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Abstract. Recently, cryptographic access control has received a lot of atten-
tion, mainly due to the availability of efficient Attribute-Based Encryption (ABE)
schemes. ABE allows to get rid of a trusted reference monitor by enforcing access
rules in a cryptographic way. However, ABE has a privacy problem: The access
policies are sent in clear along with the ciphertexts. Further generalizing the idea
of policy-hiding in cryptographic access control, we introduce policy anonymity
where – similar to the well-understood concept of k-anonymity – the attacker can
only see a large set of possible policies that might have been used to encrypt,
but is not able to identify the one that was actually used. We show that using a
concept from graph theory we can extend a known ABE construction to achieve
the desired privacy property.
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1 Introduction

In the last years, new primitives like Attribute-Based Encryption (ABE) and Predicate
Encryption (PE) that enable cryptographic access control have been developed in the
cryptographic community. Using these ideas, access controls systems can now be con-
structed that do not rely on a trusted reference monitor to enforce access rules. Instead,
the information is encrypted in a way that allows decryption only by parties that are
eligible to decrypt them. Specifically, in Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), every user receives a private key that corresponds to an individual set of
attributes, each attribute attesting a certain property that the user has. Each ciphertext
is encrypted with a policy over these attributes in the form of a Boolean formula, and
everyone whose attributes satisfy that policy can decrypt the ciphertext. The encrypted
data cannot be decrypted and thus is invisible to all other users.

This approach allows to enforce access rules in many practical scenarios. For ex-
ample, in the popular Role-based Access Control (RBAC) approach, users are assigned
to roles and each user’s roles determine which rights he has. CP-ABE can be used to
efficiently enforce access rights in an RBAC scenario: For each role there is an attribute,
and for each role a user possesses, he receives the corresponding attribute. Access rights
are described as logical formulas over the universe of attributes. For example, if data is
encrypted with a policy RoleA AND(RoleB OR RoleC), every user who is active
in the role RoleA and either RoleB or RoleC can decrypt the data.

As another example, consider a company that hosts DRM protected media files.
Users can purchase licenses from various content providers that issue usage licenses



containing keys required to decrypt the protected files. Let us assume that two such
content providers are contprov1 and contprov2. A usage license could be ex-
pressed as a Boolean formula over attributes. For example, the policy could state that
the protected file should only be decrypted by someone who has purchased licenses
from at least one of the given content providers and is authenticated as an adult. Policy
P2 in Figure 2 is an example of such a DRM policy. It is also possible to automati-
cally extract such policies from policies written in the Open Digital Rights Language
(ODRL) [12].

Note that in both examples, rules are enforced automatically by the cryptographic
construction. Also, the access rules may be very complex allowing for elaborate, fine-
grained access control if so desired by the scenario. Numerous CP-ABE schemes have
been proposed with varying features that support different types of policy languages.

While CP-ABE today is well-developed and can be considered practical, there are
still some desirable features missing, one of which we are concerned with in this work:
In most CP-ABE constructions, the policy is sent along with the ciphertext. This appears
sensible as the decryptor needs to know which of his attributes are needed to access the
data. However, the policy itself might be considered worth to protect as it might reveal
clues to the content of the encrypted data. For example, consider a patient report in a
hospital setting that is encrypted with a policy that allows encryption only by parties
with the role neurologist or gerontologist. This policy alone reveals some information
about the content, i.e., the patient seems to be advanced in years and might have a
neurological condition. Thus, policy privacy can be an essential feature.

1.1 Towards Policy Privacy

Currently, there are two approaches to realize policy privacy. The first and most well-
understood approach is predicate encryption (PE), which can be seen as a generalization
of ABE in which policies are hidden. Unfortunately, while some PE constructions to-
day are very expressive, they are still quite limited: No particular PE instance is able to
support every possible Boolean formula and PE policies are often formulated in unin-
tuitive or inefficient ways. (We will elaborate on this important aspect later on.) This is
contrary to our goal of high expressiveness and intuitive policies.

The second approach, which we are concerned with here, is to modify common
CP-ABE constructions to somehow hide the policy while still allow an eligible user to
decrypt. We first examine that a policy can never been completely hidden in a ciphertext,
as it has to be stored in a finite space and a known format, so there is always a limited,
finite set of possible policies that can be encoded in a particular ciphertext. This mo-
tivates to introduce the notion of policy anonymity, which is similar to the established
notion of anonymity sets [19] and k-anonymity [7]: Given a number of candidates for
a policy, the anonymity set, an attacker cannot determine which actual policy was used
for the encryption.

Extending a CP-ABE construction to have a hiding feature has been attempted by
Nishide et al. [14] and Yu et al. [24], both of which extend the CP-ABE scheme of [6],
where the policy consists of a single AND-gate. Simply speaking, in these extensions
the policy is still an AND-gate, but the decryptor does not now the particular configu-
ration and has to apply all his attribute keys to decrypt. In both cases the anonymity set



consists of all policies that consists of a single AND-gate over a subset of all attributes
of the system.

In this paper we show that one of Nishide’s CP-ABE constructions [14] can be
modified in order to support the encryption with every Boolean formula by combining
several AND-gates in a specific way and using a novel idea from graph theory. This in
turn allows the encryptor to choose a particular anonymity set which contains – among
with the original policy – many others.

The idea of the construction is as follows: Given a policy, represented by a syntax
tree with ∧ and ∨-gates, we construct a major of this tree, i.e., a supertree that is built
by expanding nodes of the original tree into new subtrees. Such a major can be used
to express many different policies by assigning different expressions to its leaves. The
set of all such policies makes up the anonymity set. The decryptor knows only that the
used policy is among all policies that can be encoded by the supertree. The leaves of this
major are encryptions of blinded partial secrets that represent ∧-gates. As these ∧-gates
are hidden, an adversary does not know which of the possible policies of the anonymity
set is used in the encryption, but by our construction he is still able to decrypt the
message if he fulfills the hidden policy. He will determine which of the leaves he is able
to satisfy, obtain some of the encoded partial secrets, combine them according to the
tree structure using his private key, and unblind the resulting combination to retrieve the
secret. Our application of Nishide’s construction takes collusion attacks into account, so
no group of users (who fulfill different parts of a policy) can decrypt the policy unless
one member of the group fulfills the complete policy.

Example To give an intuition of the hiding property of our system, examine Figure 1,
which represents the structure of a policy anonymity set which is sent along with a ci-
phertext. The form of this tree is known to everyone, but the leaves are hidden using
the ideas of Nishide’s construction. Each leaf hides an ∧-gate with an unknown con-

∧

∨ ∨

v1 v2 v3 v4
←− leaves hidden by construction

Fig. 1: Sample obfuscated policy

figuration. Each ∧-gate could also represent the constant values ⊥ (false) or > (true).
Figure 2 shows some policies that might be encoded with this tree. Consider, for ex-
ample, policy P4. In our construction, each of x1, . . . ,x10 may represent an expression
of the form A = x for an attribute A and an attribute value x. Here, the leaf v1 could
encode the expression v1 ≡ x1 ∧ x2 ∧ x3, v2 could encode v2 ≡ x4, v3 ≡ x5 ∧ x6, and
v4 ≡ x7 ∧ x8 ∧ x9 ∧ x10. There are various ways to encode simpler policies like x1 ∧ x2
or x1∧ (x2∨ x3). For example, the former policy can be encoded by mapping, v1 ≡ ⊥,



v2≡ x1∧x2 v3≡>, and v4 to a random ∧-gate, or by mapping v1≡ x1, v2≡⊥, v3≡ x2,
and v4 ≡⊥. Several other mappings are possible. This shows that the policies encoded
in a simple tree can be very complex and diverse.

P1 : RoleA ∧(RoleB ∨ RoleC)
P2 : (adult ∨ cc = verified) ∧

((contprov1.article1 = purchased ∧ account1 = balanced) ∨
(contprov2.article1 = purchased ∧ account2 = balanced))

P3 : userrole = surgeon ∧ employer = hospitalx

P4 : ((x1∧ x2∧ x3)∨ x4)∧ ((x5∧ x6)∨ (x7∧ x8∧ x9∧ x10))

Fig. 2: Example policies for Fig. 1

An attacker cannot know the concrete semantics of the leaves, but he can determine
if an attribute set satisfies the partial policy of a leaf. We will use this ability in the
decryption algorithm.

1.2 Related Work

In predicate encryption schemes [10, 9, 20, 5], decryption is possible if a predicate over
the user attributes and the ciphertext attributes is fulfilled. Current PE constructions are
very powerful and support rather expressive predicates. Currently the most versatile
solutions seem to be those that use inner product queries [10, 9]. It has been shown [9]
that such a scheme can be used to construct a scheme that supports, for example, DNFs
or CNFs of some bounded degree, or a predicate that can be expressed by a polynomial
over the attributes. However, this predicate (for example a predicate for DNFs of some
degree d) is encoded in the user keys, so it is fixed after the key generation algorithm.
The complexity of the system is dependent on the size of that predicate. This means that
no single PE scheme is able to express every possible policy in polynomial size and due
to the bounded size of the predicate can only support a limited set of policies. Speaking
in terms of anonymity, there is a fixed anonymity set that applies to all ciphertexts of an
instantiation of a PE system.

In our approach, there is no fixed anonymity set. Instead, each encrypting party
decides on the anonymity set when encrypting. All policies are expressed as syntax
trees, so every Boolean formula can be expressed in polynomial size. As we will show
in Section 4.1, the anonymity set is exponential in the size of the tree major that was
used to encode the policy.

Furthermore it should be noted that predicate encryption schemes require very large
groups and are only efficient for small attribute sets thereby making them unfeasible for
many applications.

Aside from PE schemes, policy privacy has also been examined in the context of
trust negotiation [8]. Here, large scrambled circuits are used to obfuscate the underly-
ing policy, which is similar to our idea of using large tree majors. Trust negotiation is an



interactive process whereas in this paper we are concerned with an off-line access con-
trol mechanism. Recently, Seyalioglu and Sahai [18] proposed an encryption scheme
which also uses garbled circuits and hides the policy. However, in their scheme, the
public key of a recipient must be used for the encryption, making it infeasible in the
CP-ABE setting where the identities of the recipients are not known.

Literature on smallest common supertrees and related topics is extensive [17, 22,
16], however the constraints we are dealing with in our scenario have to our knowledge
not yet been discussed. For a good, though somewhat dated, survey see [3]. There are
several CP-ABE schemes [10, 13, 23, 2], but only [14], which we modify in this paper,
and [24] support policy hiding.

Outline In the following section we discuss how to obfuscate policies by creating syn-
tax tree majors. The syntax tree majors are then used in our CP-ABE system described
in Section 3. Section 4 discusses various security aspects of this system. Section 5 con-
cludes.

2 Syntax Tree Majors

The basic idea of our system is to take a policy, encoded as a monotonic syntax tree,
and find another policy that semantically contains many different policies, including the
original one. An attacker is not able to decide which policy was actually used for the
encryption.

Definition 1 (monotonic syntax tree). A monotonic syntax tree T is a tree where all
inner nodes are labeled with either ∧ or ∨ and the leaves represent either Boolean
variables or the constant values ⊥ or >. If the root of T is labeled ∧, then every inner
node of odd depth is labeled ∨, and every inner node of even depth is labeled ∧. We call
such a tree ∧-rooted. Analogously, a ∨-rooted tree is a tree whose root is labeled ∨ and
where every inner node of odd depth is labeled ∧, and every inner node of even depth
is labeled ∨.

It is easy to see that any syntax tree over the operands ∧ and ∨ can be transformed
into a monotonic syntax tree by contracting adjacent ∧- and ∨-nodes. As the labeling
of all inner nodes follows from the labeling of the root node, we usually omit the labels
of the inner nodes, calling the resulting tree implicitly labeled.

As explained in the introduction, we will use a CP-ABE scheme that encrypts the
leaves, which correspond to attributes, but the construction will hide the concrete corre-
spondence between leaves and attributes. Also note that our construction supports only
monotonic syntax trees, but as there might be negative attributes (i.e., attributes that
attest that the possessor does not have a certain property), even non-monotonic policies
can be represented by monotonic syntax trees by applying DeMorgan’s laws until all
negations are atomic.

In order to further obfuscate the policy, we compute a larger policy such that by
mapping some of its leaves to the values > and ⊥ we are able to encode the original
policy. For example, the monotonic syntax tree in Figure 3a represents the formula x∧z.
As an adversary does not know which leaves (if any) are mapped to > and ⊥, there are
many possible forms the encoded policy might have, and as the configuration of the
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Fig. 3: Examples

leaves is hidden, he is not able to access the concrete policy. We say that the larger
policy semantically contains many smaller policies. More formally:

Definition 2 (semantic containment). Let F and G be Boolean formulas over vectors
of Boolean variables x = (x1, . . . ,xn), resp. y = (y1, . . . ,ym) where m ≤ n. We call F
semantically contained in G if there exists a function φ that maps the variables of x to
either variables of y or to constant values > or ⊥, such that G(ψ(φ(x))) = F(ψ(x))
for all configuration mappings ψ : x 7→ {⊥,>}n.

We can apply this definition to syntax trees as follows: Let Q be a monotonic syntax
tree with leaves L(Q) =

{
u1, . . . ,u|L(Q)|

}
and R a monotonic syntax tree with leaves

L(R) =
{
v1, . . . ,v|L(R)|

}
. We say that R semantically contains Q, if there is a function

φ : L(R)→L(Q)∪{⊥,>} such that for all configurations ψ : L(Q)→{>,⊥}, it holds
that ψ(φ(R)) ≡ ψ(Q), i.e., after applying φ to R, it computes the same value as Q for
every possible configuration of the variables.

The type of supertree we examine is closely related to the notion of tree majors.
Informally, a tree R is a major of a tree Q, if Q can be obtained from R by contracting
a number of edges. Equally, a major of Q can be constructed by expanding some nodes
into subtrees. A major can be characterized by a mapping f : V (R)→V (Q) of vertexes
of a tree R to Q. We call R a syntax tree major of Q if we can find a mapping f with the
following properties: Given a node a∈Q, the nodes of f−1(a) form a connected subtree
T of R, which we denote T = R

[
f−1(a)

]
. This is illustrated in Figure 3b. Different

subtrees must not overlap and all edges of Q must be preserved in R. This is similar to
the definition of a tree major.

However, in our scenario we additionally require the expanded tree to preserve the
labeling of all nodes, as it needs to have the same semantics as the original tree. To
understand the implications of this, let the label of a in Figure 3b be ∨. All other labels
of Q follow from this by Definition 1. Now consider the subtree T of R. As our definition
does not allow adjacent ∨-nodes, some nodes of T must be labeled ∧. However, as both
the direct predecessor of T in R and all direct successors of T in R are labeled with ∧,
no node of T can have the label ∧. From this consideration, it follows that all subtrees
introduced in a tree major of a syntax tree must have even height.



Both R1 and R2 of Figure 4 are examples of such majors. Note the placements of
the leaves a and b. In both cases, the root of the smallest subgraph that contains both
nodes has a root labeled with ∨. This node will take on the role that the parent of f (a)
and f (b) in Q has (which is also an ∨-node).

Q
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Fig. 4: Two valid syntax tree majors

Generally, all syntax tree majors must follow the rule that if two nodes a and b have
a common parent in Q, then their unique common ancestor in R must have the same
label as that parent. As a counter example consider the tree major R3 (Figure 5), where
the root of the smallest subtree containing a and b is an ∧-node, thus not qualifying as
a syntax tree major. The original graph contained a formula f (a)∨ f (b), but this cannot
be encoded in the given major, as a and b are only connected by an ∧-node. It is now
easy to see that in these cases the smallest subtrees containing a and b must have odd
height.

More formally, we adapt the definition of tree minors from [15] to implicitly labeled
monotonic syntax trees and define syntax tree majors as follows:
Definition 3 (syntax tree major). A tree R is a syntax tree major of a tree Q if there
exists a surjection f : V (R)→V (Q) such that

1. for each a∈V (Q),T = R
[

f−1(a)
]

is a connected subtree of R, and every path from
the root of T to a leaf of T consists of an even number of edges;

2. for each pair a,b ∈V (Q), f−1(a)∩ f−1(b) = /0;
3. for S = {(u,v) ∈ E(R) | f (u) 6= f (v)}, there exists a bijection ξ : S→ E(Q) such

that for each e(s, t) ∈ S, ξ (e) = ( f (s), f (t)).
4. For each pair of edges (x,a)∈E(Q) and (x,b)∈E(Q), let U be the smallest subtree

of R that has both a and b as leaves. Then the paths from the root of U to the roots
of the subtrees f−1(a) and f−1(b) have odd length.

We call f the characteristic function of the major.
If R is a syntax tree major of Q according to this definition, it semantically contains

Q, and it is straightforward to configure R such that it computes the same function as
Q. A proof for this statement along with complete algorithms for finding a suitable
configuration of R is given in Appendix A.
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Fig. 5: An invalid syntax tree major

3 Building the System

We now describe a CP-ABE system with hidden policies, where policies are represented
as syntax trees. It is based on [14], but extended to support any Boolean formula by
utilizing syntax tree majors. The leaves of the syntax tree are expressions of the form
A = x, where A identifies an attribute and x the value that this attribute must have. See
Figure 2 for some example policies. Our construction supports n attributes, denoted
L1, . . . ,Ln. Each attribute can take on one of a number of symbolic values. We denote
the number of possible values of an attribute Li by ni and the symbolic values of the
attribute by vi,1, . . . ,vi,ni . Thus, each leaf of the tree encodes an expression Li = vi,t .
Using this approach, we are able to support every policy that can be expressed as a
Boolean formula.

Note that we can also emulate numeric attributes using a bag of bits representation
[2], where each number is represented by a bit string and there are two attributes for
each bit. To use this, the policy would first be formulated in a more abstract form, using
comparisons with numbers in the leaves like A = x, A≤ x, or A≥ x. These leaves would
then be expanded into subtrees that evaluate the expressions using the bit representa-
tions, as outlined in [2].

3.1 Setup and KeyGen

Setup An asymmetric bilinear group e : G1×G2 → GT of order p with generators
g1 ∈ G1 and g2 ∈ G2 is chosen. The trusted authority randomly selects random val-
ues for ω,ω,β ,β ∈ Z∗p and for each value vi,t of each attribute he also selects a ran-
dom

{
ai,t ∈ Z∗p

}
1≤t≤ni,1≤i≤n. The public key PK consists of the bilinear group with

generators g1,g2 and the values
{

Ai,t = gai,t
1

}
1≤t≤ni,1≤i≤n

, as well as Y = e(g1,g2)
ω ,

Y = e(g1,g2)
ω , B = gβ

1 , and B = gβ

1 . The master key MK is

MK =
〈

ω,β ,ω,β ,{{ai,1}1≤t≤ni}1≤i≤n

〉
.



Intuitively we hereby construct two parallel cryptosystems that use the same group
structure and the same secret attribute keys but differ in the values of the secret key com-
ponents ω and β . We will the denote the cryptosystem that uses ω and β the primary
cryptosystem and the one that uses ω and β the secondary cryptosystem. The primary
cryptosystem will be used to encrypt the actual secret message, while the secondary one
will help the decryptor to decide which nodes he can access with his attribute set. To
this end, we encrypt the fixed value 1 using the secondary cryptosystem. The decryptor
will try to decrypt this value from the ciphertext to see if he can satisfy the policy of the
gate.

KeyGen Let L = [L1,L2, . . . ,Ln] = [v1,t1 ,v2,t2 , . . . ,vn,tn ] be the attribute list for the user
who wishes to obtain the secret key. If the user is not eligible of the requested at-
tributes, the trusted authority returns ⊥. Otherwise, it picks random values s,λi ∈ Z∗p
for 1 ≤ i ≤ n, and computes D0 = gβ−1(ω−s)

2 and D0 = gβ
−1

(ω−s)
2 . For 1 ≤ i ≤ n, the

authority also computes [Di,1,Di,2] = [g
s+ai,ti λi
2 ,gλi

2 ] where Li = vi,ti . The secret key SKL
is
〈
D0,D0,{Di,1,Di,2}1≤i≤n

〉
.

3.2 Encryption

After the encryptor has decided on the encryption policy and constructed a monotonic
syntax tree Q, he creates a syntax tree major R of Q which is used to hide the actual
policy Q.

Constructing a tree major. There are three ways to construct a syntax tree major of a
syntax tree Q that represents a policy: One way is to randomly expand edges of Q into
trees of even height. This will result in a random major R.

Another, more interesting approach is to “mix” Q with other trees, constructing a
common major that from an adversary’s point of view could encode all of the input trees
as well as numerous combinations of them. This is discussed in Appendix B. Note that
while the resulting tree could encode all of the input trees, we will configure the leaves
such that only the desired tree Q is encoded, so satisfying any of the other trees used as
input to the algorithm does not allow decryption unless Q is satisfied, too.

A third approach to construct suitable syntax tree majors could be to initially decide
on a large generic tree R0 that semantically contains all possible policies that are used
in a given setting. For example, an encryptor may find that all policies that he normally
uses are syntax tree minors of a 3-ary tree of height 4. Then he could always set R to
that tree and use it as a syntax tree major for all encryptions. Using such an approach
for a policy represented by a syntax tree Q, a mapping f : V (R)→V (Q) must be found
that adheres to Definition 3. If Q is indeed a minor of R, such a mapping can be found
in O(|V (R)|) by a brute force algorithm that tries to match vertices of Q to vertices of
R starting from the leaves of both trees. In this case, after initially selecting the generic
tree R0, the process of constructing a tree major is omitted for all further encryptions,
and instead the encryptor simply sets R := R0.



The result of any of these the possible approaches is a syntax tree major R and a
mapping f : V (R)→ V (Q) that characterizes the relationship between Q and R. We
will configure R such that it computes exactly the same function as Q, but keep this
configuration invisible to an attacker.

Encoding the formula. After constructing a syntax tree major R with root T and map-
ping f , the encryptor randomly chooses an r ∈Z∗p and executes EncodeSecret(T,r)
(see Algorithm 1). This algorithm encodes the secret value r ∈ Z∗p into the tree. Be-
ginning from the root of the tree, the algorithm recursively traverses downwards to the
leaves. If a node is an ∧-node, the secret r is split into partial secrets, one for each child
of the node (the decryptor must satisfy all children to recover the secret), so that the
sum of all partial secrets equals r. If a node is an ∨-node, the secret is propagated to all
child nodes. The output is a labeling m(c) of all nodes of c ∈ R to partial secrets in Z∗p.
The idea is that a decryptor needs to be able decrypt a sufficient set of partial secrets to
recover the main secret r. In the next step, the encryptor chooses which of the leaves of
R should be used to compute the desired formula and which ones should be set to ⊥ or
> such that R computes the same function as Q. Let M̃ : L(R)→ {F ,⊥,>, rand} be
the result of this, i.e., if M̃(v) = F , encode a genuine part of Q, if M̃(v) = ⊥, encode
⊥, M̃(v) =>, encode >, or else randomly choose what to compute. There are various
ways to find such a mapping. We explain one such way in Appendix A (see Algorithms
2 and 3). After this process, each leaf v is marked with M̃(v), a partial secret m(v), and
there is a mapping f (v) that maps v to a leaf of Q that represents an expression of the
form Li = vi,t . (Note that the algorithms mark all nodes of R, but from now on we will
only need the marks of the leaves.)

The first part of the ciphertext is C̃ = MY r and C0 = Br, which encodes the value r
and the secret message M.

Algorithm 1: EncodeSecret(T,r)
Input : Tree R, Subtree T of R (represented by its root), number r
Output : m : V (R)→ Z∗p
m(T )←− r;
if T is no leaf then

if T is ∧-rooted then
Let the number of child nodes be n.
ri

R←−Z∗p,1≤ i≤ n, such that ∑i ri = r.
forall children c do EncodeSecret(c,ri)

else
forall children c do EncodeSecret(c,r)

end
end

The basic idea of our approach is to encrypt every leaf’s partial secret m(v) with
either the constant value represented by M̃(v) or — if M̃(v) = F — with the attribute
f (v). Wlog, assume that the last inner nodes of every path to a leaf are ∧-gates (if such
a last inner node is an ∨, replace every leaf v of that gate with an ∧-gate having the



sole child v). For each of these last inner ∧-gates v, the encryptor computes ciphertext
components CT (v) for the primary cryptosystem as follows:

Case 1: If all children of v are either > or F , encode a genuine ∧-gate as follows:
Pick random values r(v)i , ∀i = 1 . . .n, such that m(v) = ∑i r(v)i . For each attribute

1 ≤ i ≤ n set C(v)
i,1 = g

r(v)i
1 and compute {C(v)

i,t,2}1≤t≤ni as follows: if the ith attribute
is not found in the children of f (v) (i.e., the value is don’t care) or the attribute

value vi,t is found in the children, set C(v)
i,t,2 = A

r(v)i
i,t ; otherwise (i.e., the value vi,t is

forbidden for this attribute), select C(v)
i,t,2 randomly.

Case 2: If one of the children is ⊥, the decryption must never succeed. In this case, all
C(v)

i,1 and C(v)
i,t,2 are set to random values.

Case 3: If all children are marked rand, flip a coin to decide whether to proceed with
Case 1 (encrypting with a random ∧-gate) or with Case 2.

Finally, compute the ciphertext components H(v) = Y m(v)

and C0
(v)

= Bm(v). This en-
crypts an additional ciphertext in the secondary cryptosystem which equals to 1.

Combining these components, the ciphertext for leaf v is

CT (v) =

〈
C0

(v)
,H(v),

{
C(v)

i,1 ,
{

C(v)
i,t,2,

}
1≤t≤ni

}

1≤i≤n

〉
.

The final ciphertext is

CT =
〈

C̃,C0,
{

CT (v)∀ leaves v
}〉

,

along with a topological description of the tree (including the labels but excluding any
other marks).

3.3 Decryption

In order to decrypt, the decryptor determines which leaves his attribute set satisfies.
This is done by decrypting the second encrypted value using the second cryptosystem
with all attributes that he has and comparing the result to the value 1. If the decryptor’s
attribute set does not fulfill the policy, he gets a value different from 1. For each leaf
v ∈ L(R) set C′(v)i,2 =C(v)

i,ti,2
, where 1≤ i≤ n and Li = vi,ti and compute

M(v) =
n

∏
i=1

e(C(v)
i,1 ,Di,1)

e(C′(v)i,2 ,Di,2)
and τ

(v) =
H(v) ·M(v)

e(C0
(v)

,D0)
.

For each v, M(v) = e(g1,g2)
s·m(v), where s is specific to the used attribute set and was

set in the KeyGen algorithm, and τ(v) = 1 if the leaf can be satisfied by the decryptor,
and otherwise a random value. Note that if the decryptor can not satisfy the leaf, τ(v)



might also be equal to 1. However, the probability for this occurring is 1/p for p the
order of the bilinear group, which is negligible.

Note that while the decryptor now knows which parts of the tree he satisfies, he
does not know the policies of the respective leaves since their configuration is hidden
by the construction. However, with all τ(v), he is able to decrypt as follows: First he
removes some of the leaves that he does not satisfy (i.e., where τ(v) 6= 1) as they do not
contain any information that he can use. For all τ(v) 6= 1, replace v with the constant
value ⊥ and simplify the tree by substituting subtrees with their obvious results using
the formulas A∧⊥=⊥ and A∨⊥= A. The remaining tree either contains only leaves
that can be satisfied or is a single node⊥. In the latter case, return⊥ (as the attribute set
does not satisfy the policy). For each remaining ∨-node N, randomly choose a subtree
of N and substitute N with it. (This works because Algorithm 1 encoded the same value
in all subtrees of an ∨ node, so we can use any of them to retrieve it.)

Finally, collapse all remaining ∧-nodes to a single one. The message M can now be
retrieved as

M =
C̃ ∏v M(v)

e(C0,D0)
,

where v are all remaining leaves of that single ∧-node. By multiplying a valid combi-
nation of M(v) together, the partial secrets m(v) add up to the secret value r which then
is unblinded by the above formula.

Correctness. Using a secret key SKL that satisfies the tree, we have

C̃ ∏v M(v)

e(C0,D0)
= M · Y r

e(C0,D0)
∏
v

∏
i

e(C(v)
i,1 ,Di,1)

e(C′(v)i,2 ,Di,2)

= M · e(g1,g2)
ωr−β rβ−1(ω−s)+∑v

(
∑i(r

(v)
i ·(s+ai,ti λi)−(ai,t r

(v)
i λi)

)

= M · e(g1,g2)
−rs+∑v

(
∑i r(v)i s

)
.

The tree is constructed such that for a leaf v that is satisfied, ∑i r(v)i = m(v) and for

a sufficient subset of the leaves, ∑v m(v) = r, so ∑v

(
∑i r(v)i s

)
= rs and the equation

yields M · e(g1,g2)
rs−rs = M. Note that if the equation is computed using a key SKL

that does not satisfy the tree, then some C′(v)i,2 will be random values instead of g
ai,t r

(v)
i

1 .
In this case, some m(v) will not be computed correctly, so the exponents do not cancel
out and the result will be different from M (with overwhelming probability).

4 Discussion

In this section we discuss the properties of our extended construction. For sake of space,
the formal security proof is given in Appendix C.



4.1 Anonymity of the Policy

In our construction the ciphertext is encrypted with a major of the syntax tree. As the
leaves of this tree are hidden from an adversary, he cannot decide which of the possible
policies was actually used. The anonymity set A(E,L) is determined by the ciphertext
E and the attribute set of the decryptor L = [L1, . . . ,Ln]. We will now briefly discuss the
size of A(E,L). As a lower bound, assume ni = 2 for all 1 ≤ i ≤ n, i.e., every attribute
has only two possible symbolic values. If the decryptor can access an ∧-gate with his
attribute set L, he can conclude that each ith attribute encoded in the policy of the ∧-
gate is either set to the value Li that he owns or is a “don’t care”. Similarly, if he cannot
decrypt an ∧-gate, he can conclude that there is at least one attribute i in the policy of
the ∧-gate that is unequal to his attribute value Li. In both cases the number of possible
∧-gates is O(2n). For a tree R with leaves L(R), the number of possible policies is in
O(2n·|L(R)|).

In some scenarios, it might suffice if the attacker knows only the general form of
the policy, i.e., he wants to know, which nodes of the tree belong to the actual policy
and which ones are dummy gates introduced in order to obfuscate the policy. In our
construction, the form of the policy is determined by the leaves. Some of these are
set to a constant value (> or ⊥) to render unused inner nodes inoperative, some are
genuine ∧-gates encoding parts of the policy. Thus, to find out which form the original
policy has, an attacker must know which ∧-gates are constant values and which ones are
not, which for a tree R with leaves L(R) gives O(2|L(R)|) combinations. However, for
reasons of symmetry, some of these forms may be topologically identical, so the number
of forms might be smaller than that. The most symmetries are found in a complete n-ary
tree. However, in [11] it is shown that even in such a tree, the number of topologically
different subtrees is exponential in the number of nodes, so it is at least exponential
in the number of leaves. Thus, even taking into account symmetries, the number of
possible forms of a policy encoded in a syntax tree major is exponential in the number
of leaves.

We show that an attacker cannot distinguish between policies within his anonymity
set in Appendix D.

4.2 Comparison with Nishide’s Construction

The partial ciphertext CT (v) of a leaf v has roughly the same size as a complete encryp-
tion of Nishide’s original construction from [14]. In the case where the tree consists
only of a single leaf, the ciphertext of our construction is even a bit larger than it would
be in the original one, because we store additional values that enable the decryptor to
determine whether he is eligible to decrypt. It is natural to ask if this is an improvement.

Concretely, one could transform a policy to DNF form with n conjunctions and
encrypt each conjunction separately, creating n ciphertext instances of Nishide’s con-
struction. This requires approximately as much memory as using our construction for a
tree with n leaves. This is of course only feasible if the policy in question has a small
DNF representation, i.e., one with a small number of conjunctions. The leaves in our
scheme represent conjunctions, but only of parts of the encoded policy, and they can be
combined in various ways following the description of the major which is sent along



with the ciphertext. For example, the 2-CNF formula shown in Figure 6 can be encoded
with 10 leaves, but its DNF representation consists of 25 = 32 conjunctions, so 32 in-
stances of Nishide’s construction would be needed to encode it. This is not a problem in
our construction as the original 2-CNF form can be used for the encryption. (Note that
when using the 2-CNF syntax tree as a major for encryptions, the policy automatically
supports ∧-gates as leaves, so it is actually stored as a conjunction of DNFs. This form
has been called CDNF in [21] and is considered very expressive.)

∧

∨ ∨ ∨ ∨ ∨

Fig. 6: 2-CNF of size 5

4.3 Reducing the Size of the Ciphertext

For each leave’s encryption every attribute of the system is used. This is the only way to
maximize the anonymity set, because when some attribute A is not used for the decryp-
tion of a leaf v, then the decryptor can obviously conclude that the partial policy of v
does not contain A. However, if the universe of attributes of a given system is very large,
it might be feasible to use only a comparatively small set of attributes for the encryption
of each leaf while still using enough attributes to get a sufficiently large anonymity set.
Similarly to [14], each leaf v may be encrypted with its own set of attributes Av. Av

can be a random superset of the set attributes actually used in the leaf. However, in or-
der to hide as much of the semantics of each partial policy, some care must be taken, as
it should be understood which information an attacker gains by the knowledge of Av.
It must also be considered that Av must be sent along with each leaf, which slightly
increases the size of the ciphertext.

As a more systematic approach, the universe of attributes could be partitioned into
different domains Di,1 ≤ i ≤ nD with nD the number of domains. For example one
domain D1 could contain all user-specific attributes, D2 could contain all device-specific
attributes, D3 all location-specific attributes, etc. If each domain Di consists of |Di|
attributes, then the anonymity set of a respective leaf Av with Av = Di is O(2|Di|).
With this approach, an advisor knows that a leaf v with Av =D1 might encode a partial
policy over some user-specific properties (or as always an encoding of ⊥ or >), but he
does not know which one or which ones. This gives the encryptor precise control over
what information is disclosed with an encrypted leaf. Moreover, instead of listing each
element of Av, with this approach only the index i of Di needs to be sent along with the
partial ciphertext of v, CT (v).



5 Conclusion

We introduced the notion of policy anonymity in cryptographic access control. To this
end, we proposed the idea to obfuscate the policy used in an encryption by constructing
a syntax tree major of the syntax tree that encodes the desired policy. The leaves are
then hidden from an adversary using a cryptographic primitive. We discussed how these
majors can be characterized and how to configure the leaves to encode a specific, given
policy in one of its majors. The majors can be chosen arbitrarily large, and the larger a
major is the larger becomes the anonymity set. From the anonymity set, an adversary
gains only very general informations about the encoded policy; for example he knows
an upper bound of its complexity and that some of his attribute sets satisfy certain parts
of the major. We then used these primitives to modify a CP-ABE scheme with partially
hidden policies to support every policy that can be expressed as a Boolean formula and
enable an encryptor to obfuscate that policy.

Our construction compares favorably to [14] as it is able to efficiently encode any
policy that can be expressed as a Boolean formula and is not limited to policies with
small DNF represenations and to the various Predicate Encryption schemes. However,
it may be possible to construct a scheme that hides even more properties of the encoded
policy by using a different encoding of the it, like garbled circuits which presently have
been utilized to solve different problems [8, 18]. We leave this as future work. Also, our
approach may be applicable to other CP-ABE system that like Nishide’s support only
∧-conjunctions.
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A Embedding a Formula in a Syntax Tree Major

In this section, we construct a mapping M̃ : V (R)→ {F ,>,⊥, rand} that allows us
to embed a monotonic syntax tree Q in a syntax tree major R such that R computes the
same function as Q. This is achieved by mapping some of the leaves of R to the constant
values ⊥ or >. The effect of this is that some inner nodes of R that are connected to
these leaves will map to trivial formulas like x∧> or x∧⊥, which are equal to x or ⊥.
For an example, we refer to Figure 3a. The remaining leaves (that are not set to> or⊥)
are then mapped to leaves of Q such that R evaluates the same function as Q.

Finding such a mapping can be done in a two step process. In the first step, we
mark all inner nodes of R that are needed to encode nodes of Q with a special symbol
that we call F . For convenience, all other nodes will be marked /0. Call this mapping
M : V (R)→{ /0,F}. As R is a syntax tree major of Q, this marking can be found by the
following iterative algorithm: For each leaf of Q, a corresponding leaf in R is selected
and the path from the root of R to this node is marked by traversing upwards (see
Algorithm 2).

In the second step, the other inner nodes (not marked with F by Algorithm 2) are
marked with> or⊥, such that they do not affect the computation of the encoded policy.
Furthermore, we mark all leaves that have no impact on the computation with the value
rand. This value shall indicate that the leaf can be chosen randomly from {⊥,>} or



Algorithm 2: MarkRelevantNodes(R,Q, f )
Input : R, Q, f : V (R)→V (Q)
Output : M : V (R)→{ /0,F}
forall T ∈V (R) do M(T )←− /0;
M(root(R))←−F ;
foreach leaf u of Q do

T R←− leaf of f−1(u);
while M(T ) 6= F do

M(T )←−F ;
T ←− parent(T );

end
end

any policy. This will be useful in the cryptographic construction. Algorithm 3 marks
all nodes that were marked with /0 to ⊥, >, or rand. Call this mapping M̃ : V (R)→
{F ,>,⊥, rand}. The algorithm marks the nodes as follows: If a node is an ∧-node
marked F , all children marked /0 will recursively be set to >. Similarly, if a node is an
∨-node marked F , all children marked /0 will recursively be set to ⊥. For nodes that
are not marked F , an appropriate mapping of the children to ⊥, >, or rand is chosen,
such that the nodes do not influence the computation.

Algorithm 3: SetNodeValue(T,m)

Input : Tree R with label M : V (R)→{ /0,F}, subtree T of R (represented by its root),
m ∈ {F ,⊥,>, rand}

Output : M̃ : V (R)→{F ,⊥,>, rand}
if T is not a leaf then

M̃(T )←− m ;
if T is an ∧-node then t ←−⊥ else t ←−>;
switch m do

case F
foreach child c,M(c) = F do SetNodeValue(c, F );
foreach child c,M(c) 6= F do SetNodeValue(c, not t);

end
case t

Select a random child c;
SetNodeValue(c, t);
forall other children c do SetNodeValue(c, rand);

end
otherwise

forall children c do SetNodeValue(c, m);
end

end
end

The following theorem states that these algorithms are correct:

Theorem 1. Let R be a syntax tree major of a monotonic syntax tree Q and let f be the
characteristic function of this major, as described in Definition 3. Applying the function



φ : L(R)→ L(Q)∪{⊥,>}, defined as

φ(v) =
{

f (v), if M̃(v) = F ,
M̃(v), otherwise

to the leaves of R yields a tree φ(R), which is semantically equal to Q, i.e., for all
configurations ψ : L(Q)→{>,⊥}, ψ(φ(R)) = ψ(Q).

For every node q ∈ Q, let T (q) := R[ f−1(q)] be the subtree of R that q is expanded
into. Consider Definition 3. As f is a surjection, all nodes of Q are reached by applying
f to the nodes of R. By (1), for each node q ∈ Q, f−1(q) is a connected subtree and by
(2), all expanded subtrees T (q) of nodes q are disjunct.

We will show that after applying φ to the leaves of R, each subtree of Q starting with
any q ∈ Q is semantically equivalent to the respective subtree of R rooted at the root of
T (q), i.e., they compute the same function for all configurations ψ : L(Q)→ {⊥,>}.
For any node q and extended subtree T (q) we will write q≡ T (q) if this is the case.

We need the following lemmas:

Lemma 1. For the root rR of R and the root rQ of Q, it holds that f (rR) = rQ.

Proof. Suppose not. Then f (rR) has a predecessor x and is connected to this predecessor
by an edge (x,rR). By (3) of Definition 3, this edge is preserved in R, so rR also has a
predecessor. This contradicts the assumption that rR is a root. ut

Lemma 2. Let R be a syntax tree major of Q, and let Q and R be equally rooted (i.e.,
both are ∧-rooted or both are ∨-rooted). Then for each node q ∈ Q, the root of the
subtree T (q) has the same (implicit) label as q.

Proof. We prove this lemma by induction over the structure of the tree. Lemma 1 im-
plies that the root rQ of Q has the same label as the root of T (rQ) (because the root of
T (rQ) is the root of R and both trees are equally rooted). Now let q ∈ Q be a node for
which Lemma 2 holds, i.e., the root of T (q) has the same label as q. By (1) of Definition
3, T (q) has even height, so the leaves of T (q) also have the same label as q. Suppose
that the label of q is ∧ and let r be a child of q in Q. Then the label of r must be ∨
(by Definition 1). By the induction hypothesis, the root of T (q) is labeled ∧. Then the
leaves of T (q) are also labeled ∧. Again, by (3), the edge (r,q) ∈ E(Q) is preserved in
R, so there is an edge from a leaf of T (q) to the root of T (r). This root must be labeled
∨. If the label of q is ∨, a similar argument holds. ut

We are now in a position to prove Theorem 1 by structural induction.

Proof. Let u be a leaf of Q. Algorithm 2 randomly marked a leaf v ∈ T (u) of R with
F , as well as all nodes of the single path from v to the root of T (u). Algorithm 3
configured all nodes on this path such that they return the value of their single marked
child (this means that they compute the identify function). By this, the value of the
marked leaf is propagated along the path to the root. It follows that for all configurations
ψ : L(Q)→{⊥,>}, ψ(T (u)) = ψ(φ(v))) = ψ( f (v))) = ψ(u).

Now suppose that for all children wi,1≤ i≤ nq of a node q, wi ≡ T (wi) (where nq
is the number of children of q). We need to show that this implies that q≡ T (q). By (3)
of Definition 3, the unexpanded edges of Q are preserved in R. This means that for each
edge (q,wi) ∈ E(Q) there is an edge in R that that connects a leaf of T (q) to the root of



T (wi). From Lemma 2 we know that the root of T (q) and all leaves of T (q) have the
same label as q. From (4) of Definition 3 we conclude that marked paths meet only at
nodes that have the same label as the root of T (q). All other nodes on the marked paths
are set by Algorithm 3 such that they compute the identity function, and all other nodes
that are unmarked are configured to have no influence on the computation.

If q is an ∧-gate (q computes w1 ∧ w2 ∧ . . . ∧ wnq ) then the roots of all T (wi) will
be connected by ∧-gates in T (q) and T (q) computes T (w1) ∧ T (w2) ∧ . . . ∧ T (wnq)
But we know that wi ≡ T (wi), so q ≡ T (q). Similarly, if q is an ∨-gate (q computes
w1 ∨ w2 ∨ . . . ∨ wnq ) then the roots of all T (wi) will be connected by ∨-gates in T (q)
and T (q) computes T (w1) ∨ T (w2) ∨ . . . ∨ T (wnq). But we know that wi ≡ T (wi), so
q≡ T (q). ut
A direct consequence of this Theorem is:

Corollary 1. Every syntax tree major R of a monotonic syntax tree Q semantically
contains Q.

B Finding a Small Common Syntax Tree Major

We will now briefly discuss one way to find a common syntax tree major of a set of syn-
tax tree. Ideally, we would like such combinations of trees to be as small as possible.
This problem is known as the smallest common supertree problem and is well-studied
for tree majors [17, 22, 16]. Generally, this problem is NP-hard, but by adding some rea-
sonable constraints on the input trees, it becomes tractable. We can adopt the algorithm
for finding the smallest common major of two trees described by Nishimura et al. [15]
to our definition of syntax tree majors. The only constraint of Nishimura’s algorithm is
that the input trees must have a bounded degree. This is reasonable for our settings as a
sufficient upper bound for all realistic syntax trees of a particular scenario can easily be
estimated.

As our definition of syntax tree majors is based on the definition of tree majors used
in [15], we can modify Nishimura’s algorithm to work for our definition of syntax tree
majors. We briefly describe the necessary modifications: The most important restriction
in our definition compared to the original one is that nodes of tree R can only be com-
bined with nodes of Q that have equal labels. As the algorithm of [15] always combines
the roots of Q and R, both trees must be either ∧-rooted or ∨-rooted. If they are not
equally rooted, construct a new node N and attach either Q or R as a subtree. The main
loop of the algorithm tries all possible combinations of nodes of Q with nodes of R. For
syntax tree majors, we must restrict these combinations to combinations that map nodes
of equal labels, i.e., the distances of the combined nodes to their respective root must
both be even or odd. Finally, the remainder of the algorithm must be restricted such that
only mappings that preserve the labels and furthermore adhere to (4) are tried.

With this modification the algorithm can be utilized by the encryptor to systemat-
ically construct a tree R that is a syntax tree major of a set of trees: In addition to the
monotonic syntax tree Q, select some monotonic syntax trees P1, . . . ,Pn. Find the small-
est common tree major of all Q and Pi as follows: Set Q0 := Q and for all i ∈ {1, . . . ,n}
let Qi be the smallest common major of Qi−1 and Pi. The resulting tree Qn is a syntax
tree major of P1, . . . ,Pn and Q and can be used to encode any of the formulas encoded
by Q, any Pi, and numerous combinations.



C CPA-Security

As the system uses the same structures as Nishide’s construction, its CPA-security can
directly be derived from it. We can model the security using a standard security game
as for example used in [2]. As we only claim security in the generic group model, the
more powerful non-selective version can be used:

Setup The challenger runs the Setup algorithm and gives the public key PK to the
adversary.

Phase 1 The adversary queries the challenger for private keys corresponding to lists of
attributes L = [L1,L2, . . . ,Ln] = [v1,t1 ,v2,t2 , . . . ,vn,tn ].

Challenge The adversary declares two messages M0 and M1 and a policy W. The policy
must not be satisfied by any of the queried attribute lists. The challenger flips a
random coin b ∈ {0,1} and encrypts Mb under W , producing CT. It gives CT to the
adversary.

Phase 2 The adversary quieries the challenger for private keys corresponding to lists of
attributes L = [L1,L2, . . . ,Ln] = [v1,t1 ,v2,t2 , . . . ,vn,tn ] with the added restriction that
none of these lists must satisfy W .

Guess The adversary outputs a guess b′ for b. The advantage for the adversary in this
game is defined to be Pr[b = b′]− 1

2 .

The CP-ABE system is said to be secure if all polynomial time adversaries have at
most negligible advantage in this security game.

Theorem 2. The construction given in Section 3 is secure in the generic group model.

Proof. We show how any adversary who plays the CP-ABE game (denoted Adv1)
can be used to construct an adversary in a slightly modified game (Adv2). Then we
prove that no such Adv2 can exists, so no Adv1 can exist, either. We define the modified
game in the following manner: The phases Setup, Phase 1, and Phase 2 are equal to the
CP-ABE game. In the Challenge phase, the adversary declares a policy W. The policy
must not be satisfied by any of the queried attribute lists. The challenger flips a random
coin b ∈ {0,1} and encrypts Mb under W , producing CT, but instead of computing C̃ as
described in the algorithm, he computes C̃ as

C̃ =

{
Y r, if b = 1
e(g1,g2)

θ , if b = 0,

where θ is chosen randomly from Z∗p. The task of Adv1 is to distinguish the two group
elements Y r = e(g1,g2)

ωr and e(g1,g2)
θ .

Lemma 3. If there exists an adversary Adv1 who has advantage of ε to win the original
CP-ABE game, then there exists an adversary Adv2 who wins the modfied game with
advantage ε/2.

Proof. Given an adversary Adv1 that has advantage ε in the CP-ABE game, we can
construct an adversary Adv2 as follows: Adv2 simulates Adv1. In the phases Setup,
Phase 1, and Phase 2, Adv2 forwards all messages he receives from Adv1 to the chal-
lenger, and all messages from the challenger to Adv1. In the Challenge phase, Adv2



receives to messages M0 and M1 from Adv1 and the challenge CT (which contains C̃
that is either e(g1,g2)

ωr or e(g1,g2)
θ for a random θ ) from the challenger. He flips a

coin b and multiplies C̃ by Mb and sends the resulting ciphertext CT′ to Adv1. When
Adv1 outputs a guess b′, Adv2 outputs 1 if b′ = b and 0 if b′ 6= b. If for the original
C̃ = e(g1,g2)

ω , then Adv2’s challenge given to Adv1 is a well-formed CP-ABE cipher-
text and Adv1 has advantage ε of guessing the correct b′ = b. Otherwise, the challenge
is independent of the message M0 and M1, so the advantage of Adv2 is 0. Thus, we have

Pr[Adv2 succeeds] = Pr[C̃ = Y r] Pr[β ′ = β |C̃ = Y r]+

Pr[C̃ = e(g1,g2)
θ ] Pr[β ′ 6= β |C̃ = e(g1,g2)

θ ]

≤ 1
2
(

1
2
+ ε)+

1
2
· 1

2
=

1+ ε

2

To prove Theorem 2, we use the asymmetric case of the Generic Diffie-Hellman Expo-
nent problem [4]:

Definition 4 (Dependant Polynomials, Asymmetric case). Let P,Q,R∈Fp[x1, . . . ,xn]
s

be three s-tuples of n-variate polynomials over Fp. Write P = (p1, p2, . . . , ps), Q =
(q1,q2, . . . ,qs) and R = (r1,r2, . . . ,rs) where p1 = q1 = r1 = 1. We say that a polyno-
mial f ∈ Fp[x1, . . . ,xn] is dependent on the sets (P,Q,R) if there exist 2s2 + s constants
{ai, j}s

i, j=1,{bi, j}s
i, j=1,{ck}s

k=1 such that

f =
s

∑
i=1

s

∑
j=1

ai, j piq j +
s

∑
i=1

s

∑
j=1

bi, jqiq j +
s

∑
k=1

ckrk

We say that f is independent of (P,Q,R) if f is not dependent on (P,Q,R).

Boneh et al. prove the following theorem:

Theorem 3. Let P,Q,R∈Fp[x1, . . . ,xn]
s be three s-tuples of n-variate polynomials over

Fp and let f ∈ Fp[x1, . . . ,xn]. Let d = max(deg(P)+deg(Q),2deg(Q),deg(R),deg( f )).
If f is independent of (P,Q,R) then any A that has advantage 1/2 in solving the de-
cision (P,Q,R, f )-Diffie-Hellman Problem in a generic bilinear group (G1,G2) must
take time at least Ω(

√
p/d− s).

We need to show that the adversary’s target term f = ωr is independent of (P,Q,R),
where (P,Q,R) are the polynomials from G1, G2 and GT that he knows. After the
challenge phase, the adversary has the following terms:

– The public system key PK:
{

ai,t ∈ Z∗p
}

1≤t≤ni,1≤i≤n ,β ,β ∈ P, ω,ω ∈ R,
– Private keys SKL for several queries L. Let the number of these sets be N and

denode the jth query L( j). For each query 1≤ j≤N, the challenger created a secret
value s( j) and random values λ

( j)
i ,1 ≤ i ≤ n (n being the number of attributes):

β−1(ω − s( j)),β
−1
(ω − s( j)),s( j)+ ai,tiλ

( j)
i ,λ

( j)
i ∈ Q. No L( j) satisfies the policy

per the definition of the security game.
– The ciphertext components
• C0: β r ∈ P for a randomly chosen r



• For all leaves that contain genuine ∧-gates and are satisfied for an L( j) C(v)
i,1 ,1≤

i≤ n and C(v)
i,t,2,1≤ t ≤ ni,1≤ i≤ n: r(v)i , ai,tr

(v)
i ∈ P

• For all leaves the unblinding values of the secondary cryptosystem H(v) and
C0

(v): ωm(v) ∈ R, βm(v) ∈ P

From this examination we follow that the polynomial vectors P, Q, and R are as follows:

P =




1,β ,β ,β r,{
ai,t ∈ Z∗p

}
1≤t≤ni,1≤i≤n ,

{r(v)i ,ai,tr
(v)
i }∀v,1≤t≤ni,1≤i≤n,

{βm(v)}∀v




Q =




1,
{β−1(ω− s( j))}1≤ j≤N ,

{β−1
(ω− s( j))}1≤ j≤N ,

{s( j)+ai,tiλ
( j)
i ,λ

( j)
i }L( j)

i =vi,ti ,1≤ j≤N,1≤i≤n




R =

(
1,ω,ω,

{ωm(v)}∀v

)

and f = ωr.
The adversary needs to build the target polynomial ωr from P,Q,R using only the

combinations implied by Definition 4. The product ωr is not contained in any term,
so he needs to multiply a polynomial of Q with a polynomial of P or Q such that both
factors ω and r are contained in either term. First observe which terms contain ω . There
is only ω ∈ R which cannot be multiplied with any other polynomial as it is in R and
β−1(ω−s( j))∈Q for any 1≤ j≤N. As this has β−1 as additional factor, the adversary
must eliminate β−1 from any of these polynomials by multiplying it with a polynomial
from P or Q that contains β . There are two possibilities to achieve this: Multiplying with
β ∈ P yields (ω− s( j)) ∈ R, and multiplying with β r ∈ P yields (ωr− rs( j)) ∈ R. These
are the only two methods to create a polynomial that contains ω , but not β−1. We now
examine which of these two combinations can be used to build the target polynomial
ωr.

Case 1: (ω − s( j)) ∈ R. Since the adversary has to build ωr, he is required to have
r as another factor. However, only terms of P and Q can be multiplied, and the current
polynomial is already in R, so there is no way to build ωr.

Case 2: (ωr− rs( j)) ∈ R for some (any) 1 ≤ j ≤ N, which contains ωr. Note that
this is an element of R and no other multiplication is possible. It follows that this is
the only way to create the product ωr. The adversary now has to build rs( j) in order to
remove that term from the polynomial.

To construct a polynomial that contains rs( j), the adversary now needs to multiply a
polynomial that contains s( j) with a polynomial that contains r or at least r(v)i (as r can
be constructed using a sum over some r(v)i ). Table 1 lists all results.

The only useful term is r(v)i s( j)+ai,tiλ
( j)
i r(v)i . As explained in the correctness proof,

summing up all attribute keys for an appropriate set of leaves, the sum becomes equal
to rs( j)+∑v ∑i ai,tiλ

( j)
i r(v)i , and adding that to our current term, we get



β r r(v)i a(v)i,t r( j)
i

β−1(ω− s( j)) ωr− s( j)r β−1r(v)i (ω− s( j)) β−1a(v)i,t r(v)i ω−β−1a(v)i,t r(v)i s( j))

β
−1

(ω− s( j)) β
−1

β r(ω− s( j)) β
−1

r(v)i (ω− s( j)) β
−1

r(ω− s( j))a(v)i,t

s( j)+ai,ti λ
( j)
i β r(s( j)+ai,ti λ

( j)
i ) r(v)i s( j)+ai,ti λ

( j)
i r(v)i r(v)i (ai,ti s

( j)+a2
i,ti λ

( j)
i )

Table 1: Pairing a term containing r with a term containing s( j)

(
ωr− rs( j)

)
+

(
rs( j)+∑

v
∑

i
ai,tiλ

( j)
i r(v)i

)
= ωr+∑

v
∑

i
ai,tiλ

( j)
i r(v)i

The adversary can then cancel out ∑v ∑i ai,tiλ
( j)
i r(v)i by multiplying the ciphertext

components a(v)i,t r( j)
i with his secret key components λ

( j)
i .

However, note that none of the adversary’s keyrings satisfies the access policy. This
means that for each j there is at least one v, for which he does not have a sufficient set
s( j)+ ai,tiλ

( j)
i to build the partial secret m(v). If he uses such a wrong attribute set, he

will not be able to cancel out the term ∑v ∑i ai,tiλ
( j)
i r(v)i , as the corresponding ciphertext

components are not a(v)i,t r( j)
i ∈ P but were set by the encryptor to random values.

Without a sufficient set of partial secrets, he cannot build r and thus not rs( j) +

∑v ∑i ai,tiλ
( j)
i r(v)i for any j.

As this is the only remaining possibility to remove the unneeded term rs( j) from
the polynomial, it can now be seen that f = ωr is independent of (P,Q,R), and from
Theorem 3 it follows that the adversary cannot build f and thus cannot break the system.

ut

D Indistinguishability within an Anonymity Set

We need to show that an attacker cannot distinguish between two policies that are in the
same anonymity set. As shown in section 4.1, from an adversary’s view the anonymity
set is defined by the tree major and the set of nodes that he can decrypt. The latter set is
in turn defined by his attribute set.

The game works as follows: The adversary decides on two policies W0 and W1 as
well as a common syntax tree major R of both W0 and W1. Note that there is only a fixed
number of ways that each policy can be embedded in R, as the process is defined by
our algorithms given in Section 2. Thus, the adversary is able to determine all possible
anonymity sets given an attribute list. For each of these anonymity sets he can further
determine if exactly one of W0 and W1 is an element of the anonymity set. This can only
be the case if one of the leaves of R can be decrypted for one of the two policies W0 and
W1 and cannot be decrypted for the other one. As we only claim policy anonymity if
either both or neither of W0 and W1 are in the anonymity set, we restrict the adversary
to only query attribute lists that do not have this property.

Setup: The challenger runs the Setup algorithm and gives the public key PK to the
adversary.



Challenge: The adversary commits to the challenge ciphertext policies W0,W1 as well
as a common syntax tree major R of W0 and W1 and a message M. The challenger
flips a random coin b and passes the ciphertext E := Encrypt(PK, M, Wb) to the
adversary.

Query: The adversary sends a number of attribute list Li,0≤ i≤ n for any polynomial
n. For each attribute list Li, the challenger verifies that either both W0 and W1 are
in the anonymity set derived from Li or that neither W0 or W1 are in that anonymity
set. If this is the case, the challenger gives the adversary the secret key SKLi . Note
that these queries can be adaptive.

Guess: The adversary outputs a guess b′ of b.

The adversary wins the game if his advantage
∣∣Pr[b = b′]− 1

2

∣∣ is negligible.

Theorem 4. If Nishide’s construction is secure, the adversary cannot win the game.

Proof sketch As the leaves of the tree are encrypted using Nishide’s construction (with-
out the unblinding step), the adversary’s views are identical for both b = 0 and b = 1.
This is the case because by our restriction each leaf that can be decrypted if b = 0 can
also be decrypted if b = 1 and each leaf that cannot be decrypted if b = 0 can also not
be decrypted if b = 1. Thus he cannot distinguish between the two policies, proving the
theorem. ut


