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Abstract

It is impossible to securely carry out general multi-party computation in arbitrary network
contexts like the Internet, unless protocols have access to some trusted setup. In this work we
classify the power of such trusted (2-party) setup functionalities. We show that nearly every
setup is either useless (ideal access to the setup is equivalent to having no setup at all) or else
complete (composably secure protocols for all tasks exist in the presence of the setup). We
further argue that those setups which are neither complete nor useless are highly unnatural.

The main technical contribution in this work is an almost-total characterization of com-
pleteness for 2-party setups. Our characterization treats setup functionalities as black-boxes,
and therefore is the first work to classify completeness of arbitrary setup functionalities (i.e.,
randomized, reactive, and having behavior that depends on the global security parameter).
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1 Introduction

When a protocol is deployed in a vast network like the Internet, it may be executed in the presence
of concurrent instances of other arbitrary protocols with possibly correlated inputs. A protocol
that remains secure in such a demanding context is called universally composable. This security
property is highly desirable; unfortunately, it is simply too demanding to be achieved for every
task. Canetti’s UC framework [c01] provides the means to formally reason about universal com-
posability in a tractable way, and it is widely regarded as the most realistic model of security for
protocols on the Internet. A sequence of impossibility results [cf01, l04, ckl06] culminated in
a complete characterization for which tasks are securely realizable in the UC framework [pr08].
Indeed, universal composability is impossible for almost all tasks of any cryptographic interest,
under any intractability assumption.

For this reason, there have been many attempts to slightly relax the UC framework to per-
mit secure protocols for more tasks, while still keeping its useful composition properties. Many
of these variants are extremely powerful, permitting composably-secure protocols for all tasks; for
example: adding certain trusted setup functionalities [cf01, clos02, bcnp04, cps07, go07, k07,
ips08, mpr10], allowing superpolynomial simulation [p03, ps04, bs05, mmy06, clp10], assuming
bounded network latency [klp05], considering uniform adversaries [lpv09], and including certain
global setups [cdpw07], to name a few (for a more comprehensive treatment, see the survey by
Canetti [c07]). Other variants of the UC framework turn out to be no more powerful than the
original framework; for example, adding certain setup functionalities [pr08, kl11] or global se-
tups [cdpw07], and requiring only self-composition rather than universal composition [l04]. A
natural question is, therefore: under what circumstances can universal composability be achieved?

1.1 Our Results

In this work we study the power of 2-party trusted setups. In other words, given access to a
particular trusted setup functionality (e.g., a common random string functionality), what tasks
have UC-secure protocols? In particular, two extremes are of interest. First, we call a trusted
setup F useless if having ideal access to F is equivalent to having no trusted setup at all. More
precisely, F is useless if it already has a UC-secure protocol in the plain (no trusted setups) model.
A complete characterization for such functionalities was given in [pr08].

At the other extreme, we call a trusted setup F complete if every well-formed task has a
UC-secure protocol given ideal access to F . As mentioned above, many setups are known to be
complete (e.g., a common random string functionality), but the methods for demonstrating their
completeness have been quite ad hoc. Our major contribution is to give a new framework for
understanding when a trusted setup is complete.

Informal statement of the results. Our characterization is based on the concept of splittability
from [pr08]. To give a sense of splittability, imagine the following two-party game between a
“synchronizer” and a “distinguisher.” The parties connect to two independent instances of F ,
each party playing the role of Alice in one instance and the role of Bob in the other. They are
allowed to arbitrarily interact with these two instances of F . The synchronizer’s goal is to make
the two instances behave like a single instance of F , from the distinguisher’s point of view. The
distinguisher’s goal is to make the two instances act noticeably different from a single instance of
F , from his point of view.

Then, informally, we say that F is splittable if the synchronizer has a winning strategy in this
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game, and F is strongly unsplittable if the distinguisher has a winning strategy.1 Importantly,
these splittability-based conditions are relatively easy to check for a candidate setup, and apply
uniformly to completely arbitrary functionalities in the UC framework (i.e., possibly randomized,
reactive, with behavior depending on the security parameter). Prabhakaran & Rosulek [pr08]
showed that F is useless if and only if F is splittable. Analogously, our main result is the following:

Theorem (Informal). If F is strongly unsplittable∗, then F is complete.

The asterisk after “strongly unsplittable” indicates that the precise statement of our result
involves a variant of strong unsplittability, in which the “synchronizer” is allowed to obtain the
internal state of one of the instance of F . However, in the case that F is a nonreactive functionality,
the informal statement above is correct; the asterisk can be safely ignored.

Our completeness theorem is proved under the assumption that there exists a semi-honest
secure oblivious transfer protocol (the SHOT assumption), an intractability assumption we show
is necessary. We also show that a very slight modification of strong unsplittability is necessary for
a setup to be complete, and so our characterization is nearly tight.

We argue that setups which are neither splittable nor strongly unsplittable exploit low-level
technical “loopholes” of the UC framework or are otherwise highly unnatural. Thus, combining
our result with that of [pr08], we can informally summarize the power of trusted setups by saying
that every “natural” setup is either useless or complete.

Our notion of completeness. Many prior completeness results place restrictions on how pro-
tocols are allowed to access a setup functionality. A common restriction is to allow protocols to
access only one instance of the setup — typically only at the beginning of a protocol. In these cases,
we say that the protocols have only offline access to the setup. Additionally, some completeness
results construct a multi-session commitment functionality from such offline access to the setup,
modeling a more globally available setup assumption.

In contrast, the completeness results in this work are of the following form. We say that a
functionality F is a complete setup if there is a UC-secure protocol for the ideal (single-session)
commitment functionality in the F-hybrid model. This corresponds to the complexity-theoretic
notion of completeness, under the reduction implicit in the conventional UC security definition.
As is standard for protocols in the F-hybrid model, we place no restrictions on how or when
protocols may access F or how many instances of F they may invoke. However, we point out
that completeness for offline access can be achieved by simply using our construction to generate a
common random string in an offline phase, then applying a result such as [clos02].

Technical overview. To prove that a functionality F is complete, it suffices to show that there is
a UC-secure protocol for bit commitment, given ideal access to F . This follows from the well-known
result of Canetti et al. [clos02] that commitment is complete, under the SHOT assumption. We
construct a commitment protocol in several steps: In Sections 4 & 5 we construct (for the two cases
in our main theorem) commitment protocols that have a straight-line UC simulator for corrupt
receivers (i.e., an equivocating simulator) but have only a rewinding simulator for corrupt senders
(i.e., an extracting simulator). Then, in Section 6 we show how to use such a “one-sided” UC-secure
commitment protocol to build a full-fledged UC-secure commitment protocol.

In Section 7 we show that several variants of strong unsplittability are necessary for a setup
to be complete. These variants involve only very minor technical modifications to the strong
unsplittability definition.

1In the formal definition, both players are computationally bounded, so it may be that neither party has a feasible
winning strategy in the 2-party game. See Section 3.2.
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1.2 Related Work

Dichotomies in the cryptographic power of functionalities are known in several settings [ck91, k11].
Our work follows a rich line of research exhibiting dichotomies specifically between useless and
complete functionalities, for various security models and restricted to various classes of function-
alities [bmm99, k00, kkmo00, hnrr06, mpr10, kkk+11]. Among these results, only [mpr10]
considered reactive functionalities, and only [k00] considered randomized functionalities. In com-
parison, ours is the first work to consider the full range of arbitrary functionalities allowed by the
UC framework (the class of functionalities is stated explicitly in Section 2.2).

Among the results listed above, two [mpr10, kkk+11] are cast in the UC framework; for these
we give a more detailed comparison to our own results. Maji, Prabhakaran, and Rosulek [mpr10]
showed a uselessness/completeness dichotomy among deterministic functionalities whose internal
state and input/output alphabets are constant-sized (i.e., independent of the security parameter).
Their approach relies heavily on deriving combinatorial criteria for such functionalities, expressed as
finite automata, whereas our classification achieves much greater generality by treating functional-
ities essentially as black-boxes. Concurrently and independently of this work, Katz et al. [kkk+11]
showed a similar result for deterministic, non-reactive (secure function evaluation) functionalities.2

They construct UC-puzzles [lpv09] for classes of SFE functionalities deemed impossible in the
characterization of Canetti, Kushilevitz, and Lindell [ckl06]. Our result achieves greater general-
ity by being based not on the CKL characterization but the splittability characterization of [pr08].
Furthermore, we show completeness by directly constructing a commitment protocol rather than a
UC puzzle (see below).

Lin, Pass, and Venkitasubramaniam [lpv09] developed a framework for proving completeness
results in the UC framework and many variants. Their framework is based on “UC-puzzles” — pro-
tocols with an explicit trapdoor and satisfying a statistical simulation property. Using UC-puzzles,
they construct round-optimal protocols for all functionalities. Our work focuses on completeness in
terms of feasibility rather than the efficiency. To explicitly highlight the uselessness/completeness
dichotomy, our completeness criterion is closely tied to the existing notion of splittability. Conse-
quently, our criterion is less demanding (requiring only a distinguisher) and is tailored exclusively
towards setup functionalities (not more fundamental modifications to the UC framework). We leave
it as an open problem whether strong unsplittability can be used to construct a UC puzzle to give
an efficiency improvement for our result. In particular, the requirement of a statistical simulation
seems incompatible with strong unsplittability, which gives only computational properties.

In Appendix C we show that strong unsplittability can be used to understand many previous
(ad hoc) completeness results involving trusted setups. However, not all setups considered in
previous works are within the class of functionalities we consider for the general result here (in
particular, many rely crucially on the setup interacting with the adversary).

2 Preliminaries

A function f : N→ [0, 1] is negligible if for all c > 0, we have f(n) < 1/nc for all but finitely many
n. A function f is noticeable if there exists some c > 0 such that f(n) ≥ 1/nc for all but finitely
many n. We emphasize that there exist functions that are neither negligible nor noticeable (e.g.,
f(n) = n mod 2). A probability p(n) is overwhelming if 1− p(n) is negligible.

2Our result and that of [kkk+11] use different formulations for SFE functionalities. See the discussion in Ap-
pendix B.
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2.1 Universal Composability

We assume some familiarity with the framework of universally composable (UC) security; for a full
treatment, see [c01]. We use the notation exec[Z,F , π,A, k] to denote the probability that the
environment outputs 1, in an interaction involving environment Z, a single instance of an ideal func-
tionality F , parties running protocol π, adversary A, with global security parameter k. All entities
in the system must be PPT interactive Turing machines (see [hum09] for a complete treatment
of “polynomial time” definitions for the UC framework). We consider security only against static
adversaries, who corrupt parties only at the beginning of a protocol execution. πdummy denotes the
dummy protocol which simply relays messages between the environment and the functionality.

A protocol π is a UC-secure protocol for functionality F in the G-hybrid model if for all adver-
sariesA, there exists a simulator S such that for all environments Z, we have that

∣∣exec[Z, Ĝ, π,A, k]−
exec[Z,F , πdummy,S, k]

∣∣ is negligible in k. Here, Ĝ denotes the multi-session version of G, so that
the protocol π is allowed to access multiple instances of G in the G-hybrid model. The former
interaction (involving π and G) is called the real process, and the latter (involving πdummy and
F) is called the ideal process.

We consider a communication network for the parties in which the adversary has control over
the timing of message delivery. In particular, there is no guarantee of fairness in output delivery.

2.2 Class of Functionalities

Our results apply to essentially the same class of functionalities considered in the feasibility result
of Canetti et al. [clos02]. First, the functionality must be well-formed, meaning that it ignores
its knowledge of which parties are corrupt.

Second, the functionality must be represented as a (uniform) circuit family {Ck | k ∈ N}, where
Ck describes a single activation of the functionality when the security parameter is k. For simplicity,
we assume that Ck receives k bits of the functionality’s internal state, k bits of randomness (inde-
pendent randomness in each activation), a k-bit input from the activating party, and the identity
of the activating party as input, and then outputs a new internal state and k bits of output to each
party (including the adversary). Note that all parties receive outputs; in particular, all parties are
informed of every activation. We focus on 2-party functionalities and refer to these parties as Alice
and Bob throughout.

Finally, we require that the functionality do nothing when activated by the adversary.3

2.3 The SHOT Assumption and Required Cryptographic Primitives

The SHOT assumption is that there exists a protocol for
(
2
1

)
-oblivious transfer that is secure against

semi-honest PPT adversaries (equivalently, standalone-secure, by standard compilation techniques).
From the SHOT assumption it also follows that there exist standalone-secure protocols for every
functionality in the class defined above [gmw87, clos02]. We require a simulation-based definition
of standalone security, equivalent to the restriction of UC security to environments that do not
interact with the adversary during the execution of the protocol.

The SHOT assumption implies the existence of one-way functions [il89], which in turn imply the
existence of standalone-secure statistically-binding commitment schemes [n91] and zero-knowledge

3In [clos02], this convention is also used. However, in the context of a feasibility result such as theirs, it is
permissible (even desirable) to construct a protocol for a stronger version of F that ignores activations from the
adversary. By contrast, in a completeness result, we must be able to use the given F as-is. Since we cannot reason
about the behavior of an honest interaction if an external adversary could influence the setup, we make the requirement
explicit.
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Figure 1: Interactions considered in the splittability definitions. Small “a” and “b” differentiate a
functionality’s communication links for Alice and Bob, respectively.

proofs of knowledge [gmr85, bg93] that we use in our constructions. One-way functions also
imply the existence of non-malleable secret sharing schemes (NMSS) [ips08]. An NMSS
consists of two algorithms, Share and Reconstruct. We require that if (α, β) ← Share(x), then the
marginal distributions of α and β are each independent of x, but that Reconstruct(α, β) = x. The
non-malleability property of the scheme is that, for all x and PPT adversaries A the following
probability is negligible:

Pr
[
(α, β)← Share(x);β′ ← A(β, x) : β′ 6= β ∧ Reconstruct(α, β′) 6= ⊥

]
.

Furthermore, an NMSS has the property that given α, β, x, and x′, where (α, β)← Share(x), one
can efficiently sample a correctly distributed β′ such that Reconstruct(α, β′) = x′.

3 Splittability and Our Characterization

Our result is based on the alternative characterization of UC-realizability called splittability, intro-
duced by Prabhakaran & Rosulek [pr08]. Intuitively, a two-party functionality F is splittable if
there is a strategy to coordinate two independent instances of F , so that together they behave as
a single instance of F . More formally, let T be an interactive Turing machine, and define FTsplit to
be the 2-party functionality which behaves as follows (Figure 1b):
FTsplit internally simulates two independent instances of F , denoted FL and FR. FTsplit associates

its input-output link for Alice with the Alice-input/output link of FL, and similarly the Bob-
input/output link with that of FR. FTsplit also internally simulates an instance of T , which is
connected to the Bob- and adversary-input/output links of FL and the Alice- and adversary-
input/output links of FR. T receives immediate delivery along its communication lines with FL

and FR. The FTsplit functionality does not end its activation until all three subprocesses cease
activating. Finally, the instances T , FL, and FR are each given the global security parameter
which is provided to FTsplit. We say that T is admissible if FTsplit is a valid PPT functionality. For
an environment Z, we define

∆split(Z,F , T , k) :=
∣∣exec[Z,F , πdummy,A0, k]− exec[Z,FTsplit, πdummy,A0, k]

∣∣,

where A0 denotes the dummy adversary that corrupts no one.

Definition 3.1 ([pr08]). Call an environment suitable if it does not interact with the adversary
except to immediately deliver all outputs from the functionality.4 Then a functionality F is split-

4The restriction on delivering outputs is analogous to the restriction to so-called “non-trivial protocols” in [ckl06],
which is meant to rule out the protocol which does nothing. Similarly, this definition of splittability rules out the
trivial splitting strategy T which does nothing.
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table if there exists an admissible T such that for all suitable environments Z, ∆split(Z,F , T , k)
is negligible in k.

Splittability provides a complete characterization of uselessness:

Theorem 3.2 ([pr08]). Call a functionality useless if it has a (non-trivial) UC-secure protocol
in the plain model. Then F is useless if and only if F is splittable.

3.1 Our Main Theorem

Our classification is based on the following variant of splittability:

Definition 3.3. A functionality F is strongly unsplittable if there exists a suitable, uniform
environment Z and noticeable function δ such that for all admissible T , ∆split(Z,F , T , k) ≥ δ(k).

Due to technical subtleties (described in Section 4) involving the internal state of functionalities,
we also consider the following variants of splittability. If in FTsplit we let T obtain the internal state
of FL (resp. FR) after every activation (Figure 1c), then we obtain the notions of L-splittability
and L-strong-unsplittability (resp. R-splittability, R-strong-unsplittability). We emphasize that
T is only allowed read-only access to the internal state of FL (resp. FR). In fact, most natural func-
tionalities that are strongly unsplittable also appear to be also either L- or R-strongly-unsplittable.
For example, the 3 notions are equivalent for secure function evaluation (SFE) functionalities —
those which evaluate a (possibly randomized) function of the two parties’ inputs (see Appendix B
for full definitions and details). As another example, the ideal commitment functionality Fcom is
R-strongly-unsplittable (assuming we identify Alice as the sender), since the sender already knows
the entire internal state of Fcom at all times.

Main Theorem. F is complete if the SHOT assumption is true and either of the following
conditions is true:

1. F is L-strongly-unsplittable or R-strongly-unsplittable, or

2. F is strongly unsplittable and L-splittable and R-splittable, and at least one of the T machines
from the L- and R-splittability conditions is uniform.5

Given the equivalence of these notions for SFE functionalities (Appendix B), we have:

Corollary 3.4. If the SHOT assumption is true, and F is a strongly unsplittable, SFE functionality,
then F is complete.6

3.2 Interpreting (L-/R-) Splittability & Strong Unsplittability

Nearly all functionalities of interest can be quite easily seen to be either splittable or strongly
unsplittable, and thus we informally summarize our results by stating that every “natural” func-
tionality is either useless or complete. However, there are functionalities with intermediate crypto-
graphic power, which are neither splittable or strongly unsplittable. We give concrete examples of
such functionalities in Appendix A, and here briefly describe properties of such functionalities:

5One of these machines is used as a subroutine in a protocol; the other T machine is only used by the simulator.
We can allow both T machines to be non-uniform if we permit UC protocols to be non-uniform.

6Though similar, this corollary is somewhat incomparable to the main result of [kkk+11]. The two works use
fundamentally different formulations of SFE functionalities. In ours (following our convention of Section 2.2) the
functionality gives an empty output to both parties after receiving the first party’s input. In [kkk+11], the func-
tionality gives no output (except to the adversary) until receiving both party’s inputs. Our result also applies to
randomized functions, whereas the results of [kkk+11] involve only deterministic functionalities.
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First, a functionality’s behavior may fluctuate in an unnatural way with respect to the security
parameter. This may force every environment’s distinguishing probability in the splittability def-
inition to be neither negligible (as required for splittability) nor noticeable (as required for strong
unsplittability). Second, a functionality may have cryptographically useful behavior that can only
be accessed by non-uniform computations, while uniform computations (such as a hypothetical
commitment protocol using such a functionality) can elicit only trivial behavior. Both of these
properties heavily rely on low-level technical restrictions used in the UC framework, and can easily
be mitigated by relaxing these restrictions — for example, by considering notions of “infinitely-
often useless/complete” or by allowing protocols to be nonuniform machines. We point out that
analogous gaps also appear in other contexts involving polynomial-time cryptography [hnrr06].

Finally, as in the introduction, interpret the splittability definitions as a 2-party game between
T and Z. Then splittability corresponds to a winning strategy for T (i.e., a fixed T which fools all
Z), and strong unsplittability corresponds to a winning strategy for Z (i.e., a fixed Z which detects
all T ). Yet some functionalities may not admit winning strategies for either player. (Similarly,
there may exist an environment which can distinguish F from FTsplit with noticeable probability
for every T , but the distinguishing bias may necessarily depend on T .) An example of such a
functionality is presented in Appendix A; however, the functionality is outside the class considered
in this work (it cannot be expressed as a circuit family with a priori bound on input length). We
do not know whether similar behavior is possible within the scope of our results.

4 UC-Equivocal Commitment from R-Strong Unsplittability

In this section we show that any R-strongly unsplittable (symmetrically, L-strongly unsplittable)
functionality F can be used to construct a certain kind of commitment protocol. The resulting
protocol has a UC simulation only in the case where the receiver is corrupt (i.e., an equivocating
simulator). Its other properties are of the standalone-security flavor. We call such a protocol a
UC-equivocal commitment. Later in Section 6 we show that such a protocol can be transformed
into a fully UC-secure protocol for commitment. From this it follows that F is complete. The other
case of our main theorem is simpler, similar in its techniques, and presented in Section 5.

Simplest instantiation. We first motivate the general design of the protocol with a concrete
example. Suppose F is a functionality which takes input x from Bob and gives f(x) to Alice, where
f is a one-way function. Then our UC-equivocal commitment using F is as follows:

Commit phase; Alice has input b. Alice commits to b using a standalone-secure commitment
protocol COM. Let C denote the commitment transcript, and let σ denote the noninteractive
decommitment (known only to Alice).

Reveal phase Alice sends b to Bob. Bob chooses a random string x, and sends it to F ; Alice
receives y = f(x). Both parties engage in a standalone-secure protocol for the following
functionality, with common input (C, b):

“On input (σ, z) from Alice, if σ is a valid COM-opening of C to value b, then give
output z to Bob; otherwise give output f(z) to Bob.”

Alice uses (σ, y) as input to this subprotocol. Bob accepts iff he receives output f(x).

The protocol has a straight-line simulator for a corrupt Bob. The simulator commits to a junk
value, then obtains Bob’s input x in the reveal phase. As such, it can give (⊥, x) as input to
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the subprotocol, and Bob will receive output f(x) just as in the real interaction. Note that the
subprotocol need only be standalone-secure — the simulator runs the subprotocol honestly, and in
particular does not need to rewind the subprotocol.

The protocol is also binding in a standalone-security sense. Intuitively, for an equivocating Alice
to succeed, she must provide an input (σ, z) to the subprotocol, where either σ is a valid COM-
opening of C to 1− b, or y = f(z). The former is infeasible by the standalone binding property of
COM; the latter is infeasible because it requires Alice to invert the one-way function f .

Connection to splittability. How does this simple protocol relate to the notion of splittability?
Observe that Bob’s strategy in our protocol is the obvious strategy for the environment when
showing that F is strongly unsplittable; namely, choose a random x, send it as Bob, and see
whether Alice receives f(x). An honest Alice and the simulator are able to succeed because they
effectively “bypass” one of the two applications of f — either the one that happens within F (by
virtue of the simulation) or the one that happens within the subprotocol (by knowing the correct
σ value). These interactions are analogous to the environment interacting with a single instance
(not a split instance) of F in the splittability game. However, a cheating Alice is “stuck” between
two applications of f , analogous to the role of T in the splittability game.

Generalizing to our final protocol. Following the ideas from the previous paragraph, we
generalize the protocol as follows. As before, the commit phase of our final UC-equivocal protocol is
essentially just a commitment under a statistically binding, standalone-secure commitment protocol
(for technical reasons, it must have a rewinding extracting simulator). Again, the non-trivial part
of our protocol is the reveal phase. To be UC-equivocal, the honest sender and the simulator (who
can each cause the receiver to accept) must each have some advantage over a cheating sender (who
should not be able to force the receiver to accept).

Imagine the sender and receiver both connected to two instances of F , in opposite roles (similar
to the splittability interaction in Figure 1b). Further imagine that the receiver is running the code
of Z∗F , the distinguishing environment from the definition of strong unsplittability.

Let us denote one instance of F (the one associated with FL) as Fideal. In our protocol, this
instance will indeed be an ideal instance of F , as our protocol is in the F-hybrid model. As such,
the simulator for a corrupt receiver is able to bypass this instance — by which we mean that the
simulator can directly obtain the receiver’s inputs and set its outputs on behalf of Fideal. The
simulator then simply “re-routes” the receiver’s connection with Fideal directly into the second
instance of F . Thus, from the receiver’s point of view, Z∗F appears to be interacting with only a
single instance of F (Figure 2a).

An honest sender’s only advantage is that the underlying standalone commitment can indeed be
opened to the value being claimed, whereas a cheating sender cannot generate a valid decommitment
to the false value it claims. We would like to translate this advantage into a similar “bypassing”
capability as the simulator. Let us denote the other instance of F (the one associated with FR) as
F̃virt (virtual-F), and modify it as follows. It now takes as input the commitment-phase transcript
C and the purported value b. It also takes as input a candidate decommitment string σ from the
sender. If σ is indeed a valid decommitment of C to b, then F̃virt allows the sender to bypass just
as above (directly giving the receiver’s inputs to the sender and allowing the sender to directly fix
the receiver’s outputs). Otherwise, the functionality simply acts exactly like F . Now the honest
sender can bypass F̃virt so that, again, from the receiver’s point of view, Z∗F is interacting with
a single instance of F (Figure 2b). This advantage for the honest sender holds even if we have
just a standalone-secure protocol for F̃virt (importantly, since constructing a UC-secure protocol
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Figure 2: Intuition behind the reveal phase of ΠFEqCom and its security properties.

for F̃virt in the F-hybrid model might even be harder than our goal of constructing UC-secure
commitment in the F-hybrid model).

Finally, a cheating (equivocating) sender cannot provide such a value σ to F̃virt, so F̃virt behaves
just like an instance of F . Thus the cheating sender can bypass neither instance and is “stuck”
between two instances of F (Figure 2c). The receiver’s environment Z∗F is specifically designed
to detect this difference, no matter what the cheating sender does. The distinguishing bias of
Z∗F is guaranteed to be noticeable, so by repeating this basic interaction a polynomial number of
times Z∗F can distinguish with overwhelming probability. The receiver will therefore accept the
decommitment if Z∗F believes it is interacting with instances of F rather than instances of FTsplit.

Technical subtleties. We outline some important technical considerations that affect the final
design of our UC-equivocal commitment protocol. First, our F̃virt subprotocol only has standalone
security, so to apply any of its properties may require using a rewinding simulation. If the F̃virt

subprotocol is ongoing while the parties interact with Fideal, or while the receiver is executing its
Z∗F instance, then these instances may also be rewound. Since rewinding Z∗F and Fideal would
jeopardize our ability to apply the splittability condition, we let our subprotocol only perform a
single activation of the virtual F per execution. We allow F to be reactive, so we need a way to
maintain the internal state of the virtual-F between activations of F̃virt. For this purpose we have
the F̃virt subprotocol share F ’s internal state between the two parties using a non-malleable secret
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sharing (NMSS) scheme, which was proposed for precisely this purpose [ips08].
The other important technicality is that activations of the F̃virt subprotocol and of Fideal are

decoupled, meaning that the receiver can observe the relative timings of these activations. This
differs from the splittability interaction, in which successive activations of FL and FR within FTsplit
are atomic from the environment’s perspective. This difference makes the “bypassing” technique
more subtle. For instance, when the receiver gives an input to the F̃virt subprotocol, the sender
must obtain this input, then make a “round trip” to Fideal to obtain the output that it forces to
the receiver through the F̃virt subprotocol. For this reason, and to avoid having the subprotocol
running while Fideal is accessed, we split such an activation (initiated by the receiver activating the
virtual F) of the virtual F into two phases: one for input-extraction and one for output-fixing.

Similarly, consider the case where the simulator is bypassing Fideal. In the real-process interac-
tion, every activation of Fideal is instantaneous, so the simulator must make such activations appear
instantaneous as well. In particular, the simulator has no time to make a “round-trip” to the F̃virt

subprotocol to determine the appropriate response to simulate on behalf Fideal. A moment’s re-
flection shows that the only way for the simulator to immediately give the correct response is if
it already knows the internal state of the virtual-F . For this reason, we let the subprotocol give
this information to the sender, even in its normal (non-bypassing) mode. Since this internal state
information then becomes available to a cheating sender as well, we require that F be strongly
unsplittable even when FR leaks its internal state in this way (i.e., R-strongly unsplittable).

We use only indistinguishability properties of the F̃virt subprotocol to prove the soundness of the
straight-line equivocating simulator. Indeed, the simulation is valid even against arbitrary corrupt
receivers, even though for simplicity we have portrayed here all receivers to be running Z∗F as
the protocol prescribes. We use the splittability condition to prove only the (standalone) binding
property of the commitment, where the receiver is honest and indeed runs Z∗F .

4.1 The Virtual-F Subprotocol

We specify the behavior of our virtual-F subprotocol in the form of an ideal functionality:

The functionality F̃virt for simulating activations of F , with bypass mode. Let NMSS =
(Share,Reconstruct) be a non-malleable secret sharing scheme that can support messages of length
2k. For notational simplicity, we suppose that in NMSS the pair (ε, ε) constitutes a valid secret
share of the value 02k. We also assume that 0k is the initial internal state of F . Let COM be
a standalone-secure, plain-model commitment protocol with non-interactive opening phase. Then
F̃virt is the non-reactive, 2-party ideal functionality defined as follows, with global security parameter
k:

1. F̃virt waits for an input of the form (x, q, σ, S1) from the sender, an input of the form (y, S2)
from the receiver, and a common input of the form (a, b, C).7

2. If Reconstruct(S1, S2) = ⊥, then output ⊥ to both parties and halt. Otherwise let S‖ŷ =
Reconstruct(S1, S2).

3. If σ is not a valid opening of transcript C to the value b (in COM), then we say that the
functionality is in virtual-F mode.

7By “common input” we simply mean a value that is public and agreed-upon by both sender and receiver. One
may imagine both parties submitting these values, and the functionality aborting if the two sets of values disagree.
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(a) If a = b-in, simulate an activation of F with internal state S, and input y from Bob (ŷ is
ignored). Suppose this activation ends with F delivering output p to Alice (at this point,
we ignore the output to Bob and the new internal state). Then let (S′1, S

′
2)← Share(S‖y)

and give output (p, S′1, S) to the sender and output S′2 to the receiver.

(b) If a = b-out, then simulate an activation of F with internal state S and input ŷ from
Bob (y is ignored). If a = a-in, then simulate an activation of F with internal state
S and input x from Alice. Suppose this activation ends with F in internal state S′

and generating output q for Bob (we ignore the output for Alice). Then let (S′1, S
′
2) ←

Share(S′‖0k) and give output (S′1, S
′) to the sender and output (q, S′2) to the receiver.

4. If σ is a valid opening of C to the value b (in COM), then we say that the functionality is in
bypass mode.

(a) If a = b-in, then let (S′1, S
′
2) ← Share(02k). Give output (y, S′1, S

′
2) to the sender and

output S′2 to the receiver.

(b) If a ∈ {b-out,a-in} then let (S′1, S
′
2)← Share(02k). Give output (S′1, S

′
2) to the sender

and output (q, S′2) to the receiver.

Standalone-secure protocol. Under the SHOT assumption, there exists a standalone-secure
protocol Πvirt-F for F̃virt.

4.2 UC-Equivocal Commitment

Let COM be a statistically-binding, standalone-secure commitment protocol with non-interactive
opening phase. Let Πvirt-F be as above, with respect to the same COM protocol. Let Z∗F be the
environment guaranteed by the R-strong-unsplittability of F , which outputs 1 with probability at
least 1

2 + δ(k) when interacting with an instance of F , and with probability at most 1
2 − δ(k) when

interacting with any appropriate instance of FTsplit. The function δ is guaranteed to be a noticeable

function. The protocol ΠFEqCom proceeds as follows, with security parameter k:

Commit phase: When the sender receives the command (commit, b):

1. The sender commits to b under the COM scheme. Let C be the resulting transcript, and let
σ be the non-interactive opening of C to b.

2. The sender uses a (standalone-secure) zero-knowledge proof of knowledge to prove knowledge
of (σ, b) such that σ is a valid opening of C to b.

Reveal phase: Both parties are connected to an ideal instance of the multi-session version of
F , which for clarity we denote Fideal. The sender is connected to Fideal in the role of Bob, and
the receiver is connected in the role of Alice. When the sender receives the command reveal, the
parties continue as follows:

1. The sender gives b to the receiver.

2. The parties do the following, N(k) = O(k/δ(k)2) times, each with a new session of Fideal:

(a) The sender initializes local value S1 := ε, and the receiver initializes local value S2 := ε.
(By our convention, these are valid NMSS shares of 02k, and 0k is the initial internal
state of F .)
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(b) [IdealActivation sequence] Whenever Z∗F generates a command x to send to Alice, the
parties do the following (see Figure 3a):

i. The receiver sends x to Fideal. Say the activation of Fideal ends with output q for
the sender and output p for the receiver.

ii. The sender provides input (⊥, q, σ, S1) and the receiver provides input (⊥, S2) to a
fresh instance of Πvirt-F , with common input (a-in, b, C). If the instance aborts or
outputs ⊥, or if Fideal is activated during the execution of Πvirt-F , then both parties
abort.

iii. The Πvirt-F instance eventually terminates with output (S′1, S
′
2) for the sender and

(q, S′2) for the receiver. The receiver delivers q to Z∗F (on its output tape from Bob)
and p to Z∗F (on its output tape from Alice). Both parties update S1 := S′1 or
S2 := S′2, appropriately.

(c) [VirtActivation sequence] Whenever Z∗F generates a command y to send to Bob, the
receiver notifies the sender to initiate an instance of Πvirt-F as follows (see Figure 3c):

i. The sender provides input (⊥,⊥, σ, S1) and the receiver provides input (y, S2) to a
fresh instance of Πvirt-F , with common input (b-in, b, C). If the instance aborts or
outputs ⊥, or if Fideal is activated during the execution of Πvirt-F , then both parties
abort.

ii. The Πvirt-F instance eventually terminates with output (y, S′1, S
′
2) for the sender and

output S′2 to the receiver. Both parties update S1 := S′1 or S2 := S′2, appropriately.

iii. The sender gives y as input to Fideal. Say the activation of Fideal ends with output
q for the sender and output p for the receiver.

iv. Same as steps (2.b.ii-iii) above, except the common input is (b-out, b, C). Using
Πvirt-F , the sender forces output q for the receiver, and the receiver delivers outputs
p and q to Z∗F .

(d) When Z∗F terminates, the receiver privately records its output, and notifies the sender
to begin the next iteration of this loop.

3. If a majority of the simulated Z∗F -instances output 1, then the receiver terminates with local
output (reveal, b). Otherwise the receiver aborts.

4.3 Security Properties

By inspection, it can be seen that an honest receiver accepts the decommitment of an honest sender
with overwhelming probability. This is because the view of Z∗F (each iteration of the main loop of
ΠFEqCom) is that of interacting with a single instance of F , just as in the splittability definition.8

In this case, Z∗F outputs 1 with probability at least 1
2 + δ(k). By the Chernoff bound, it is with

overwhelming probability that the majority of these Z∗F instances output 1, and the receiver outputs
(reveal, b).

We formalize the security of ΠFEqCom in the following lemmas.

Lemma 4.1. ΠFEqCom has a UC simulator in the case that the receiver is corrupt (i.e., an equivo-
cating simulator).

8Both parties are honest, but an external adversary may still interact with Fideal. This is the step where we must
use the fact that Fideal ignores all activations from the adversary.
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Figure 3: Interactions used in ΠFEqCom and its security proof. Grayed-out instances of F
are being bypassed (by the bypass mode of Πvirt-F or by virtue of the simulation).

Proof. Consider an interaction in ΠFEqCom between a corrupt receiver and a simulator who runs the
instance of Fideal and the sender (on the correct input) honestly. This interaction is identical to the
real-process interaction with the corrupt receiver.

Suppose the ith invocation of the Πvirt-F subprotocol does not abort or result in output of
⊥. Then by the standalone security of Πvirt-F , there is a (possibly rewinding) simulator that
can extract an effective input of the adversary, (ŷ, Ŝ2). The honest party’s output from Πvirt-F
is computationally indistinguishable from the prescribed output of F̃virt with the honest party’s
input and the adversary’s effective input. Thus Reconstruct(S1, Ŝ2) 6= ⊥ except with negligible
probability, where S1 is the secret-share from the (i − 1)th invocation of the Πvirt-F subprotocol.
Then by the security of the NMSS scheme, Ŝ2 = S2 except with negligible probability, where S2
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is the secret-share from the previous invocation.9 We conclude that the adversary’s effective input
has the form (·, S2) — a fact which we use below.

We now construct the simulator and argue its soundness via a sequence of hybrid interactions.
We have defined subprotocols IdealActivation and VirtActivation as part of the prescribed protocol.
Our simulation differs from the real interaction in that these subprotocols are carried out as follows:

SimVirtActivation: (Figure 3d) Same as VirtActivation, except that the simulator uses input (⊥,⊥,⊥, S1)
in the first execution of Πvirt-F (so ⊥ is given instead of σ). Then the simulator receives output
p (among others) from Πvirt-F , which it immediately delivers to the receiver on behalf of Fideal.
The simulator uses input (⊥,⊥,⊥, S1) in the second execution of Πvirt-F . The simulator no
longer receives S′2 as output but does receive S (the internal state of the virtual F) as output.
The simulator internally records S in the variable S∗.

SimIdealActivation: (Figure 3b) Same as IdealActivation, except that when the receiver provides
input x to Fideal, the simulator computes the output p by simulating an activation of F on
internal state S∗ (recorded as above) with input x from Alice. The simulator then gives input
(x,⊥,⊥, S1) to the execution of Πvirt-F (so ⊥ is given instead of σ, and x is given instead of
⊥).

We now define our sequence of hybrid simulations. Let F (k) be a (polynomial) bound on the
number of times the simulator calls its VirtActivation and IdealActivation subroutines combined.

Hybrid 0: As described above, the simulator honestly simulates the sender and the instance of
Fideal. This interaction is identical to the real-process interaction.

Hybrid (1, i): (for 0 ≤ i ≤ F (k)) Same as Hybrid 0, with the following modifications: After F (k)−i
invocations of either VirtActivation or IdealActivation, let S∗ denote the internal state of the
simulated Fideal. At this point the simulator generates a random Ŝ1 subject to the constraint
Reconstruct(Ŝ1, S2) = S∗‖0k, and updates S1 := Ŝ1. Thereafter, it replaces subroutines
VirtActivation and IdealActivation with their Sim- versions.

Hybrid 0 is equivalent to Hybrid (1, 0). The main step in this proof is to show the indistin-
guishability of Hybrids (1, i) and (1, i− 1). We do so below.

Hybrid 2: Same as Hybrid (1, F (k)), except that the sender uses the (rewinding) ZK simulator in
step 2 of the commit phase, to prove the given statement. Note that in this interaction, the
value σ is never used (in the commit or reveal phases). The hybrids are indistinguishable by
the security of the ZK proof scheme.

Hybrid 3: Same as Hybrid 2, except in the commit phase the sender chooses b independently at
random, rather than using the b given as input. The hybrids are indistinguishable by the
computational hiding property of COM, since the opening of this commitment is not used.

Hybrid 4: Same as Hybrid 3, except that the sender honestly proves the ZK proof in step 2 of the
commit phase. The hybrids are indistinguishable by the security of the ZK proof scheme.
This is our final hybrid, and although some intermediate steps employed rewinding, Hybrid
4 is a straight-line simulation.

We now prove that Hybrids (1, i− 1) and (1, i) are indistinguishable. The only difference is in
how the j = (F (k)− i+ 1)th call to either VirtActivation or IdealActivation is handled. We consider
two cases, depending in which kind of activation is being performed:

9S2 is included in the output of the honest party in this interaction, so it is well-defined.
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IdealActivation: Suppose the jth such call is to IdealActivation. Let FA(S, x), FB(S, x) and FS(S, x)
denote the distributions of output for Alice, output for Bob and internal state, respectively,
resulting from an activation of F with internal state S and Alice input x. Let S2 denote
the value known to the simulator at this point, and let S∗ denote the internal state of the
simulated Fideal.

In Hybrid (1, i− 1), the simulator computes p = FA(S∗, x) and q = FB(S∗, x) (implicitly, by
simulating Fideal) and then delivers p to the receiver. It then invokes Πvirt-F in bypass mode
with inputs q and S1, so that the receiver’s prescribed output includes the value q. Then
it updates S1 to be random subject to Reconstruct(S1, S

′
2) = FS(S∗, x)‖0k, and it updates

S∗ := FS(S∗, x).

In Hybrid (1, i), the simulator computes p = FA(S∗, x) (explicitly) and delivers it to the
receiver. It then invokes Πvirt-F in virtual-F mode with input x and a value S1 chosen so that
Reconstruct(S1, S2) = S∗‖0k. Thus the prescribed output of the receiver includes the value
q = FB(S∗, x), and the prescribed outputs S′1 and S′2 are a random sharing of FS(S∗, x)‖0k.
The sender’s prescribed output includes the value FS(S∗, x), which is stored in the variable
S∗.

It is straight-forward to verify that the joint distribution of the simulator’s S1, S
∗ variables,

the receiver’s output p, and the receiver’s prescribed output from F̃virt is identical in the two
hybrids, for any (effective) receiver input including the correct S2 value. By our previous
argument, the receiver’s effective input contains either the correct S2 value or a value of S2
that causes F̃virt to output ⊥, with overwhelming probability. Thus the views of the receiver
in the two hybrids are indistinguishable, by the standalone security of Πvirt-F .

VirtActivation: For the other case, suppose the jth such call is to VirtActivation. Similar to above,
let S1, S2, S

∗ be local variables to the simulation, and let FA, FB, and FS be the same, except
considering an input from Bob instead of Alice.

In Hybrid (1, i − 1), the simulator obtains the receiver’s input y from the bypass invocation
of Πvirt-F . It gives y to Fideal, resulting in an output of p = FA(S∗, y) to the receiver and
q = FB(S∗, y) to the sender. It then uses the bypass mode of Πvirt-F to give output q to
the receiver. Finally, S∗ is updated to FS(S∗, y), and the simulator updates S1 so that
Reconstruct(S1, S2) = FS(S∗, y)‖0k.

In Hybrid (1, i), the simulator obtains prescribed output p = FA(S∗, y) from Πvirt-F , which
it immediately delivers to the receiver on behalf of Fideal. In the second invocation of Πvirt-F
the receiver’s prescribed output includes q = FB(S∗, y), while the sender’s prescribed output
includes FS(S∗, y), which is stored in variable S∗. The prescribed values of S1 and S2 are a
random share of FS(S∗, y)‖0k.

Thus we again have that the joint distribution of the simulator’s S1, S
∗ variables, the receiver’s

output p, and the receiver’s prescribed output from F̃virt is identical in the two hybrids,
for any (effective) receiver input including the correct S2 value. As above, the hybrids are
indistinguishable.10

Hybrid 4 does not require the simulator to know the sender’s correct bit during the commit
phase, and therefore it is a valid UC simulation (i.e., it can be carried out in the Fcom-hybrid model).
The simulator implicit in Hybrid 4 — namely, one which commits to a random bit and then in the

10Technically, one must introduce another intermediate hybrid since Hybrids (1, i − 1) and (1, i) differ in the
executions of two Πvirt-F subprotocols. We omit the straight-forward details.
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reveal phase replaces VirtActivation and IdealActivation subroutines with their Sim- counterparts —
is our final equivocating UC simulator. We have shown that the real-process interaction with the
adversary and honest sender is indistinguishable from the ideal-process interaction with the given
simulator.

Lemma 4.2. If F is R-strongly-unsplittable, then ΠFEqCom is binding in the standalone sense. That
is, for all adversarial senders, there exists a (possibly rewinding) simulator that extracts a value b
during the commit phase such that Pr[receiver outputs (reveal, 1− b)] is negligible.

Proof. We construct the rewinding simulator and argue its correctness via the following sequence
of hybrids:

Hybrid 0: The real-process interaction, between a corrupt sender, honest receiver, and instances of
Fideal simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the receiver uses the rewinding proof-of-knowledge extrac-
tor in step 2 of the commit phase, to obtain a witness (σ, b) to the statement being proved.
The indistinguishability of these two hybrids follows from the security of the zero-knowledge
proof scheme. With overwhelming probability, b is the unique value to which the COM-
commitment C can be opened, by the statistical binding property of COM and the soundness
of the knowledge extraction. Hereafter, we condition on this event. Note that no instance
of F within ΠFEqCom, nor any instance of Z∗F simulated by the receiver is active during the
commit phase, so the rewinding does not affect them. This hybrid defines our extracting
simulator (where the extracted value is b obtained from the proof-of-knowledge extractor).
The remainder of the hybrids establish that Pr[receiver outputs (reveal, 1−b)] is negligible.
We therefore assume that the sender is attempting to decommit to 1− b in the reveal phase.

Hybrid 2: Same as Hybrid 1, except that every instance of the Πvirt-F protocol is replaced by the
receiver simulating an ideal instance of F̃virt and running the (possibly rewinding) simulator
with the sender. The two hybrids are indistinguishable by the standalone security of Πvirt-F .
We are trying to bound Pr[receiver outputs (reveal, 1− b)], and the receiver can only make
such an output if it reaches step 3 of the reveal phase. In particular, the receiver will abort
early if it is notified of any activation of Fideal during the execution of a Πvirt-F instance. Thus,
without loss of generality we assume that the sender does not interact with Fideal during any
instance of Πvirt-F .11 Similarly, the honest receiver’s simulated instance of Z∗F is not activated
at any time during the execution of a Πvirt-F instance. Thus no instance of either Z∗F or Fideal

is affected by the rewinding introduced in this hybrid.

Hybrid 3: Same as Hybrid 2, except that the collected instances of F̃virt in each main loop of ΠFEqCom
are replaced with a single instance of F that leaks its internal state to Alice. More formally,
we see that the parties’ prescribed interactions with F̃virt constitute a UC-secure protocol for
such a variant of F (in the case where there does not exist any valid opening of C to the value
1−b, as we conditioned on). We replace this (implicit) protocol with an ideal instance of such
an F and the appropriate simulator for the sender. These two hybrids are indistinguishable
by the security of this implicit protocol (from the statistical binding property of COM and
the non-malleability of NMSS).

11A corrupt sender could interact with Fideal and delay the notification sent to the receiver, but without loss of
generality the interaction with Fideal could itself be delayed instead.
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In each iteration of the main loop of the reveal phase, Hybrid 3 consists of an instance of Z∗F , Fideal,
and the new (leaky) instance of F , connected as in the R-splittability interaction. At no point are
any of these instances rewound. Everything else in the interaction (including the global environment
and the corrupt sender, each possibly being rewound) can therefore be taken as a machine T in the
definition of FTsplit. By the R-strong-unsplittability of F , we have that Pr[Z∗F outputs 1] < 1

2−δ(k).

For the receiver to output (reveal, 1 − b), a majority of these N(k) = O(k/δ(k)2) independent
splittability interactions must end with Z∗F outputting 1. By the Chernoff bound, this can happen
only with negligible probability. This completes the proof.

5 UC-Equivocal Commitment from L/R-Splittability

In this section we show that if F is strongly unsplittable, L-splittable, and R-splittable, then F can
be used to construct a UC-equivocal commitment protocol. This is the second case in our main
theorem.

5.1 Overview

Our approach for this case is quite similar to that of Section 4 — our protocol involves an ideal
instance of F along with a “virtual” instance of F within a standalone-secure subprotocol. The
receiver runs instances of Z∗F , the environment guaranteed by the strong unsplittability condition.
The receiver accepts the commitment if Z∗F believes it is interacting with a single instance of F as
opposed to some FTsplit. The primary difference from the previous section is in the “bypass mode”
of the virtual-F subprotocol. In this subprotocol, the bypass mode does not completely bypass the
virtual F , but instead it simply leaks the internal state of the virtual F to the receiver. Intuitively,
leaking the internal state is sufficient to “fool” Z∗F , since F is L/R-splittable. We have the following
observations about the protocol (Figure 4):
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Figure 4: Interactions in ΠFEqCom and its security proof.

• An honest sender who can activate the bypass mode of the F̃virt subprotocol is situated
between an ideal instance of F and (intuitively) an instance of F that leaks its internal state.
By the R-splittability of F , there exists a T2 that the sender can execute to make two such
instances behave to the sender as a single instance of F . Note that T2 must be a uniform
machine, since it is used as a subroutine in the description of the protocol.
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• The simulator can honestly simulate Fideal while also having access to its internal state. The
remainder of the simulator is intuitively between this simulated instance of F and a (normal,
non-bypassed) instance of F . By the L-splittability of F , there exists a T1 that the simulator
can execute to make these two instances behave to the sender as a single instance of F .
Note that T1 need not be uniform, since it is used only by the simulator. Finally, since the
simulator is designed to interact with a corrupt receiver, T1 and T2 must be able to “fool”
every environment, not just the environment Z∗F from the strong unsplittability condition.

• A cheating sender cannot obtain the internal state from either the ideal or the virtual instance
of F . As such, it plays the role of the machine T in the (normal) splittability interaction.
By the strong unsplittability of F , the receiver’s environment Z∗F can detect a noticeable
deviation from the expected behavior.

In this section, we never have need to completely bypass an instance of F . The technical compli-
cations described in Section 4 are not present here, and the actual construction is a much more
straight-forward implementation of the intuition described above.

5.2 The Virtual-F Subprotocol

Let NMSS = (Share,Reconstruct) be a non-malleable secret sharing scheme that can support mes-
sages of length k. For notational simplicity, we suppose that in NMSS the pair (ε, ε) constitutes
a valid secret share of the value 0k. We also assume that 0k is the initial internal state of F .
Let COM be a standalone-secure, plain-model commitment protocol with non-interactive opening
phase. Then F̃virt is the non-reactive, 2-party ideal functionality defined as follows, with global
security parameter k:

1. F̃virt waits for an input of the form (x, σ, S1) from the sender, and an input of the form
(y, S2) from the receiver, and a common input of the form (a, b, C).

2. If Reconstruct(S1, S2) = ⊥, then output ⊥ to both parties and halt. Otherwise let S =
Reconstruct(S1, S2).

(a) If a = a-in then simulate an activation of F on internal state S and input x from Alice
(y is ignored). If a = b-in, then simulate an activation of F on internal state S and
input y from Bob (x is ignored). Suppose the activation results in new internal state S′,
output p for Alice and output q for Bob.

(b) Generate (S′1, S
′
2) ← Share(S′) and give output (q, S′2) to the receiver. If σ is a valid

opening of commitment transcript C to value b, then we say that the functionality is
in bypass mode. In bypass mode, give output (p, S′1, S) to the sender. Otherwise, in
normal mode give output (p, S′1) to the sender.

Under the SHOT assumption, there exists a standalone-secure protocol Πvirt-F for F̃virt.

5.3 UC-Equivocal Commitment

Let COM be a statistically-binding, standalone-secure commitment protocol with non-interactive
opening phase. Let Πvirt-F be as above, with respect to the same COM protocol. Let Z∗F be the
environment guaranteed by the strong unsplittability of F , which outputs 1 with probability at
least 1

2 + δ(k) when interacting with an instance of F , and with probability at most 1
2 − δ(k) when

interacting with an instance of FTsplit. The function δ is guaranteed to be a noticeable function. Let
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T1 and T2 be the machines guaranteed by the L- and R-splittability of F , respectively. We require
T2 to be a uniform machine. The protocol ΠFEqCom proceeds as follows, with security parameter k:

Commit phase: When the sender receives the command (commit, b):

1. The sender commits to b under the COM scheme. Let C be the resulting transcript, and let
σ be the non-interactive opening of C to b.

2. The sender uses a (standalone-secure) zero-knowledge proof of knowledge to prove knowledge
of (σ, b) such that σ is a valid opening of C to b.

Reveal phase: Both parties are connected to an ideal instance of the multi-session version of
F , which for clarity we denote Fideal. The sender is connected to Fideal in the role of Bob, and
the receiver is connected in the role of Alice. When the sender receives the command reveal, the
parties continue as follows:

1. The sender gives b to the receiver.

2. The parties do the following, N(k) = O(k/δ(k)2) times, each with a new session of Fideal:

(a) The receiver internally simulates a fresh instance of Z∗F on security parameter k. The
sender internally simulates a fresh instance of T2 on security parameter k.

(b) The sender initializes local value S1 := ε, and the receiver initializes local value S2 := ε.
(By our convention, these are valid NMSS shares of 0k, the initial internal state of F .)

(c) Whenever Z∗F generates a command x to send to Alice, the parties do the following:

i. The receiver sends x to Fideal, resulting in output p for the receiver and q for the
sender. The sender gives q to T2 on behalf of FL.

ii. When T2 generates an input x′ for FR, the parties initiate a new instance of Πvirt-F .
The sender provides input (x′, σ, S1) and the receiver provides input (⊥, S2), with
common input (a-in, b, C). If Fideal is activated during the execution of Πvirt-F , both
parties abort.

iii. The Πvirt-F instance terminates with output (p′, S′1, S) to the sender and (q′, S′2) to
the receiver. The sender gives p′ and S to T2 on behalf of FR (as the output and
internal state, respectively). The receiver gives both p and q′ to Z∗F , on its Alice- and
Bob- input/output tapes, respectively. Both parties update S1 := S′1 and S2 := S′2,
appropriately.

(d) Whenever Z∗F generates a command y to send to Bob, the parties do the following:

i. The parties initiate a new instance of Πvirt-F . The sender provides input (⊥, σ, S1)
and the receiver provides input (y, S2), with common input (b-in, b, C). If Fideal is
activated during the execution of Πvirt-F , both parties abort.

ii. The Πvirt-F instance terminates with output (p, S′1, S) to the sender and (q, S′2) to
the receiver. The sender gives p and S to T2, on behalf of FR (as the output and
internal state, respectively).

iii. When T2 generates an input y′ to FL, the sender gives input y′ to Fideal, resulting in
output p′ for the receiver and q′ for the sender. The sender gives q′ to T2 on behalf
of FL. The receiver gives both p′ and q to Z∗F , on its Alice- and Bob- input/output
tapes, respectively. Both parties update S1 := S′1 and S2 := S′2, appropriately.

19



(e) When Z∗F terminates, the receiver privately records its output, and notifies the sender
to begin the next iteration of this loop.

3. If a majority of the simulated Z∗F -instances output 1, then the receiver terminates with local
output (reveal, b). Otherwise the receiver aborts.

5.4 Security Properties

Correctness of the protocol can be seen by inspection, similar to the previous section. We now
sketch the security of ΠFEqCom in the following lemmas.

Lemma 5.1. ΠFEqCom has a UC simulator in the case that the receiver is corrupt (i.e., an equivo-
cating simulator).

Proof. Many technical aspects of the proof follow those of the previous section, so we focus on
the important differences. We start by considering an interaction between an honest sender and
corrupt receiver, with all instances of Fideal being simulated honestly.

Hybrid 1: Same as the real interaction, except that instead of running the Πvirt-F protocol, the
sender gives its input to a simulated instance of F̃virt, and then runs the (possibly rewinding)
simulator for the Πvirt-F protocol with the receiver. As before, it is without loss of generality
that the rewinding does not involve any instance of Fideal. This hybrid is indistinguishable
from the real interaction by a straight-forward application of the standalone security of Πvirt-F .

Hybrid 2: Same as Hybrid 1, except that each time through the main loop of ΠFEqCom, the multiple

activations of F̃virt are replaced with a single instance of F that leaks its internal state to
Alice. These hybrids are indistinguishable by the non-malleability property of NMSS, and
the definition of F̃virt.

Hybrid 3: Same as Hybrid 2, except that instead of Fideal, T2, and this new instance of F each
time through the main loop of ΠFEqCom, the sender uses an instance of Fideal that leaks its
internal state to Bob, T1, and a (non-leaking) instance of F , respectively. Such a change is
indistinguishable by the L/R-splittability of F .12

Hybrid 4: Same as Hybrid 3, except that the plain (virtual) instance of F is replaced with successive
executions of the Πvirt-F protocol, in which the sender does not provide the value σ. These
hybrids are indistinguishable, by essentially the same argument for Hybrids 1–2 but in reverse.
We also use the fact that Bob’s prescribed output from F̃virt is identical whether F̃virt is in
bypass or normal mode. In this hybrid, the value σ is not used in the reveal phase.

Hybrid 5: Same as Hybrid 4, except that the sender commits to an independently random bit in
the commit phase. Using the same argument as earlier, we apply the security of the ZK
proof system and the computational binding property of COM to show that these hybrids are
indistinguishable.

Although the intermediate steps involved rewinding, Hybrid 5 is a straight-line simulation. The
simulation implicit in Hybrid 5 (namely, it commits to a random bit, then in the reveal phase
honestly simulates Fideal while leaking internal state to T1 and using the normal mode of Πvirt-F ) is
our final UC simulation, since it does not require the value b until the reveal phase.

12Here it is important that T1 and T2 be able to “fool” all environments, not just Z∗F .
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Lemma 5.2. ΠFEqCom is binding in the standalone sense. For all adversarial senders, there ex-
ists a (possibly rewinding) simulator that extracts a value b during the commit phase such that
Pr[receiver outputs (reveal, 1− b)] is negligible.

Proof. This proof is similar to the analogous one in the previous section. The rewinding simulator
uses the proof-of-knowledge extractor in step 2 of the commit phase to extract b. To show that
Pr[receiver outputs (reveal, 1 − b)] is negligible, we condition on the event that the standalone
commitment C can be opened only to a unique value b. In that case, a corrupt sender cannot use
the bypass mode of Πvirt-F . As before, we repeatedly apply the standalone security of Πvirt-F and
the specification of F̃virt to obtain an indistinguishable interaction that involves Z∗F , two instances
of F , and an adversarial machine between them just as in the unsplittability definition. Now neither
of the two instances of F leak their internal state, so we have an interaction as in the definition of
(plain) strong unsplittability. Therefore Z∗F outputs 1 with probability at most 1

2 − δ(k), by the
strong unsplittability of F . It follows that Pr[receiver outputs (reveal, 1− b)] is negligible.

6 Full-Fledged UC Commitment from Equivocal Commitment

We now show how the UC-equivocal commitment protocol from the previous sections can be used
to construct a full-fledged UC commitment protocol. We use the following additional properties
of the ΠFEqCom protocols from Section 4 and Section 5:

• To commit to b in ΠFEqCom, the sender commits to b under COM and gives a zero-knowledge
proof of knowledge of the opening to the commitment. Therefore, we could define a non-
interactive reveal phase in which the sender simply reveals σ (the non-interactive opening
to the COM commitment). It follows immediately from the statistical binding property of
COM that the ΠFEqCom commitment is statistically binding with respect to this alternative
non-interactive opening phase.

• The (equivocating) UC simulator for a corrupt receiver gives honest commitments to a random
bit in the commit phase.

Our final UC commitment protocol is as follows:

ΠFcom commitment protocol: Let NMSS = (Share,Reconstruct) be a non-malleable secret shar-
ing scheme, and let ΠFEqCom be the commitment protocol from Section 4. Our final commitment

protocol ΠFcom is defined as follows:

Commit phase: When the sender receives input (commit, b):

1. The receiver chooses random r ← {0, 1}k containing half 0s and half 1s, then commits to r
under ΠFEqCom.

2. The sender chooses random x← {0, 1}k and commits to x, bitwise under ΠFEqCom. Let Ci and
σi denote the commitment transcripts and non-interactive decommitment values, respectively,
for the commitment to bit xi. The sender gives gives z = b⊕ (

⊕
i xi) to the receiver.

3. Both parties engage in a standalone-secure subprotocol ρ for the following task, with common
input (C1, . . . , Ck) the sender providing input (x, σ1, . . . , σk):

(a) If σi is not a valid opening of Ci to xi, for any i, then abort.
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(b) Choose random s ← {0, 1}k containing half 0s and half 1s. Define x|s to be the string
in {0, 1,⊥}k, where

(x|s)i =

{
xi if si = 1

⊥ if si = 0

(c) Generate (α, β)← Share(s).

(d) Give output α to the sender and (β, x|s) to the receiver.

If the subprotocol aborts or outputs ⊥, both parties abort.

4. The receiver opens the ΠFEqCom commitment to r. If r does not contain half 0s and half 1s
(or if the commitment cannot be successfully opened), then the sender aborts. Otherwise the
sender gives x|r to the receiver.

5. The receiver outputs (committed).

Reveal phase: When the sender receives input (reveal):

1. The parties engage in a standalone-secure subprotocol φ for the following task, with common
input r, input α from the sender, and input β from the receiver:

(a) If Reconstruct(α, β) = ⊥ then output ⊥ to both parties.

(b) Otherwise, let s = Reconstruct(α, β). If s = r then choose random i∗ ← {1, . . . , k | ri =
0}. If s 6= r then choose random i∗ ← {1, . . . , k | ri = si = 0}. Give i∗ to the sender and
output ok to the receiver.

If the subprotocol aborts or gives output ⊥ then both parties abort.

2. The sender gives b and x to the receiver and opens the commitments C1, . . . , Ck using the
interactive opening of ΠFEqCom. The receiver aborts if for any i, the commitment Ci is not
opened to xi. The receiver further verifies that x is consistent with the values x|s and x|r from
the commit phase, and that z = b ⊕ (

⊕
i xi). If so, then the receiver outputs (reveal, b);

otherwise it aborts.

Lemma 6.1. ΠFcom is a UC-secure protocol for commitment, in the F-hybrid model.

Proof. The correctness of the protocol can be seen by inspection. We must demonstrate a simulation
for both of the following cases:

When the sender is corrupt: We construct the simulator via the following sequence of hybrids:

Hybrid 0: The real-process interaction, between an honest receiver and corrupt sender. All instance
of F are simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the receiver uses the simulator for ΠFEqCom to give an
equivocal commitment to r. Then the random selection of r can be postponed until step 4 of
the commit phase. These hybrids are indistinguishable by the security of ΠFEqCom.

Hybrid 2: Same as Hybrid 1, except that in step 4, r is chosen as s. This correlates r and s,
whereas before they were independent. However, the sender’s view is only influenced by s
within the ρ and φ subprotocols. The sender’s prescribed output in the ρ and φ subprotocols
is independent of s (in the φ subprotocol, the sender’s output is always a randomly chosen
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position at which r contains a zero). Thus by the security of the φ and ρ subprotocols,
these two hybrids are indistinguishable. As in all of the hybrids, the honest receiver will
only accept a decommitment if x is revealed to be consistent with both x|s and x|r. But in
this interaction, there is a unique value x̂ consistent with both x|s and x|r. The sender can
compute b̂ = z ⊕ (

⊕
i x̂i), and we have that Pr[receiver outputs (reveal, 1− b̂)] is zero.

Hybrid 2 defines our final simulator: it uses equivocal commitments to r, and then after running the
ρ subprotocol opens these commitments to r = s. As such, it learns all the bits of x and can extract
the committed value b̂. The soundness of this simulation follows from the indistinguishability of
Hybrids 0–2.

When the receiver is corrupt: We construct the simulator via the following sequence of hybrids:

Hybrid 0: The real-process interaction, in which an honest sender commits to b to an adversarial
receiver. All instances of F are simulated honestly.

Hybrid 1: Same as Hybrid 0, except that the sender runs the (rewinding) extracting simulator for
the receiver’s commitment of r in the ΠFEqCom protocol. The sender thus obtains a value
r that with overwhelming probability equals the value r to which the receiver opens the
commitment in step 4. These two hybrids are indistinguishable by the standalone security
property of ΠFEqCom.

Hybrid 2: Same as Hybrid 1, except that in step 3 the sender chooses random s ∈ {0, 1}k with half
0s and half 1s. It generates (α, β) ← Share(s). It then runs the (rewinding) simulator for
the ρ subprotocol with (β, x|s) as its input. These two hybrids are indistinguishable by the
standalone security of the ρ subprotocol.

Hybrid 3: Same as Hybrid 2, except that the sender chooses s as above, subject to the additional
constraint that s 6= r. Therefore we have that s ∨ r contains a zero in at least one position.
These two hybrids are statistically indistinguishable.

Hybrid 4: Same as Hybrid 3, except that after step 1 of the commit phase, the sender chooses
a random value i∗ ← {i ∈ {1, . . . , k} | ri = 0}. Then the sender chooses the values
x1, . . . , xi∗−1, xi∗+1, . . . , xk, z to be random bits, and sets xi∗ = b ⊕ z ⊕ (

⊕
i 6=i∗ xi). Later,

in step 3 the sender chooses s ∈ {0, 1}k subject to the constraint that s ∨ r contains a zero
in position i∗. Hybrids 3 and 4 are thus identically distributed. Note that b is used only
to determine the value xi∗ . In the commit phase, the value xi∗ is used only to generate a
ΠFEqCom-commitment, except with overwhelming probability (corresponding to the event that

the receiver opens its ΠFEqCom-commitment to a different value of r than was extracted in step
1, and the sender would have to explicitly reveal xi∗ in step 4).

Hybrid 5: Same as Hybrid 4, except the sender runs the UC simulator rather than the honest
protocol for all of the ΠFEqCom commitments it sends and opens. These hybrids are indistin-

guishable by the security of ΠFEqCom. Importantly, this interaction does not use the value of
xi∗ (and thus b) during the commit phase (either by sending it to the receiver of as input to
a ΠFEqCom commitment). We also know that the ΠFEqCom simulator gives honest commitments
to randomly chosen bits in the commit phase. Thus we also make the following modification
which does not affect the distribution of the interaction: all xi values (including xi∗) are
chosen to be the random bits that are honestly committed to by the ΠFEqCom simulator. Only
after step 1 of the reveal phase do we then change xi∗ to the value b⊕ z ⊕ (

⊕
i 6=i∗ xi).
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Hybrid 6: Same as Hybrid 5, except that the sender does not pick i∗ during the commit phase.
Instead it chooses s as it did in Hybrid 3. Then after step 1 of the reveal phase, it determines
a position i∗ at which s ∨ r contains a zero (which must exist because of how s is chosen).
This hybrid is distributed identically to Hybrid 5.

Hybrid 7: Same as Hybrid 6, except that instead of honestly running the φ subprotocol, it simulates
an ideal instance of the appropriate functionality and uses the (rewinding) simulator on the
adversary. By the standalone security of φ, the hybrids are indistinguishable. Furthermore,
the sender obtains the receiver’s effective input β′ to φ. By the non-malleability of NMSS, we
have that with overwhelming probability, either the sender aborts after the φ subprotocol, or
the sender’s output from the φ subprotocol is distributed identically to the i∗ value chosen
by the sender at this point. Thus it does not affect the interaction for the sender to use the
output of φ as its i∗ value, instead of how i∗ is chosen in Hybrid 6. This hybrid therefore
does not use the value s generated in the commit phase.

Hybrid 8: Same as Hybrid 7, except that the sender runs the ρ and φ subprotocols honestly. By the
same arguments as in Hybrids 2–3 and 7, we have that Hybrids 7 and 8 are indistinguishable.
We note that because the sender is giving honest ΠFEqCom commitments to the bits x1, . . . , xk
in the commit phase, it has appropriate inputs σ1, . . . , σk to give as input to the ρ subprotocol
to yield the correct prescribed output for the receiver.

Hybrid 9: Same as Hybrid 8, except that the sender does not extract the value r; instead it runs
the ΠFEqCom protocol receiver protocol honestly in step 1 of the commit phase. The value
r is no longer being used in the commit phase in these interactions, so these hybrids are
indistinguishable from the standalone security property of ΠFEqCom.

Hybrid 9 finally defines our simulation: the sender commits to random values x in the commit
phase. Then later in the reveal phase, the sender learns a position i∗ at which r ∨ s contains a
zero (except in the negligible-probability event that r = s). It then equivocates on the opening
of commitment #i∗, if necessary, to decommit to the value of its choice. The soundness of the
simulation follows from the indistinguishability of Hybrids 0 and 9.

7 Necessity of SHOT Assumption & Strong Unsplittability

The SHOT assumption is necessary for many strongly unsplittable functionalities (e.g., coin-tossing,
commitment) to be complete under static corruption [dno10, mpr10]. Thus the SHOT assumption
is the minimal assumption for a completeness result such as ours.

In this work we showed that strong unsplittability (and its variants) is a sufficient condition for
completeness. Ideally, we would like to prove that it is also a necessary condition; currently we are
able to prove that several minor modifications of strong unsplittability are necessary.

To prove necessity of some kind of strong unsplittability, we show that F is not complete by
showing that there is no UC-secure protocol for coin-tossing in the F-hybrid model. Consider an
interaction involving a purported coin-tossing protocol in the F-hybrid model. This protocol invokes
possibly many instances of F , and it is likely that we will have to apply some property of F to each
of them (indeed, this is what we must do in the proofs below). If F is not strongly unsplittable,
then for every suitable Z, there is a machine T so that ∆split(Z,F , T , k) is non-noticeable — that
is, negligible only for infinitely many values of the security parameter. In the following proofs, we
must apply this condition in a hybrid argument, each time with a slightly different environment
and thus a potentially different subset of security parameter values. There may not be an infinite
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number of security parameter values for which every step of the hybrid argument succeeds, and
thus we must settle for slight variants of strong unsplittability in the following:

Lemma 7.1. If F is complete, then F is infinitely-often strongly unsplittable for uniform T .

Here “infinitely-often” refers to the relaxation in which ∆split(Z,F , T , k) is non-negligible (rather
than noticeable, as required in the usual definition).

Proof. We prove the contrapositive. Suppose that F is not as in item (1), then for every suitable
Z there is a uniform machine T so that ∆split(Z,F , T , k) is negligible. It suffices to show that there
is no protocol for coin-tossing in the F-hybrid model.

Suppose for contradiction that π is such a secure protocol for coin-tossing. Let Z be the
environment that invokes one session of coin tossing and outputs 1 if both parties output the same
coin. Then we inductively define sequences of machines Ti and Zi as follows. Zi is the environment
that internally simulates Z and two honest parties running π. For j > i, the jth instance of F
invoked by π is simulated internally to Zi. The ith instance of F is routed to an external ideal

instance of F . And for j < i, the jth instance of F is simulated internally as FTjsplit rather than
F . The machine Ti is defined as the uniform machine that “fools” environment Zi. By a straight-
forward hybrid argument, we have that Z outputs 1 with overwhelming probability when invoking
an instance of π in which the ith instance of F is replaced by FTisplit.

By applying the UC-security of π, we can replace Alice (who is honestly running π) and the
collection of FL instances in this interaction with an ideal instance of coin-tossing (and appropriate
simulator). Similarly, we can replace Bob and the set of FR instances in the interaction with
another ideal instance of coin-tossing. Both of these changes have only a negligible effect on the
outcome of the interaction, by the security of π. Now Z receives two coins from totally independent
instances of an ideal coin-tossing functionality, and outputs 1 with overwhelming probability. Since
Z only outputs 1 if its two inputs agree, this is a contradiction. Thus, no such protocol π can
exist.

Lemma 7.2. If F is complete, then the multi-session version of F is strongly unsplittable.

Proof. Let F̂ denote the multi-session version of F , and suppose it is not strongly unsplittable.
It suffices to show that the fair coin tossing functionality Fcoin cannot be securely realized in the
F-hybrid model. For the sake of contradiction, let π be such a purported protocol. Consider an
environment Z that internally simulates two honest parties executing one instance of the π protocol,
where the communication is routed to an external instance of F̂ . The environment outputs 1 if
both parties obtain the same output from π. By the correctness of π, we have that Z outputs 1
with overwhelming probability.

This environment Z is uniform and suitable, in the sense of the splittability definition. Then
since F̂ is not strongly unsplittable, there exists a machine T such that ∆split(Z, F̂ , T , k) is non-

noticeable. In other words, there exists a negligible function ν so that ∆split(Z, F̂ , T , k) ≤ ν(k) for
infinitely many k.

The interaction with Z and F̂ is infinitely-often indistinguishable from an interaction with Z
and F̂Tsplit. Take this interaction and “repackage” it as follows: Take the honest Bob out of the

environment, and subsume T and F̂L into the environment, so that only F̂R and the honest Bob
are outside of the environment. We also insert a dummy adversary relaying between T (within
the environment) and the external F̂R. We apply the security of π to this interaction, replacing
the dummy adversary, F̂R, and honest π with a simulator S, ideal functionality Fcoin, and dummy
protocol, respectively. The resulting interaction is indistinguishable by the security of π.
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Again we repackage the resulting interaction, so that only the honest Alice and F̂L are outside
of the environment (along with a dummy adversary interacting as Bob with F̂L). Again, we apply
the security of π to replace the real interaction with an ideal one involving an instance of Fcoin.

However, in this final interaction, the environment outputs 1 if two independent, ideal instances
of Fcoin output the same bit. This can only happen with probability 1/2, but by the indistinguisha-
bility of the interactions we see that it in fact the environment must output 1 with probability
negligibly close to 1, for infinitely many values of k. This is a contradiction, so the purported
protocol π cannot exist.

Lemma 7.3. If F is complete then F is strongly unsplittable with respect to environments with
multi-bit output.

Proof. We show that if the condition in the lemma is not met, then the multi-session version of F
is not strongly unsplittable (with respect to environments with single-bit output), as in Lemma 7.2.
Let Z be a suitable (single-bit output) environment that expects to interact with F̂ , the multi-
session version of F . Let N(k) be a polynomial upper bound on the number of instances of F
invoked by Z, on security parameter k.

Define Z∗ to be the environment that first chooses a random i∗ ← {1, . . . , N(k)}. It then
internally simulates Z and all sessions of F , except for the i∗-th instance, which it routes to an
external instance of F . When the internal instance of Z terminates, Z∗ outputs the entire view of Z,
as well as the output of Z. Since Z∗ is a suitable and uniform (multi-bit output) environment that
expects to interact with a single instance of F , there exists a machine T such that ∆split(Z∗,F , T , k)
is non-noticeable. In other words, there is an infinite set K ⊆ N for which ∆split(Z∗,F , T , k) is
negligible when restricted to k ∈ K. Hereafter, we implicitly restrict the security parameter to the
set K.

Define Z∗j to be Z∗ conditioned on i∗ = j. We have that for each j, ∆split(Z∗j ,F , T , k) ≤
∆split(Z∗,F , T , k) ·N(k), and thus ∆split(Z∗j ,F , T , k) is negligible (for security parameters k ∈ K).

Let T̂ be the “multi-session” extension of T ; that is, for every session sid of F started within F̂L

or F̂R, T̂ creates a new session of T with the same sid, and routes it to the sessions of F within F̂L

and F̂R. In other words, F̂ T̂split behaves exactly as the multi-session version of FTsplit. We now argue

that T̂ demonstrates the non-strong-splittability of F̂ with respect to Z; i.e., ∆split(Z, F̂ , T̂ , k) is
non-noticeable.

We consider a series of hybrids indexed by h ∈ {0, . . . , N(k)}, which involve Z interacting with

F̂ T̂split for the first h sessions of F , and F̂ for the remaining sessions. Hybrids 0 and N(k) are the two

interactions referenced in the definition of ∆split(Z, F̂ , T̂ , k). Our invariant is that in every hybrid
h and for every session j, the input/output to the jth session of F is indistinguishable from that
induced by Z∗j above. This is trivially true in hybrid 0. Assume the invariant holds in hybrid h−1.

Hybrid h differs only in whether the h-th session of F is serviced by F or FTsplit. We have that

FTsplit and F induce indistinguishable input/output views when interacting with Z∗h, as this view is
included in the output of Z∗h; thus they must also do so against environments whose input sequence
to F is indistinguishable from that of Z∗h. Therefore the invariant holds for hybrid h. Finally, if
the input/output view of Z is indistinguishable between hybrids 0 and N(k), then it follows that
the output of Z is indistinguishable between these hybrids. This completes the claim, and we have
that the multi-session version of F is not strongly splittable.
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A Between Splittability & Strong Unsplittability

We give several examples of functionalities which are neither splittable nor strongly unsplittable,
for different reasons:
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Example: neither noticeable nor negligible. The following functionality has “fluctuating”
behavior as a function of the security parameter, even though it is uniform in the sense that its
internal code does not depend on the security parameter:

Let f be a one-way function, and consider an F which does the following. On input x ∈ {0, 1}∗
from Alice, compute y = f(x). If |x| is a tower-of-twos (22

2···
), then give y to Bob; otherwise give

x to Bob. Then F is not splittable because no efficient T can succeed against environments who
provide random inputs to F with tower-of-twos length. However, the “nontrivial” behavior of F
is out of reach for most values of the security parameter k (input lengths that are a tower-of-twos
length are either exponential in k, or logarithmic in k, in which case the OWF can be inverted in
polynomial time), so F is splittable for infinitely many values of k. This example was previously
observed in [mpr10].

Example: arms race. The following functionality does not allow either party to have a fixed
winning strategy in the splittability “game.”

Let f be a one-way function and consider a functionality F that does the following: Upon
receiving input (x, 1s) from Alice and 1t from Bob, it computes y = f(x). If s > t, it gives (y, 1s)
as output to Bob, but if t ≥ s, it gives (x, y, 1s) as output to Bob. For any fixed T , there exists a
polynomial bound (in k) on the maximum length of 1t it sends to F in the first activation. Then a
Z which picks a random x and sends (x, 1s = 1t+1) to F on behalf of Alice “wins” the splittability
game against this T , since T must now invert the one-way function. Similarly, for any fixed Z
there exists a polynomial bound on the length of 1s that it sends to F . A T which uses 1t = 1s+1

can “win” the splittability game against this Z because it obtains Alice’s entire input. Such a
functionality F admits an “arms race” between T and Z.13

Note that this F cannot be represented as a circuit family in which all inputs are bounded in
length by a fixed polynomial p(k) in the input parameter k. The discussion above crucially uses
the fact that there is no a priori limit to the length of inputs that the parties can give. Limiting
the input length allows a successful splitting strategy, by always providing 1t as large as allowed.
For this reason, such “arms race” behavior seems to require a functionality that is outside the class
of functionalities we consider in this work (defined formally in Section 2.2).

Example: uniform vs. non-uniform. The following functionality exhibits non-trivial behavior
that only non-uniform parties can access. An evasive set [gk92] is a non-empty set X in the
complexity class P, such that no uniform PPT machine can output an element of X except with
negligible probability.

Let f be a one-way function and X be an evasive set. Consider a functionality F which does
the following on input (x, z) ∈ {0, 1}k×{0, 1}k from Alice: Compute y = f(x). If z ∈ X, then give
output y to Bob; otherwise, give output (x, y) to Bob. The functionality is not splittable, because
the splittability definition permits a non-uniform environment that can choose a random string
x ∈ {0, 1}k, and has an element z ∈ X hard-coded. Any splitting strategy T would therefore be
required to invert the one-way function. On the other hand, F is not strongly unsplittable because
a uniform environment cannot give an element of X to F to access its non-trivial behavior. Then
T will always obtain the input x of Alice and its successful strategy is straight-forward.

As in the case of the negligible vs. noticeable gap, this gap can be essentially mitigated by
considering a notion of UC-realizable via non-uniform protocol. The only reason we restrict Z in
the strong unsplittability definition to be a uniform machine is because it is used as a subroutine
in a protocol.

13If F also gives 1t as output to Alice, then it is strongly unsplittable for reasons unrelated to the one-way function.
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B Variants of Splittability and their Equivalence

Because of some technical subtleties that arise in our construction, we introduced the notions of
L/R-strong-unsplittability. Here we show that for the case of secure function evaluation, these
notions are equivalent to the simpler definition of strong unsplittability. We also show an example
functionality for which the notions differ.

Definition B.1. A functionality F is a secure function evaluation (SFE) functionality if it
does the following (where fA and fB are deterministic functions):

1. On input x from Alice, if a value of y has previously been recorded, then sample a random
r ← {0, 1}k and give output fA(x, y, r) to Alice and fB(x, y, r) to Bob and stop responding. If
a value of x has previously been recorded, then stop responding. Otherwise, internally record
x and give output ⊥ to both parties.

2. On input y from Bob, if a value of x has previously been recorded, then sample a random
r ← {0, 1}k and give output fA(x, y, r) to Alice and fB(x, y, r) to Bob and stop responding. If
a value of y has previously been recorded, then stop responding. Otherwise, internally record
y and give output ⊥ to both parties.

Notably, our formulation of an SFE functionality prescribes an output for both parties when
the first party gives an input. This is slightly non-standard; typically an SFE functionality is
non-reactive in the sense that it does not give output (except a notification to the adversary) until
receiving inputs from both parties, as in [kkk+11]. However, the formulation here is in line with
the class of functionalities (Section 2.2) to which our results apply.

Lemma B.2. The notions of strong unsplittability, L-strong-unsplittability, and R-strong-unsplittability
are equivalent for SFE functionalities.

Proof. Suppose F is strongly unsplittable. Then the environment Z∗F samples inputs x and y to
give to F . Sending each of these inputs to F requires two activations of F . To show that Z∗F is
also successful in the L-strong-unsplittability definition, we need only ensure that Z∗F gives y first.

When Z∗F gives input y and is interacting with F , both parties will receive an empty output.
In FTsplit, the input y will go to FR. In order to give an empty output to Alice, the machine T
must provide some input y′ to FL. Now FR does not leak its internal state, and T is the only one
who has influenced FL’s internal state. So in this step T receives no more information than in the
(plain) splittability interaction. Then after Z∗F provides input x to FL, the machine T receives
output, but that functionality has no need for further internal state. So again T receives no more
information than in the (plain) splittability interaction. T ’s overall behavior is exactly the same as
in the (plain) splittability interaction, so again the environment successfully distinguishes F from
the FTsplit (with leaking internal state) with noticeable probability.

The reverse direction follows trivially: L/R-strong-unsplittability always implies (plain) strong
unsplittability.

A functionality that is strongly unsplittable but L/R-splittable. The notions of L/R-
splittability and plain splittability are not equivalent for all functionalities. Consider the following
(pathological) functionality F , which does the following on security parameter k: It first chooses
a random string s ← {0, 1}k and random bit b ← {0, 1}. It waits for input (t0, b0) from Alice and
(t1, b1) from Bob. If s 6∈ {t0, t1} then F gives output b to both parties. Otherwise, if s = ti for some
i ∈ {0, 1}, it gives output bi to both parties. (If both parties send ti = s, then the functionality
gives output b0 to both).
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Intuitively, F simply provides a fair coin toss. It is only with negligible probability that either
party can guess the secret value s to force the output to be bi. In fact, it is not hard to see
that F is equivalent to the fair coin-toss functionality (there is a UC-secure protocol for either
functionality, using the other as a setup). Similarly, F can be seen to be strongly unsplittable, via
the functionality that uses (0k, 0) as input for both parties and then checks whether both parties
receive the same output.

However, in the L-splittability interaction, T receives the internal state of FL, including the
secret value s. It can then receive the fair coin b generated from FR, and then send input (s, b)
to FL. Thus T is able to make both parties’ outputs match. This T demonstrates that F is
L-splittable (the functionality is symmetric with respect to Alice and Bob, and so a symmetric
argument holds for R-splittability).

We note that in this example, the difference between L- and plain splittability appears to be
an artifact of the code of F rather than the behavior of F . In this example, it was crucial
that s was chosen before the functionality received both inputs. Indeed, for all purposes which
don’t involve F ’s internal state, F is equivalent to a fair coin-toss functionality (which is L- and
R-strongly-unsplittable). The L/R-splittability properties of F also appear to be very sensitive to
minor changes in F ’s behavior. For this reason we offer the following conjecture:

Conjecture B.3. If F is strongly unsplittable, then F is equivalent (in the sense of UC-secure
reductions) to a functionality that is L-strongly-unsplittable.

If true, this conjecture would imply that every strongly unsplittable functionality is complete,
as well as eliminate the second case of our main construction.

C Unifying Existing Results

Several previous results have proved the completeness of various setup functionalities. In this
section, we show how our strong unsplittability characterization can “explain” and unify all these
disparate completeness results.

Common random string (CRS) and variants. The first functionality to be shown complete
for UC security is the common random string (CRS), in [clos02]. It is trivial to see that a CRS is
strongly unsplittable. The environment simply activates the setup and checks whether both parties
receive the same output. In any FTsplit, we have that FL and FR give completely independent
outputs regardless of T , so the parties’ outputs agree only with probability 1/2n (n is the length
of the reference string).14

The multi-string model [go07] captures situations in which many parties generate common ran-
dom strings, and a functionality enforces that a majority of them are honestly generated. Similarly,
the sunspots model [cps07] allows a reference string to be sampled from an adversarially-influenced
distribution. The setup functionality in each of these models crucially depends on the adversary’s
ability to interact with it, and thus it is beyond the scope of our characterization. Additionally in
the sunspots model, completeness can only be proven with respect to environments that influence
the setup functionality in non-degenerate ways.

14A similar argument applies to common reference strings selected from any distribution X for which Pr[x ←
X;x′ ← X : x 6= x′] is noticeable.
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Trusted hardware tokens & signature cards. Katz [k07] proposed a variant of the UC
framework in which parties have access to trusted hardware tokens. Although not often grouped
with other setup assumptions, these tokens can be modeled via an ideal functionality and thus be
considered within our classification.

A simplified formulation of the trusted hardware token functionality is as follows: It takes as
input the description of a Turing machine M from Alice and notifies Bob that the token is ready.
Thereafter, Bob can repeatedly give inputs x and receive the corresponding value M(x). In [k07],
the functionality even allows M to have a persistent state, but we do not need to exploit that
capability to demonstrate strong unsplittability.

To see that this hardware-token functionality is strongly unsplittable, consider an environment
Z∗F that chooses random string s and lets M(·) = F (s, ·), where F is a pseudorandom function.
It gives input M to Alice, waits for a notification from Bob, then chooses a random string x as
input for Bob and simply checks whether Bob receives the correct output F (s, x). In any splitting
strategy, T can query the pseudorandom function (sent to FL) on polynomially many inputs of its
choice. With overwhelming probability, T will never query the function on the input x chosen by the
environment. By the pseudorandomness of F , the correct value M(x) = F (s, x) is pseudorandom
given T ’s view. When T sends a Turing machine M ′ to FR, it is therefore only with negligible
probability then that M ′(x) = M(x).15

In a related work, Hofheinz et al. show the completeness of a special kind of hardware token
called a signature card [hmu07]. The analysis of the signature card functionality is even easier
since the functionality itself generates verification keys that are publicly announced. Following the
same argument as for the CRS functionality, we see that these tokens are strongly unsplittable
(surprisingly, for reasons unrelated to their ability to compute signatures).

Unsplittable deterministic finite functionalities. Maji et al. [mpr10] show that every de-
terministic, finite-memory functionality that is not useless (i.e., not splittable) is in fact complete.
Intuitively, a functionality whose input/output alphabet and internal memory is of constant size
cannot be in the space between splittable and strongly unsplittable. More formally, in the case of
non-reactive functionalities (i.e., secure function evaluation), a complete characterization of split-
tability is given by Prabhakaran & Rosulek [pr08]. In fact, the characterization is proven in a
way that is quite amenable to the strong unsplittability definition. For all unsplittable non-reactive
functionalities, they demonstrate a fixed environment that can distinguish between F and any FTsplit.
In the case where the functionality is finite, one can easily see that the environment has a constant
distinguishing bias.

For the case of reactive functionalities, [mpr10] explicitly contains an argument reminiscent of
strong unsplittability. They essentially show that if a finite F is not splittable, then an environment
which sends inputs uniformly at random can determine (with bias Θ(1)) a predicate P (x) on the
first input used by Alice in the first activation. There also exist inputs x0 and x1 satisfying
P (x0) 6= P (x1) which induce identical outputs for Bob in the first activation. The argument
in [mpr10] is combinatorial, using an understanding of such functionalities as finite automata.
From this we can see that F is strongly unsplittable by an environment Z∗F that chooses random
b← {0, 1}, instructs Alice to send xb in the first activation, and thereafter chooses random inputs

15In [k07], Alice is not notified of Bob’s accesses to the functionality, to fully model the fact that a hardware
token is a physical object that cannot “phone home” to its creator. Technically, this puts it outside of the class of
functionalities we consider in this work. Still, our construction works for the Z∗F we demonstrate here. More formally,
we can consider a hybrid interaction where instead of accessing Fideal, the adversary can answer his own queries with
random responses. Then the adversary never interacts with Fideal during the execution of the virtual-F subprotocol,
so the security argument goes through.
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for all the parties. Because the view of T is independent of b in the first activation, the environment
will detect the splitting strategy with constant bias.
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