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Abstract
In this paper we study the number of carries occurring while performing an addition

modulo 2k − 1. For a fixed modular integer t, it is natural to expect the number of carries
occurring when adding a random modular integer a to be roughly the Hamming weight of t.
Here we are interested in the number of modular integers in Z/(2k − 1)Z producing strictly
more than this number of carries when added to a fixed modular integer t ∈ Z/(2k − 1)Z.
In particular it is conjectured that less than half of them do so. An equivalent conjecture
was proposed by Tu and Deng in a different context [8].

Although quite innocent, this conjecture has resisted different attempts of proof [4, 5, 3, 2]
and only a few cases have been proved so far. The most manageable cases involve modular
integers t whose bits equal to 0 are sparse. In this paper we continue to investigate the
properties of Pt,k, the fraction of modular integers a to enumerate, for t in this class of
integers. Doing so we prove that Pt,k has a polynomial expression and describe a closed
form of this expression. This is of particular interest for computing the function giving Pt,k
and studying it analytically. Finally we bring to light additional properties of Pt,k in an
asymptotic setting and give closed forms for its asymptotic values.

1 Introduction
For a fixed modular integer t ∈ Z/(2k−1)Z, it is natural to expect the number of carries occurring
when adding a random modular integer a ∈ Z/(2k − 1)Z to be roughly the Hamming weight of
t. Following this idea, it is of interest to study the distribution of the number of carries around
this value. Quite unexpectedly the following conjecture, indicating a kind of regularity, seems to
be verified:

Conjecture 1.1. Let St,k denote the following set:

St,k =
{
a ∈ Z/(2k − 1)Z|r(a, t) > w(t)

}
,

and Pt,k the fraction of modular integers in St,k:

Pt,k = |St,k| /2k.

Then:
Pt,k ≤

1
2 .
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(We are fully aware that there are only 2k − 1 elements in Z/(2k − 1)Z, but we will often
use the abuse of terminology we made above and speak of fraction, probability or proportion for
Pt,k.) An equivalent conjecture was originally proposed by Tu and Deng [8] in a different context.
For the connection between the conjecture of Tu and Deng and the one given here, we refer the
reader to [4]. Tu and Deng verified computationally the validity of their assumption for k ≤ 29.

Up to now, different attempts [4, 5, 3, 2] were conducted and lead to partial proof of the
conjecture in very specific cases. A list of the different cases proven to be true can be found
in [5, Section 5]. Unfortunately a direct proof or a simple recursive one seems hard to find [5,
Section 4]. What however came out of these works is that supposing that t has a high Hamming
weight [3, 2] or more generally that its 0 bits are sparse [4, 5], greatly simplifies the study of Pt,k.
This condition casts a more algebraic and probabilistic structure upon it.

In this paper we restrict ourselves to this class of numbers. We do not prove any further
cases of the conjecture, but extend the study of Pt,k as a function of t for this class of numbers.
It is organized as follows. In the first section we recall definitions and results found in [4]. In
the second section we explore the algebraic nature of Pt,k, deduce a closed-form expression for
it as well as additional properties that this expression verifies. This is of particular interest for
computing the function giving Pt,k and studying it analytically. In the third section we analyse
the probabilistic nature of Pt,k, find useful closed forms for the asymptotic value of Pt,k and give
relations verified by different limits.

1.1 Notations
Unless stated otherwise, we use the following notations:

• k ∈ N is the number of bits we are currently working on.

• t ∈ Z/(2k − 1)Z is a fixed modular integer.

Moreover we will assume that t 6= 0. The case t = 0 is trivial and can be found in [4, Proposition
2.1].

The Hamming (or binary) weight of a natural or modular integer is defined as follows.

Definition 1.2 (Hamming Weight). • For a ∈ N, w(a) is the weight of a, i.e. the number
of 1s in its binary expansion.

• For a ∈ Z/(2k − 1)Z, w(a) is the weight of its unique representative in
{

0, . . . , 2k − 2
}
.

The number of carries is then defined as follows.

Definition 1.3. For a ∈ Z/(2k − 1)Z, a 6= 0, we set:

r(a, t) = w(a) + w(t)− w(a+ t),

i.e. r(a, t) is the number of carries occurring while performing the addition. By convention we
set:

r(0, t) = k,

i.e. 0 behaves like the binary string 1...1︸ ︷︷ ︸
k

. We also remark that r(−t, t) = k.

The set St,k is described as

St,k = {a|r(a, t) > w(t)} .

We recall that t can multiplied by any power of 2 (which corresponds to rotating its binary
expansion) without affecting the value of Pt,k [4, Proposition 2.2].
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1.2 A Block Splitting Pattern
To compute Pt,k, a fruitful idea is to split t in several blocks and perform the computation in
each block as independently as possible. Here we recall the splitting pattern defined in [4].

We split t( 6= 0) (once correctly rotated, i.e. we multiply it by a correct power of 2 so that its
binary expansion on k bits begins with a 1 and ends with a 0) in blocks of the form [1∗0∗] (i.e.
as many 1s as possible followed by as many 0s as possible) and write it down:

Definition 1.4.

t =
α1 {

1---1

β1 {

0---0
t1

...

αi {

1---1

βi {

0---0
ti

...

αd {
1---1

βd {
0---0
td

with d the number of blocks, αi and βi the numbers of 1s and 0s of the ith block ti. We define
B =

∑d
i=1 βi = k − w(t).

We define corresponding values for a (a number to be added to t) as follows:

Definition 1.5.

t =
α1 {

1---1

β1 {
0---0...

αi {
1---1

βi {

0---0...

αd {

1---1

βd {

0---0,

a = ?10-0{

γ1

?01-1{

δ1

...?10-0{

γi

?01-1{
δi

...?10-0{
γd

?01-1{
δd

,

i.e. γi is the number of 0s in front of the end of the 1s sub-block of ti and δi is the number of 1s
in front of the end of the 0s sub-block of ti. One should be aware that γis and δis depend on a
and are considered as variables.

Then αi − γi is the number of carries occurring in the ith block, but only if no carry comes
out of the previous block.

If a carry comes out of the previous block, the situation is more complicated because we must
take into account the fact that it will propagate in the 0 sub-block and could even propagate
into the 1 sub-block if δi = βi. Therefore we define γ′i as follows:

• if δi 6= βi, we define γ′i = γi as before,

• if δi = βi, we define γ′i = 0 (i.e. the carry coming from the previous block goes through the
0s sub-block so the 1s sub-block always produces αi carries).

We define δ′i = δi for notation consistency. Then αi − γ′i + δ′i is the number of carries occurring
if a carry comes out of the previous block.

Unfortunately the γ′is and δ′is are no longer pairwise independent. Indeed within the same
block, γ′i and δ′i are correlated. However each block remains independent of the other ones and
the distributions are as follows:

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .

P (γ′i = ci) 1+1/2βi
2

1−1/2βi
4 . . . 1−1/2βi

2ci+1 . . . 1−1/2βi
2αi

1−1/2βi
2αi 0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δ′i = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .

Finally, for computational reasons, it will sometimes be easier to count the number of carries
not occurring within a block. Hence we define εi = γi + δi and ε′i = γ′i +βi− δ′i. It is the number
of carries lost in the ith block depending on whether a carry comes out of the previous block or
not.

3



1.3 The Constrained Case
It is now time to define what we understand by sparse 0 bits. Informally we want each of
the blocks defined in the previous subsection to have a large number of 1 and only a few 0.
Mathematically we impose that t verifies the following constraint:

min
i

(αi) ≥
d∑
i=1

βi − 1 = B − 1 = k − w(t)− 1.

Under that hypothesis, if a is in St,k, then a carry has to go through each sub-block of 1s.
Therefore each block is independent of the other ones. Moreover it can be shown that we get an
equivalence between r(a, t) > w(t) and

∑d
i=1 γ

′
i <

∑d
i=1 δ

′
i, so that:

Proposition 1.6. [4, Proposition 3.8]

Pt,k = P

[∑
d

γ′ <
∑
d

δ′

]
.

Formulated in a different way, it also means that for such t ∈ Z/(2k − 1)Z, a ∈ St,k is
equivalent to

∑
d ε
′
i < B = k − w(t) and we get the following proposition:

Proposition 1.7. [4, Proposition 3.9]

Pt,k =
B−1∑
E=0

∑∑
d
ei=E

0≤ei

∏
d

P (ei)

where P (ei) is defined by:

P (ei) = P (ε′i = ei) =


2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.

As soon as a given set of βis and αis verifies the constraint mini αi ≥ B − 1, the above
expression shows that the value of Pt,k for the corresponding t and k only depends on the value
of the βis. Furthermore it does not depend on the order of the βis and so is a symmetric function
of them, whence the following definition.

Definition 1.8. We denote by:
fd(β1, . . . , βd)

the value of Pt,k for any t made of d blocks, with that set of βis and any set of of αis such that
mini αi ≥ B − 1. Obviously fd is a symmetric function of the βis.

This function will be our main object of interest in this paper.

2 A Closed-Form Expression for Pt,k

The main goal of this section is to describe a closed-form expression of fd and its properties.
After giving some experimental results in Subsection 2.1, we will prove that fd has the

following “polynomial” expression.

4



Proposition 2.1. For any d ≥ 1, fd can be written in the following form:

fd(β1, . . . , βd) =
∑

I⊂{1,...,d}

4−
∑

i∈I
βiP

|I|
d ({βi}i∈I),

where Pnd is a symmetric multivariate polynomial in n variables of total degree d−1 and of degree
d− 1 in each variable if n > 0. If n = 0, then P 0

d = 1
2 (1− Pd), the value computed in 3.12.

The proof of this result covers three subsections:

1. in Subsection 2.2, we split the expression giving fd as a sum into smaller pieces and establish
a recursion relation in d,

2. in Subsection 2.3, we study the expression of the residual term appearing in this relation,

3. in Subsection 2.4, we put the pieces back together to conclude.

Once this proposition is shown, we will be allowed to denote by ad,n(i1,...,in) the coefficient of
Pnd (x1, . . . , xn) of multi-degree (i1, . . . , in) normalized by 3d. In Subsection 2.5 we give simple
expressions for some specific values of ad,n(i1,...,in) as well as the following general expression.

Proposition 2.2. Suppose that i1 > . . . > im 6= 0 > im+1 = 0 > . . . > in = 0 and m > 0. Let
us denote by l the sum l = i1 + . . .+ in > 0 (i.e. the total degree of the monomial). Then

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m,

with

bd,nl,m =
n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|! .

Within bd,nl,m, the following notations are used:

• I = {m+ 1, . . . ,m+ i};

• J = {n+ 1, . . . , n+ j};

• S =
∑
j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =

 Aj + Bj+1
j+1 if j > 0,

− 13
6 if j = 0,

1 if j = −1.

Here Ai is a sum of Eulerian numbers and Bi a Bernoulli number which are described in
Subsection 2.3.

Finally, we prove in Subsection 2.6 an additional property predicted experimentally.
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Proposition 2.3. For 0 < j ≤ i,

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...);

i.e. the value of bd,nl,m does not depend on m.

2.1 Experimental Results
For d = 1, by [4, Theorem 3.6], we have:

f1(β1) = 2
34−β1 + 1

3 .

The case d = 2 has been treated in [4, Proposition 3.12] and leads to a similar expression:

f2(β1, β2) = 11
27 + 4−β1

(
2
9β1 −

2
27

)
+ 4−β2

(
2
9β2 −

2
27

)
+ 4−β1−β2

(
20
27 −

2
9(β1 + β2)

)
.

In both these case, fd has the correct form and has been shown to verify Conjecture 1.1.
The tables in Appendix A give the coefficients of the multivariate polynomials Pnd for the

first few ds. Graphs of some functions derived from fd are given in Figures 2.1 and 2.1. All of
this data was computed using Sage [7], Pynac [10] and Maxima [9].

Figure 1: fd(βi) for βi = 1, i 6= 1.

Moreover looking at the tables in Appendix A, some additional properties seem to be verified.
Here are some examples. The value of ad,d(1,...,1,0) is easy to predict:

ad,d(1,...,1,0) = (−1)d+12;

we prove this in 2.20. There is a recursion relation between coefficients with different ds:

ad,n+1
(i1,...,in,0) + ad,n(i1,...,in) = 3ad−1,n

(i1,...,in);
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Figure 2: fd(βi) for βi = 10, i 6= 1.

this is Corollary 2.19. There is a relation between coefficients with a given d:

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...);

this is Proposition 2.3. All of these results will be proved in the next subsections.
It should also be noted that we already know the value of fd(1, . . . , 1).

Theorem 2.4. [4, Theorem 4.14] For d ≥ 1:

fd(1, . . . , 1) = 1
2 .

2.2 Splitting the Sum into Atomic Parts
We consider a general d ≥ 1. From Proposition 1.7:

fd(β1, . . . , βd) =
B−1∑
E=0

∑∑
d
ei=E

0≤ei

∏
d

P (ei),

where P (ei) has three different expressions according to the value of ei:

P (ei) =


2−βi if ei = 0,
2−βi

3 (2ei − 2−ei) if 0 < ei < βi,
2βi−2−βi

3 2−ei if βi ≤ ei.

Let us denote for a vector X ∈ {0, 1, 2}d:

• the ith coordinate by Xi with 1 ≤ i ≤ d;

• jk = wk(X) = |{i|Xi = k}| for 0 ≤ k ≤ 2;

• B0,1 =
∑
{i|Xi 6=2} βi;

7



• E1 =
∑
{i|Xi=1} ei.

We can now define subsets SdX of the sum in Proposition 1.7 where each P (ei) has a specific
behavior given by the value of the ith coordinate of such a vector X.

SdX =
B−1∑
E=0

∑∑
d
ei=E

ei=0 if Xi=0
0<ei<βi if Xi=1
βi≤ei if Xi=2

n∏
i=1

P (ei)

=
B−1∑
E=0

∑∑
d
ei=E

ei=0 if Xi=0
0<ei<βi if Xi=1
βi≤ei if Xi=2

 ∏
{i|Xi=0}

2−βi
∏

{i|Xi=1}

2−βi
3 (2ei − 2−ei)

∏
{i|Xi=2}

2βi − 2−βi
3 2−ei

 ,

so that

fd(β1, . . . , βd) =
∑

X∈{0,1,2}d

SdX .

Here we drop the dependency in the βis for concision. SdX has already some properties of fd.

Lemma 2.5. SdX is symmetric for each set {i|Xi = k} where k ∈ {0, 1, 2}. To compute SY
where Y is any permutation of X, one has just to permute the βis accordingly.

The previous lemma shows that it is enough to study theXs such thatX = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2).
The following lemma is obvious.

Lemma 2.6. S(0,...,0) = 2−
∑d

i=1
βi and S(2,...,2) = 0.

And when j2 = 0, SdX has a simple expression.

Proposition 2.7. If j2 = 0 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1), then

SdX = 2−
∑j0

i=1
βi

3j1

d∏
i=j0+1

(1 + 2 · 4−βi − 3 · 2−βi).

Proof This is a simple consequence of the fact that we can sum up in each ei independently.

SdX = 2−B

3j1

∑
0<ei<βi
j0+1≤i≤d

d∏
i=j0+1

(2ei − 2−ei) = 2−B

3|j1|

d∏
i=j0+1

∑
0<ei<βi

(2ei − 2−ei)

= 2−B

3j1

d∏
i=j0+1

(2βi + 2 · 2−βi − 3)

= 2−
∑j0

i=1
βi

d∏
i=j0+1

1 + 2 · 4−βi − 3 · 2−βi
3 .
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The next proposition is the key to our demonstration. It exhibits a recursion relation between
SdX for different values of d and will reduce the demonstration of Proposition 2.1 to the case j2 = 0
and the study of a residual term denoted T dX .

Proposition 2.8. For j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2), we have

SdX = 21− 4−βd
3 Sd−1

X − 2T dX ,

where

T dX = 4−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1.

Proof Replacing P (ei) by its expression, we get

SdX =
j0∏
i=1

2−βi
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

2−βi
3 (2ei − 2−ei)

∑
βi≤ei,

∑
ei<B−E1

j0+j1+1≤i≤d

d∏
i=j0+j1+1

2βi − 2−βi
3 2−ei

= 2−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(2ei − 2−ei)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d

d∏
i=j0+j1+1

2−ei ,

letting ei = ei − βi for j0 + j1 + 1 ≤ i ≤ d. We now explicitly compute the sum on ed:

SdX = 2−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0<ei<βi
j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(2ei − 2−ei)

∑
0≤ei,

∑
ei<B0,1−E1

j0+j1+1≤i≤d−1

d−1∏
i=j0+j1+1

2−ei
(

2
(

1− 2−B0,1+E1+
∑d−1

i=j0+j1+1
ei

))

= 21− 4−βd
3 Sd−1

X − 24−B0,1

3j1+j2

d∏
i=j0+j1+1

(1− 4−βi)
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1

= 21− 4−βd
3 Sd−1

X − 2T dX .

2.3 The Residual Term T d
X

We now study the term T dX for j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2) and show that fd has
the following expression.
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Proposition 2.9. For j2 ≥ 1 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2),

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX

where

ΣdX = 4−
∑j0

i=1
βi

3j1(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

] ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X

and

Πd
X =

∏
{j0≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4−βj
3

∏
{j0≤j≤j0+j1|kj 6=0}

(
Akj (1− 4−βj )−

(
1

kj + 1β
kj+1
j + 5

6β
kj
j +

kj−1∑
i=1

(
kj
i

)(
Ai + Bi+1

i+ 1

)
βkj−i

)
4−βj

)
.

ΣdX is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−
∑j0

i=1
βi−
∑

i∈I
βi multiplied by

a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if 1 ≤ i ≤ j0, 0 otherwise,
and of total degree j2 + |I| − 1.

The end of this subsection is devoted to the proof of this proposition. This is a quite technical
part, but it is also of great interest to prove Proposition 2.2.

We denote by RdX the sum at the end of T dX :

RdX =
∑

0≤ei,
∑

ei<B0,1−E1
j0+j1+1≤i≤d−1

1,

this is simply the number of j2 − 1-tuples of natural integers such that their sum is strictly less
than B0,1 − E1; and by ΣdX the sum on the eis for j0 + 1 ≤ i ≤ j0 + j1:

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1)RdX ,

so T dX is given by:

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX .

We first check the proposition for j2 = 1. Then RdX = 1 and the sum ΣdX to compute is:

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ei − 1) = 4−B0,1

3j1

j0+j1∏
i=j0+1

4βi − 1− 3βi
3

= 4−
∑j0

i=0
βi

3j1

j0+j1∏
i=j0+1

1− 4−βi − 3βi4−βi
3 ,
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so T dX becomes:

T dX = 1
3(1− 4−βd)4−

∑j0
i=0

βi

3j1

j0+j1∏
i=j0+1

1− 4−βi − 3βi4−βi
3

which is what the proposition states.
Let us now proceed to a general j2 ≥ 1. In what follows Bi is a Bernoulli number [6, Formula

6.78] (here B1 = 1/2) and
[
i
j

]
is an unsigned Stirling number of the first kind [6, Section 6.1].

We recall that the sum of the n first kth powers is given as a polynomial in n by:

n∑
i=0

ik = 1
k + 1

k∑
i=0

(
k + 1
i

)
Bin

k+1−i.

Here is a classical combinatorial lemma.

Lemma 2.10. For n ≥ 1 and m > 0, the number of n-tuples of natural integers such that their
sum is strictly less than m is given by:∑

0≤ij ,1≤j≤n∑n

j=1
ij<m

1 =
(
n+m− 1

n

)

= 1
n!

n∑
l=1

[
n
l

]
ml.

Proof This is indeed the same thing as the number of n+ 1-tuples of natural integers such that
their sum is exactly m− 1.

Then the sum RdX in T dX for j2 ≥ 1, which counts the number of j2 − 1-tuples of natural
integers such that their sum is strictly less than B0,1 − E1, is given by the following expression:

RdX = 1
(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

]
(B0,1 − E1)l

= 1
(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

] ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k j0+j1∏
i=j0+1

(βi − ei)ki .

And ΣdX becomes:

ΣdX = 4−B0,1

3j1

∑
0<ei<βi

j0+1≤i≤j0+j1

j0+j1∏
i=j0+1

(4ej − 1)RdX

= 4−
∑j0

i=1
βi

3j1(j2 − 1)!

j2−1∑
l=0

[
j2 − 1
l

] ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X ,
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where Πd
X is defined as:

Πd
X = 4−

∑j0+j1
i=j0+1

βi
j0+j1∏
i=j0+1

βi−1∑
ei=1

(βi − ei)ki(4ei − 1).

We now study the different sums on ei according to the value of ki. We drop the subscripts
for clarity.

If k = 0, then the sum is simply

β−1∑
e=1

(4e − 1) =
β−1∑
e=0

(4e − 1) = 4β − 1− 3β
3 .

When k ≥ 1, we do the change of summation variable e = β − e, so that the sum becomes

β−1∑
e=1

(β − e)k(4e − 1) = 4β
β−1∑
e=1

(β − e)k(1/4)β−e −
β−1∑
e=1

(β − e)k

= 4β
β−1∑
e=1

ek4−e −
β−1∑
e=1

ek.

The second part of this difference is related to the sum of the n first kth powers. Here we
sum up to β − 1 so the formula is slightly different:

β−1∑
e=0

ek = 1
k + 1

k∑
i=0

(−1)1i=1

(
k + 1
i

)
Biβ

k+1−i.

For the first part, the sum
∑n
i=1 i

kzi is a multivariate polynomial in n, z and zn of degree
exactly k in n and 1 in zn. More precisely the series

∑∞
i=0 i

kzi is related to the Eulerian numbers〈
k
i

〉
[6, Section 6.2] defined by:

〈
0
i

〉
= 1i=0,〈

k
i

〉
= (i+ 1)

〈
k − 1
i

〉
+ (k − i)

〈
k − 1
i− 1

〉
for k > 0,

and expressed in closed form as [6, Formula 6.38]:〈
k
i

〉
=

i∑
j=0

(−1)j
(
k + 1
j

)
(i+ 1− j)k.

The series is then given by the following classical formula for k ≥ 1 and |z| < 1:

∞∑
i=1

ikzi =

∑k
j=0

〈
k
j

〉
zj+1

(1− z)k+1 .

The formula for the truncated sum is slightly more involved as stated in the next lemma.

12



Lemma 2.11. For k ≥ 1 and |z| 6= 1:

n∑
i=1

ikzi =
∑k
j=0 A0(k, j)zj+1

(1− z)k+1 −

(∑k
i=0
(
k
i

) (∑k
j=0 Ai(k, j)zj+1

)
ni
)
zn

(1− z)k+1 ,

where Ai(k, j) is defined by the same recursion relation as
〈
k
j

〉
and the initial conditions:

Ai(i, j) = Ai(i+ 1, j) = (−1)j
(
i

j

)
.

In particular, A0(k, j) =
〈
k
j

〉
and we have the simple recursion formula for i ≥ 1:

Ai(k, j) = Ai−1(k − 1, j)−Ai−1(k − 1, j − 1).

We are interested in the case where z = 1/4, n = β − 1 and 1 ≤ k ≤ j2 − 1, which is written
as (beware that we are summing up to β − 1 and not β, so the expression is slightly different
from the one above):

β−1∑
e=1

ek4−e =
∑k
j=0 A0(k, j)4−j−1

(3/4)k+1

−

(∑k−1
i=0

(
k
i

) (∑k
j=0 Ai(k, j)4−j−1

)
βi
)

4−β

(3/4)k+1 −

(∑k
j=0 Ak(k, j)4−j

)
βk4−β

(3/4)k+1 .

Moreover we have the identity:

Lemma 2.12. For 0 ≤ i ≤ k

3
k∑
j=0

Ai(k, j)4−j = 4
k+1∑
j=0

Ai+1(k + 1, j)4−j .

Proof Indeed,

4
k+1∑
j=0

Ai+1(k + 1, j)4−j = 4
k+1∑
j=0

(Ai(k, j)−Ai(k, j − 1))4−j

= 4
k∑
j=0

Ai(k, j)4−j − 4
k+1∑
j=1

Ai(k, j − 1)4−j

= 4
k∑
j=0

Ai(k, j)4−j − 4
k∑
j=0

Ai(k, j)4−j−1

= 3
k∑
j=0

Ai(k, j)4−j .

Whence the definition:
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Definition 2.13. For i ≥ 0, let us denote by Ai the quantity:

Ai =
∑i
j=0 A0(i, j)4−j−1

(3/4)i+1 =

∑i
j=0

〈
i
j

〉
4−j−1

(3/4)i+1 .

The few first values for Ai are given in Table 1.

Table 1: Ai for 0 ≤ i ≤ 7

i = 0 1 2 3 4 5 6 7
Ai = 1/3 4/9 20/27 44/27 380/81 4108/243 17780/243 269348/729

Then the following corollary of Lemmas 2.11 and 2.12 give a simple expression of the sum.

Corollary 2.14.

β−1∑
e=1

ek4−e = Ak −

(
k−1∑
i=0

(
k

i

)
Ak−iβ

i

)
4−β − 4A0β

k4−β .

So for k ≥ 1, the sum becomes

β−1∑
e=1

(β − e)k(4e − 1) = Ak4β −
k−1∑
i=0

(
k

i

)
Ak−iβ

i − 4A0β
k − 1

k + 1

k∑
i=0

(−1)1i=1

(
k + 1
i

)
Biβ

k+1−i

= Ak4β −
k∑
i=1

(
k

i

)
Akβ

k−i − 4A0β
k − 1

k + 1β
k+1 + 1

2β
k −

k∑
i=2

(
k + 1
i

)
Biβ

k+1−i

= Ak(4β − 1)− 1
k + 1β

k+1 − 5
6β

k −
k−1∑
i=1

(
k

i

)(
Ai + Bi+1

i+ 1

)
βk−i.

According to the above discussion about the different sums on ei, Πd
X can be expressed as:

Πd
X = 4

−
∑j0+j1

i=j0+1
βi

∏
{j0+1≤j≤j0+j1|kj=0}

4βj − 1− 3βj
3

∏
{j0+1≤j≤j0+j1|kj 6=0}

(
Akj (4

βj − 1)− 1
kj + 1β

kj+1
j − 5

6β
kj
j −

kj−1∑
i=1

(
kj
i

)(
Ai + Bi+1

i+ 1

)
βkj−i

)

=
∏

{j0+1≤j≤j0+j1|kj=0}

1− 4−βj − 3βj4−βj
3

∏
{j0+1≤j≤j0+j1|kj 6=0}

(
Akj (1− 4−βj )−

(
1

kj + 1β
kj+1
j + 5

6β
kj
j +

kj−1∑
i=1

(
kj
i

)(
Ai + Bi+1

i+ 1

)
βkj−i

)
4−βj

)
,

Hence Πd
X , ΣdX and T dX are all as stated in the proposition. The values of the degrees of the

multivariate polynomials follow from the above expressions.
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2.4 A Polynomial Expression
We can now prove a first step toward Proposition 2.1. We show that SdX is a product of expo-
nentials in basis 2 and 4 (but not only 4 !) by multivariate polynomials.

Proposition 2.15. For j2 > 0 and X = (
j0︷ ︸︸ ︷

0, . . . , 0,
j1︷ ︸︸ ︷

1, . . . , 1,
j2︷ ︸︸ ︷

2, . . . , 2),

SdX = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − ΞdX

)
,

where

ΞdX =
j2−1∑
i=0

2−iΣd−j2+1+i
X

= 4−
∑j0

i=1
βi

3j1

j2−1∑
l=0

(
j2−1∑
i=l

2−i

i!

[
i
l

]) ∑
k+kj0+1+...+kj0+j1 =l

(
l

k, kj0+1, . . . , kj0+j1

)( j0∑
i=1

βi

)k
Πd
X .

ΞdX is a sum for I ⊂ {j0 + 1, . . . , j0 + j1} of terms of the form 4−
∑j0

i=1
βi−
∑

i∈I
βi multiplied by

a multivariate polynomial of degree in βi exactly j2 if i ∈ I, j2 − 1 if 1 ≤ i ≤ j0, 0 otherwise,
and of total degree j2 + |I| − 1.

Proof The proof goes by induction on j2 ≥ 1.
For j2 = 1, this is Proposition 2.8.
Suppose now that j2 > 1. From Proposition 2.8,

SdX = 21− 4−βd
3 Sd−1

X − 2T dX ;

by induction hypothesis on j2

SdX = 21− 4−βd
3

2j2−1

3j2−1

d−1∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X

)
− 2T dX

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X

)
− 2T dX ;

using Proposition 2.9, we have

T dX = 1
3j2

d∏
i=j0+j1+1

(1− 4−βi)ΣdX ,

so that

SdX = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − Ξd−1

X − 2−j2+1ΣdX
)

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
X − ΞdX

)
,

whence the proposition.
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In fact as soon as we know that SdX is a sum of exponentials multiplied by multivariate polyno-
mials, we know which βis can appear in the multivariate polynomials. Indeed, as a fraction of
fd we know that SdX is finite and even bounded between 0 and 1 for every tuple of βis, so that
SdX would explode as βi goes to infinity whereas the other ones are fixed if this βi appeared in a
multivariate polynomial, but not in the exponential.

We can now prove the final step toward Proposition 2.1. We claim that for I ⊂ {1, . . . , d},
SdI that we define as

SdI =
∑

{X|Xi=2 if i∈I,Xi 6=2 if i 6∈I}

SX

already has an appropriate form, whence Proposition 2.1 because

fd(β1, . . . , βd) =
∑

I⊂{1,...,d}

SdI .

For I, J ⊂ {1, . . . , d} such that I ∩ J = ∅, we define X(I, J) as the only vector in {0, 1, 2}d
such that

Xi =

 2 if i ∈ I,
1 if i ∈ J,
0 otherwise.

We denote SdX(I,J) simply by SdI,J so that

SdI =
∑
J⊂Ic

SdI,J .

We define in the same way T dI,J and T dI and so on when I 6= ∅.

Proposition 2.16. SdI is a symmetric function in the βis such that i 6∈ I, as well as in the βis
such that i ∈ I.

For I = ∅, we have:
Sd∅ = 1

3d
∑

J⊂{1,...,d}

2|J|4−
∑

j∈J
βj ,

and for {d} ⊂ I = {j0 + j1 + 1, . . . , d},

SdI = 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − ΞdI

)
.

For {d} ⊂ I = {j0 + j1 + 1, . . . , d}, ΞdI is a sum for J ⊂ Ic of terms of the form 4−
∑

j∈J
βj

multiplied by a multivariate polynomial of degree in βj exactly |I| if j ∈ J , 0 otherwise, and of
total degree min(d− 1, |I| · |J |).

Proof This assertion does not depend on the exact value of I, but only of |I|, even if the value
of SdI does: one has to permute the βis to deduce one from another. Hence we can assume
that I = {j0 + j1 + 1, . . . , d}. The symmetry of SdI in each subset of variables follows from its
definition. The proof goes by induction on j2 = |I|.

Suppose first that j2 = 0, i.e. I = ∅. We go by induction on d. For d = 1:

S1
∅ = S1

(0) + S1
(1) = f1(β1) = 2

34−β1 + 1
3 .
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Suppose now that d > 1:

Sd∅ =
∑

J⊂{1,...,d}

Sd∅,J =
∑

J⊂{1,...,d−1}

Sd∅,J +
∑

{d}⊂J⊂{1,...,d}

Sd∅,J

= 2−βdSd−1
∅ + 2−βd 2βd + 2 · 2−βd − 3

3 Sd−1
∅

= 2 · 4−βd + 1
3

1
3d−1

∑
J⊂{1,...,d−1}

2|J|4−
∑

j∈J
βj

= 1
3d

∑
J⊂{1,...,d}

2|J|4−
∑

j∈J
βj .

using the induction hypothesis on d which proves the proposition for I = ∅.
Suppose now that I = {j0 + j1 + 1, . . . , d} is not empty. It implies that d > 1.

SdI =
∑

J⊂{1,...,j0+j1}

SdI,J

=
∑

J⊂{1,...,j0+j1}

2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
I,J − ΞdI,J

)

= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)

 ∑
J⊂{1,...,j0+j1}

Sd−j2
I,J −

∑
J⊂{1,...,j0+j1}

ΞdI,J


= 2j2

3j2

d∏
i=j0+j1+1

(1− 4−βi)
(
Sd−j2
∅ − ΞdI

)
.

Proposition 2.1 is a simple corollary to the last proposition and hence is finally proven.

2.5 The Coefficients ad,n
(i1,...,in)

We can now properly define the coefficients appearing in the multivariate polynomials.

Definition 2.17. We denote by ad,n(i1,...,in) the coefficient of Pnd (x1, . . . , xn) of multi-degree (i1, . . . , in)
normalized by 3d.

It should be remembered that d is the index of the function fd, n represents the number of
βis appearing in the exponential in front of the polynomial and the ij the degree (potentially 0)
in each of these βis of a monomial appearing in Pnd . This does not depend on the order of the
ij because Pnd is symmetric, so we can suppose that (i1 > . . . > in). Moreover ad,n(i1,...,in) = 0 as
soon as

∑n
j=1 ij ≥ d− 1.

Lemma 2.18. For d ≥ 1:

fd+1(β1, . . . , βd, 0) = fd(β1, . . . , βd).

Proof This is obvious from the expression of fd(β1, . . . , βd) as a sum.

Hence we obtain a simple recursion relation on the coefficients of Pnd .
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Corollary 2.19. For d ≥ 2 and 0 ≤ n < d:

ad,n+1
(i1,...,in,0) + ad,n(i1,...,in) = 3ad−1,n

(i1,...,in).

We now give closed-form expressions for the coefficients ad,n(i1,...,in).
Here is a simple proposition proving an experimental observation.

Proposition 2.20. ad,d(1,...,1,0) = (−1)d+12 and ad,d−1
(1,...,1) = (−1)d2.

Proof From Propositions 2.16 and 2.15, the monomial of multi-degree (1, . . . , 1, 0) in P d−1
d and

P dd comes from Sd{d}, within it from Sd(1,...,1,2). Moreover

Sd(1,...,1,2) = 2
3(1− 4−βd)

(
Sd−1

(1,...,1) − Ξd(1,...,1,2)

)
,

so it is clear that ad,d(1,...,1,0) = −ad,d−1
(1,...,1). The coefficient ad,d−1

(1,...,1,0) must come from Ξd(1,...,1,2):

Ξd(1,...,1,2) = 1
3d−1 Πd

(1,...,1,2) = 1
3d−1

d−1∏
i=0

1− (1 + 3βi)4−βi
3 ,

and finally
ad,d−1

(1,...,1,0) = −3d 2
3

1
3d−1 (−1)d−1 = (−1)d2.

More generally, we have the following expression for a monomial of total degree d− 1.

Proposition 2.21. Suppose that i1 + . . .+ in = d− 1. Then:

ad,n(i1,...,in) = 2 (−1)n+1

i1! . . . in! .

Proof We can suppose that i1 > . . . > ij1 6= 0 > ij1+1 = 0 > . . . > in. These notations are
coherent because the different constraints on the degrees show that such a monomial can only
appear in SdX when j1 = |{ij |ij 6= 0}| and j2 = d− j1, so that this coefficient only comes from

Sd(1,...,1,2,...,2) = 2j2

3j2

d∏
i=j1+1

(1− 4−βi)
(
Sd−j2

(1,...,1) − Ξd(1,...,1,2,...,2)

)
.

Moreover within Ξd(1,...,1,2,...,2) it can only appear in Σd−i(1,...,1,2,...,2) when i = 0. Looking at the
expression of Πd

X , we have the following expression

ad,n(i1,...,in) = (−1)n−j1(−2) (−1)j1

(j2 − 1)!

[
j2 − 1

d− 1− j1

](
d− 1− j1

i1 − 1, . . . , ij1 − 1

) j1∏
j=1

1
(ij − 1) + 1

= 2(−1)n+1

(j2 − 1)!

[
j2 − 1
j2 − 1

](
j2 − 1

i1 − 1, . . . , ij1 − 1

) j1∏
j=1

1
(ij − 1) + 1

= 2 (−1)n+1

i1! . . . ij1 ! = 2 (−1)n+1

i1! . . . in! .

18



As a corollary, we get the dependence relation:

Corollary 2.22. For 0 ≤ n ≤ l ≤ d− 1, and
∑n
j=1 ij = l,

d−l∑
j=0

(
d− l
j

)
ad,n+j
i1,...,in,0,...,0 = 0.

Proof The proof goes by induction on d− 1− l. For l = d− 1, this is the previous proposition.
For l < d− 1, one uses the induction hypothesis and Corollary 2.19.

Finally here is the general expression for ad,n(i1,...,in).

Proposition 2.2. Suppose that i1 > . . . > im 6= 0 > im+1 = 0 > . . . > in and m > 0. Let us
denote by l the sum l = i1 + . . .+ in > 0 (i.e. the total degree of the monomial). Then

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m,

with

bd,nl,m =
n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|! .

Within bd,nl,m, the following notations are used:

• I = {m+ 1, . . . ,m+ i};

• J = {n+ 1, . . . , n+ j};

• S =
∑
j∈I∪J,1≤j≤m kj;

• h = d−m− j− i;

and

Cj =

 Aj + Bj+1
j+1 if j > 0,

− 13
6 if j = 0,

1 if j = −1.

Proof If Xj = 2, then the degree of βj in SdX is zero. If Xj = 0, then 4−βj can be factored out
of SdX and βj will appear in every exponential. Therefore we can consider only Xs which verify
the following constraints to compute ad,n(i1,...,in):

Xj =

 0, 1 if 1 ≤ j ≤ m,
0, 1, 2 if m+ 1 ≤ j ≤ n,
1, 2 if n+ 1 ≤ j ≤ d.

From Proposition 2.15,

SdX = 2j2

3j2

∏
{j|Xj=2}

(1− 4−βj )
(
Sd−j2
X − ΞdX

)
,
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and the monomials of non-zero degree only comes from ΞdX .
Moreover ΞdX can be written as

ΞdX = 1
3j1

∑
kj≥0,{j|Xj 6=2}

(
j2−1∑
k=0

2−k

k!

[
k∑

{j|Xj 6=2} kj

]) (∑
{j|Xj 6=2} kj

)
!∏

{j|Xj 6=2} kj !

 ∏
{j|Xj=0}

β
kj
j 4−βj

Πd
X .

So to get a multinomial of multi-degree (i1, . . . , in), different choices can be made for the kjs.

• If Xj = 0, then we must take kj = ij . This happens for 1 ≤ j ≤ n.

• If Xj = 1, then we can take any kj ≥ min(ij − 1, 0) and take into account the correct
coefficient in Πd

X . This happens for 1 ≤ j ≤ d

• If Xj = 2, then there is no choice to make. This happens for m+ 1 ≤ j ≤ d.

In the following sum, we gathered the contributions of all Xs. We denote by I the set of
indices m + 1 ≤ j ≤ n such that Xj = 0, 1 (the other ones are such that Xj = 2) and by J the
set of indices n+ 1 ≤ j ≤ d such that Xj = 1 (the other ones are such that Xj = 2).

The summation variables kj where j is in I ∪ J or [1,m] are to be understood as the degree
we choose in the above expression of ΞdX . Following the above discussion on the choice of the
kjs:

• If j ∈ J , we can choose any positive degree kj and extract the constant coefficient Akj .

• If j ∈ I, we can choose any positive degree kj and we extract the constant coefficient Akj
as above if kj > 0, and A0− 3 if kj = 0 (the −3 comes from the choice Xj = 0 which gives
1 = 3 · 1/3).

• Finally if 1 ≤ j ≤ m, we have to choose kj ≥ ij − 1, and the corresponding coefficient is
1

kj+1 = 1
ij

if kj = ij−1, 5/6−3 = −13/6 if kj = ij (as above the −3 comes from the choice

Xj = 0) and
(
kj
ij

) (
Akj−ij + Bkj−ij+1

kj−ij+1

)
if kj > ij . We denote that coefficient by Dkj ,ij .

We denote S and h the quantities S =
∑
j∈I∪J,1≤j≤m kj and h = d−m−|J |−|I|. Then ad,n(i1,...,in)

can be expressed as:

ad,n(i1,...,in) = (−1)n+1
∑

I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!∏
j∈I∪J kj !

∏m
j=1 kj !∑

k≥1

2k

(h− k)!

[
h− k
S

]∏
j∈J

Akj
∏
j∈I

(
Akj − 3kj=0

) m∏
j=1

Dkj ,ij

Extracting the binomial coefficient of Dkj ,ij , we can factor out the multinomial coefficient(
l

i1,...,in

)
(remember that l was defined as l =

∑n
j=1 ij):

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) ∑
I⊂{m+1,...,n}
J⊂{n+1,...,d}

∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!
l!

∑
k≥1

2k

(h− k)!

[
h− k
S

]
∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−ij
|kj − ij |!

,

20



where

Cj =

 Aj + Bj+1
j+1 if j > 0

− 13
6 if j = 0

1 if j = −1
.

The exact value of I and J is not important, only their cardinalities, so defining I = {m+ 1, . . . ,m+ i}
and J = {n+ 1, . . . , n+ j},

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J

kj≥ij−1,1≤j≤m

S!
l!

∑
k≥1

2k

(h− k)!

[
h− k
S

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−ij
|kj − ij |!

.

We finally make the change of summation variables kj = kj − ij + 1:

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

) n−m∑
i=0

(
n−m

i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤m

(l + S −m)!
l!∑

k≥1

2k

(h− k)!

[
h− k

l + S −m

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

m∏
j=1

Ckj−1

|kj − 1|!

= (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m.

2.6 An Additional Relation
In this subsection we prove the following experimental fact.

Proposition 2.3. For 0 < j ≤ i,

ad,n(i,j,...) = i+ 1
j

ad,n(i+1,j−1,...);

i.e. the value of bd,nl,m does not depend on m.

Proof From Proposition 2.2,

ad,n(i1,...,in) = (−1)n+1
(

l

i1, . . . , in

)
bd,nl,m,

where bd,nl,m only depends on d, n, l and m. Therefore if j > 1, this value does not vary and the
theorem is a simple corollary of Proposition 2.2.

If there is some degree equal to zero in (i, j, . . .), i.e. if n > m, then we can use the result of
Corollary 2.19:

ad,n(i,j,...,0) + ad,n−1
(i,j,...) = 3ad−1,n−1

(i,j,...) ;

hence we can restrict ourselves to the study of tuples where n = m.
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Finally the only tuples we must treat are the ones such that i > j = 1 and n = m. We write
the degree i 6= 0 in first position even if it not the greatest one. Then

ad,n(i,...,1) = (−1)n+1
(

l

i, . . . , 1

)
bd,nl,n ,

ad,n(i+1,...,0) = (−1)n+1
(

l

i+ 1, . . . , 0

)
bd,nl,n−1,

so it suffices to show that bd,nl,n = bd,nl,n−1.
We use the same notations as in Proposition 2.2 except that S and h denote the quantities

S = l +
∑
j∈I∪J,1≤j≤n−1 kj − n and h = d− n− j. For bd,nl,n , I must be empty:

bd,nl,n =
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n

(S + kn)!
l!∑

k≥1

2k

(h− k)!

[
h− k
S + kn

]∏
j∈J

Akj
kj !

n∏
j=1

Ckj−1

|kj − 1|!

=
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n−1

1
l!
∏
j∈J

Akj
kj !

n−1∏
j=1

Ckj−1

|kj − 1|!

∑
kn≥0

(S + kn)!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

] Ckn−1

|kn − 1|! ;

whereas for bd,nl,n−1, I can contain n:

bd,nl,n−1 =
1∑

i=0

(
1
i

) d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈I∪J,1≤j≤n−1

(S + 1)!
l!∑

k≥1

2k

(h+ 1− k − i)!

[
h+ 1− k − i

S + 1

]∏
j∈J

Akj
kj !

∏
j∈I

Akj − 3kj=0

kj !

n−1∏
j=1

Ckj−1

|kj − 1|!

=
d−n∑
j=0

(
d− n

j

) ∑
kj≥0,j∈J,1≤j≤n−1

1
l!
∏
j∈J

Akj
kj !

n−1∏
j=1

Ckj−1

|kj − 1|!(S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
+
∑
kn≥0

(S + kn + 1)!

∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

] Akn − 3kn=0

|kn − 1|!

 .
The sums on j and kj for j ∈ J and 1 ≤ j ≤ n − 1 are identical, so it is sufficient to show the
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equality of the remaining terms, or that ∆ defined as

∆ =
∑
kn≥0

(S + kn)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

]Ckn−1 − (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
−
∑
kn≥0

(S + kn + 1)!
|kn − 1|!

∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

] (Akn − 3kn=0)

is zero. We split out the two first terms of the first sum on kn:

S!

∑
k≥1

2k

(h− k)!

[
h− k
S

]− 13
6 (S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

] ,

and the first one of the second sum on kn:

(S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

](1
3 − 3

)
,

so that ∆ becomes:

∆ =
∑
kn≥2

(S + kn)!
|kn − 1|!

(∑
k≥1

2k

(h− k)!

[
h− k
S + kn

])(
Akn−1 + Bkn

kn

)
+ S!

(∑
k≥1

2k

(h− k)!

[
h− k
S

])
+ 1

2(S + 1)!

(∑
k≥1

2k

(h− k)!

[
h− k
S + 1

])

− (S + 1)!

(∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

])
−
∑
kn≥1

(S + kn + 1)!
|kn − 1|!

(∑
k≥1

2k

(h− k)!

[
h− k

S + kn + 1

])
Akn .

Making the change of summation variable kn = kn + 1 in the second sum on kn, the terms in
Akn cancel out between the two sums on kn and we get:

∆ =
∑
kn≥2

(S + kn)!
kn!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

]Bkn +B0S!

∑
k≥1

2k

(h− k)!

[
h− k
S

]
+B1(S + 1)!

∑
k≥1

2k

(h− k)!

[
h− k
S + 1

]− (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
=
∑
kn≥0

(S + kn)!
kn!

∑
k≥1

2k

(h− k)!

[
h− k
S + kn

]Bkn − (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
= S!

∑
k≥1

2k

(h− k)!

∑
kn≥0

(
S + kn
S

)
Bkn

[
h− k
S + kn

]− (S + 1)!

∑
k≥1

2k

(h+ 1− k)!

[
h+ 1− k
S + 1

]
= S!

∑
k≥1

2k

(h− k)!

∑
kn≥0

(
S + kn
S

)
Bkn

[
h− k
S + kn

]
− S + 1
h+ 1− k

[
h+ 1− k
S + 1

] .

The difference in parenthesis is shown to be zero using Lemma 2.23, so that ∆ = 0.

23



Lemma 2.23. For n ≥ k ≥ 0,
n−k∑
l=0

(
k + l

k

)
Bl

[
n

k + l

]
= k + 1
n+ 1

[
n+ 1
k + 1

]
.

Proof Let us fix k ≥ 0. We first recall classical results about exponential generating functions:∑
n≥0

Bn
zn

n! = z

1− e−z ,∑
n≥0

[
n
k

]
zn

n! = (− log(1− z))k

k! .

We now form the exponential generating function of the coefficients of interest:∑
n≥0

(
n∑
l=k

(
l

k

)
Bl−k

[
n
l

])
zn

n! =
∑
l≥k

∑
n≥l

(
l

k

)
Bl−k

[
n
l

]
zn

n! =
∑
l≥k

(
l

k

)
Bl−k

∑
n≥l

[
n
l

]
zn

n!

=
∑
l≥k

(
l

k

)
Bl−k

(− log(1− z))l

l!

= (− log(1− z))k

k!
∑
l≥k

Bl−k
(− log(1− z))l−k

(l − k)!

= (− log(1− z))k

k!
∑
l≥0

Bl
(− log(1− z))l

l!

= (− log(1− z))k

k!
− log(1− z)
1− elog(1−z) = k + 1

z

(− log(1− z))k+1

(k + 1)!

= k + 1
z

∑
n≥0

[
n

k + 1

]
zn

n! =
∑
n≥0

k + 1
n+ 1

[
n+ 1
k + 1

]
zn

n! ,

whence the identity of the lemma.

3 Asymptotic Behavior
In this section, we study the behavior of Pt,k when a given number of βis go to infinity. To this
end, we take advantage of its probabilistic nature:

Pt,k = P

[∑
d

γ′ <
∑
d

δ′

]
.

In Subsection 3.1, we study the behavior of fd when all of the βis and give useful closed forms for
the value toward which it converges, as well as its monotony in d. In Subsection 3.2, we consider
a more general setting and give relations involving the limit of fd when a βi is set to 1 while the
other ones go to infinity.

3.1 The Limit fd(∞, . . . ,∞)
We first consider the limit of fd when all the βis go to infinity. We now denote this limit
by fd(∞, . . . ,∞). This is also the value of the constant term in the expression of fd given in
Proposition 2.1.
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We remark that as all the βis go to infinity, the laws of the γ′is and the δ′is converge towards
laws of independent geometrically distributed variables with parameter 1/2 (which we denote by
Geo(1/2)), so that Pt,k = P [

∑
γ′ <

∑
δ′] converges towards:

P

[∑
d

Geo(1/2) <
∑
d

Geo(1/2)
]

= 1
2

(
1− P

[∑
d

Geo(1/2) =
∑
d

Geo(1/2)
])

which is strictly lower than 1/2 for any d > 0 and proves the conjecture asymptotically.

Definition 3.1. Let Xd be the random variable

Xd =
∑
d

Geo(1/2)−
∑
d

Geo(1/2),

and Pd denote
Pd = P [Xd = 0] .

With these notations,
fd(∞, . . . ,∞) = 1

2(1− Pd),

and the importance of the random variable Xd becomes obvious.
It is readily seen that Xd is symmetric, i.e. P [Xd = k] = P [Xd = −k] and the following

lemma is easy:

Lemma 3.2.

P

[∑
d

Geo(1/2) = j

]
=
(
d− 1 + j

d− 1

)
1

2j+1 .

The following proposition gives an expression of P [Xd = k] as a power series and a hyperge-
ometric series:

Proposition 3.3. For d ≥ 1 and k ≥ 0:

P [Xd = k] = 1
4d

1
2k

∞∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j

= 1
4d

1
2k

(
d− 1 + k

d− 1

)
2F1(d, d+ k; k + 1; 1/4),

so that:

Pd = P [Xd = 0] = 1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)2 1
4j = 1

4d 2F1(d, d; 1; 1/4).

In particular 1
3d ≤ Pd ≤

1+3·2d−2

4d . Moreover P1 = 1/3 and P2 = 5/27.

Proof

P [Xd = k] =
∞∑
j=0

P

[∑
d

Geo(1/2) = j

]
P

[∑
d

Geo(1/2) = j + k

]

=
∞∑
j=0

P

[∑
d

Geo(1/2) = j

]
P

[∑
d

Geo(1/2) = j + k

]

= 1
4d

1
2k

∞∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k + j

d− 1

)
1
4j .
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Suppose now that k = 0. We bound the sum of squares from below by:

1
4d
∞∑
j=0

(
d− 1 + j

d− 1

)
1
4j = 1

4d
1

(1− 1/4)d = 1
3d ,

and from above by:

1
4d

1 +
∞∑
j=1

(
d− 1 + j

d− 1

)
2d−2+j

4j

 = 1
4d + 2d−2

4d
∞∑
j=0

(
d− 1 + j

d− 1

)
1
2j −

2d−2

4d

= 1 + 4d−1 − 2d−2

4d = 1 + 3 · 2d−2

4d .

Finally, for d = 1,
(
d−1+j
d−1

)
= 1 and the sum becomes:

P1 = 1
4

1
1− 1/4 = 1

3;

and for d = 2,
(
d−1+j
d−1

)
= j + 1 so that:

P2 = 1
42

∞∑
j=0

(j + 1)2

4j = 1
4

∞∑
j=0

j2

4j

= 1
4

(
2 1

42(
1− 1

4
)3 +

1
4(

1− 1
4
)2

)

= 2
27 + 1

9 = 5
27 .

When the number of blocks, d, goes as well to infinity, fd(∞, . . . ,∞) converges toward 1/2.
Indeed 1

3d ≤ Pd ≤
1

4d + 3
4

1
2d converges towards 0 as d goes to infinity. As we show below, it does

so decreasingly so that fd(∞, . . . ,∞) goes to 1/2 increasingly.
The following expression of the distribution for d = 1 is easily computed:

Lemma 3.4. For d = 1:
P [X1 = k] = 1

3 · 2|k|
.

Proof Indeed, for k ≥ 0:

P [X1 = k] = P [Geo(1/2) = k +Geo(1/2)]

=
∞∑
i=0

P [Geo(1/2) = i]P [Geo(1/2) = k + i]

=
∞∑
i=0

1
2i+1

1
2k+i+1 = 1

2k+2

∞∑
i=0

1
4i

= 1
2k+2

4
3 = 1

3
1
2k .
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Lemma 3.5. For d ≥ 1 and k 6= 0:

P [Xd = k] < P [Xd = 0] .

Proof This is a simple consequence of the Cauchy-Schwarz inequality because P [Xd = k] is a
scalar product of the distribution of

∑
dGeo(1/2) with itself shifted by k.

Combining Lemmas 3.4 and 3.5, we get the monotony of Pd in d:

Proposition 3.6. For d ≥ 1:
Pd > Pd+1.

Proof

Pd+1 = P [Xd+1 = 0] = P [X1 +Xd = 0]

=
+∞∑

k=−∞
P [X1 = −k]P [Xd = k]

=
+∞∑

k=−∞

1
3 · 2|k|

P [Xd = k]

<

+∞∑
k=−∞

1
3 · 2|k|

P [Xd = 0]

< P [Xd = 0] = Pd.

Corollary 3.7. fd(∞, . . . ,∞) goes to 1
2 increasingly as d goes to infinity.

In fact there are several other expressions for the distribution of Xd which can be obtained
via hypergeometric transformations. Here is a first one of particular interest.

Proposition 3.8.

P [Xd = k] = 2k

32d+2k

(
d− 1 + k

d− 1

)
2F1(k + 1/2, d+ k; 2k + 1; 8/9),

= 3−2d
∞∑
j=k

(
d− 1 + j

j

)(
2j
k + j

)
2j3−2j .

Proof It follows directly from the quadratic transformation [1, Formula 15.3.27]:

2F1(a, b; a− b+ 1; z) = (1 +
√
z)−2a

2F1

(
a, a− b+ 1

2; 2a− 2b+ 1; 4
√
z

(1 +
√
z)2

)
,

valid for |z| < 1. We obtain the following expression where we shift the summation index j by k:

P [Xd = k] = 2k

32d+2k

∞∑
j=0

(
d− 1 + k + j

d− 1

)(
2k + 2j

j

)
2j3−2j

= 3−2d
∞∑
j=k

(
d− 1 + j

j

)(
2j
k + j

)
2j3−2j ,
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Using it we deduce a stronger result about Xd.

Corollary 3.9. For d ≥ 1, Xd follows a unimodal distribution centered in 0, i.e. P [Xd = k] is
increasing for k ≤ 0 and decreasing for k ≥ 0.

Proof Indeed, P [Xd = k] is an even function of k and for a fixed j and k ≥ 0 each summand of
the previous expression is decreasing in k.

And we deduce another useful expression for Pd where d appears only twice.

Corollary 3.10. For d ≥ 1:

Pd = 3−2d
∞∑
j=0

(
d− 1 + j

j

)(
2j
j

)
2j3−2j .

Here are other closed forms for P [Xd = k] deduced using linear transformations. They are
of particular interest for actual computation because they express P [Xd = k] as a finite sum.

Proposition 3.11. For d ≥ 1 and 0 ≤ k:

1.

P [Xd = k] = 4d−1

2k32d−1

(
d− 1 + k

d− 1

)
2F1(k + 1− d, 1− d; k + 1; 1/4)

=
{

2k
32d−1

∑d−1−k
j=0

(
d−1−k

j

)(
d−1+k
j+k

)
4j if 0 ≤ k ≤ d− 1

4d−1

2k32d−1

∑d−1
j=0(−1)j

(
d−1+k
k+j

)(
k−d+j
k−d

)
4−j if d− 1 < k

;

2.

P [Xd = k] = 2k

3d+k

(
d− 1 + k

d− 1

)
2F1(k + 1− d, k + d; k + 1;−1/3)

=
{

2k
3d+k

∑d−1−k
j=0

(
d−1+k+j
d−1

)(
d−1−k

j

)
3−j if 0 ≤ k ≤ d− 1

2k
3d+k

∑∞
j=0(−1)j

(
d−1+k+j
d−1

)(
k−d+j
k−d

)
3−j if d− 1 < k

;

3.

P [Xd = k] = 1
2k3d

(
d− 1 + k

d− 1

)
2F1(d, 1− d; k + 1;−1/3)

= 1
2k3d

d−1∑
j=0

(
d− 1 + j

d− 1

)(
d− 1 + k

k + j

)
3−j .

Proof The first expression comes from Euler’s transformation [1, Formula 15.3.3]:

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z).

The second one from Pfaff’s transformation [1, Formula 15.3.5]:

2F1(a, b; c; z) = (1− z)−b2F1(c− a, b; c; z/(z − 1)).
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The third one from the other Pfaff’s transformation [1, Formula 15.3.4]:

2F1(a, b; c; z) = (1− z)−a2F1(a, c− b; c; z/(z − 1)).

We finally deduce different expressions for Pd as a finite sum.

Corollary 3.12. For d ≥ 1:

Pd = 1
32d−1 2F1(1− d, 1− d; 1; 4) = 1

32d−1

d−1∑
j=0

(
d− 1
j

)2
4j

= 1
3d 2F1(1− d, d; 1;−1/3) = 1

3d
d−1∑
j=0

(
d− 1 + j

d− 1

)(
d− 1
j

)
3−j .

It can be verified elementary that both expressions for Pd are equal writing 4 = 1 + 3, using
the binomial theorem and the identity:(

2n+ k

n+ k

)
=

n∑
j=0

(
n

j

)(
n+ k

j + k

)
,

deduced from Chu-Vandermonde identity.

3.2 The Limit fd(1,∞, . . . ,∞)
In the previous subsection we studied the behavior of Pt,k = fd(β1, . . . , βd) as all the βis go to
infinity.

In fact if for some i ∈ {1, . . . , d}, we set βi = 1 and αi still goes to infinity, then ε′i =
γ′i + βi − δ′i has a similar behavior to the one of γ′i and δ′i: its law converges towards the law of
an independent geometrically distributed variable with parameter 1/2 (denoted by Geo(1/2)).

Then we have a probabilistic interpretation for limβj→∞,j>i fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

βi+1, . . . , βd) which we

denote by fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

∞, . . . ,∞).

fd(
i︷ ︸︸ ︷

1, . . . , 1,
d−i︷ ︸︸ ︷

∞, . . . ,∞) = lim
βj→∞,j>i

P

[∑
d

γ′ <
∑
d

δ′

]

= lim
βj→∞,j>i

P

[∑
i

ε′ +
∑
d−i

γ′ < i+
∑
d−i

δ′

]

= P

[∑
d

Geo(1/2) < i+
∑
d−i

Geo(1/2)
]

= P

[
Xd−i +

∑
i

Geo(1/2) < i

]
.

The few first values of such expressions computed using explicit expressions for fd are given in
Table 2.

We now give some results about these values.
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Table 2: fd(1, . . . , 1,∞, . . . ,∞) for d ≥ 1

i = d d − 1 . . .
d = 1 1/2 1/3
d = 2 1/2 4/9 11/27
d = 3 1/2 101/216 4/9 35/81
d = 4 1/2 619/1296 112/243 328/729 971/2187
d = 5 1/2 15029/31104 10969/23328 112/243 2984/6561 8881/19683
d = 6 1/2 90829/186624 2777/5832 1024/2187 9104/19683 9028/19683 2993/6561

Proposition 3.13. For d ≥ 2:

fd(1,∞, . . . ,∞) = 3
2fd(∞, . . . ,∞)− 1

2fd−1(∞, . . . ,∞).

Proof We equivalently show that:

fd(∞, . . . ,∞) = 1
3fd−1(∞, . . . ,∞) + 2

3fd(1,∞, . . . ,∞),

i.e. written in a probabilistic way:

P [0 < Xd] = 1
3P [0 < Xd−1] + 2

3P [Xd−1 < 1−Geo(1/2)] .

P [0 < Xd] = P [0 < Xd−1 +X1] =
+∞∑
i=−∞

P [X1 = i]P [−i < Xd−1]

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [i < Xd−1] + P [−i < Xd−1])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [i < Xd−1] + P [Xd−1 < i])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (P [Xd−1 6= i])

= 1
3P [0 < Xd−1] + 1

3

∞∑
i=1

1
2i (1− P [Xd−1 = i])

= 1
3P [0 < Xd−1] + 1

3

(
1−

∞∑
i=1

1
2iP [Xd−1 = i]

)
.

It is now enough to show that:

2P [Xd−1 < 1−Geo(1/2)] = 1−
∞∑
i=1

1
2iP [Xd−1 = i] ,
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which follows from:

P [Xd−1 < 1−Geo(1/2)] =
∞∑
i=0

1
2i+1P [Xd−1 < 1− i]

= 1
2P [Xd−1 < 1] + 1

4

∞∑
i=0

1
2iP [Xd−1 < −i]

= 1
2 (1− P [1 ≤ Xd−1]) + 1

4

∞∑
i=0

1
2iP [i < Xd−1]

= 1
2 −

1
2

∞∑
i=1

P [Xd−1 = i] + 1
4

∞∑
i=1

i−1∑
j=0

1
2j

P [Xd−1 = i]

= 1
2 −

1
2

∞∑
i=1

P [Xd−1 = i] + 1
2

∞∑
i=1

(
1− 1

2i

)
P [Xd−1 = i]

= 1
2 −

1
2

∞∑
i=1

1
2iP [Xd−1 = i] .

Corollary 3.14. For d ≥ 2:

fd(1,∞, . . . ,∞) > fd(∞,∞, . . . ,∞);

Proof This is a consequence of the above proposition and of the monotony of Pd.
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A Coefficients of fd

In the following tables, 4n means an exponential where the exponent is the opposite of the sum
of n different βis. The following n-tuples indicate the multi-exponent of the monomial and the
corresponding coefficient. The total degree of the multivariate polynomial is exactly d−1, except
for n = 0. The omitted coefficients are obtained from the previous ones by permuting the βis.
These coefficients were obtained using Sage [7], Pynac [10] and Maxima [9].

Table 3: d = 1, (1/3) = (1/31)∗

4ˆ 1 4ˆ 0
(0, ) 2 () 1

Table 4: d = 2, (1/9) = (1/32)∗

4ˆ 2 4ˆ 1 4ˆ 0
(1, 0) −2 (1, ) 2
(0, 0) 20/3 (0, ) −2/3 () 11/3

Table 5: d = 3, (1/27) = (1/33)∗

4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(2, 0, 0) 1 (2, 0) −1 (2, ) 1
(1, 1, 0) 2 (1, 1) −2
(1, 0, 0) −11 (1, 0) 5 (1, ) 1
(0, 0, 0) 64/3 (0, 0) −4/3 (0, ) −2/3 () 35/3
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Table 6: d = 4, (1/81) = (1/34)∗

4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(3, 0, 0, 0) −1/3 (3, 0, 0) 1/3 (3, 0) −1/3 (3, ) 1/3
(2, 1, 0, 0) −1 (2, 1, 0) 1 (2, 1) −1
(1, 1, 1, 0) −2 (1, 1, 1) 2
(2, 0, 0, 0) 23/3 (2, 0, 0) −14/3 (2, 0) 5/3 (2, ) 4/3
(1, 1, 0, 0) 46/3 (1, 1, 0) −28/3 (1, 1) 10/3
(1, 0, 0, 0) −416/9 (1, 0, 0) 119/9 (1, 0) 16/9 (1, ) 11/9
(0, 0, 0, 0) 1808/27 (0, 0, 0) −80/27 (0, 0) −28/27 (0, ) −26/27 () 971/27

Table 7: d = 5, (1/243) = (1/35)∗

4ˆ 5 4ˆ 4 4ˆ 3 4ˆ 2 4ˆ 1 4ˆ 0
(4, 0, 0, 0, 0) 1/12 (4, 0, 0, 0) −1/12 (4, 0, 0) 1/12 (4, 0) −1/12 (4, ) 1/12
(3, 1, 0, 0, 0) 1/3 (3, 1, 0, 0) −1/3 (3, 1, 0) 1/3 (3, 1) −1/3
(2, 2, 0, 0, 0) 1/2 (2, 2, 0, 0) −1/2 (2, 2, 0) 1/2 (2, 2) −1/2
(2, 1, 1, 0, 0) 1 (2, 1, 1, 0) −1 (2, 1, 1) 1
(1, 1, 1, 1, 0) 2 (1, 1, 1, 1) −2
(3, 0, 0, 0, 0) −59/18 (3, 0, 0, 0) 41/18 (3, 0, 0) −23/18 (3, 0) 5/18 (3, ) 13/18
(2, 1, 0, 0, 0) −59/6 (2, 1, 0, 0) 41/6 (2, 1, 0) −23/6 (2, 1) 5/6
(1, 1, 1, 0, 0) −59/3 (1, 1, 1, 0) 41/3 (1, 1, 1) −23/3
(2, 0, 0, 0, 0) 161/4 (2, 0, 0, 0) −69/4 (2, 0, 0) 13/4 (2, 0) 7/4 (2, ) 9/4
(1, 1, 0, 0, 0) 161/2 (1, 1, 0, 0) −69/2 (1, 1, 0) 13/2 (1, 1) 7/2
(1, 0, 0, 0, 0) −9421/54 (1, 0, 0, 0) 1933/54 (1, 0, 0) 209/54 (1, 0) 79/54 (1, ) 119/54
(0, 0, 0, 0, 0) 16832/81 (0, 0, 0, 0) −560/81 (0, 0, 0) −160/81 (0, 0) −92/81 (0, ) −142/81 () 8881/81
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