always been authorised
by b and authenticated to access a given resource r ∈ R, which can be expressed
with an LTL formula as follows (R is finite):

a correct b :=
∧
r∈R

�


(
a accesses r ∧
canAuthoriseToAccess(b, a, r)

)
→(

a authenticatedForAccessing r
∧ authorisedToAccess(b, a, r)

)
 ,

where abstract access could be refined w.r.t. concrete reading and writing, and
authorisation w.r.t. revocation updates, delegation indirections, security levels [4,
Chapter 8], and security compartments [4, Chapter 9]

– absence of cryptographic-key compromise (cf. Section 4)
– etc.

That is, we trust when we have at least belief in correctness—in which case we
run the risk of mistakingly believing—or may trust when we have even knowledge
of correctness—in which case we run no such risk. Otherwise, i.e., when we have
no such belief (and absence of belief is different from disbelief), we must trust
(we have no choice). Now at first sight, such knowledge may seem difficult to
attain. Yet in our standard understanding of knowledge defined in terms of
indistinguishability (an observational equivalence) of system states, an agent a
simply attains knowledge about a fact φ in a given state s as soon as φ also
holds in all the states that are indistinguishable from s to a (cf. Section 2). In
particular, a need not—but may happen to—have control over the system.

Example 1 (Social Software). The importance of dependable distributed systems
for modern society can hardly be overestimated, because social software [60],
i.e., “the software by which society runs” (e.g., banking and commerce, health
care, social networking, voting and governmental administration, etc.) runs on
distributed systems. In the age of the Internet, which acts as a generator and
amplifier of the virtuality of human relations, trust is crucial [16, 55, 69].

The concept of trust has at least three different aspects, namely trust rela-
tions and domains, and trust management. Our intuitions of them are as follows.
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Trust relations An agent a trusts an agent b when a believes or even knows that
b behaves correctly as far as a is concerned, independently of b’s mental attitude.
Hence, defining trust based on the correct behaviour of agents is more general
than defining trust based on their mental attitude behind their behaviour. The
reader interested in trust based on (a fixed number of kinds of) mental attitude
behind agent behaviour is referred to [20], which is a substantial study of various
trust relations based on belief in and knowledge of attitudes behind behaviour.

Trust domains A trust domain is a community of mutually trusting agents with
the common belief in or even knowledge of the trust relationships in the commu-
nity. Informally, a statement φ is common belief or knowledge in a community
C when all agents in C believe or know that φ is true (call this new statement
φ′), all believe or know that φ′ is true (call this new statement φ′′), all believe
or know that φ′′ is true (call this new statement φ′′′), etc. Notice the mutual
awareness among agents w.r.t. the commonality of their knowledge or belief,
which will turn out to be computationally costly (cf. Section 3). More intuitions
on common knowledge in distributed systems can be found in [31].

Trust management Trust management is (cf. [65] for a recent survey):

1. the organisation of trust relations into trust domains (compartments), i.e.,
the sociology;

2. the coordination of trust-building actions, i.e., the flow of trust (partial de-
hierarchisation and decompartmentation, e.g., by building reputation [66]).

The organisation of trust relations into trust domains requires the ability to de-
cide whether or not a given relation is a trust relation, and a given domain is
a trust domain. Ideally, this ability appeals to formal definitions and decidabil-
ity results, in order to support the human brain with computer-aided decision
making (CADM), as motivated by the following example.

Example 2 (Group size and the human brain). According to [68], “150 is the
cognitive limit to the number of people a human brain can maintain a coherent
social relationship with.” “More generally, there are several layers of natural
human group size that increase with a ratio of approximately three: 5, 15, 50, 150,
500, and 1,500”. And “[a]s group sizes grow across these boundaries, they have
more externally imposed infrastructure—and more formalized security systems.”

The motivation for formal definitions now follows from the assumption that trust
is a fundamental element of any coherent social relationship; and the motivation
for CADM (requiring decidability results) additionally from the age-old desider-
atum to extend the cognitive limit of the human brain; cf. [25, Page 214]:

Trust is the ultimate basis for all dealings that we have with other people.
If you don’t trust anybody with anything at all, why bother interacting
with them?
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It turns out that deciding trust relationships can be tractable with the aid
of modern computers. However, deciding membership in trust domains, though
computationally possible in theory, is computationally intractable in practice,
even with the aid of clusters or grids [7], and clouds4 of (super-)computers.
What is worse: not only can we not make use of the promised power of parallel
computing for deciding membership in trust domains in general, but also in
particular when the candidate domains are the computing complexes themselves!

Example 3 (Cloud Computing). According to [37], in cloud computing, “users
are universally required to accept the underlying premise of trust. In fact, some
have conjectured that trust is the biggest concern facing cloud computing. No-
where is the element of trust more apparent than in security, and many believe
trust and security to be synonymous.” Also according to [54]: “The growing
importance of cloud computing makes it increasingly imperative that we grapple
with the meaning of trust in the cloud and how the customer, provider, and
society in general establish that trust.” For more motivation, see [14, 38].

Indeed, the automatic validation of the underlying premise of cloud computing,
i.e., trust, is an intractably big concern for the clouds themselves, as indicated
above. However, the validation of trust can of course still be a tractably big
concern for the relations between the cloud members. Anyway, what remains
formally elusive is the general and declarative meaning of trust. As a matter
of fact, the vast majority of the research literature on trust focuses on how
to (operationally) establish and maintain trust of some, and sometimes even
quantitative, form (e.g., with protocols, recommendation/reputation systems,
reference monitors, trusted computing bases [29, 48], etc.), but without actually
defining what trust of that form (declaratively) means. And the very few works
that do attempt declarative—not to speak of general—definitions of trust do not
provide insights in the tractability of trust domains, or applications to security
such as trust in cryptographic-key management (cf. Section 6).

The bottom line is that declaratively defining the meaning of trust and ob-
taining estimates of the tractability of trust can be difficult. Yet formally defining
trust in terms of (declarative) belief in or knowledge of behavioural correctness
turns out to be natural (and generic), since humans often naturally refer to
these or similar notions when informally explaining what they mean by trust. In
multi-agent distributed systems, attaining an individual consciousness of trust in
terms of belief (weak trust) or knowledge (strong trust) from agent to agent can
be computationally tractable. Whereas attaining a collective consciousness (mu-
tual awareness) of trust in terms of common belief or knowledge within a greater
domain (e.g., a cluster, cloud, or other collective) of agents is computationally
intractable. Computationally speaking, collective trust does not scale.

Trust domains should be family-sized, so to speak.

(Typically, the size of human families is below 15, which is still tractable.)

4 Cloud computing is the automated outsourcing of IT infrastructure, platforms, and
applications for data storage and calculation routines into evolving opaque clouds of
anonymous computing units [26].
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1.2 Goal

Our goal is

1. to provide generic declarative definitions of
(a) individual and collective trust relations between interacting agents and

agent collections (cf. Figure 1 and 2, respectively),
(b) trust domains of trust-related agents (cf. Figure 3);

2. to reveal the logical structure of trust relations and domains (cf. Figure 1–3),
and to demonstrate practical implementability (cf. Theorem 1);

3. to obtain computational complexity results for deciding potential and actual
trust relationships and membership in trust domains (cf. Table 4);

4. to obtain compositionality and scalability results for trust domains (cf. The-
orem 3 and Corollary 3, respectively);

5. to provide a computational design pattern for automatically building up
bounded strong trust domains, e.g., in social networks (cf. Table 8);

6. to demonstrate the utility of our framework by showing how easy it is to
instantiate it in five difficult cryptographic applications of trust, namely:
(a) Access Control (cf. Table 2)
(b) Trusted Third Parties (cf. Section 4.1)
(c) the Web of Trust (cf. Section 4.2)
(d) Public-Key Infrastructures (cf. Section 4.3)
(e) Identity-Based Cryptography (cf. Section 4.4);

7. to reveal the relation of trust with accountability (abusefree auditability),
which intuitively should induce trust (cf. Section 4.5).

Contribution To the best of our knowledge, the following items are all novel:
(1) general formal definitions of collective trust relations, and thus also the
(in)compatibility, implicational, and transitivity results, including a Datalog-
implementability result, that we obtain for them; (2) general formal definitions
of trust domains; (3) general complexity results for trust relations as well as trust
domains; (4) a positive (negative) compositionality result for strong (weak) trust
domains; (5) a negative scalability result for trust domains in general; (6) a com-
putational design pattern for building up strong trust domains; and (7) a generic
formalisation of trust that can be instantiated in Access Control, TTPs, the Web
of Trust, PKIs, and ID-Based Cryptography and that happens to be induced by
(an equally generic) formalisation of accountability. The resulting structural and
(in)tractability insights are of practical importance for accountable access con-
trol and cryptographic-key management (e.g., the design of [inter]national PKIs
such as those required by credit-card transactions and ePassports [45]), and
could may well be important for computing clouds viewed as trust domains.

1.3 Methodology

Our methodology is to develop our formal definitions for trust relations and trust
domains in a generic framework that is a semantically defined, standard modal
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logic of belief and knowledge (cf. Section 2). In that, we are interested in the
descriptive (as opposed to deductive) use of an off-the-shelf, general-purpose (as
opposed to special-purpose)5 logic that is as simple as possible and as complex
as necessary—both syntactically and semantically as well as computationally.
Our defining principle for weak and strong trust is belief in and knowledge
of agent correctness, respectively. We then derive our complexity results for
deciding trust relationships and membership in trust domains by reduction to
known results for the complexity of belief and knowledge (cf. Section 3). In
spite of the substantial practical significance of our theoretical results, their
derivation is quite simple (which increases their value), thanks to our modal
logical framework. The difficulty was to find what we believe to be an interesting
formal point of view on trust, which happens to be modal. Other points of view
have, to the best of our knowledge, not resulted in even one of our contributions.

2 Formal definitions

We develop our formal definitions of trust relations and trust domains in a generic
framework that is a semantically defined, standard modal logic of common belief
and knowledge. The logic is parametric in agent correctness, to be instantiated
for each considered distributed system (e.g., Table 2 and Section 4.2–4.4).

Let S designate the considered distributed system (e.g., of sub-systems).

Definition 1 (Framework). Let

– A designate an arbitrary non-empty finite set of unique agent names6 a, b,
c, etc.

– C ⊆ A denote (finite and not necessarily disjoint) communities of agents
(referred to by their name);

– P := { a correct b | a, b ∈ A } designate our (finite) set of atomic proposi-
tions P for referring to agent correctness (finiteness is crucial for complex-
ity);

– L 3 φ ::= P
∣∣ ¬φ ∣∣ φ∧ φ ∣∣ CBC(φ)

∣∣ CKC(φ) designate our modal language
of formulae φ, with CBC(φ) for “it is common belief in the community C that
φ”, and CKC(φ) for “it is common knowledge in the community C that φ.”

(Note that we could have indexed the relational symbol ‘correct’ with a parameter
ranging over a finite number of trust issues x and still have conserved all our
complexity results in Section 3. Yet we have not done so for the sake of the
simplicity of our exposition. The finiteness of the number of issues is crucial.
Otherwise, e.g., when the issues are not mere logical constants but expressions
in a formal language, not only trust domains but also trust relations become
computationally intractable.) Then given the set S (the state space) of system
states s induced by S (e.g., via a reachability or, in modal jargon, temporal

5 e.g., the famous BAN-logic, which uses but does not define trust
6 i.e., agent names injectively map to agents (agent names are identifiers here)
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Table 3. Satisfaction relation

(S,V), s |= P :iff s ∈ V(P )

(S,V), s |= ¬φ :iff not (S,V), s |= φ

(S,V), s |= φ ∧ φ′ :iff (S,V), s |= φ and (S,V), s |= φ′

(S,V), s |= CBC(φ) :iff for all s′ ∈ S, if s D+
C s
′ then (S,V), s′ |= φ

(S,V), s |= CKC(φ) :iff for all s′ ∈ S, if s E∗C s
′ then (S,V), s′ |= φ

accessibility relation)7, we define the satisfaction relation |= of our framework
in Table 3. There,

– “:iff” abbreviates “by definition, if and only if”;
– (S,V) designates a (modal) model of our framework;
– S := (S, {Da}a∈A, {Ea }a∈A) designates the (modal) frame with appropriate

(for the system S)
• serial8, transitive, and Euclidean9 relations Da ⊆ S × S of doxastic

accessibility (used for defining belief),
• equivalence relations Ea ⊆ S × S of epistemic accessibility (e.g., state

indistinguishability, used for defining knowledge),
such that Da ⊆ Ea for any a ∈ A;

– V : P → 2S designates the valuation function (returning for every P ∈ P
the set of states where P is true) to be defined according to the appropriate
notion of agent correctness for the system S (e.g., see Section 4);

– D+
C designates the transitive closure of

⋃
a∈C Da;

– E∗C designates the reflexive transitive closure of
⋃

a∈C Ea.

Note that defining (common) belief and knowledge abstractly with a serial,
transitive, and Euclidean relation, and an equivalence relation, respectively, has
emerged as a common practice that gives greater generality over more concrete
approaches [53, Section 7.1]: the concrete definitions of the accessibility relations
can be freely determined for a given distributed system provided they comply
with the prescribed, characteristic properties. Typically, these definitions involve
the projection of global states onto agents’ local views [24]. For example, let
a ∈ A, and let πa designate such a projection (function) for a. Then, epistemic
accessibility in the sense of state indistinguishability can be defined such that
for all s, s′ ∈ S,

s Ea s
′ :iff πa(s) = πa(s′),

which guarantees that Ea is an equivalence relation. Specific applications, might
require additional constraints. For example, we might want to stipulate the a

7 For example, suppose that there is a set Si of initial states for every system S, T
designates the system’s reachability or, synonymously, temporal accessibility rela-
tion, and T∗ designates the reflexive transitive closure of T. Then, S is induced by
S in the sense that S := { s | there is si ∈ Si such that si T∗ s }.

8 for all s ∈ S, there is s′ ∈ S s.t. s Da s
′

9 for all s, s′, s′′ ∈ S, if s Da s
′ and s Da s

′′ then s′ Da s
′′
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posteriori constraint that

if s Ea s
′ then for all b ∈ A, (S,V), s |= b correct a iff (S,V), s′ |= b correct a.

Doxastic accessibility Da ⊆ Ea can be defined from Ea by weakening the reflex-
ivity of Ea to seriality as appropriate for the considered application.

Further note the following macro-definitions: φ ∨ φ′ := ¬(¬φ ∧ ¬φ′), > :=
a correct a ∨ ¬(a correct a), ⊥ := ¬>, φ → φ′ := ¬φ ∨ φ′, φ ↔ φ′ := (φ →
φ′) ∧ (φ′ → φ), Ba(φ) := CB{a}(φ) (for “a believes that φ”), Ka(φ) := CK{a}(φ)
(for “a knows that φ”), CDC(φ) := CKC(φ) ∨ CKC(¬φ) (for “C can epistemically
decide φ”), Da(φ) := CD{a}(φ), CNC(φ) := ¬CBC(φ) ∧ ¬CBC(¬φ) (for “C is
doxastically neutral with respect to φ”), and Na(φ) := CN{a}(φ).

Likewise, but more interestingly, we now obtain our generic declarative defi-
nitions of trust as mere macro-definitions, i.e., as simple syntactic constructions
of semantically defined building blocks, as depicted by Figure 1–3 (conjunc-
tion over C = ∅ being >). The common organisational principle in these figures
is the classic Square of Oppositions [75]. (The principle is applicable, because
knowledge and belief modalities are universal quantifiers in disguise, cf. Table 3.)
Recall that neither pairs of contraries nor pairs of subcontraries are necessarily
contradictory. However when indeed contradictory, we have marked them explic-
itly as such together with the name of the justifying logical law in parenthesis
(D or T, recalled in the farther Fact 1 and 2, respectively). Arrows signify the
above macro-defined material conditional, and are either justified with a log-
ical law and/or the inclusion of doxastic in epistemic accessibility, or not at
all when the material conditional holds by propositional logic in a single step.
Source states (i.e., states with only outgoing arrows) are distinguished by means
of grey-shading, and sink states (i.e., states with only incoming arrows) are so
by means of double boxing. Observe that the anchor of all the definitions in

1. these three successive figures is our, like the NSA’s [4], synonymic definition
of trustworthiness as correctness for individual agents in Figure 1;

2. Figure 2 is the conjunctive lifting of correctness for individual agents from
Figure 1 to correctness for agent collections in Figure 2;

3. Figure 3 is the definition of a trust domain simply as the reflexive instance
of the corresponding collective trust relation in Figure 2.

Notice that the absence of the D-law for common belief within agent collections
strictly greater than the singleton set (cf. Fact 1), corresponds to the absence of
D-arrows in Figure 2 for arbitrary finite collections, and leads the trust and the
distrust state to become sink states. This absence is consecutively inherited by
Figure 3. We recall that the further scientific exploration of distrust and mistrust
was strongly encouraged by [51]. The reader is invited not to confuse distrust
(using verb-phrase negation) with absence of trust, (using sentence negation).

Remark 1 (Trust & risk [58]). In the case of [dis]trust, which is belief-based,
we run the risk of a wrong (i.e., false positive [negative]) apprehension of agent
correctness. In the case of strong (dis)trust, we do not run this risk, because
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strong (dis)trust is knowledge-based, which intuitively corresponds to a right
apprehension. So belief-based trust is lack of trust, which “[. . . ] is simply a risk,
and that can sometimes be handled by standard risk-management techniques
such as insurance” [25, Section 13.2.1]. Here we would want to insure beliefs
in [in]correctness. As usual, risk quantifies as the cost of an event (here the
cost of mistakingly believing in agent correctness) times the probability of the
occurrence of the event.

Theorem 1 (Datalog implementability). The logical structure of the trust
relations and trust domains revealed by Figure 1–3 is implementable axiomati-
cally as a (terminating) Datalog program [56].

Proof. An adequate (sound and complete) and consistent, though non-minimal
(and thus more efficient!) axiomatisation is obtained by simply transcribing each

– arrow as a Datalog rule, e.g., the arrow

a doestrust b→ b trustworthy a

is transcribed as the Datalog rule

trustworthy(a,b) :- doestrust(a,b).

– (undirected) line labelled with “contradictions” or “contradictory” between
a given pair of vertices as a Datalog rule with as body the logical conjunction
of the two vertices and as head contradiction; for example, the line between
a doestrust b and a doesdistrust b is transcribed as the Datalog rule

contradiction :- doestrust(a,b),doesdistrust(a,b).

– undirected line labelled with “subcontraries” or “subalterns” between a given
pair of vertices as a Datalog rule with as body the logical conjunction of
the two vertices and as head subcontrary and subaltern, respectively;
for example, the line between a doesnotdistrust b and a doesnottrust b is
transcribed as the Datalog rule

subcontrary :- doesnotdistrust(a,b),doesnottrust(a,b).

The axiomatisation is consistent thanks to the definitional grounding of each
trust predicate in doxastic or epistemic logic. However if one wishes, one can also
simply forget this grounding, and use the predicates abstractly, i.e., without their
modal meaning but with their practical implementation as Datalog programs.

Application-specific axiomatisations (relational trust theories) can be obtained
by extending each Datalog program with a finite set (a relational data base) of
additional axioms (ground facts) stipulating which specific relations and domains
are supposed to hold between and collect up which concrete agents, respectively.
Answers to queries as to which relations and domains are implied by each specific
data base can then be efficiently computed by the Datalog engine [18]. In the
sequel of this paper, we shall focus on the positive notions of (weak) trusts and
(strong) doestrust rather than on the other, negative notions, for the ethical
reason that the desiderata for well-intended engineering are the positive notions.
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Remark 2 (Trust graphs). Weak and strong trust domains can be represented as
complete sub-graphs (which when maximal are cliques) of graphs of trust and
strong-trust relationships—bearing common belief and knowledge, respectively.
The trust and strong-trust graph of a pointed modal model (S,V), s is

〈A, { (a, b) ∈ A×A | (S,V), s |= a relationship b }〉,

where relationship ∈ {trusts, doestrust}. It is conceivable to take trust graphs as
accessibility relations of a modal language for speaking about trust relations.
Indeed, the majority of approaches to trust actually adopts trust relations as
given—as trust graphs. Whereas we here actually define and thus explicate trust
relations and domains in terms of belief in and knowledge of agent correctness.

We could also define weak-strong and strong-weak trust domains, i.e., as the
common knowledge of weak and the common belief in strong trust relations,
respectively. The difference between weak and strong trust is induced by the dif-
ference between belief and knowledge, respectively: weak trust possibly is wrong
(i.e., mistaken belief), whereas strong trust necessarily is right (i.e., truthful be-
lief). Social network systems furnish evidence for the adequacy of defining trust
domains in terms of common knowledge or at least belief. As a matter of fact,
the enumeration of “friends” on a member page in such systems constitutes a
public announcement to the readers of that page who are logged in, who see all
logged-in readers, etc. (cf. also [71]). And it is common knowledge in the commu-
nity of (dynamic) epistemic logicians that public announcements of (verifiable)
elementary facts induce common knowledge within the addressed public (cf. [73]
for a public announcement). So, suppose that you are a member of Facebook,
and C designates the set consisting of you and those of your “friends” that are
enumerated on your member page. Further, fix the current moment in time,
and call it s. (We may talk about time here; see Footnote 7.) Then the formula∧

a,b∈C a doestrust b ↔ strongtrustdom(C) is true at s (with no outermost CKC
operator on the left since the aforementioned public announcement implies it).
The formula is a (bi-)conditional because we have not fixed the notion of agent
correctness for Facebook (they should). Note that the trust relations between
you and your “friends” are symmetric, because each “friend” had to give their
consent for having the privilege of being enumerated as such on your member
page in Facebook. In general, each agent’s notion of correctness for other agents
should be publicly announced and thus become common knowledge, in order for
everybody to be able to choose whether or not to comply with these notions.

Definition 2 (Truth & Validity [10]). The formula φ is true (or satisfied)
in the model (S,V) at the state s ∈ S :iff (S,V), s |= φ. The formula φ is
satisfiable in the model (S,V) :iff there is s ∈ S such that (S,V), s |= φ. The
formula φ is globally true (or globally satisfied) in the model (S,V), written
(S,V) |= φ, :iff for all s ∈ S, (S,V), s |= φ. The formula φ is satisfiable :iff
there is a model (S,V) and a state s ∈ S such that (S,V), s |= φ. The formula
φ is valid, written |= φ, :iff for all models (S,V), (S,V) |= φ.
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Fact 1 (Common belief) Being defined in terms of a serial, transitive, and
Euclidean relation, CBC is K45 and CB{a} KD45 for any a ∈ C ⊆ A, i.e.:

K: |= CBC(φ→ φ′)→ (CBC(φ)→ CBC(φ
′)) (Kripke’s law)

D: |= CB{a}(φ)→ ¬CB{a}(¬φ) (consistency of beliefs, seriality)
4: |= CBC(φ)→ CBC(CBC(φ)) (positive introspection, transitivity)
5: |= ¬CBC(φ)→ CBC(¬CBC(φ)) (negative introspection, Euclideanness)
N: if |= φ then |= CBC(φ) (necessitation).

Further, let EBC(φ) :=
∧

a∈C Ba(φ) (“everybody in C believes that φ”). Then:

– |= CBC(φ)→ EBC(φ)
– |= CBC(φ)→ EBC(CBC(φ))
– |= CBC(φ→ EBC(φ))→ (EBC(φ)→ CBC(φ)).

For details see [53, Section 7.1].

The difference between belief and knowledge is that belief possibly is wrong (cf.
the D law), whereas knowledge necessarily is right (cf. the following T law).

Fact 2 (Common knowledge) Being defined in terms of an equivalence rela-
tion, CKC is S5 for any C ⊆ A, i.e.:

K: |= CKC(φ→ φ′)→ (CKC(φ)→ CKC(φ
′)) (Kripke’s law)

T: |= CKC(φ)→ φ (truth law, reflexivity)
4: |= CKC(φ)→ CKC(CKC(φ)) (positive introspection)
5: |= ¬CKC(φ)→ CKC(¬CKC(φ)) (negative introspection)
N: if |= φ then |= CKC(φ) (necessitation).

Further, let EKC(φ) :=
∧

a∈C Ka(φ) (“everybody in C knows that φ”). Then:

– |= CKC(φ)→ EKC(CKC(φ))
– |= CKC(φ→ EKC(φ))→ (φ→ CKC(φ)).

For details see [53, Section 7.1].

Note that depending on the properties of the employed communication lines,
common knowledge may have to be pre-established, i.e., off those lines [31].

Fact 3 (Knowledge implies belief) For all C ⊆ A, |= CKC(φ)→ CBC(φ). In
particular when C = {a}, |= Ka(φ)→ Ba(φ).

Proof. By the fact that for all a ∈ A, Da ⊆ Ea (cf. Definition 1).

Trust relations and trust domains can be related as follows.

Fact 4 (Trust relations & domains) In trust domains, trust relations are
universal (i.e., correspond to the Cartesian product on those domains). That
is, for all a, b ∈ C, |= trustdom(C) → a trusts b and |= strongtrustdom(C) →
a doestrust b.
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Proof. By inspection of definitions.

Hence in trust domains, trust relations are equivalence relations. (The universal
relation contains all other relations.)

Corollary 1. In trust domains, trust relations are (a, b, c ∈ C ⊆ A):

– reflexive, i.e., |= trustdom(C) → a trusts a and |= strongtrustdom(C) →
a doestrust a

– symmetric, i.e., |= trustdom(C) → (a trusts b → b trusts a) and
|= strongtrustdom(C)→ (a doestrust b→ b doestrust a)

– transitive, i.e., |= trustdom(C) → ((a trusts b ∧ b trusts c) → a trusts c) and
|= strongtrustdom(C)→ ((a doestrust b ∧ b doestrust c)→ a doestrust c)).

A more interesting condition for the transitivity of trust relations than their
universality is the existence of an agent (say b) acting as a trust reference for
the trustworthiness of another agent (say c) to a third agent (say a).

Lemma 1 (Trust reference). For all a, b, c ∈ A :

1. |= Ba(c correct b→ c correct a)︸ ︷︷ ︸
belief in agent-correctness inclusion

→ (Ba(b doestrust c)→ a trusts c)

2. |= Ka(c correct b→ c correct a)︸ ︷︷ ︸
knowledge of agent-correctness inclusion

→ (Ka(b doestrust c)→ a doestrust c).

Proof. By T(Kb) and K(Ba), and T(Kb) and K(Ka), respectively.

That is, b acts as a reference of c’s trustworthiness to a when a believes or knows
that (1) b’s notion of correctness about c is included a’s, and (2) b may trust c.

Remark 3. Observe that the replacement of b doestrust c by the weaker b trusts c
in Lemma 1 does not yield a validity, due to the absence of the T-law for Bb.

The existence of a trust reference is a sufficient condition for the transitivity of
trust relationships—the links in trust chains or paths in trust graphs. See [48,
Section 32.2.2] for an example of a chain of trust in Trusted Computing.

Proposition 1 (Trust transitivity).

1. For all a, b, c ∈ A,

|=



( Ba(c correct b→ c correct a)︸ ︷︷ ︸
belief in agent-correctness inclusion

∧Ba(b doestrust c))

∨


Ba((c correct b ∧ b correct a)→ c correct a)︸ ︷︷ ︸

belief in agent-correctness transitivity

∧ (Bb(c correct b)→ Ba(c correct b))︸ ︷︷ ︸
inclusion of agent-correctness belief




→

((a trusts b ∧ b trusts c)→ a trusts c)︸ ︷︷ ︸
trust transitivity

.
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2. For all a, b, c ∈ A,

|=



(Ka(c correct b→ c correct a) ∧ Ka(b doestrust c)︸ ︷︷ ︸
knowledge of agent-correctness inclusion

)

∨


((c correct b ∧ b correct a)→ c correct a)︸ ︷︷ ︸

agent-correctness transitivity

∧ (c correct a→ Ka(c correct a))︸ ︷︷ ︸
agent-correctness knowledge



∨


Ka((c correct b ∧ b correct a)→ c correct a)︸ ︷︷ ︸

knowledge of agent-correctness transitivity

∧ (Kb(c correct b)→ Ka(c correct b))︸ ︷︷ ︸
inclusion of agent-correctness knowledge




→

((a doestrust b ∧ b doestrust c)→ a doestrust c)︸ ︷︷ ︸
strong-trust transitivity

.

Proof. The sufficiency for trust transitivity of the condition Ba(c correct b →
c correct a)∧Ba(b doestrust c) and Ka(c correct b→ c correct a)∧Ka(b doestrust c)
is a trivial consequence of Lemma 1; the sufficiency of the condition Ba((c correct
b ∧ b correct a) → c correct a) ∧ (Bb(c correct b) → Ba(c correct b)) and
Ka((c correct b ∧ b correct a) → c correct a) ∧ (Kb(c correct b) → Ka(c correct b))
follows from K(Ba) and K(Ka), respectively; and the sufficiency of the condition
((c correct b ∧ b correct a)→ c correct a) ∧ (c correct a→ Ka(c correct a)) follows
from T(Ka) and T(Kb). (Recall that there is no T-law for belief.)

Note that trust relationships are not in general transitive. As a simple counter-
example consider that if a trusts b and b trusts c but b’s notion of correctness is
not included in a’s then a need not trust c just because b trusts c.

Theorem 2 (Transitivity correspondence). For all a, b, c ∈ A,

|=

(c trustworthy b→ b doestrust c) ∧
(b trustworthy a→ a doestrust b) ∧
(c trustworthy a→ a doestrust c)


︸ ︷︷ ︸

trustworthiness transparency

(perfect knowledge of agent correctness)

→


((c trustworthy b ∧ b trustworthy a)→ c trustworthy a)︸ ︷︷ ︸

trustworthiness transitivity

↔

((a doestrust b ∧ b doestrust c)→ a doestrust c)︸ ︷︷ ︸
strong-trust transitivity

.

17



Proof. By propositional logic jointly from the simply-to-prove fact that

|=
(

(c correct b→ Kb(c correct b)) ∧
(b correct a→ Ka(b correct a))

)
→(

((a doestrust b ∧ b doestrust c)→ a doestrust c)
→ ((c correct b ∧ b correct a)→ c correct a)

)
and the already-proved fact that |= (c correct a→ Ka(c correct a))→ ((c correct
b ∧ b correct a)→ c correct a)→ ((a doestrust b ∧ b doestrust c)→ a doestrust c))
(cf. Proposition 1.2).

Let us now turn to trust domains.

Proposition 2 (Trust domains).

0. Emptiness: |= trustdom(∅) and |= strongtrustdom(∅)
1. Decomposition:
|= trustdom(C ∪ C′)→ (trustdom(C) ∧ trustdom(C′))
|= strongtrustdom(C ∪ C′)→ (strongtrustdom(C) ∧ strongtrustdom(C′))

2. Intersection:
|= (trustdom(C) ∧ trustdom(C′))→ trustdom(C ∩ C′)
|= (strongtrustdom(C) ∧ strongtrustdom(C′))→ strongtrustdom(C ∩ C′)

3. Antitonicity:
if C ⊆ C′ then |= trustdom(C′) → trustdom(C) and |= strongtrustdom(C′) →
strongtrustdom(C)

4. Mutuality:
|= trustdom(C ∪ C′)→ (C trusts C′ ∧ C′ trusts C)
|= strongtrustdom(C ∪ C′)→ (C doestrust C′ ∧ C′ doestrust C)

Proof. Straightforward from definitions.

The following theorem provides an insight into trust domains.

Theorem 3 (Strong trust domains). Merging two strong trust domains is
conditionally compositional in the sense that if it is common knowledge in their
union that they include each other’s notions of agent correctness then a necessary
and sufficient condition for their merger is that it be common knowledge in their
union that each one is a strong trust domain. Formally, for all C, C′ ⊆ A,

|= CKC∪C′


∧

a,b∈C,c∈C′
(b trustworthy a→ b trustworthy c) ∧∧

a,b∈C′,c∈C

(b trustworthy a→ b trustworthy c)


︸ ︷︷ ︸

common knowledge of trustworthiness compatibility

→

(CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))↔ strongtrustdom(C ∪ C′))︸ ︷︷ ︸
trust-domain compositionality

.
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Proof. See Appendix A. Lemma 1.2 is crucial for the composability part, which
is expressed by the formula CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′)) →
strongtrustdom(C ∪ C′).

Note that there is no analogous result for weak trust domains (cf. Remark 3).
That is, merging weak trust domains is non-compositional in the sense that the
result of merging two weak trust domains is not necessarily again a weak trust
domain — not even when there is common knowledge (instead of only common
belief) in the union of both domains that each domain is a weak trust domain.
Nevertheless, we can salvage the following corollary result.

Corollary 2 (Weak and strong trust domains).

|= CBC∪C′


∧

a,b∈C,c∈C′
(b trustworthy a→ b trustworthy c) ∧∧

a,b∈C′,c∈C

(b trustworthy a→ b trustworthy c)


︸ ︷︷ ︸

common belief in trustworthiness compatibility

→

(CBC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))→ trustdom(C ∪ C′))︸ ︷︷ ︸
strong- into weak-trust-domain composability

.

Proof. Similarly to the proof in Table 10 of Appendix A, by invoking Lemma 1.1
in lieu of Lemma 1.2.

Theorem 3 yields a simple, though computationally intrinsically costly design
pattern for recursively building up strong trust domains (cf. Section 5). Again
due to the absence of an analogous theorem for weak trust domains, there is
no analogous design pattern either. Hence, there really is a strong practical
interest in strong trust domains. As a matter of fact, this practical interest is
even stronger because checking membership in strong trust domains will turn
out to be computationally no more complex (up to a constant) than checking
membership in weak trust domains (cf. Section 3).

We continue to define potential trust between two agents a, called potential
truster, and b, called potential trustee, and within communities C. The idea is to
define potentiality as satisfiability.

Definition 3 (Potential trust).

– There is a potential weak (strong) trust relationship between a and b in the
system S :iff a trusts b (a doestrust b) is satisfiable in the model (S,V)
induced by S.

– The community C is a potential weak (strong) trust domain in the system S
:iff trustdom(C) (strongtrustdom(C)) is satisfiable in the model (S,V) induced
by S.

Similarly, we define actual trust between two agents a, called truster, and b,
called trustee, and within communities C. The idea is to define (two degrees of)
actuality as (two degrees of) satisfaction.
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Definition 4 (Actual trust).

– There is a weak (strong) trust relationship between a and b in the model
(S,V) at the state s ∈ S :iff a trusts b (a doestrust b) is satisfied in (S,V)
at s.

– There is a weak (strong) trust relationship between a and b in the model
(S,V) :iff a trusts b (a doestrust b) is globally satisfied in (S,V).

– The community C is a weak (strong) trust domain in the model (S,V) at the
state s ∈ S :iff trustdom(C) (strongtrustdom(C)) is satisfied in (S,V) at s.

– The community C is a weak (strong) trust domain in the model (S,V) :iff
trustdom(C) (strongtrustdom(C)) is globally satisfied in (S,V).

Since satisfaction implies satisfiability, but not vice versa, actual trust implies
potential trust, but not vice versa. For example, if two agents do not even know
each other then they can not be in an actual trust relationship. However, they
may be in a potential trust relationship: maybe in another system state, their
trust potential can become actualised. On the other hand, in a given system two
agents may well know each other but not be in a potential trust relationship:
the system design might be such that trust between them is impossible. In any
case, our complexity results in the next section open the possibility of automated
discovery (detection) of potential trustees (actual mistrustees), by exploiting our
previous results about trust transitivity and trust references in this section.

3 Complexity results

We obtain our complexity results for deciding trust relationships and member-
ship in trust domains by reduction to known results for the complexity of com-
mon belief and knowledge (cf. [33] and [32]). As usual for logics, the valuation
function (here V) acts as an oracle, which is assumed to decide in a single step
whether or not an atomic proposition is true at the current state in the model
induced by the considered distributed system S. However, deciding agent cor-
rectness is non-trivial and depends on S. For example, in our applications (cf.
Section 4), deciding agent correctness can be at least polynomial in the size of
the current state, which depending on the system modelling, may contain the
history of system events. Another example is the case study in [43], where deter-
ministically deciding agent correctness is quadratic in the size of the current state
(containing the history of system events). That is, state size is system-specific.
For example, when states contain the history of system events, state size can be
defined as history length. Hence, we may have to account for the complexity of
deciding agent correctness in the complexity of deciding trust relationships and
membership in trust domains.

So, suppose that the truth of each atomic proposition can be deterministi-
cally decided in a polynomial number fS(|s|) of steps in the size |s| of the state s
of the model (S,V) induced by S. The ideal case is when an agent produces its
own, formal proof of correctness whenever requested to do so. (Proof-checking
is tractable, whereas proof-finding is intractable.) We recall that since potential
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Table 4. Computational time complexities

Trust relations Trust domains

degree
weak

a trusts b
strong

a doestrust b
weak

trustdom(C)
strong

strongtrustdom(C)

actual
local satisfaction in models (S,V) and states s

O(fS(|s|)) O(fS(|s|)·2|C|)global satisfaction in models (S,V)
potential satisfiability in models (S,V)

Recall that there is a universal quantification over states s in the definition of global satisfaction, and an existential
quantification over states s in the definitions of satisfiability in models.

trust is defined in terms of satisfiability, and actual trust in terms of satisfaction,
and since decidability of satisfiability implies decidability of satisfaction, decid-
ability of potential trust implies decidability of actual trust, and complexities of
potential trust are upper bounds for complexities of actual trust. Furthermore,
satisfiability and validity are inter-solvable (φ is valid iff ¬φ is not satisfiable),
and satisfiability complexities yield satisfaction (model-checking) complexities.

Theorem 4. The computational time complexities of deterministically deciding
trust relations is O(fS(|s|)) for potential and actual, weak and strong trust (cf.
Table 4).

Proof. Notice that our definitions of trust relations refer to a finite number (i.e.,
|P|) of atomic propositions P , and that each definition uses exactly one atomic
proposition (e.g., b correct a) and exactly one modal operator (e.g., Ba or Ka).
Now according to [33], the complexity of the satisfiability of formulae Ba(φ)
and Ka(φ) in a language with a finite number of atomic propositions and a
bounded nesting depth of modal operators Ba and Ka is in (oracle) linear time
in the length (here constantly 1) of the formula. Hence, the complexity of the
satisfiability of formulae expressing weak and strong trust relations is even in
(oracle) constant time, and thus O(fS(|s|)) without oracle. Yet O(fS(|s|)) is an
absolute lower bound and thus the complexity of all trust relationships.

We can learn at least two lessons from these results. The first lesson is that
we do have to account for the complexity of deciding agent correctness in the
complexity of deciding trust relationships. The second lesson is that, surprisingly,
deciding agent correctness is, up to a constant, equionerous to deciding potential
and actual as well as weak and strong trust relationships.

Theorem 5. The computational time complexities of deterministically deciding
trust domains is O(fS(|s|) · 2|C|) for potential and actual, weak and strong trust
(cf. Table 4).

Proof. According to [32], the complexity of the satisfiability of formulae CBC(φ)
and CKC(φ) is in (oracle) deterministic single exponential time in the length of
the sub-formula φ. The intuition is that formulae CBC(φ) and CKC(φ) correspond
to formulae of infinitely deeply nested operators Ba and Ka with a ∈ C, respec-
tively, and that in that case, a finite number of atomic propositions does not
help. In our case, the length of the conjunctive sub-formula in trustdom(C) and
strongtrustdom(C) is polynomial in the size |C| of the community C. Further, the
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complexity of each conjunct is O(fS(|s|)), which we assumed to be polynomial.
Yet a single exponential of a polynomial cost is still “only” a single exponen-
tial cost. Hence, the complexity of the satisfiability of formulae trustdom(C) and
strongtrustdom(C) is deterministic single exponential time in the size of C times
fS(|s|). That is, the complexity of membership in potential weak and strong trust
domains is O(fS(|s|) ·2|C|). Finally according to [32], the operators CBC and CKC
force satisfying models of a size that is exponential in |C|. Hence, O(fS(|s|) ·2|C|)
is the complexity of all, potential or actual, membership problems.

Corollary 3. Computationally, composition of trust domains does not scale.

Proof. By Theorem 3 and 5.

4 Application to cryptographic-key management

We instantiate our generic trust concepts in five major cryptographic appli-
cations of trust, namely: Access Control (cf. Table 2), Trusted Third Parties
(TTPs), the Web of Trust, Public-Key Infrastructures (PKIs), and ID-Based
Cryptography. For the latter three, we will have to define the valuation function
V on the atomic propositions a correct b about agent correctness (cf. Defini-
tion 1). (We will also have to refine the definition of trust domains for the latter
two.) That is, each notion of agent correctness is10 specific to each sys-
tem rather than general to all systems. (Thus, trust is system-specific
to some extent.) However, we can define agent correctness generically for the
Web of Trust and PKIs, with the aid of the following, common auxiliary logic,
called AuxLog. The logic is a modal fixpoint logic [13] operating on points that
are agents a ∈ A rather than states s ∈ S. (The definition of agent correctness re-
quires fixing the current state and varying the agents.) AuxLog is parametric in a
binary relation R ⊆ A×A to be fixed separately for the Web of Trust and PKIs,
but with the commonality of depending on a fixed state s (R ∈ {DTIs,CERTs}).
In other words, we define:

1. trust relations from belief in or even knowledge of agent correctness;
2. agent correctness in the Web of Trust and PKIs with the aid of AuxLog as

the existence of reliable designated-trusted-introducer and certification
relationships, respectively, whose reliability is grounded in the actual
secrecy of the related agents’ private keys (the root or anchor of trust).

That is, we define trust relations (and domains) from the (common) knowledge
of the existence of certain other, application-specific reliable relationships.

Definition 5 (Auxiliary Logic). Let X designate a countable set of proposi-
tional variables C, and let

L′ 3 α ::= OK
∣∣ kb ∣∣ C ∣∣ ¬α ∣∣ α ∧ α ∣∣ �α ∣∣ νC(α)

10 like policies, which induce notions of agent correctness, as mentioned in Section 1.1
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designate the language L′ of AuxLog, where b ∈ A and all free occurrences of
C in α of νC(α) are assumed to occur within an even number of occurrences
of ¬ to guarantee the existence of (greatest) fixpoints (expressed by νC(α)) [13].
Then, given a relation R ⊆ A×A, decidable in deterministic constant time, but
structurally arbitrary, and an auxiliary interpretation J·K : X ∪ {OK, kb} → 2A

partially pre-defined as11

JOKK := { a ∈ A | at most a can access a’s private key }
JkbK := { a ∈ A | at least a’s address is known to b },

the interpretation ‖ · ‖J·K : L′ → 2A of AuxLog-propositions is as follows:

‖OK‖J·K := JOKK
‖kb‖J·K := JkbK
‖C‖J·K := JCK
‖¬α‖J·K := A \ ‖α‖J·K

‖α ∧ α′‖J·K := ‖α‖J·K ∩ ‖α′‖J·K
‖�α‖J·K := { a ∈ A | for all b ∈ A, if b R a then b ∈ ‖α‖J·K }

‖νC(α)‖J·K :=
⋃
{ A ⊆ A | A ⊆ ‖α‖J·K[C 7→A]

},

where J·K[C 7→A] maps C to A and otherwise agrees with J·K.
Further, α ∨ α′ := ¬(¬α ∧ ¬α′), > := α ∨ ¬α, ⊥ := ¬>, α→ α′ := ¬α ∨ α′,

α ↔ α′ := (α → α′) ∧ (α′ → α), ♦α := ¬�(¬α), and, notably, µC(α(C)) :=
¬νC(¬α(¬C)).

Finally, for all a ∈ A and α ∈ L′,

〈(A, R), J·K〉, a � α :iff a ∈ ‖α‖J·K,

and for all α ∈ L′,

� α :iff for all J·K and a ∈ A, 〈(A, R), J·K〉, a � α.

The reader is invited not to confuse the auxiliary satisfaction relation � of
AuxLog with |=, the main one from Definition 1. Further note that AuxLog
is a member of the family of µ-calculi over the modal system K, which is
characterised by the laws of propositional logic and the modal laws � �(α →
α′) → (�α → �α′) and “if � α then � �α”. The reason is that, as mentioned,

11 The phrasing of OK can be made formal provided that a notion of data space D
(including keys) and data derivation for agents is fixed, e.g., à la Dolev-Yao [22]. Then
data derivation can be formalised as a relation ` ⊆ 2D × D (the first formalisation
was in terms of closure operators [61]), and the phrase “at most a can access a’s
private key” as “for all b ∈ A, if k is the private key of a and mb(s) ` k then b = a”,
where mb(s) returns the set of data that b generated or received as such in s. Note
however that depending on the structure of D, the computability of ` may range
from polynomial time to undecidability [72].
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Table 5. (Trustworthy) Trusted Third Parties

wTTP(c, a, b) := CB{a,b,c}(a trustindecisive c ∧ b trustindecisive c) c is a weak TTP of a and b

sTTP(c, a, b) := CK{a,b,c}(a trustindecisive c ∧ b trustindecisive c) c is a strong TTP of a and b

wtTTP(c, a, b) := CB{a,b,c}(trustdom({c, a}) ∧ trustdom({c, b})) c is a weakly trustworthy TTP of a and b

stTTP(c, a, b) := CK{a,b,c}(strongtrustdom({c, a}) ∧ strongtrustdom({c, b})) c is a strongly trustworthy TTP of a and b

R ⊆ A×A is structurally arbitrary. Hence, no more structural properties than
those of the modal system K, i.e., none, can generally be assumed to hold for
�. As a corollary, the model-checking problem, i.e., “Given a ∈ A and α ∈ L′,
is it the case that 〈(A, R), J·K〉, a � α?” is decidable in deterministic polynomial
time in the size of α. See [13] for details.

4.1 Trusted Third Parties

The concept of a Trusted Third Party (TTP) is a folklore concept for much of
information security, e.g., in PKIs as registration (e.g., the town hall or the local
post office, the HR department of a company), certification (e.g., a company,
the IT department of a company), and key-escrow authorities [21], for many
protocols for authentication and key establishment [12], as well as for secure
multiparty computation [77]. Recall that “a secure multiparty computation for
function f can be viewed as an implementation of a trusted third party T , which,
upon receipt of the input values x1, . . . , xn from parties P1, . . . , Pn, respectively,
produces the output value y = f(x1, . . . , xn). Party T is trusted for (i) providing
the correct value for y and (ii) [n]ot revealing any further information to par-
ties P1, . . . , Pn” [74]. In our terminology of agent correctness, the conjunction
of Condition (i) and (ii) informally stipulates what it means for T to be cor-
rect. Notice that the above definition of secure multiparty computation merely
defines the object of trust (i.e., agent correctness), but not trust itself (which,
in our definition, is belief in or even knowledge of agent correctness). To the
best of our knowledge, the concept of a TTP has never been formally defined,
i.e., mathematically analysed into its conceptual constituents. Here, we are able
to define the TTP-concept in terms of our trust concepts (cf. Table 5), and
instantiate TTPs in the Web of Trust (cf. Section 4.2) and Public-Key Infras-
tructures (PKIs) (cf. Section 4.3). More precisely, we define the concepts of weak
and strong as well as weakly and strongly trustworthy TTPs. Trustworthy TTPs
are TTPs that may or even must deserve the trust of their trusters—and vice
versa. Note that the trustworthiness of TTPs (e.g., the certification authorities
in a PKI) is absolutely crucial, without which whole security architectures (e.g.,
an international PKI for ePassports [45]) can break down. Observe that thanks
to Theorem 3, the two sides, e.g., {c, a} and {c, b}, in a strongly (but not in a
weakly) trustworthy TTP constitute a (strong) trust domain as a whole, i.e., as
{c, a}∪{c, b} on the sufficient condition CK{c,a}∪{c,b}(

∧
x,y∈{c,a},z∈{c,b}(y correct

x→ y correct z) ∧
∧

x,y∈{c,b},z∈{c,a}(y correct x→ y correct z)).
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4.2 The Web of Trust

In the (decentralised) Web of Trust, as defined by Philip Zimmermann (cf. [80],
[30], and [21]) for PGP in 1992, any agent can independently establish its own do-
main of trusted correspondents by publicly designating (e.g., on their homepage)
so-called trusted introducers, who by this very act become commonly known as
such. In PGP, the designation of a trusted introducer is implemented as the
(publicly exportable) signing of the designated trusted introducer’s public key
with the designator’s private key. Additional assurance can be provided by [5].
The role of an agent a’s trusted introducer b is to act as a guarantor for the trust-
worthiness of a, and by that, to catalyse the building up of trust relationships
between a and those agents c who are only potential (not yet actual) trustees of a
but who are (already) actual trustees of b. Notice the importance of distinguish-
ing between potential and actual trust (cf. Definition 3 and 4). Thus, the more
guarantors (actual trustees) an agent (as an actual truster) has, the more poten-
tial trustees the agent (as a potential truster) has. In the Web of Trust, agents
are (socially speaking) trustworthy, or (technically speaking) correct if and
only if all their designated trusted introducers are, and at most they
(the correct agents) can access their (own) private key. (Agents with
untrustworthy introducers or a corrupt private key are untrustworthy.) Notice
the possible mutuality in this social notion of agent correctness.

We model the designated-trusted-introducer relationships between agents in
system states s ∈ S with a family of relations (a kind of data base) DTIs ⊆ A×A
such that

b DTIs a :iff b is a designated trusted introducer of a in s.

The valuation function V on the propositions a correct b can then be formally
defined with the aid of AuxLog as follows:

V(a correct b) := { s | 〈(A,DTIs), ∅〉, a � νC(kb → (OK ∧�C)) },

where ∅ designates the empty auxiliary interpretation (C is bound!). The greatest-
fixpoint assertion 〈(A,DTIs), ∅〉, a � νC(kb → (OK ∧�C)) says that a is in the
greatest fixpoint of the interpretation of the property C such that:

if a satisfies C (i.e., a is in the interpretation of C) then a satisfies
kb → (OK∧�C), which in turn says that if a is known to b then at most
a can access a’s private key and for all b ∈ A, if b is a designated trusted
introducer of a in the state s then b satisfies C.

Observe that all (=1) free occurrences of C in kb → (OK ∧ �C) of νC(kb →
(OK ∧ �C)) occur within an even (=0) number of occurrences of ¬. Hence,
our definition is formally well-defined. Further observe that the possible mutu-
ality in our notion of agent correctness corresponds to the co-inductiveness of
the greatest fixpoint, which allows direct (self-designation) and indirect (mutual
designation) loops in the designated-trusted-introducer relationships. The inter-
pretation of the corresponding (inductive) least-fixpoint formula would wrongly
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not allow such loops. Of course, the language of AuxLog allows for other, more
complex definitions of agent correctness, e.g., ones disallowing self-designation,12

and/or ones with a more complex notion of being OK. Our present definition is
just an inceptive example proposal. The co-inductive definition has the following
iterative paraphrase from above (iterated deconstruction).

Everybody is correct (the Web of Trust is born in the plenum, so to say);
except for the following agents (exclude those which are clearly not OK):
0. agents with a corrupt private key (Type 0 agents);
1. agents with a designated trusted introducer of Type 0 (Type 1 agents);
2. agents with a designated trusted introducer of Type 1 (Type 2 agents);
3. etc.

Clearly, weak or strong trust relations in the Web of Trust must be universal
within an agent’s domain of correspondents in the sense of Fact 4: designated
trusted introducers are trusted; and they would not act as such, if they did not
trust their designator and their designator’s other designated trusted introduc-
ers, etc. Hence, our trust relations and trust domains from Figure 1–3 as well as
our weakly and strongly trustworthy TTPs from Table 5 are fit for the Web of
Trust without further adaptation.

4.3 Public-Key Infrastructures

In Public-Key Infrastructures (PKIs), centralised certificate authorities (CAs)
act as guarantors for the trustworthiness of the public key of their clients by
issuing certificates that bind the public key of each client (the legitimate key
owner) to the client’s (unique) name (cf. [25, Chapters 18–20], [62], [23], [47], [21],
and [1–3]). (The legitimacy of a key ownership is warranted by the registration
authority with which the key owner authenticated in person, i.e., validated the
correspondence of her name to her person.) According to [25, Page 284]:

Key management is the most difficult problem in cryptography, and a
PKI system is one of the best tools that we have to solve it with. But
everything depends on the security of the PKI, and therefore on the
trustworthiness of the CA.

In PKIs, agents are (socially speaking) trustworthy, or (technically speaking)
correct if and only if all their certified agents are, and at most they
(the correct agents) can access their (own) private key. (Agents who
certify incorrect agents or agents with a corrupt private key are incorrect.) Notice
the absence of mutuality in this notion of agent correctness; it is intrinsically

12 Yet whether or not you declare yourself as trustworthy may well be legally critical (cf.
for example such hand-written self-declarations in certain immigration procedures).

Anyway, the disallowance of self-designation could be implemented by introduc-
ing a binding operator ↓ à la hybrid logic [6] into the language of AuxLog, such
that 〈(A, R), J·K〉, a � ↓C(α) :iff 〈(A, R), J·K[C 7→{a}]〉, a � α, and stipulating that

V(a correct b) := { s | 〈(A,DTIs), ∅〉, a � µC(kb → (OK ∧ ¬↓C′(♦C′) ∧�C)) }.
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unilateral. However, the notion of PKI-trust to be built from this notion of
agent correctness will be again bilateral (i.e., mutual, and thus symmetric): the
certifying correct agent trusts the certified correct agent, and vice versa.

We model the relationships from certifying agents to certified agents (which
may themselves be certifying agents to agents certified by them, etc.) in system
states s ∈ S with a family of relations (again a kind of data base) CRTs ⊆ A×A
such that

b CRTs a :iff b is certified by a in s,

where “b is certified by a in s” means “a has issued a valid certificate for b
in s”, i.e., a certificate that is non-revoked and non-suspended in s and signed
by a with the private key of a. The valuation function V on the propositions
a correct b can then be formally defined with the aid of AuxLog as follows:

V(a correct b) := { s | 〈(A,CRTs), ∅〉, a � µC(kb → (OK ∧�C)) }.

The least-fixpoint assertion 〈(A,CRTs), ∅〉, a � µC(kb → (OK ∧�C)) says that
a is in the least fixpoint of the interpretation of the property C such that:

if a satisfies kb → (OK ∧ �C) (i.e., a is in the interpretation of kb →
(OK ∧�C))—which in turn says that if a is known to b then at most a
can access a’s private key and for all b ∈ A, if b is certified by a in the
state s then b satisfies C—then a satisfies C.

Observe that certification is unilateral (i.e., non-mutual, and thus not sym-
metric) in the sense that certification relationships must not be directly (self-
certification) nor indirectly (mutual certification) looping, which forces a least-
fixpoint formulation. The PKI-approach to trustworthiness is thus diametrically
opposed to the approach of the Web of Trust. This opposition is reflected first,
in the least/greatest fixpoint “duality” of the two paradigms; and second, in the
fact that PKIs are based on (ultimately national) authority (hierarchical CAs),
whereas the Web of Trust is based on (borderless) peership (peer-guarantors).
(At the international level, it makes sense to link two national [root] CAs via
the bona officia of a trustworthy trusted third party [a national bridge CA], or
to organise a group of national CAs as a Web of Trust [cross or mesh certifica-
tion] such as the PKIs required by ePassports [45].) Yet again of course, as with
the Web of Trust, the language of AuxLog allows for other, more complex def-
initions of agent correctness, e.g., ones with self-certification for the root-CA13

(the trust anchor), and/or ones with a more complex notion of being OK (e.g.,
including the possibility of key escrow). Again, our present definition is just an
inceptive example proposal. The inductive definition has the following iterative
paraphrase from below (iterated construction).

13 Self-certification for the root-CA could be implemented by introducing an atomic
proposition root true at and only at the root-CA agent, and stipulating that
V(a correct a) := { s | 〈(A,CRTs), ∅〉, a � (root→ ♦root) ∧ µC(OK ∧�C) }.
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Table 6. Public-Key Infrastructure trust domains

wPKI(C) := CBC(
∧

a, b ∈ C and (a ≤ b or b ≤ a)
a trusts b) C is a weak PKI trust domain

sPKI(C) := CKC(
∧

a, b ∈ C and (a ≤ b or b ≤ a)
a doestrust b) C is a strong PKI trust domain.

Nobody is correct (PKIs are born ex nihilo, so to say); except for the
following agents (include those which are clearly OK): agents without a
corrupt private key (Type 0 agents), whose certified agents are also of
Type 0 (Type 1 agents), whose certified agents are again also of Type 0
(Type 2 agents), etc. (In other words, being of Type 0 is an invariant in
the transitive closure of certification relationships.)

Notice the structural difference between this paraphrase for agent correctness
in PKIs and the previous one for agent correctness in the Web of Trust. The
“duality” is not pure.

As suggested, CAs are commonly organised in a hierarchy, which induces
structured trust domains in the form of finite trees. Recall that a finite tree is
a partially-ordered set (here say 〈C,≤〉) with a bottom (top) element such that
for each element in the set, the down-set (up-set) of the element is a finite chain
[19]. In PKI trust domains, trust relations are symmetric (up- and downwards
the tree branches) and transitive (along the tree branches) but not universal
(after all, a tree is a tree and not felt fabric), and the root CA corresponds to
the tree root, the intermediate CA’s correspond to the intermediate tree nodes,
and the clients to the tree leafs. Hence we can fit our weak and strong trust
domains to PKI trust domains 〈C,≤〉 by simply stipulating that the conjunction
in the respective definition respect the finite-tree structure ≤ of C, and reflect
the symmetry and transitivity of the trust relations. And that is all: see Table 6.
We can now instantiate our weakly and strongly trustworthy TTPs from Table 5
for PKIs as

wtTTPPKI(c, a, b) := CB{a,b,c}(wPKI({c, a}) ∧ wPKI({c, b}))
stTTPPKI(c, a, b) := CK{a,b,c}(sPKI({c, a}) ∧ sPKI({c, b})),

respectively, with ≤ := {(c, a), (c, b)} as (tree) domain structure. Fits for trust
domains with other structures (e.g., buses, chains, rings, stars, etc.) can be made
by similarly simple stipulations (e.g., for computing clouds, which have not a
fixed but a dynamic, i.e., an evolving structure).

In sum, a weak or strong PKI trust domain C is built from a certification
hierarchy ≤ of certifying (CAs) and certifiable agents a ∈ C such that for all
states s ∈ S there is a (possibly empty) certification record { b ∈ C | b CRTs a }.
Thereby, the certification hierarchy acts as a constraining skeleton (there is no
such skeleton in the Web of Trust; it is free) for the potential and the actual
trust relationships in C, and, by that, the respective memberships in the trust
domain C itself. And the certification records act as evidential support for the
actuality of the trust relationships and the memberships in the trust domain.
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Table 7. Generic definition of accountability

Accountability := Abusefreeness ∧ Auditability
Abusefreeness := ∀a∀b�(a correct b→ ∃/∀cP(a,c)(a correct b))
Auditability := ∀a∀b�(¬(a correct b)→ ∃/∀c♦�P(b,c)(¬(a correct b)))

4.4 Identity-Based Cryptography

Identity-Based Cryptography is a variation of Public-Key Cryptography in which
the intending sender of a message derives the (public) encryption key from the
public identity (e.g., a telephone number, an email address, etc., or a combination
thereof) of the intended recipient [36]. In our setting, we abstractly model an
agent a’s public identity with the symbol ‘a’. For the sake of the security of
ID-based encryption, an ID-based private key must not be derivable from its
corresponding public counterpart without an additional trap-door information.
This trap-door information is owned by a central CA (cCA ∈ A), which therefore
can derive the private keys of all its certified agents! (Thus ID-based domains
have a star structure: ≤ is an n-ary tree of depth 1 with as root cCA and as
leaves the n agents certified by cCA.) Hence for ID-Based Cryptography, the
definition of an agent being OK (cf. Section 4) must be weakened, e.g.,

JOKK := { a ∈ A | at most a and cCA can access a’s private key }.

Note that as a consequence, the notion of trust (and thus the value of the trust-
worthiness of cCA) is weakened! Of course, a restrengthening is possible, e.g., by
stipulating that cCA has not used the private keys of its certified agents (except
possibly for key escrow). In sum, the flexibility of ID-Based Cryptography for
its users (the certified agents) is paid with a devaluation of the trustworthiness
of its provider (cCA).

4.5 Accountable access control and cryptographic-key management

In [43], a generic definition of accountability is given, which can be instantiated
in one fell swoop with our present notions of agent correctness for access control
from Section 1.1 and cryptographic-key management from Sections 4.2–4.4 as
displayed in Table 7. There, � means “henceforth” and ♦ “eventually” in the
sense of standard temporal logic, and P(a,b) “a can prove to b that” in the sense of
a standard (though even interactive) S4 notion of Gödel-style provability [39]. For
accountability, abusefreeness means that correct agents can defend themselves
against false accusations of incorrectness, and auditability that incorrect agents
can eventually be found out. The connection to trust is that if b knows a’s proof
of a correct b then b knows that a is correct as far as b is concerned, and so
abusefreeness induces strong trust in the sense of Figure 1 (cf. [43] for details).
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5 Trust building

Building trust in the sense of building from absence of trust (as opposed to
rebuilding from distrust, cf. 2nd paragraph after Definition 1) is possible if and
only if there is at least potential trust in the sense of Definition 3. That is, given
a, b ∈ A and C ⊆ A, the formulae a trusts b or a doestrust b, and trustdom(C)
or strongtrustdom(C) must at least be satisfiable in the model induced by the
considered system, in order for a weak or strong trust relationship from a to b to
possibly exist, and in order for C to possibly be a weak or strong trust domain,
respectively. Yet thanks to the computability of our notions of trust, a computer
can aid us in our decision of whether or not building trust from a current absence
of trust in a given system, and between a given pair of agents, or within a given
(small) group of agents is actually possible.

When it is indeed possible to actualise a certain potential trust, the next
question is how to actually build up the trust. Consider that a potential trustee
(say a) has at least two non-mutally-exclusive possibilities of earning the trust
of a potential truster (say b):

1. by behaving correctly according to the notion of agent correctness a correct b
in the system where the computer has found the considered kind of trust to
be actually possible. (Behaving correctly can include doing nothing, when
the considered notion of agent correctness does not exclude such inactivity.)

2. by producing evidence (e.g., a recommendation) for or proof (e.g., a signed
log file: [17], [43]) of behavioural correctness, whenever requested to do so
by the potential truster (here in the role of an auditor).

The potential truster may then decide to trust the potential trustee based on the
observation of the potential trustee’s behaviour, and/or based on the knowledge
of certain data, i.e., evidence or even proof produced by the potential trustee.
Depending on the value of the information obtained, a relationship of weak or
strong trust is established from the potential truster to the potential trustee,
who have now become de facto an actual truster and trustee, respectively. This
process of building up oriented trust relations can be extended to building up
symmetric trust relationships, and trust domains of agents in such relationships.
As a matter of fact, Theorem 3 yields a design pattern, called RD (cf. Table 8),
for building up strong trust domains from a possible absence of trust in a given
system via recursive descent. RD relies on the communication abstraction of
public announcement (cf. 3rd paragraph after Definition 1), which we use as a
black-box plug-in. We recall that the effect of a public announcement of a fact
is to induce the common knowledge of that fact with the addressed public by
minimally changing the epistemic state of each member (cf. [73] for details).
Depending on the communication context, the mechanism ranges from trivial
(e.g., in a public assembly) to difficult (e.g., with communication asynchrony),
possibly requiring implementation as a full-fledged communication protocol. So,
although ‘announcement’ may suggest triviality rather than difficulty, public an-
nouncements may well be non-trivial to implement in a given context, which is
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Table 8. The design pattern RD

1. Input: a pointed model (S,V), s and C1, C2 ⊆ A such that

(S,V), s |= CKC1∪C2

(∧
a,b∈C1,c∈C2(b correct a→ b correct c) ∧∧
a,b∈C2,c∈C1(b correct a→ b correct c)

)
;

2. Divide: for i ∈ {1, 2} do {
when (S,V), s |= ¬strongtrustdom(Ci):
(a) divide Ci freely into Ci.1 and Ci.2;
(b) s := RD((S,V), s, Ci.1, Ci.2); };

3. Conquer: announce to the community C1 ∪ C2 that strongtrustdom(C1) ∧
strongtrustdom(C2) is true (choose appropriate communication channels and an
appropriate protocol), which takes the system from s to some s′ ∈ S such that
s′ is reachable (cf. Footnote 7) from s and

(S,V), s′ |= CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′));

4. Output: s′ ∈ S;
5. Effect: (S,V), s′ |= strongtrustdom(C1 ∪ C2).

why we call RD just a design pattern rather than a full-fledged algorithm: Build-
ing up trust domains from possible absence of trust generally is computationally
costly, in particular when made by means of the recursive-descent design pattern
RD.

Theorem 6. The complexity of building up trust domains is exponential in the
number of potential members.

Proof. By the fact that membership in trust domains has to be checked for each
potential new member anew, which is exponential in the size of the trust domain
being checked in a given model and at a given state (cf. Table 4).

In contrast, it is common knowledge (among humans) that for destroying actual
trust relationships, and thus also trust domains, a single (side) step is sufficient —
metaphorically speaking. And rebuilding trust from distrust is difficult. It might
require forgiving in the sense of forgetting past violations of agent correctness,
which would actually reduce rebuilding trust from distrust to building trust from
absence of trust in a blank memory—after wiping the bad memories so to say.

6 Related work

There is a huge literature on notions of trust that are not formal in the sense of
formal languages and semantics, and also on trust management, which however
is not the subject matter of this paper.

We are aware of the following formal work related to ours.
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6.1 Trust relations

As explained in the introduction, [20] presents various kinds of trust relations
based on belief in and knowledge of mental attitudes behind agent behaviour,
which is less general than belief in or knowledge of agent behaviour simpliciter.

In [79], trust relationships are defined as four-tuples of a set R of trusters, a
set E of trustees, a set C of conditions, and a set P of properties (the actions or
attributes of the trustees). Thereby, conditions and properties are fully abstract,
i.e., without pre-determined form. According to the authors, “Trust relationship
T means that under the condition set C, truster set R trust that trustee set
E have the properties in set P .”, where the meaning of “trust that” is formally
primitive and thus left to interpretation. Given that trust can possibly be wrong,
a plausible interpretation of “trust that” could be “believe that” (rather than
“know that”). The authors then define operations on trust relationships in terms
of set-theoretic operations on the projections of their tuples. We attempt to relate
the authors’ notion of trust relationship to our notion of weak trust relation
(based on belief rather than knowledge) by coercing their definition of T in the
following macro-definition of our logic, assuming their P is included in our P:

T (C,R,E, P ) := (
∧
c∈C

c)→
∧
r∈R

Br(
∧
e∈E

∧
p∈P

p(e)).

If the authors agree with this coercion, we have the following definability result:

|= T ({>}, {a}, {b}, {· correct a})↔ a trusts b,

where · correct a is an attribute in the authors’ sense.
In [76], “trust is a state at which the host believes, expects, or accepts that

the effects from the cleint are the positive”, although belief is not formal in the
sense of modal logic. The authors’ idea is that “the host’s trust on a client is
obtained based on the trust evaluation of the client by the host. When the host
trusts a client, the host will believe, expect or accept that the client will do no
harm to the host in the given context”. Hence, this notion of trust is agent-
centric in the sense of being defined in terms of specific, (local) effects at an
agent’s location. This is a less general notion of trust than ours, which is generic
in the sense of being defined in terms of correct agent behaviour within arbitrary
systems. Also, we recall again that agent correctness is a standard primitive in
the distributed-systems community [50].

In [15], a domain-theoretic model of trust relations between agents is pre-
sented. In that model, a given directed trust relation from a truster to a trustee
is abstracted as a value reflecting the truster’s degree of trust in the trustee. Thus,
[15]’s notion of trust is, as opposed to ours, quantitative, but, as opposed to ours,
lacks a behavioural (e.g., in terms of agent correctness) and doxastic/epistemic
explication (in terms of belief/knowledge). The purpose of the model is the def-
inition of a unique global trust state arising from the trust relations between
the agents via trust policies. Complexities for computing portions of that global
state are given in [44].
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In [52] and [49], axiomatic frameworks for the special purpose of modelling
PKIs with the relevant trust relationships are presented. However, the authors do
not attempt to actually explicate what trust is. In fact, their respective frame-
work is restricted to the mere declaration of the involved trust relationships.
The frameworks also ignore that PKIs involve in addition to the trust relations
themselves the belief in or even knowledge of these relations.

After the appearance of our work in [41] and [40], appeared [57], in which
the author proposes an epistemic semantics for what we would call individual
trust relations. The author’s interpretation of trust is: “If agents know that a
target is trustworthy under an interpretation, that agent trusts the target.” In
comparison, being trustworthy means being correct (behaving correctly) in our
interpretation (cf. Figure 1). The author then also applies his trust definitions
to PKIs and the Web of Trust.

6.2 Trust domains

To the best of our knowledge, the only formal piece of work on trust domains
is [78], based on description logic. However, the authors’ definition remains a
conceptual modelling, and moreover one that is limited to PKIs.

6.3 Trust in statements

Five formal notions of trust loosely related to ours are the following. In [34],
so-called trust in belief and trust in performance are formalised in the situation
calculus, such that “axioms and theorems can be used to infer whether a thing
can be believed”. Whereas we define (weak) trust in agents, and moreover in
terms of belief taken off-the-shelf as a standard primitive. In [35], the ideas of
trust in belief and trust in performance are taken up again similarly. In [64],
trust in a distributed system is captured as the trusted statements about the
system, which are added as axioms to the axiomatics of a standard logic of
belief. Then in [46], trust in the judgement about the truth of a statement about
a distributed system is captured by means of a modal operator Tij(φ) with the
intended meaning “that agent i trusts the judgement of j on the truth of φ.”
Finally, the authors of [63] view “trust as second-order property qualifying first-
order relations.” That is, “trust is not a relation occurring among the agents
of a system. Rather it is a way in which such relations may occur.” Their view
leads the authors to conceive the following sophisticated definition of trust:

Assume a set of first-order relations functional to the achievement of a
goal. Assume that one such relation holds between two agents, such that
one of them (the trustor) has to achieve the given goal while the other
(the trustee) is able to perform some tasks in order to achieve that goal.
If the trustor chooses to achieve his goal through the task performed by
the trustee, and if the trustor considers the trustee a trustworthy agent,
then the relation has the property of being advantageous for the trustor.
Such a property is a second-order property called trust that affects the
first-order relations occurring between agents.
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While trust may well have second-order character, we beg to disagree with the
authors that trust should not be a relation occurring among agents of a system.
In our, and most other authors’ views, trust is also a relation between agents.

7 Conclusion

Assessment We have delivered simple smooth definitions and revealed the logi-
cal structure of weak and strong trust relations and trust domains, and potential
and actual trust relationships and membership in trust domains, as well as prac-
tical complexity, compositionality, scalability, and transitivity results—and all
that in a single standard minimal framework. Moreover, we have provided a de-
sign pattern for building up strong trust domains. All our definitions have the
advantage of being both declarative and computational, as well as parametric
in the notion of agent correctness. Thanks to being declarative, our definitions
are independent of the manifold manifestations of trust establishment (e.g., via
recommendations and/or reputation). They are meaningful in any concrete dis-
tributed system with a notion of agent correctness and state space. We recall
that agent correctness is a primitive in the distributed-systems community [50],
and that state space is forced in a world of digital computers. A surprising in-
sight gained from our computational analysis of trust is that given weak trust,
strong trust is for free (up to a constant) from the point of view of complexity
theory. A further insight gained from our analysis is that trust can be related to
accountability so that accountability induces trust. Finally, we have shown that
our trust domains are fit as such for TTPs and the Web of Trust, and that with
a minor modification in the form of a constraint, they can be made to fit PKIs,
ID-Based Cryptography, and others.

Future work We could unify our notions of weak and strong trust relation (do-
main) in a notion of graded trust relation (domain) defined in terms of graded
(common) belief instead of plain (common) belief and plain (common) knowl-
edge, respectively [42]. Informally, knowledge is belief with 100% certitude. And
with the additional introduction of temporal modalities, it becomes possible to
study the evolution of the quality and quantity of trust in a given distributed
system, by observing the evolution of the grade of each trust relation and trust
domain in the system. This could be especially interesting for cryptographic
protocols, whose function is, according to [25, Section 13.4, Page 217],

[. . . ] to minimize the amount of trust required. This is important enough
to repeat. The function of cryptographic protocols is to minimize the
amount of trust required.

Finally, we could build actual trust-management systems for trust relations and
trust domains in our present sense of building trust from absence of trust and
in a future sense of rebuilding trust from distrust.
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A A formal proof

In order to simplify our presentation of the proof of Theorem 3, we recall the
following standard definition.

Definition 6 (Semantic consequence). The formula φ′ ∈ L is a semantic
consequence of φ ∈ L, written φ⇒ φ′, :iff for all models (S,V) and states s ∈ S,
if (S,V), s |= φ then (S,V), s |= φ′.

Fact 5 |= φ→ φ′ if and only if φ⇒ φ′

Proof. By expansion of definitions.

The proof of Theorem 3 is now as follows:

1. strongtrustdom(C ∪ C′)⇒ CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))
cf. Table 9

2.
|= strongtrustdom(C ∪ C′)→ CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′)) 1,
Fact 5

3.

CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c) ∧∧
a,b∈C′,c∈C(b correct a→ b correct c)

)
∧

CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))

⇒
strongtrustdom(C ∪ C′)

cf. Table 10

4.

|= CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c) ∧∧
a,b∈C′,c∈C(b correct a→ b correct c)

)
→

(CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))→ strongtrustdom(C ∪ C′))
3, Fact 5
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5.

|= CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c) ∧∧
a,b∈C′,c∈C(b correct a→ b correct c)

)
→

(CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))↔ strongtrustdom(C ∪ C′))
2, 4.

Table 9. Decomposability of strong trust domains

strongtrustdom(C ∪ C′) ⇔
(by the definition of strongtrustdom(C ∪ C′))

CKC∪C′(
∧

a,b∈C∪C′ a doestrust b) ⇒
(by the definition of

∧
a,b∈C∪C′)

CKC∪C′(
∧

a,b∈C a doestrust b ∧
∧

a,b∈C′ a doestrust b) ⇒
(by 4(CKC∪C′))

CKC∪C′(CKC∪C′(
∧

a,b∈C a doestrust b ∧
∧

a,b∈C′ a doestrust b)) ⇒
(by the distributivity of CKC∪C′ over ∧, N(CKC∪C′), and K(CKC∪C′)

CKC∪C′(CKC∪C′(
∧

a,b∈C a doestrust b) ∧ CKC∪C′(
∧

a,b∈C′ a doestrust b)) ⇒
(by |= CKC∪C′(φ)→ CKC(φ), N(CKC∪C′), and K(CKC∪C′)

CKC∪C′(CKC(
∧

a,b∈C a doestrust b) ∧ CKC′(
∧

a,b∈C′ a doestrust b)) ⇔
(by the definition of strongtrustdom(C) and strongtrustdom(C′))

CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′))
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Table 10. Conditional composability of strong trust domains

CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c) ∧∧
a,b∈C′,c∈C(b correct a→ b correct c)

)
∧ CKC∪C′(strongtrustdom(C) ∧ strongtrustdom(C′)) ⇔

(by the definition of strongtrustdom(C) and strongtrustdom(C′)) CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c) ∧∧
a,b∈C′,c∈C(b correct a→ b correct c)

)
∧

CKC∪C′(CKC(
∧

a,b∈C a doestrust b) ∧ CKC′(
∧

a,b∈C′ a doestrust b))

 ⇔
(by the distributivity of CKC∪C′ over ∧)(

CKC∪C′(
∧

a,b∈C,c∈C′(b correct a→ b correct c)) ∧ CKC∪C′(CKC(
∧

a,b∈C a doestrust b)) ∧
CKC∪C′(

∧
a,b∈C′,c∈C(b correct a→ b correct c)) ∧ CKC∪C′(CKC′(

∧
a,b∈C′ a doestrust b))

)
⇒

(by T(CKC), T(CKC′), N(CKC∪C′), and K(CKC∪C′))(
CKC∪C′(

∧
a,b∈C,c∈C′(b correct a→ b correct c)) ∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(
∧

a,b∈C′,c∈C(b correct a→ b correct c)) ∧ CKC∪C′(
∧

a,b∈C′ a doestrust b)

)
⇔

(by the idempotency of ∧)CKC∪C′(
∧

a,b∈C,c∈C′(b correct a→ b correct c)) ∧
(
CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(
∧

a,b∈C a doestrust b)

)
∧

CKC∪C′(
∧

a,b∈C′,c∈C(b correct a→ b correct c)) ∧
(
CKC∪C′(

∧
a,b∈C′ a doestrust b) ∧

CKC∪C′(
∧

a,b∈C′ a doestrust b)

)
 ⇔

(by the distributivity of CKC∪C′ over ∧)CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c)

∧
∧

a,b∈C a doestrust b

)
∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′

(∧
a,b∈C′,c∈C(b correct a→ b correct c)

∧
∧

a,b∈C′ a doestrust b

)
∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇒
(by 4(CKC∪C′))CKC∪C′(CKC∪C′

(∧
a,b∈C,c∈C′(b correct a→ b correct c)

∧
∧

a,b∈C a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(CKC∪C′

(∧
a,b∈C′,c∈C(b correct a→ b correct c)

∧
∧

a,b∈C′ a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇒
(by |= CKC∪C′(φ)→ CKC′(φ), |= CKC∪C′(φ)→ CKC(φ), N(CKC∪C′), and K(CKC∪C′))CKC∪C′(CKC′

(∧
a,b∈C,c∈C′(b correct a→ b correct c)

∧
∧

a,b∈C a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(CKC

(∧
a,b∈C′,c∈C(b correct a→ b correct c)

∧
∧

a,b∈C′ a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇒
(by |= CKC′(φ)→ EKC′(φ), |= CKC(φ)→ EKC(φ), N(CKC∪C′), and K(CKC∪C′))CKC∪C′(EKC′

(∧
a,b∈C,c∈C′(b correct a→ b correct c)

∧
∧

a,b∈C a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(EKC

(∧
a,b∈C′,c∈C(b correct a→ b correct c)

∧
∧

a,b∈C′ a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇔
(by the definition of EKC′ and EKC)CKC∪C′(

∧
c∈C′ Kc

(∧
a,b∈C,c∈C′(b correct a→ b correct c)

∧
∧

a,b∈C a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′(
∧

c∈C Kc

(∧
a,b∈C′,c∈C(b correct a→ b correct c)

∧
∧

a,b∈C′ a doestrust b

)
) ∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇔
(by the distributivity of Kc over ∧)CKC∪C′

(∧
a,b∈C,c∈C′ Kc(b correct a→ b correct c)

∧
∧

a,b∈C,c∈C′ Kc(a doestrust b)

)
∧ CKC∪C′(

∧
a,b∈C a doestrust b) ∧

CKC∪C′

(∧
a,b∈C′,c∈C Kc(b correct a→ b correct c)

∧
∧

a,b∈C′,c∈C Kc(a doestrust b)

)
∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

 ⇒
(by Lemma 1, N(CKC∪C′), and K(CKC∪C′)(

CKC∪C′(
∧

b∈C,c∈C′(c doestrust b)) ∧ CKC∪C′(
∧

a,b∈C a doestrust b) ∧
CKC∪C′(

∧
b∈C′,c∈C(c doestrust b)) ∧ CKC∪C′(

∧
a,b∈C′ a doestrust b)

)
⇔

(by the distributivity of CKC∪C′ over ∧)
CKC∪C′(

∧
a,b∈C∪C′ a doestrust b) ⇔

(by the definition of strongtrustdom(C ∪ C′))
strongtrustdom(C ∪ C′)
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