
Fast Password Recovery Attack: Application to
APOP

Fanbao Liu1,2, Yi Liu2, Tao Xie1 and Yumeng Feng2

1 School of Computer, National University of Defense Technology, Changsha, 410073,
Hunan, P. R. China

2 School of Computer, Beijing University of Technology, 100124, Beijing, P. R. China
liufanbao@gmail.com

Abstract. In this paper, we propose a fast password recovery attack to
APOP application in local which can recover a password with 11 char-
acters in less than one minute, recover a password with 31 characters
extremely fast, about 4 minutes, and for 43 characters in practical time.
These attacks truly simulate the practical password recovery attacks
launched by malware in real life, and further confirm that the security
of APOP is totally broken. To achieve these dramatical improvements,
we propose a group satisfaction scheme, apply the divide-and-conquer
strategy and a new suitable MD5 collision attack to greatly reduce the
computational complexity in collision searching with high number of cho-
sen bits. The average time of generating an “IV Bridge” is optimized to
0.17 second on ordinary PC, the average time of generating collision
pairs for recovering passwords up to 11 characters is about 0.08 second,
for 31 characters is about 0.15 second, for 39 characters is about 4.13 sec-
onds, for 43 characters is about 20 seconds, and collisions for recovering
passwords as long as 67 characters can be theoretically generated. These
techniques can be further applied to reduce the complexity of producing
a 1-bit-free collisions for recovering the first 11 characters, whose main
target is that to reduce the number of challenges generated in APOP
attack, to about 236 MD5 compressions.

Keywords: MD5, APOP, Challenge and Response, Password Recovery,
Group Satisfaction Scheme, Divide-and-Conquer, Collision Attack.

1 Introduction

MD5 [10] is one of the most widely used cryptographic hash functions, which
was designed by Ron Rivest as the strengthen version of MD4 [9] in 1991. It
has been widely applied in the areas of checksum, password shadow, challenge
and response authentication protocol and digital signature, et al. Along with
the widespread application, some weaknesses of MD5 have been found, for ex-
ample, den Boer and Bosselaers found that a kind of pseudo-collision, which is
also known as dBB collision, could be generated when a pair of initial chaining
variables (IVs) exists a specific difference [2], in 1993. However, not until Wang

and Yu introduced the first real MD5 collision attack in 2004 [19], the security
of MD5 and its applications was thought to be OK.

APOP (Authentication Post Office Protocol) [6], which has been widely em-
ployed in real POP3 (Post Office Protocol-Version 3) mail systems to provide
origin identification and replay protection, is a challenge and response password
authentication protocol based on MD5. The authentication involves two parties,
an authenticator and a peer. The authenticator, who holds mails, sends a ran-
dom and unique challenge string to the peer who wants to access his mail. After
that, the peer generates a response by hashing the received challenge concate-
nated with the shared password and sends it to the authenticator. Finally, the
authenticator redoes the hashing using the peer’s password stored in his side,
checks if it equates the received response to accomplish the peer verification.

In 1996, Preneel and van Oorschot showed how to apply divide-and-conquer
strategy, which is based on hash collisions, to key recovery attack against Envelop
MAC [8]. They generated collisions using birthday paradox, which was compu-
tation infeasible for the widely used hash functions like MD5 [10] and SHA-1 [3].
However, not long after the collision resistance of some prevalent hash functions
was broken by Wang et al. [19, 17, 20, 18] and the collision searching efficiency
was greatly improved [4], a serial of password recovery attacks on APOP [5, 12,
11, 15], all of which are based on chosen challenge attack, have been proposed in
succession.

The best known result of the APOP attack [11] applied dBB collision pro-
posed by den Boer and Bosselaers [2] to achieve more message freedom for recov-
ering passwords. It claimed that collisions for recovering up to the first 11 char-
acters of APOP passwords could be produced in less than one second, collisions
for the first 31 characters could be produced in practical time. However, in order
to apply dBB collision strategy, one additional “IV Bridge”, which produces the
intended differences of the initial chaining variables needed by dBB collision,
must be first generated with computational complexity of 242 MD5 compres-
sions. In [15], the concept of bit-free collision, a pair of partially-fixed messages
will collide regardless of the value of unfixed bits, was proposed to reduce the
number of challenges generated in APOP attacks. The 1-bit-free collision for
recovering the first 11 characters can be generated in 246 MD5 compressions to
reduce half of challenges.

Our Contributions. Based on tunnel and advanced message modification,
we propose a group satisfaction scheme, which aims to determinately satisfy all
conditions of the first three successive steps in the last tunnel, to further improve
the collision searching efficiency.

We apply the combination of the divide-and-conquer strategy and the group
satisfaction scheme to greatly reduce the computational complexity in MD5 col-
lision searching with high number of chosen bits. As a result, the average time of
generating collisions for recovering the first 11 characters of APOP password is
about 0.08 second, for the first 31 characters about 0.15 second, for 39 characters
about 4.13 seconds, for 43 characters about 20 seconds, and 67 characters can
also be theoretically solved. Further, these techniques can be applied to reduce

the complexity of producing a 1-bit-free collision for recovering the first 11 char-
acters, whose target is to reduce the number of challenges generated in APOP
attacks, to about 236 MD5 compressions. We also apply a new “IV Bridge” with
complexity of 219 MD5 compressions, which means it can be generated about
0.17 second in average.

We propose a really fast password recovery attack to APOP application in
local PC that can recover a password up to 11 characters in less than one minute,
recover password of 31 characters about 4 minutes, and for 43 characters in
practical time. These attacks truly simulate the practical password recovery
attacks launched by malware in real life, and further confirm that the security
of APOP is totally broken, and the security of MD5 based applications should
be seriously re-evaluated.

Organization of the Paper. The rest of this paper is organized as follows.
In section two, we introduce some backgrounds of MD5 algorithm and APOP
application. In section three, we present some related works about MD5 collision
attack and password recovery attack to APOP. In section four, we apply both
of the divide-and-conquer strategy and the group satisfaction scheme to achieve
fast collisions searching with high number of chosen bits. In section five, we
launch a really fast password recovery attack to APOP in local. We summarize
the paper in the last section.

2 Backgrounds

2.1 MD5 Algorithm

MD5 [10] is a typical Merkle-Damg̊ard structure hash function, it takes a variable-
length message M as input and outputs a 128-bit hash value MD5(M). First,
M is padded with padding bits and the length of M , to the exact multiples
of 512 bits. Then, the padded M ′ is divided into chunks of 512-bit blocks
(M0,M1, . . . ,Mn−1). Finally, each block Mi is further divided into sixteen 32-bit
words (m0,m1, . . . ,m15).

MD5 Compression Function. Each block is processed by MD5 compres-
sion function (CF). CF takes Mi and a 128-bit chaining variable Hi as input,
and outputs Hi+1. The initiate chaining variable H0 is set to certain constants,
a0 = 0x67452301, b0 = 0xefcdab89, c0 = 0x98badcfe, d0 = 0x10325476. The
iterated procedure of MD5 algorithm is shown as follows, where Hn is the exact
MD5(M).

H1 = CF (M0, H0), H2 = CF (M1, H1), . . . ,Hn = CF (Mn−1, Hn−1).

CF consists of 64 steps. Steps 1-16, steps 17-32, steps 33-48 and step 49-64 are
called the first, second, third and fourth round, respectively. Let Qi represent
the 32-bit state of step i, and Qi, j stand for the value of the j-th bit of Qi.
With initiated chaining variables Q−3 = a0, Q0 = b0, Q−1 = c0, Q−2 = d0,
Qi(1≤i≤64) is updated as follow.

Qi = Qi−1 + (Qi−4 + fi(Qi−1, Qi−2, Qi−3) + wi + ti)≪si

Each Qi uses modular addition +, left rotation ≪ and round dependant
Boolean function fi. wi is one of (m0,m1, . . . ,m15). The details of fi and wi are
shown as follows.

fi =

(X ∧ Y) ∨ (¬X ∧ Z), 1≤i≤16,

(X ∧ Z) ∨ (Y ∧ ¬Z), 17≤i≤32,

X ⊕ Y ⊕ Z, 33≤i≤48,

Y ⊕ (X ∨ ¬Z), 49≤i≤64.

wi =

mi−1, 1≤i≤16,

m(5i−4) mod 16, 17≤i≤32,

m(3i+2) mod 16, 33≤i≤48,

m7(i−1) mod 16, 49≤i≤64.

⊕, ∧, ∨ and ¬ denote the logic operations XOR, AND, OR and NOT, re-
spectively. X, Y and Z are 32-bit words.

The constant ti is defined as ti = b232·|sin(i)|c. ≪si denotes left rotation
by si bits, and ≫ denotes right rotation, the details of si is shown as follow.

(si, si+1, si+2, si+3) =

(7, 12, 17, 22), i = 1, 5, 9, 13,

(5, 9, 14, 20), i = 17, 21, 25, 29,

(4, 11, 16, 23), i = 33, 37, 41, 45,

(6, 10, 15, 21), i = 49, 53, 57, 61.

If all steps are computed, the chaining variables are updated by adding the
last four state words, which is shown as follows.

Hi+1 = CF (Mi, Hi) = (Q−3 +Q61, Q0 +Q64, Q−1 +Q63, Q−2 +Q62)

2.2 Properties of MD5 Collisions

If two arbitrary distinct messages m, m′ ∈ {0, 1}* satisfy MD5(m) = MD5(m′),
then m and m′ are called one collision pair. Let |m|, the length of m, be multiples
of 512 bits, and |m|=|m′| further, then for an arbitrary message x, MD5(m‖x) =
MD5(m′‖x) always holds, this equation is the base of the password recovery
attack to APOP, which will be discussed in detail later.

2.3 APOP(Authenticated Post Office Protocol) Algorithm

APOP is a popular hash-based challenge and response authentication protocol,
it is used by a mail server to authenticate the user who tries to access his e-
mails stored on the server. The APOP is an optional command of the Post
Office Protocol Version 3 [6] to provide extra security that to avoid sending the
password in clear text over untrusted network. Let the pre-shared password be
passwd, for mail accessing is always triggered by the user, the work routine of
APOP is shown as follows.

1. The user sends a connection signal to the server.
2. The server generates a challenge nonce C(formatted as a message identifier),

which is a random string with some restrictions shown later, and sends C to
the user.

3. The user concatenates his password to C, and computes a response R =
MD5(C‖passwd), then sends R to the server.

4. Once a respond R is received, the server computes RS = MD5(C‖passwd)
in the same way using the user’s password stored in his side. It authenticates
the user by comparing whether RS equates R.

Advantage. With challenge and response, an eavesdropper will learn noth-
ing about the password, provided that MD5 is a partial one-way function. Since
the challenge C is randomly generated, this tactic can also provide replay pro-
tection for POP3 session.

Restrictions placed on APOP challenge strings.

1. Challenge must start from character ‘<’(0x3c in Hex) and include one char-
acter ‘@’(0x40).

2. Challenge must end with character ‘>’(0x3e).
3. Challenge must not include ‘NULL’(0x0), ‘\n’(0x0a) and ‘<’, ‘>’ in the

middle of the text.

3 Related Works

3.1 MD5 Collision Attack

Recently, the attacks on MD5 mostly focus on the collision attack, which is basi-
cally a differential attack first presented by Biham and Shamir for cryptanalysis
of block ciphers [1].

dBB Collision Found by den Boer and Bosselaers. In 1993, a kind of
pseudo-collision, known as dBB collision, was found by den Boer and Bosselaers
[2]. If the initial chaining variables have fixed differences, then a message M may
collide under those two variables. There are totally 47 conditions to be satisfied
for dBB collision, Qi,31 = Q0,31, {i6=64, i ∈ (round 1, round 2, round 4)}. The
authors reduced the complexity and found a dBB collision about 4 minutes with
a 33MHz 80386 based PC. The fixed difference of H0 is shown as follow.

∆H0 = (H ′0 −H0) = ±(231, 231, 231, 231)

− denotes 232 modular subtraction. Four ± mean that the signs of the four
word differences of the chaining variables are just the same.

Collision Attack Presented by Wang et al. In 2004, Wang et al. showed
the first real collision attack on MD5 [16, 19], and claimed that collisions could be
generated with 239 MD5 compressions. The collision consists of two blocks, which
have input differences ∆M0 = (M ′0−M0) = (∆m4 = 231, ∆m11 = 215, ∆m14 =
231), and ∆M1 = (∆m4 = 231, ∆m11 = −215, ∆m14 = 231), respectively. The
main strategy of collision attack is shown as follows.

1. Choose an appropriate input difference (∆M) that can efficiently generate
a collision, according to some known knowledge1.

2. Construct a differential path and deduce sufficient conditions, according to
differential propagation and the properties of the Boolean functions.

3. Construct an optimized collision searching algorithm, applying some message
freedom which can be used for efficient message modifications to satisfy
sufficient conditions.

Collision Attacks Presented by Xie et al. In both 2008 and 2009, Xie et
al. presented a series of collision attacks on MD5 [23, 24, 22], with details of how
to choose input difference, and listed a lot of input difference patterns that may
cause collision. Further, they greatly improved the efficiency of collision attack
to about 210 MD5 compressions [22], applying the divide-and-conquer strategy.
In 2010, Xie et al. [21] proposed a single block MD5 collision, without no details.

Some Improved Collision Attacks. In 2006, Klima proposed the concept
of tunnel [4], which is a efficient message modification technology, and greatly
improved Wang’s attack [19] to get a collision in one minute. The next year,
Stevens further improved it to 224.8 MD5 compressions [13]. In 2009, Stevens et
al. claimed a collision attack with 216 MD5 compressions [14].

3.2 Message Modification Technology

In order to search collisions efficiently, we need to employ some message mod-
ification technologies to satisfy the huge number of sufficient conditions, which
hold the differential path. For example, in Wang et al.’s [19], there are more
than 200 sufficient conditions in the first block, and after optimization, the least
computational time is about 224.8 MD5 compressions [13].

Basic and Advanced Message Modification. The basic and the ad-
vanced message modification in MD5 were both proposed by Wang et al. [19].
For the full control over (m0, ...,m15), the basic message modification can be
applied like that we directly set the sufficient conditions of the first round to be
satisfied, then compute the value of related wi through Qi shown as follow.

mi−1 = wi = (Qi −Qi−1)≫si −Qi−4 − fi(Qi−1, Qi−2, Qi−3)− ti

The advanced message modification is used to satisfy the sufficient conditions
of the second round, by modifying related message words in the first round. For
example, if the condition Q25, 31 = Q0, 31 is not satisfied, we need to modify
m9, 26, or introduce a difference of 226, according to the Q25 updating shown as
follow.

Q25 = Q24 + (Q21 + f22(Q24, Q23, Q22) + (w25 = m9) + t25)≪5

If we just modify m9, the value of Q10 to Q14 in the first round will be
changed, too. This will eventually destroy the differential path before Q25. To

1 However, the detail of this knowledge was not disclosed in the origin paper [19].

overcome this drawback, we keep the value of Q11 to Q14 unchanged, and re-
compute the related value of m10 to m13, which are shown as belows. But there
a more serious obstacle comes, we notice that the value of m10 and m11 have
already been used in Q22 and Q19 in the second round. If modify m10 or m11 to
hold the differential path of the first round, the path of the second round will
be destroyed, which means that our former efforts are nonsense.

Q9 = Q8 + (Q5 + f9(Q8, Q7, Q6) + (w9 = m8) + t9)≪7

Q10 = Q9 + (Q6 + f10(Q9, Q8, Q7) + (w10 = m9) + t10)≪12

Q11 = Q10 + (Q7 + f11(Q10, Q9, Q8) + (w11 = m10) + t11)≪17

Q12 = Q11 + (Q8 + f12(Q11, Q10, Q9) + (w12 = m11) + t12)≪22

Q13 = Q12 + (Q9 + f13(Q12, Q11, Q10) + (w13 = m12) + t13)≪7

Q14 = Q13 + (Q10 + f14(Q13, Q12, Q11) + (w14 = m13) + t14)≪12

To find a way out, we notice that m8 will be used after Q25, in Q28, which
means that we can modify Q9 to change m9 indirectly. If flip the value of m9,26 in
Q10 equation, a difference 26 will come out in Q10 after rotation. So, we flip the
value of Q9,6, and set an extra condition Q8,6 = Q7,6 to keep f10(Q9,6, Q8,6, Q7,6)
unchanged, and recompute m9 by the unchanged Q10, then get the exact differ-
ence 226.

m9 = (Q10 −Q9)≫12−Q6 − f10(Q9, Q8, Q7)− t10
Further, we set another extra condition Q10,6 = 0 to keep both Q11 and m10

unchanged while updating Q11. Similarly, we set Q11,6 = 1 to keep both Q12 and
m11 unchanged. Finally, we recompute m12 to keep Q13 unchanged. After these
steps, we successfully keep the differential path before Q25 unchanged, and hold
the condition Q25, 31 = Q0, 31 with probability 1.

Tunnel. The concept of tunnel was first introduced by Klima [4]. The essence
of tunnel is that it employs the free bits to do not only the brute force searching,
but also move the start point of searching forward. For example, in the case
of dBB collision searching, there are conditions Q10,31 = Q0,31 in Q10, and
Q9,31 = Q0,31 in Q9, which means that the value of Q9,31 can’t be changed.
Excluding Q9,6 reserved for the advanced message modification, there are 30
free bits left in Q9. If we set extra conditions Q10 = 231×(1∧Q0,31) + 0x0 and
Q11 = 231×(1∧Q0,31) + 0x7fffffff. In step 25, we can flip any free bits of Q9

to start a new searching without destroying the differential path before step 25.
After step 25, there are only 22 conditions to be randomly satisfied, which means
that we don’t need to go back to step 1 for a successful collision. The tactic of
tunnel greatly improve the collision searching efficiency.

Besides the Q9 tunnel used in step 25, the Q4 tunnel can be used in step 24.
We also propose new Q2 and Q1 tunnels used in step 20 and step 17, respectively,
for efficient meaningful collision searching. For the lack of space, we omit the
details.

Submarine Modification. Naito et al. proposed a submarine modification
[7] to improve the collision searching efficiency of SHA-0. They united both

the basic and advanced message modifications based on SHA-0 to satisfy the
conditions after step 21.

3.3 APOP Password Recovery Attack

Client uses his mail account and password to login on the mail server, and access
his mail. The account is always transferred in clear text, and the only way to
keep his mail account safe is the password. The APOP is designed to do not
leak the password in the untrusted network. Still, there are some ways to attack
the password, such as social engineering, Trojan horse, brute force password
recovery, dictionary attack. Here, we discuss the pure technological methods to
recover APOP password.

Brute Force password Recovery. The brute force password recovery at-
tack is direct and simple but not easy to be accomplished. In a extreme case, if
the password consists of one bit, it may be ’0’ or ’1’, we need only one guess,
whether it is right or wrong, to find the right answer. Actually, there are 52
letters and 10 numbers in total (we simply assume that the punctuations are
excluded). If the password is only one character long, applying the brute force
attack, the attacker needs to try 61 times in the worst case before he gets the
right answer. When the password is 8 characters long, it may try 628 − 1≈247

times, which is too hard for the ordinary PC. Generally, passwords less than 8
characters are thought to be weak.

Divide-and-Conquer Strategy. The divide-and-conquer strategy is a well-
known method to tackle problems with some inner independence. It was also
introduced to improve the MD5 collision attack by Xie et al. in [24], by designing
optimized differential path with huge message freedom supporting tunnels. The
strategy is shown as follows.

If a problem P with computational complexity C0 can be divided into k sub-
problems Pi(1≤i≤k), and each sub-problem Pi can be solved independently with
a sub-computational complexity Ci but without destroying other sub-problems’
solutions, then the computational complexity to solve the original problem is
reduced to Cd =

∑k
i=1 Ci instead of C0 =

∏k
i=1 Ci [24].

Divide-and-Conquer Strategy to APOP Attack. If (m,m′), which
is multiples of blocks long, is a collision pair, the equation of MD5(m‖x) =
MD5(m′‖x) always holds for arbitrary message x. This property was first ap-
plied by Preneel and van Oorschot while employing divide-and-conquer strategy
to attack the Envelop MAC bit by bit [8]. The principle is that, first, we guess
that the first unknown bit of the password is b, then generate a collision pair
(m,m′) which includes b at the end; second, we remove b from m and m′, and
send both as challenges; finally, if the both received responses equate, then the
guess of b is correct. If apply the divide-and-conquer strategy bit by bit to a pass-
word of 64 bits, we need to try 64 times, each includes collision pair generation,
to recover it, not the former brute force attack of 264 − 1 times.

In the case of APOP, the challenge must be multiples of characters. So we
apply the divide-and-conquer strategy to APOP password recovery character by
character, which is shown as follows.

1. Generate a collision pair (m,m′) that the last part of it is the password can-
didate cand which includes the known part and the exact guessing character
l at the tail. Let C = m− cand and C ′ = m′− cand, send the C as challenge
to the user.

2. Receive a response R, and send C ′ as another challenge to the user.
3. Receive a response R′, and compare whether R = R′, if the equation holds,

the guessing l is the very answer, go to the next guessing l′; else go to step
1 for another try.

Previous Password recovery Attacks to APOP

In 2007, Leurent [5] and Sasaki et al. [12] independently presented APOP pass-
word recovery attack which could recover the first 3 characters of the password,
using Wang et al.’s MD5 collision attack. The cause of limitation is that Wang
et al.’s attack needs input difference on the MSB bit of m14, and MD5 process
uses the little-endian, which leads to that only m15 can be used2 for the recovery
attack.

In 2008, Sasaki et al. [11] improved the attack to recover more characters
by using an “IV Bridge”, which aims to apply dBB collision and achieve great
message controlling, and reduced the time of producing one collision pair for
recovering the first 11 characters to less than one second. But the limitation is
that it has to cost about 242 MD5 compressions to construct an “IV Bridge”
first.

In 2009, Wang et al. [15] improved the attack further by employing “bit-free
collision” to reduce the number of chosen challenges. The 1-bit-free collision
means that if a origin MD5 collision pair can be generated in 2t MD5 compres-
sions, then 1-bit-free collision can be generated in 22t MD5 compressions. They
successfully reduced half of the challenges by generating 1-bit-free collision for
recovering the first 11 characters.

4 Collisions Searching with High Number of Chosen Bits

To apply the divide-and-conquer strategy against APOP password recovery at-
tack, the introduced problem of generating MD5 collisions with high number of
chosen bits must be solved efficiently. In this section, we propose a group satis-
faction scheme to improve collision searching efficiency. With the employment of
both of the group satisfaction scheme and the divide-and-conquer strategy, we
implement efficient collision searching with more message controlling over fixed
bits. The work routine of the optimized MD5 collision attack with high number
of chosen bits is shown as follows.

1. Use the first block with input difference ∆M0 = (∆m8 = 231), which was
proposed by Xie et al. [24], as “IV Bridge”. It goes through the initial chain-
ing variable ∆H0 = 0 and gets the output of intended chaining variables

2 The challenge C must end with a ’>’, this means that only 3 characters can be used.

with difference ∆H1 = ±(231, 231, 231, 231), which is needed by den Boer et
al.’s dBB collision.

2. Use dBB collision which needs input difference ∆M1 = 0, and apply the
group satisfaction scheme and the divide-and-conquer strategy, to achieve
great message controlling.

Group Satisfaction Scheme Based on both of the tunnel and the advanced
message modification, we determinately satisfy all of the conditions of the first
three steps, in the last tunnel or the last phase of the divide-and-conquer strategy,
to achieve full speed of collision searching.

Advantage. Most of the former collision searching algorithms [4, 13], in-
tended to satisfy conditions of the beginning step of the last tunnel, but we
satisfy all conditions of the first three steps, which can greatly increase the col-
lision probability and improve the searching efficiency.

Apply Q9 Tunnel to Generate Collisions for Recovering the First
11 Characters. For example, we apply the divide-and-conquer strategy and
the group satisfaction scheme to dBB collision searching with full control over
96 bits (pre-chosen m13, m14, m15) in the way shown as follows.

1. There are 48 conditions3 to be satisfied in total, and we can use full Q9 tunnel
at Q25. We divide the collision searching into two phases. The first phase
from Q1 to Q24 (with 25 conditions). The second phase from Q25, where Q9

tunnel can be applied, to the final step of Q64 (with 23 conditions).
2. In the first phase we first apply the basic message modification from Q1

to Q13, after then there are 12 conditions left to be randomly satisfied, we
handle it as follows.

(a) Directly set the condition bits to be satisfied from Q1 to Q13, and ran-
domly set non-condition bits. (The basic message modification is ap-
plied.)

(b) Compute Q14 to Q16 orderly using the pre-chosen m13 to m15, if any
condition is not satisfied, go to step 2a for a new start.

(c) Compute m1, m6, m11, m0, m5, m10, m4, then orderly compute and
check Q17 to Q24, if any condition is not satisfied, go to step 2a.

(d) Compute m2, m3, m7, m8, m9, m12.

3. After the group satisfaction scheme is applied (there are only 3 conditions
in total from Q25 to Q27), the second phase has 20 conditions left to be
randomly satisfied, but a huge tunnel of 28 free bits.

(a) We utilize the group satisfaction scheme to satisfy all three conditions of
the first three steps of the last phase of the divide-and-conquer strategy.
We notice that w25=w10=m9.

i. Randomly set the free bits of Q9, and then re-compute m9 by the
unchanged Q10.

3 There is one more condition Q23,22 = 1 added to support the group satisfaction
scheme.

ii. Compute Q25, if the condition Q25, 31 = Q0, 31 is not satisfied, then
flip the value of Q9, 6, re-compute m9 by unchanged Q10, then re-
compute Q25.

iii. Compute Q26, if the condition Q26, 31 = Q0, 31 is not satisfied, then
flip the valuer of Q9, 29, re-compute m9, then re-compute Q25 and
Q26.

iv. Compute Q27, if the condition Q27, 31 = Q0, 31 is not satisfied, then
flip the value of Q9, 24, re-compute m9, then re-compute Q25, Q26,
Q27.

v. Check again if the three conditions are satisfied, if not, go to step
3(a)i.

(b) Re-compute m8 from Q9 and m12 from Q13, compute and check from
Q28 to the final step Q64 with early stop, if any condition is not satisfied,
go to step 3a.

Complexity Analysis. Applying the divide-and-conquer strategy, the first
and second phases have 12 and 20 conditions to be randomly satisfied, respec-
tively. In this dividing, no other problem is introduced, and the start-point4 of
collision searching is moved from Q1 to step 3a. The complexity of these two
phases can be calculated independently, according to the divide-and-conquer
strategy. The complexity of phase 1 is about 29 MD5 compressions, phase 2 is
about 218 MD5 compressions, and the full complexity is about 29 + 218≈218

MD5 compressions. The searching can be done in average time of 0.08 second on
ordinary PC (with intel 2G CPU), which is about 24 times faster than Sasaki et
al.’s work [11].

Table 1. Complexity Comparison between Previous Works and Ours

Work IV Bridge(block 0) block 1 1-bit-free collision

Leurent [5] 230 5 s(3 c) -
Sasaki et al. [12] 230 5 s(3 c) -
Sasaki et al. [11] 242 within 1 s(11 c) -
Wang et al. [15] 242 within 1 s(11 c) 246

Ours 219 0.08 s(11 c) 236

Utilizing both of the divide-and-conquer strategy and the group satisfaction
scheme, the complexity of generating an “IV Bridge” is reduced to 219 MD5 com-
pressions, about 0.17 second in average time. Since the complexity of searching a
collision pair for recovering the first 11 characters is 218 MD5 compressions, and
then the complexity of searching a 1-bit-free collision for recovering the first 11
characters is 236 MD5 compressions. The previous works of collision searching

4 In this situation, we start each collision searching in step 3a with huge message
freedom when phase 2 is reached, no need to start from step 2a again.

and our results are compared in Table 1. In the table, s stands for second, c for
character.

We also greatly improve the efficiency of collision searching for recovering
more characters. We generate a collision pair for recovering the first 31 characters
in 219 MD5 compressions (about 0.15 second in average), using Q4 tunnel in
step 24. We generate a collision pair for recovering the first 39 characters in 224

MD5 compressions (about 4.13 seconds in average), using Q2 tunnel in step 20.
We generate a collision pair for recovering the first 43 characters in 226 MD5
compressions (about 20 seconds in average), using Q1 tunnel in step 17. Applying
the message controlling on m15 of the “IV Bridge”5, we can also theoretically
recover up to the first 67 characters of the password. In Table 2, we compare our
results to the previous works of collisions with high number of chosen bits.

Table 2. Comparison of Collision with High Number of Chosen Bits

Work 11 c 31 c 35 c 39 c 43 c 47 c 51 c theoretic recovery

Sasaki et al. [11] within 1 s 5.86 s 238 239 241 242 243 61 c
Ours 0.08 s 0.15 s 224 224 226 239 240 67 c

5 Fast Password Recovery Attack to APOP

In order to implement a successful password recovery attack to APOP, we im-
personate the mail server, construct the collided challenge strings and send them
to the user when he tries to establish a connect. To avoid the restrictions placed
on the challenge, we split the challenge to three parts shown as bellow, and each
part is 512 bits long.

1. A block pre starts from a ‘<’ and includes an exact ‘@’.
2. A block mid is the exact “IV Bridge”.
3. A block end includes the password candidate cand at the end, and an exact

‘>’ before the cand.

We construct a pair of challenges C = pre‖mid‖(end − cand) and C ′ =
pre‖mid′‖(end− cand). The only difference between mid and mid′ is the value
of m8,31 which satisfies m8,31=¬m′8,31. If the mail user receives both C and C ′,
he would think that these two challenges are totally different. So we can use the
C and C ′ to launch password recovery attack to APOP.

An example of the collision pair, consisting of three blocks, for recovering the
first 43 characters of the password is shown in Table 3. The candidate characters
are at the end of the third block end, and them read as “In the beginning God
created the heaven and”, which are chosen from the beginning of the “Bible”. The

5 This message controlling over m15 will not influence the tunnel, even to say the
divide-and-conquer strategy, so the complexity does not increase.

Table 3. An example collision pair for recovering the first 43 characters

H0 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476

0x6568543c, 0x6c6f4820, 0x69422079, 0x2e656c62
0x6e694b20, 0x614a2067, 0x2073656d, 0x73726556

pre 0x2e6e6e69, 0x65685420, 0x646c4f20, 0x73655420
0x656d6174, 0x4720746e, 0x656e6e65, 0x40736973

H1 = H ′
1 0x6a8502b, 0xa9db20dd, 0x822f4299, 0x867a7298

0x47409de4, 0xa1b6eced, 0x7e70ed35, 0xd8215bf0
0xd7b040e1, 0x7342a3a5, 0x79d9e8b3, 0xe707954f

mid 0xac618677, 0x388dc5b7, 0xf7b86a0c, 0xa040309a
0x3a617c44, 0x3392ff6c, 0xf803241d, 0x4f3af7a7

0x47409de4, 0xa1b6eced, 0x7e70ed35, 0xd8215bf0
0xd7b040e1, 0x7342a3a5, 0x79d9e8b3, 0xe707954f

mid′ 0x2c618677, 0x388dc5b7, 0xf7b86a0c, 0xa040309a
0x3a617c44, 0x3392ff6c, 0xf803241d, 0x4f3af7a7

H2 0xe6fee770, 0x21018304, 0x15c61b85, 0x7151e9e2

H ′
2 0x66fee770, 0xa1018304, 0x95c61b85, 0xf151e9e2

0x8d6f618, 0xb5db76d5, 0xa45975e8, 0x2841c42f
0x633f5fa5, 0x206e493e, 0x20656874, 0x69676562

end 0x6e696e6e, 0x6f472067, 0x72632064, 0x65746165
0x68742064, 0x65682065, 0x6e657661, 0x646e6120

H3 = H ′
3 0x2665f3c8, 0x1aa6bb7d, 0x78a0fc27, 0x2d485e7c

pre block reads as “<The Holy Bible. King James Version. The Old Testament
Gennesis@”. The mid block is an exact “IV Bridge”, which is processed to out-
put the intended difference ∆H2 = −(231, 231, 231, 231). The time of constructing
such a pair is only 20 seconds.

5.1 Fast Local Password Recovery Attack to APOP

We launch a local password recovery attack to APOP, the experiment is based
on one old version of open source software “Evolution” which supports APOP.
We change the way of mail accessing, which is originally triggered by the user or
time intervals, to be triggered by receiving a signal from a specific communication
port at the source code level.

We impersonate the mail server(S) in local PC (with intel 2G CPU). U
means the mail client. The work routine of the password recovery attack to
APOP, character by character, is shown as follows.

1. S generates a challenge pair C and C ′ including a password candidate cand
at the end of them, masquerades a signal of mail accessing and sends it to
U .

2. U tries to connect S, upon a signal of mail accessing received from specific
communication port.

3. S sends the challenge string C to U .
4. U computes R = MD5(C‖passwd), and sends it to S.

5. S sends another mail accessing signal to U once R is received.
6. U tries to connect S, upon a received signal.
7. S sends the challenge string C ′ to U .
8. U computes R′ = MD5(C ′‖passwd), and sends it to S.
9. S compares whether R equates R′, if so, the cand is confirmed, and if the

password is fully recovered, stops; else, goes to step 1 for another guess of
the cand.

How to Judge the Password is Fully Recovered. We notice that in
step 9 of the work routine, it should be checked that whether the password is
fully recovered. We handle this problem in the way shown as follows.

1. We always assume that the password is fully recovered, then the message
following C and passwd is the exact padding bits.

2. We computeMD5(C‖cand) and compare it withR, if the equation holds, the
password is fully recovered. Otherwise, the password still has some unknown
characters to be recovered.

Practical Analysis. In the experiment, we assume that the local malware
can change the behavior of the mail client, and in real life, this is totally true;
further, most of people prefer his password being remembered when he uses the
mail client, for that he doesn’t need to enter his password every time to check
mail, so the experiment actually simulates a potential local password recovery
attack to APOP launched by malware. We also assume that passwords just
consist of letters with lower and upper cases and digits from ’0’ to ’9’, this
assumption meets the ordinary use of actual life, so we just need to guess 61 but
not 255 times to recover one character.

Usually, a password with more than 7 characters, is thought to be safe. We
successfully recover passwords whose length ranges from 6 to 31 characters, and
we can recover password of 43 characters in practical time. The average time of
local attacks to recover passwords with different lengths is shown in Table 4.

Table 4. Average time to recover passwords with different lengths

Length 6 c 7 c 8 c 9 c 10 c 11 c 31 c

Time 30.66 s 35.74 s 40.88 s 45.80 s 50.95 s 55.98 s 251.43 s

The fast local password recovery attack to APOP shows that APOP is vul-
nerable to potential attack from some malwares, and the security of APOP and
other MD5 based applications should be seriously re-evaluated.

6 Conclusion

In this paper, we propose a fast local password recovery attack to APOP ap-
plication that can recover a password of 11 characters within one minute, the

recovery of 31 characters is also extremely fast, about 4 minutes, and for 43
characters in practical time. Therefore, these results further confirm that the
security of APOP is totally broken, and the security of MD5 based applications
should be seriously re-evaluated.

We propose a group satisfaction scheme and apply the divide-and-conquer
strategy to greatly reduce the complexity of collision searching. The average time
of generating collisions for recovering the first 11, and 31 characters is about
24 to 25 times faster than previous work [11]. The average time of generating
collisions for recovering the first 39, and 43 characters is about 215 times faster
than [11]. These techniques can be further applied to reduce the complexity of
producing 1-bit-free collision for recovering the first 11 characters, to about 236

MD5 compressions.

Acknowledgements. This work was partially supported by the National High
Technology Research and Development Program of China (2009AA01Z437).

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag (1993)

2. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293-304. Springer,
Heidelberg (1994)

3. FIPS 180-1, Secure Hash Standard. Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US De-
partment of Commerce, Washington D.C., April 17 (1995)

4. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology
ePrint Archive, Report 2006 /105 (2006)

5. Leurent, G.: Message freedom in MD4 and MD5 collisions: Application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309-328. Springer, Heidelberg
(2007)

6. Myers, J., Rose, M.: Post Office Protocol - Version 3. RFC 1939 (Standard), Updated
by RFCs 1957, 2449 (1996)

7. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K.: Improved
Collision Search for SHA-0. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 21-36. Springer, Heidelberg (2006)

8. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
EUROCRYPT, pp. 19-32 (1996)

9. Rivest, R.L., The MD4 message-digest algorithm. Request for comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force (1992)

10. Rivest, R.L., The MD5 message-digest algorithm. Request for comments (RFC
1321), Internet Activities Board, Internet Privacy Task Force (1992)

11. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 challenge and
response: Extension of APOP password recovery attack. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 1-18. Springer, Heidelberg (2008)

12. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical Password Recovery on an MD5
Challenge and Response. Cryptology ePrint Archive, Report 2007/101 (2007)

13. Stevens, M.: On Collisions for MD5. Masters Thesis, 2007. TU Eindhoven, Faculty
of Mathematics and Computer Science, available at http://www.win.tue.nl/ (2007)

14. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D., Weger,
B.: Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate.
In: Halevi, S.(ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 55-69, Springer, Heidelberg
(2009)

15. Wang, L., Sasaki, Y. Sakiyama, K., Ohta, K.: Bit-Free Collision: Application to
APOP Attack. In: Takagi, T., Mambo, M.(Ed.) IWSEC 2009, LNCS, vol. 5824, pp.
3-21, Springer, Heidelberg (2009)

16. Wang, X., Feng. D., Lai., X., Yu, H.: Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. In: rump session of Crypto04, E-print (2004)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1-18. Springer, Heidelberg (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg (2005)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35. Springer, Heidelberg (2005)

20. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1-16. Springer, Heidelberg
(2005)

21. Xie, T., Feng, D.: Construct MD5 Collisions Using Just A Single Block Of Message.
Cryptology ePrint Archive, Report 2010/643 (2010)

22. Xie, T., Feng, D.: How To Find Weak Input Differences For MD5 Collision Attacks.
Cryptology ePrint Archive, Report 2009/223 (2009)

23. Xie, T., Feng, D., Liu, F.: A New Collision Differential For MD5 With Its Full
Differential Path. Cryptology ePrint Archive, Report 2008/230 (2008)

24. Xie, T., Liu, F., Feng, D.: Could The 1-MSB Input Difference Be The Fastest
Collision Attack For MD5? LNCS 5479, the poster session of EUROCRYPT 2009.
Cryptology ePrint Archive, Report 2008/391 (2008)

