
Secure Multi-Party Computation of Boolean Circuits

with Applications to Privacy in On-Line Marketplaces

Seung Geol Choi∗ Kyung-Wook Hwang† Jonathan Katz∗

Tal Malkin† Dan Rubenstein†

Abstract

Protocols for generic secure multi-party computation (MPC) come in two forms: they either
represent the function being computed as a boolean circuit, or as an arithmetic circuit over a
large field. Either type of protocol can be used for any function, but the choice of which type of
protocol to use can have a significant impact on efficiency. The magnitude of the effect, however,
has never been quantified.

With this in mind, we implement the MPC protocol of Goldreich, Micali, and Wigderson,
which uses a boolean representation and is secure against a semi-honest adversary corrupting
any number of parties. We then consider applications of secure MPC in on-line marketplaces,
where customers select resources advertised by providers and it is desired to ensure privacy to
the extent possible. Problems here are more naturally formulated in terms of boolean circuits,
and we study the performance of our MPC implementation relative to existing ones that use an
arithmetic-circuit representation. Our protocol easily handles tens of customers/providers and
thousands of resources, and outperforms existing implementations including FairplayMP [3],
VIFF [10], and SEPIA [7].

1 Introduction

Protocols for secure multi-party computation allow a set of parties P1, . . . , Pn to compute some
function of their inputs in a distributed fashion, while revealing nothing to a coalition of corrupted
parties about any honest party’s input (or any group of honest parties’ inputs), beyond what is
implied by the output. Seminal results in cryptography dating to the 1980s [28, 12, 11] show
that any polynomial-time function can be computed securely in the presence of coalitions of up
to n − 1 corrupted parties. For many years, the perception was that these were to be viewed as
pure theoretical results with little practical relevance. This changed (to some extent) with the
advent of Fairplay [22], an implementation of Yao’s protocol for secure two-party computation that
demonstrated for the first time that generic protocols were within the realm of feasibility. Since
then, several other implementations of generic secure two-party and multi-party protocols have
been developed [3, 21, 5, 10, 24, 7, 14], and this is currently an active area of research.

In this work our focus is on generic protocols for secure multi-party computation (MPC) in
the semi-honest setting. (In the semi-honest setting, parties are assumed to follow the protocol
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but coalitions of malicious parties may attempt to learn additional information from the joint
transcript of their execution of the protocol. By “generic” we mean protocols that can be used
to securely compute arbitrary functions.) There are, broadly speaking, two approaches taken by
protocols for secure MPC: they either represent the function being computed as a boolean circuit,
or as an arithmetic circuit over a (cryptographically) large field F.1 Although any function f
can be computed using either type of protocol, the choice of representation affects the size of the
circuit implementing f , and hence the overall efficiency of a secure protocol for computing f . The
magnitude of the effect, however, has never been measured experimentally.

Most existing implementations of secure MPC rely on an arithmetic-circuit representation of the
function, with VIFF [10] and SEPIA [7] serving as two prominent examples whose code is available
for download. We are aware of only one existing implementation — FairplayMP [3] — of secure
MPC using boolean circuits. As we will see, for certain problems a boolean-circuit representation
is much more natural, and so it is important to have protocols of both types available. Indeed, the
motivation for our work came from trying to apply secure MPC to privacy-preserving computation
in on-line marketplaces, where customers select resources advertised by providers and it is desired to
ensure privacy to the extent possible. (See the following section for details.) In doing so, we found
that existing implementations of secure MPC were unsuitable or too inefficient for our purposes.
Moreover, FairplayMP, VIFF, and SEPIA require an honest majority, even though resilience against
an arbitrary number of corruptions is theoretically attainable.

1.1 Our Contributions

We implemented the classical MPC protocol of Goldreich, Micali, and Wigderson [12] (the GMW
protocol), which uses a boolean-circuit representation for the function being computed and is secure
against a semi-honest adversary controlling any number of corrupted parties. In our implementa-
tion, described in Section 2, we employ several optimizations to improve efficiency. Our code is
publicly available2 and we expect that, as with other systems, it will be useful in future work on
privacy-preserving distributed computation.

With our system in place, any privacy-preserving multi-party computation can be solved, in
principle, by defining an appropriate circuit for the task at hand. We designed circuits address-
ing three different (but related) problems in the context of on-line marketplaces where, generally
speaking, providers advertise resources to be selected and subsequently utilized by customers, and
the function of the marketplace is to match customers with providers in a way that optimizes some
value under a certain set of constraints. We look at the following specific examples:

• P2P content-distribution services provide a marketplace where content is the resource,
and providers advertise availability of content at peers [9, 17]. Here, a customer may want to
determine which peer hosting the desired content is the best choice (e.g., closest, or having
minimal delay) for retrieving that content.

• In cloud computing providers are cloud platforms (e.g., Amazon EC2, Microsoft Azure,
etc.), resources are the services (e.g., storage, bandwidth, or processing) offered by each
provider, and customers want to find the provider(s) offering services matching their needs
at the cheapest price [1, 8, 27, 25, 26, 19].

1Of course, a boolean circuit can be viewed as a circuit over the field F = GF (2). The distinction is that protocols
using arithmetic circuits require 1/|F| to be negligible in order for security and correctness to hold.

2http://www.ee.columbia.edu/~kwhwang/projects/gmw.
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• A mobile social network can be viewed as a marketplace where users are both customers
and resources, and the provider helps users locate and connect to other users who share
similar interests.

Formal definitions of the problems in each of the above settings are given in Section 3, and in
Section 4 we describe optimized circuits solving each of them. For these problems, we find that it
significantly helps to be able to work with boolean circuits rather than arithmetic circuits.

Finally, in Section 5 we evaluate the performance of our MPC protocol as applied to one of the
above problems. (Since they have similar circuits, the other two problems should display similar
results.) Our work shows that our protocol can be used to efficiently and securely implement a
distributed marketplace with tens of providers/customers and thousands of resources over a wide-
area network. Our implementation outperforms systems such as VIFF [10] and SEPIA [7], in part
because we use boolean circuits rather than arithmetic circuits as those systems do.3 Recall that
another advantage of our protocol is that it provides security against any number of corruptions,
whereas the cited implementations [3, 10, 7] require an honest majority.

1.2 Other Related Work

There are several existing implementations of secure two-party computation [22, 21, 24, 13, 14].
These are all specific to the two-party setting and do not yield protocols for three or more parties.
Interestingly, and in contrast to other multi-party implementations [3, 10, 7] that only handle three
or more parties, the GMW protocol we implement can handle any number of parties. For the
two-party case, however, we expect our implementation to be roughly a factor of two slower than
the best available system [14].

Other implementations of secure multi-party computation include [6, 4, 16]. The code for
SIMAP [6] is not publicly available, and anyway SIMAP appears to be superseded by VIFF.
Sharemind [4] handles three parties only. The work of Jakobsen et al. [16] is interesting since it
achieves resilience against an arbitrary number of malicious corruptions. Their implementation is
based on arithmetic circuits and, as reported by the authors, has worse performance than VIFF
(though with better resilience).

2 MPC Implementation

We provide an overview of the GMW protocol, and details of our implementation. As stated earlier,
the GMW protocol provides security against a semi-honest adversary corrupting any number of
parties. (We refer to [11] for formal definitions of security.) Assuming semi-honest behavior is
reasonable in settings where the codebase is difficult to change without detection, where software
attestation can be used to convince other parties that correct software is being run, or where parties
are trusted but must ensure secrecy of data for policy reasons or because of concerns about future
break-ins.

3FairplayMP [3] also uses boolean circuits, but did not support multiple input values per party and crashed on
the input sizes used. See Section 5 for further discussion.

3



2.1 Overview of the GMW Protocol

1-out-of-4 oblivious transfer. Oblivious transfer (OT) is a key building block of the GMW
protocol. A 1-out-of-4 OT protocol is a two-party protocol in which there is a sender holding
values (x0, x1, x2, x3) and a receiver holding an index i ∈ {0, . . . , 3}; the receiver learns xi, but
neither the sender nor the receiver learn anything else; i.e., the receiver learns nothing about any
other values held by the sender, and the sender learns nothing about the receiver’s index.

Details of our OT implementation are given in Section 2.2.

The GMW protocol. The GMW protocol assumes the function f to be computed is represented
as a boolean circuit consisting of XOR and AND gates or, equivalently, gates for addition and
multiplication modulo 2. Let n denote the number of parties. In the GMW protocol the parties
maintain random n-out-of-n shares (sw1, . . . , swn) of the value sw on each wire w in the circuit;
that is, party Pi holds share swi and all shares are random subject to sw =

⊕
i swi. Setting up such

shares on the input wires is easy: party Pi can provide input sw on wire w by choosing random swj

for j 6= i, sending swj to Pj , and locally setting swi = sw⊕
(⊕

j 6=i swj

)
. Shares on internal wires of

the circuit can be computed inductively in the following way:

XOR gates. Say w is the output wire of an XOR gate with input wires u and v, and the parties
have shares (su1, . . . , sun) and (sv1, . . . , svn) of su and sv, respectively. Then each party Pi locally
computes swi = sui⊕svi, and one can observe that (sw1, . . . , swn) is a valid sharing of sw = su⊕sv.

AND gates. Say w is the output wire of an AND gate with input wires u and v, and the parties
have shares (su1, . . . , sun) and (sv1, . . . , svn) of su and sv, respectively. Note that

sw = su · sv =

(
n∑

i=1

sui

)
·
(

n∑

i=1

svi

)

=
n∑

i=1

suisvi +
∑

i<j

(suisvj + sujsvi).

Each party Pi can compute suisvi locally. As for the remaining term, each pair of parties Pi, Pj

computes a random additive share of suisvj + sujsvi in the following way. Pj chooses a random
bit c

{i,j}
j , and computes four values

c
{i,j}
j , c

{i,j}
j ⊕ suj , c

{i,j}
j ⊕ svj , c

{i,j}
j ⊕ svj ⊕ suj

corresponding to the four possible values of Pi’s shares sui, svi. Party Pi then acts as a receiver
in 1-out-of-4 OT, with index determined by the actual values of its shares sui, svi, to obtain the
appropriate value from Pj that we denote by c

{i,j}
i . Note that c

{i,j}
i + c

{i,j}
j = (suisvj + sujsvi).

Finally, each party Pi computes
swi = suisvi +

∑

j 6=i

c
{i,j}
i .

It can be verified (see [11]) that (sw1, . . . , swn) is a (random) sharing of sw = su · sv.

Observe that evaluation of XOR gates is essentially free, whereas evaluating AND gates requires(
n
2

)
invocations of 1-out-of-4 oblivious transfer.
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Once a sharing (sw1, . . . , swn) of an output wire w is obtained, the value sw can be reconstructed
by having each party privately send its share to all other parties. It is also possible for only some
specific party to learn a given output value by sending shares to that party only. We note that this
is the only step in the protocol where private channels are needed, and then only if more than one
party is to learn a given output value.

2.2 Oblivious Transfer Protocols

As noted in the previous section, oblivious transfer is a key building block of the GMW protocol;
it is also the most computationally expensive part of the protocol, since it is the only aspect of the
protocol that relies on public-key techniques. As described above, the GMW protocol requires one
invocation of 1-out-of-4 OT per (ordered) pair of parties each time an evaluation of an AND gate is
performed, and so m executions of OT (per ordered pair of parties) to evaluate a circuit containing
m AND gates. We can improve the overall efficiency, however, using two techniques:

• Using OT pre-processing [2], each pair of parties can perform m oblivious transfers on random
inputs at the outset of the protocol, and then (very efficiently) use the pre-computed values
thus obtained to achieve the functionality of oblivious transfer on their actual inputs when
evaluating an AND gate. Thus, all the oblivious transfers that will be needed throughout the
entire protocol can be run in parallel at the beginning of the protocol.

• Using OT extension [15, 20], it is possible to achieve the functionality of m invocations of
1-out-of-4 OT at essentially the cost of k invocations of 1-out-of-4 OT of m-bit strings, where
k is a statistical security parameter. (More precisely, the marginal cost for each additional
OT is just a small number of hash computations.) Security here is based on the assumption
that the hash function is correlation robust [15].

Combining these optimizations, each pair of parties needs only run k (parallel) invocations of some
“base” OT protocol (for m-bit strings) at the outset of the GMW protocol; these can be converted
to m À k OT executions (on bits) using OT extension; these m “pre-processed” OTs can then be
used, as needed, during the rest of the protocol. It remains only to specify the “base” 1-out-of-4
OT protocol we use.

We take as our base OT protocol the one by Naor and Pinkas [23], secure under the decisional
Diffie-Hellman (DDH) assumption in the random-oracle model. Their protocol (actually, a version
implementing k parallel executions of their protocol) is described in Figure 1 for completeness.

2.3 Implementation Details

We implemented the GMW protocol in C++. It takes as input a file containing a description of a
boolean circuit for the function f of interest. (All parties are assumed to be running with identical
copies of the circuit.) See Appendix A for an example. Unlike FairplayMP [3], we do not provide
a mechanism for compiling a high-level language into a boolean circuit.

Parallelism. Nowadays, it is common for computers to have multiple cores. We use multi-threaded
programming so as to take advantage of the available parallelism. In particular, each OT execution
is performed by a separate thread.

In the OT extension protocol, we optimize execution time by having parties send values as soon
as they can be computed, rather than waiting for the other party to finish sending. (This does not
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k parallel invocations of 1-out-of-4 OT

Let g,G, and q be fixed, where G is a cyclic group of prime order q, and g is a generator of G.
Let H : {0, 1}∗→{0, 1}m be a hash function.

Inputs.

S holds {(xj
0, x

j
1, x

j
2, x

j
3)}j∈[k] with xj

i ∈ {0, 1}m.

R holds (r1, . . . , rk) where rj ∈ {0, . . . , 3}.

The protocol.

1. S chooses α ← Zq and computes c0 = gα, and also chooses c1, c2, c3 ← G. It sends c0, . . . , c3

to R.

For j ∈ [k] the parties do:

2. R chooses βj ← Zq. If rj = 0 then it sets dj = gβj ; else, it sets dj = crj
/gβj . Finally, R

sends dj to S.

3. S computes e0 = dα
j and ei = (ci/dj)α for i ∈ {1, 2, 3}. Then S sends x̄j

i = H(ei, j, i)⊕xj
i

to R for i ∈ {0, . . . , 3}.
4. R computes c

βj

0 = erj , and then outputs xj
rj

= x̄j
rj
⊕H(erj , j, rj).

Figure 1: The Naor-Pinkas OT protocol.

affect security, since this occurs at fixed times that are independent of the parties’ inputs.) We also
parallelize the GMW protocol itself by computing all multiplication gates at the same level of the
circuit in parallel.

Random oracle. We use SHA-1 to implement a random oracle H with arbitrary output length
by defining

H(M) = SHA-1(seed, 0)||SHA-1(seed, 1)|| · · · ,

where seed = SHA-1(M). Note that seed need only be computed once. We use the SHA-1 imple-
mentation of PolarSSL (http://polarssl.org).

Oblivious transfer. For our base OT protocol we use the Naor-Pinkas protocol (see Figure 1)
with group G a subgroup of Zp of prime order q, and p = 2q + 1 with p prime. In our default
implementation, p is a 512-bit integer.4 We modified the modular-arithmetic module of NTL
(http://www.shoup.net/ntl) to be thread-safe, and use it in implementing the base OT protocol.

Recall we use OT extension to improve efficiency. By default, we use statistical security pa-
rameter k = 80 in our implementation. Messages are transmitted in chunks of reasonable size to
obtain a balance between the idle time and the number of socket calls.

4This value of p is artificially low and does not provide sufficient security for practical applications. However, since
the time for running the initial oblivious transfers is a small fraction of the overall running time, we do not expect
that using larger p will significantly change our results.
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3 Problem Definitions

We introduce three problems in the context of on-line marketplaces where, generally speaking,
providers advertise resources to be selected and subsequently utilized by customers, and the function
of the marketplace is to match customers with providers so as to optimize some value under a certain
set of constraints. As highlighted in the Introduction, we look at examples in the settings of P2P
content distribution, cloud computing, and mobile social networks.

As a toy example, consider a customer who wishes to buy a car (resource) from one of several
dealers (providers). The customer is interested in several different models of cars (but not all
models); the different providers offer a variety of models (not all of which interest the customer);
and each provider prices each model independently. The customer wishes to find an acceptable car
at the lowest cost, without revealing the set of models he or she is interested in; the providers do
not want to reveal their prices. Secure MPC allows the customer to learn the identity of a provider
selling an acceptable model at the lowest price, with the customer learning no other prices (or
which models are sold by each provider), and with the providers learning only of the customer’s
willingness to buy some particular model at the given price.

More generally, and a bit more formally, let R be some set of resources. The input of each
provider Pi is a collection of values for the resources in some subset Ri ⊆ R; i.e., Pi’s input is of
the form {vi

r}r∈Ri . (If desired, it is also possible for each Pi to use some default value vi
r =⊥ for

r 6∈ Ri; in that case, we may simply write Pi’s input as {vi
r}r∈R.) We look at marketplaces where

the computation can be broken into the following two steps, which will be executed as a single
secure computation (so only the final output is revealed, not the intermediate results after the first
step):

1. First, for each provider Pi and resource r ∈ Ri, compute a scoring function sci
r = Score(i, r, vi

r, xn),
where xn denotes the private input of the customer. (In the running toy example, each model
is scored by its offered price if the model is of interest to the customer, and by ∞ otherwise.)

2. Next, apply a best-match function B to the set of sci
r values to obtain a result that is given

to the customer. (In the toy example, B outputs (i, r, sci
r) with minimum sci

r.)

We allow the scoring function to be completely general. For the best-match function we consider two
possibilities: either B returns a single (i, r) maximizing/minimizing sci

r (with ties broken arbitrarily,
and with or without including sci

r as part of the output), or B returns the set of all (i, r) for which
the score sci

r exceeds/is lower than some threshold. In the following subsections, we instantiate this
general framework in several specific scenarios. However, it should be clear that our approach is
quite general.

3.1 P2P Content-Distribution Services

In our P2P content-distribution setting, content is replicated across various P2P servers or source
peers (such as seeders) whose pairwise communications are measured (and perhaps even controlled)
by network providers such as ISPs. Before a peer starts downloading content, he or she would like
to find out the best source peer (with respect to network bandwidth, end-to-end delays, throughput,
and so on) from which to receive the content.

Here the providers are the ISPs and the resources are the source peers themselves (which for
simplicity we identify with their indices). Let R be the set of source peers, with |R| = k. We assume
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that the ISP to which each source peer is bound is public knowledge, so ISP Pi is associated with
some set of peers Ri. The input of each ISP/provider Pi is the measured bandwidth vi

r for each
peer/resource r ∈ Ri. The customer knows which peers have a replica of the item it wishes to
retrieve, and holds as secret input a vector xn = (b1, . . . , bk) where br = 1 iff peer/resource r has
the desired content, and br = 0 otherwise. The objective is for the customer to find the best (e.g.,
highest-bandwidth) peer among those holding the desired content, without revealing which source
peers have the content; the ISPs do not want to reveal the bandwidth of their peers.

Here the scoring function can be defined as:

Score
(
i, r, vi

r, (b1, . . . , bk)
)

=
{

vi
r if br = 1

0 otherwise
,

and the best-match function B returns i, r maximizing sci
r. (In fact, it suffices to return r here

since the provider to which r is bound is irrelevant and anyway known.)

3.2 Cloud Computing

In this setting, providers offer various service packages and the customer wants to select the service
package meeting its needs at the lowest available price. The service packages offered by the providers
are the resources here, and each such resource r has a value vr = (qr, pr) that is composed of its
service quality qr and price pr. (For simplicity, we treat service quality as a one-dimensional
quantity, e.g., CPU cycles. Our treatment can easily be generalized.) The customer holds input
(q, p), where q represents a minimum acceptable service quality and p is a maximum budget. Two
scenarios can be considered: either the customer wants to find the cheapest resource r with qr ≥ q,
or the highest-quality resource r with pr ≤ p; each of these cases is treated below. In either case,
the customer never reveals its budget or its service requirements to any of the providers, nor do
the providers reveal to the customer (or to each other) what service packages they are offering.

Lowest-price selection. In this formulation, the customer seeks the package that satisfies its
requirements at the lowest price. Here we may define the scoring function as:

Score
(
(i, r, qi

r, p
i
r), (q, p)

)
=

{
pi

r if qi
r ≥ q and pi

r ≤ p
∞ otherwise

.

The best-match function B returns an i, r minimizing sci
r.

Highest-quality selection. Here the customer seeks the package that meets its budget while
giving the highest quality service. Now we may define the scoring function as:

Score
(
(i, r, qi

r, p
i
r), (q, p)

)
=

{
qi
r if qi

r ≥ q and pi
r ≤ p

−∞ otherwise
,

and the best-match function returns an i, r maximizing sci
r.

3.3 Mobile Social Networks

Here we consider a scenario where a user in a social network wants to identify nearby users who
share common interests. Now the resources and providers are just the set R of all users (and the
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customer is one of the users as well), and the value of each “resource” (i.e., user) is that user’s
location and set of interests.

We assume that each user knows only about its own location and interests. Thus for each
r ∈ R we define vr

r = (`r, Hr), where `r is the location of user r, and Hr is the set of that user’s
interests (perhaps represented as a bit-vector). The customer’s input consists of (`,H, δ) where `
is the location of the customer, H is the set of interests she wants a potential match to share, and
δ is the distance radius in which she wants to search. We consider a few alternatives for what the
customer wants as output.

Find all close matches. In this formulation, the customer wants to find all users within distance
δ who share interests H. We may then define

Score
(
(r, `r, Hr), (`,H, δ)

)

=
{

1 if H ⊆ Hr and |`r − `| ≤ δ
0 otherwise

,

and the best-match function returns the set of all r such that scr
r = 1.

Find closest match. Here the customer wants to find the closet user who matches her interests.
Now, define

Score
(
(r, `r,Hr), (`,H, δ)

)

=
{ |`r − `| if H ⊆ Hr and |`r − `| ≤ δ
∞ otherwise

The best-match function returns an r minimizing scr
r.

Find best resource. Now the customer would like to obtain the resource within radius δ that
shares as many interests as possible. We thus define

Score
(
(`r,Hr), (`,H, δ)

)

=
{ |Hr ∩H| if |`r − `| ≤ δ;
−∞ otherwise

,

and the best-match function returns r maximizing scr
r.

4 Boolean Circuit Constructions

We describe circuits solving the problems described in the previous section. Since XOR gates
are essentially “free” to evaluate in the GMW protocol, while evaluating each AND gate requires
cryptographic computations, our aim is to minimize the number of AND gates in the circuits.

In our boolean circuits, integers are treated as binary strings of some length `. The length must
be set sufficiently long to handle any value the integer might take. We use 0` and 1` in place of
−∞ and ∞ when computing scores.

General circuit layout. Recall that our online marketplace problems all consist of the following
two main operations.

1. (Function Score.) The resources are scored according to the customer’s interest.

9



(a) P2P content distribution (b) Cloud computing

(c) Mobile social networks

Figure 2: Boolean circuits for the online marketplace problem with one customer, one provider,
and three resources R = {1, 2, 3}: (a) the entire circuit diagram for the P2P content-distribution
problem, (b) the additional circuitry required to score resources for the cloud computing application
(highest-quality selection), and (c) the additional circuitry required for the mobile social networks
application (find-all-close-matches).

2. (Function B.) The scores are compared to find the “best” one.

In Figure 2, we show boolean circuits as a block diagrams. Figure 2(a) shows the entire process
required for the P2P content-distribution problem, and Figures 2(b) and 2(c) indicate the compo-
nents additionally needed for the other two applications. (For simplicity, the circuits in the figure
consider the case when there are three resources.)

Circuit sizes. Let k be the total number of resources that the providers advertise, and let ` be
the number of bits required to represent the score of each resource. For all the online marketplace
problems, the total number of the gates required is O(k · (` + log2 k)).

4.1 Building Blocks for Circuit Constructions

We first describe some general building blocks that all our circuits will share. Generally, we use
the circuits given by Kolesnikov et al. [18] who also aimed to minimize the number of AND gates.
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Gate ADD. Given two `-bit integers a = (a1, . . . , a`) and b = (b1, . . . , b`), this gate outputs the
(` + 1)-bit integer a + b. The circuit description is as follows:

c1 = 0
for i ∈ [`] : ci+1 = ci⊕((ai⊕ci)¯ (bi⊕ci))
for s ∈ [`] : si = ai⊕bi⊕ci

ADD(a, b) = (s1, s2, . . . , s`, c`+1)

Gate SUB. Given two `-bit integers a and b with a ≥ b, this gate outputs the `-bit integer a− b.

c1 = 1
for i ∈ [`− 1] : ci+1 = ai⊕((ai⊕ci)¯ (bi⊕ci))
for s ∈ [`] : di = ai⊕bi⊕ci⊕1
SUB(a, b) = (d1, d2, . . . , d`)

Gates GT and GE. Given two `-bit integers a and b, gate GT (resp., gate GE) outputs 1 iff a > b
(resp., a ≥ b) and 0 otherwise. The circuit description is as follows:

c1 = 0
for i ∈ [`] : ci+1 = ai ⊕ ((ai ⊕ ci)¯ (bi ⊕ ci))
GT(a, b) = c`+1

GE(a, b) = 1⊕GT(b, a)

Gate MUX. Given two `-bit strings a and b, and a bit s, this gate outputs a if s = 0 and outputs b
otherwise. The circuit description is as follows:

for i ∈ [`]: mi = bi ⊕ ((s⊕ 1)¯ (ai ⊕ bi))
MUX(a, b, s) = (m1,m2, . . . , m`)

Gate ELM. Given an `-bit string a and a bit b, gate ELM0 (resp., gate ELM1) outputs a if b = 1
and 0` (resp., 1`) otherwise. The circuit description is as follows:

ELM0(a, b) = (a1 ¯ b, . . . , a` ¯ b)

ELM1(a, b) = MUX(1`, a, b).

4.2 P2P Content-Distribution Services

See Section 3.1 for a description of this problem.

Scoring. For this application, the scoring function Score just checks if br = 1. If so, it outputs the
value vi

r; otherwise, it outputs 0. This can be handled by a single ELM0 gate:

sci
r = ELM0(vi

r, br).

Best-matched resource. The best-match function should output i, r maximizing sci
r. (Actually,

it suffices to output r as discussed in Section 3.1.) For each r there is a unique (publicly known)
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provider Pi for which vi
r 6= 0; thus, if there are k resources (i.e., source peers) overall, then we need

only compare k values of sci
r in order to determine the maximum value. We can do this using k− 1

comparisons. For example, in the three-resource case in Figure 2(a) there are three resources at
the bottom level; at the next level, the winner between the first and the second is compared with
the third to determine the maximum at the final level.

To achieve our goal of outputting the index of the resource with the maximum score, not only
the scores but also the indices should be involved in this tournament. Therefore, at the bottom level
of the circuit we actually have pairs (r, scr) (where scr = sci

r for the unique Pi such that vi
r 6= 0)

that are fed into the tournament tree. When comparing (a, sca) and (b, scb), we first compute
c = GE(sca, scb). The value propagated to the next level is then given by

MUX((b, scb), (a, sca), c).

Thus, each pairwise comparison in the tournament consists of one GE gate and a MUX gate. The
output is the index of the final winner.

By comparing the final score with 0` and using ELM0 with the index of the winner, the best-
match function B can be modified so that it outputs nothing if the maximum score is 0.

Number of AND gates. The number of AND gates used in the circuit is approximately k · (3`+
dlog2 ke).

4.3 Cloud Computing

Recall that the score of each resource with index r is (pr, qr) and that the input of the customer is
(p, q).

Scoring resources. For both lowest-price selection and highest-quality selection, we need to check
two things:

• Check if qi
r ≥ q; this is handled by GE(qi

r, q).

• Check if pi
r ≤ p; this is handled by GE(p, pi

r).

For highest-quality selection, the following expression can be used for scoring:

sci
r = ELM0(qi

r, GE(qr, q)¯ GE(p, pi
r)).

Figure 2(b) shows the block diagram for computing sci
r. For lowest-price selection, the scoring

expression is as follows:

sci
r = ELM1(pi

r, GE(qi
r, q)¯ GE(p, pi

r)).

Best-matched resource. In the case of highest-quality selection, the circuit logic is exactly the
same as in the case of the P2P content-distribution example. The case of lowest-price selection
is also essentially the same; the only difference is to select the resource with the minimum score
rather than the maximum score.

Number of AND gates. The number of AND gates is approximately k · (5` + dlog2 ke) for both
problems.
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4.4 Mobile Social Networks

Recall that the input of provider Pr is its location `r and set of interests Hr. Likewise, the input
of the customer is also its location and interest along with a distance limit δ. (See Section 3.3.)

Scoring resources. To handle the scoring function Score, we need additional building blocks.

• When computing |`r − `|, we assume each location is two-dimensional. For simplicity, we
measure the distance between `r = (`1

r, `
2
r) and ` = (`1, `2) by

|`1
r − `1|+ |`2

r − `2|.

We define a DST gate to compute the above. Its circuit description is as follows:

c1 = GE(`1
r, `

1) c2 = GE(`2
r, `

2)
a1 = MUX(`1, `1

r, c
1) a2 = MUX(`2, `2

r , c
2)

b1 = MUX(`1, `1
r, 1⊕c1) b2 = MUX(`2, `2

r, 1⊕c2)

DST(`r, `) = ADD(SUB(a1, b1),SUB(a2, b2))

• To compare interests, each set (i.e., H and Hr) is represented as a bit-vector of length `
such that its ith bit is set when it contains the ith interest. Let H = (α1, . . . , α`) and
Hr = (β1, . . . , β`). We define a gate CAP(H, Hr) which outputs H ∩Hr, represented also as
an `-bit string:

CAP(H, Hr) = (α1 ¯ β1, . . . , α` ¯ β`).

Then we define CNT gate that counts the numbers of 1s in a bit-string a. We assume the
length of a is a power of 2 for simplicity. Roughly speaking, this use a binary tree where each
internal node at the ith level is an ADD gate with i-bit integer inputs, and each leaf is a bit
of a (e.g., a1 or a2). The output of the top level ADD gate will be the output of CNT.

CNT(a1, . . . , a`) = c1,`

Here, cs,e is inductively defined as follows:

cs,e =
{

ADD(cs,m, cm+1,e) if s > e;
as if s = e

where m = d(e− s)/2e. Then, we have

|H ∩Hr| = CNT(CAP(H, Hr)).

We also define a gate IN(H, Hr) which outputs 1 iff H ⊆ Hr, and 0 otherwise:

for i ∈ [`]: si = 1⊕(αi ¯ (1⊕βi)))
IN(H, Hr) = s1 ¯ s2 ¯ · · · ¯ s`.
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Now we show how to compute the Score functions. For the problem of find-all-close-matches, the
value Ir is computed as follows:

scr = d¯ IN(H,Hr),

where d = GE(δ,DST(`r, `)). The value scr is a boolean value indicating whether the provider r is
close and has matching interests. For the problem of find-close-match, the score scr is computed
as follows:

scr = ELM1(DST(`r, `), IN(H, Hr)).

For the problem of finding the best resource, the score scr is computed as

scr = ELM0(CNT(CAP(H, Hr)), d).

Best-matched resource. For the problem of finding all close matches, the output of the circuit
is simply (I1, . . . , Ik). The other two cases can be handled as in the case of the content-distribution
problem by finding the index with the maximum score. Additional information (i.e., the maximum
score itself) can be computed by using a MUX gate at the final comparison stage.

Number of AND gates. For the problem of find-all-close-matches, the number of AND gates is
approximately 12`k. For the find-close-match and find-best-resource problems, the number of AND
gates is approximately k · (14` + dlog2 ke) and k · (11` + (`/2 + 3)dlog2 `e+ dlog2 ke), respectively.

5 Performance Evaluation

We evaluate the performance of our implementation in both a local-area network (LAN) and a
wide-area network (using PlanetLab, http://www.planet-lab.org/), and compare it to existing
systems for secure MPC. In our experiments we consider only the P2P content-distribution problem
formulated in Section 3.1 with ` = 16, but since circuits for the other two problems are similar (in
terms of both circuit depth and the number of AND gates), we expect the results to be similar for
those problems. We let GMW refer to our solution for this problem, obtained by applying our GMW
implementation to the circuit described in Section 4.2. All reported measurements are based on
averages over 10 runs of the experiment in question.

5.1 Local-Area Network

Our first set of experiments is performed in a cluster consisting of multiple Linux host nodes,
each containing two Intel Xeon 2.80GHz CPUs and 4GB RAM. We use one host per participant
in the protocol, so that an experiment with n providers requires n + 1 host machines. We set
up our experiments so the customer chooses half of the resources offered by each provider to be
“of interest”. Note that the client’s inputs do not affect performance in any way, since the same
underlying circuit is evaluated regardless of the customer’s input; indeed, if performance were
affected by the customer’s input then the protocol could not be secure!

We ran experiments using from 3 to 13 nodes, and 100 to 5,000 resources. (This represents the
aggregate offered by all providers.) For this problem, the number of AND gates being evaluated
depends on the number of resources only (it is independent of the number of nodes) and ranges from
about 5,500 AND gates (for 100 resources) to roughly 305,000 AND gates (for 5,000 resources).
The running time is plotted in Figure 3(a), and the total bandwidth (between all parties) is shown
in Figure 4(a).
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Figure 3: Running times in a LAN.

For a fixed number of resources, the bandwidth grows quadratically with the number of nodes;
this is because each pair of parties communicates for every AND gate being evaluated. The running
time scales linearly with the number of nodes since all nodes work in parallel, and the work per node
increases in direct proportion to the number of other nodes with which it communicates. Although
difficult to see from the plots, for a fixed number of parties the running time and bandwidth increase
roughly linearly in the number of resources k; this is because the circuit size grows roughly linearly
in k (actually, it grows as k log k but the effect of the additional logarithmic term is difficult to
detect).

We also measured the marginal time to evaluate a single AND gate (i.e., the time required to
evaluate an additional AND gate, once the number of AND gates is large). We use marginal time
because there is a fixed cost for the initial set of oblivious transfers performed by the parties, but
then oblivious-transfer extension is used to get additional OTs at much lower cost (see Section 2.2).
The measured marginal cost per AND gate ranged from 50 µs (for 3 parties) to 340 µs (for
13 parties).

Comparison to existing work. We applied other existing implementations of secure MPC to
the same problem. Unfortunately, despite contacting the authors we were unable to get a working
implementation using FairplayMP [3] since we found that it did not support providing users with
multiple inputs, and it would crash (when parties were provided with a single input) on inputs more
than 16 bits long. However, we were able to compare our protocol with implementations in (the
semi-honest version of) VIFF [10] and SEPIA [7]. We ran both VIFF and SEPIA over insecure (i.e.,
non-SSL-protected) channels even though private channels are needed to ensure security against an
eavesdropping adversary for those protocols. (In contrast, for GMW a secure channel is not needed if
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Figure 4: Total bytes transferred among all nodes.

only one party learns the output; when multiple parties learn the output, only the final messages
from the parties need to be encrypted.) In SEPIA, parties provide their inputs to “privacy peers”
that run a secure computation protocol on their behalf; when we refer to “nodes” in SEPIA we
mean the number of privacy peers.

In contrast to GMW, VIFF and SEPIA utilize arithmetic circuits where each wire carries an
element of a large field F (with log |F| ≈ 64 in each case), and gates perform addition or multipli-
cation in F. (Similar to the GMW case, addition is essentially “for free” whereas multiplication is
“expensive”.) The boolean circuit we used for GMW is easily adapted for VIFF/SEPIA as follows:

• Boolean values are easily represented as elements of F since 0, 1 ∈ F. Note AND(a,b) = ab
even when multiplication is done over F, as long as a, b ∈ {0, 1}.

• `-bit integers can be represented as elements of F, since |F| À 2` for the value of ` we use.
Because of this, addition and subtraction gates are now trivial to implement, since they
correspond exactly to addition and subtraction over F.

• VIFF and SEPIA already provide comparison gates.

• MUX gates are also easily implemented over an arithmetic field, since MUX(a, b, s) = a(1 −
s) + bs when s ∈ {0, 1}. We also express ELM1(a, b) = MUX(v, a, b), where v ∈ F is chosen
sufficiently large. Finally, we have ELM0(a, b) = ab when b ∈ {0, 1}.

• XOR can be computed as XOR(a, b) = a + b− 2ab.
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Figure 5: Running times in PlanetLab.

In Figures 3(b) and 3(c) (resp., Figures 4(b) and 4(c)) we compare GMW’s running time (resp.,
bandwidth utilization) to that of VIFF and SEPIA. Since the running times of VIFF and SEPIA
are comparatively long, we only ran experiments with up to 400 resources and up to 9 nodes. In
those ranges of the parameters, GMW completes in under 20 seconds while VIFF and SEPIA take an
order of magnitude longer; the relative performance of GMW becomes even better as the number of
resources is increased. The results demonstrate that our implementation scales significantly better.
It is also worth recalling that GMW withstands a larger number of corruptions than either VIFF or
SEPIA.

5.2 Wide-Area Network

Last, we explore the effects of communication latency by running our protocol in a wide-area
network (WAN) via PlanetLab (http://www.planet-lab.org/). In the PlanetLab settings we
explored, the maximum round trip time (RTT) was more than 200 ms. The test nodes in PlanetLab
have various hardware specs; the least powerful node had two Intel Core2Duo 2.33GHz CPUs and
2.0GB memory while the most powerful one had four Intel Xeon 2.83GHz CPUs and 3.7GB memory.

Figure 5 shows that GMW’s running time increases by 17–64% relative to the time required on
a LAN. As we increase the number of participating nodes, the results increase linearly as in the
LAN, even though nodes’ configurations are not homogeneous, suggesting that performance is
mostly affected by communication latency. GMW maintains stable performance regardless of network
conditions and heterogeneous hardware specifications, consistently outperforming VIFF and SEPIA
indicated in Figures 5(b) and 5(c).
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6 Conclusions

We have shown an implementation of the GMW protocol for secure multi-party computation. Our
implementation is distinguished from existing implementations of multi-party computation in two
important ways:

• Our implementation supports boolean circuits, rather than arithmetic circuits as in [10, 7].

• The protocol provides security against a semi-honest adversary corrupting any number of
parties, rather than requiring an honest majority as in [3, 10, 7].

We have also shown that our implementation outperforms previous work [10, 7], at least for certain
classes of problems that are more amenable to being solved using boolean circuits rather than arith-
metic circuits. Finally, our work shows that applying secure multi-party techniques to networking
problems is feasible.
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A Circuit Example

⊕7

5̄

P02 P14
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00 P13

n 2

d 7 5 2

i 0 2 2

i 1 3 4

o 0 1 0

o 1 7 7

v 0 1

v 1 1

g 0 0 -1 -1 0

g 1 0 -1 -1 0

g 2 0 -1 -1 1 5

g 3 0 -1 -1 1 6

g 4 0 -1 -1 1 5

g 5 1 2 4 1 7

g 6 2 0 3 1 7

g 7 2 5 6 0

Figure 6: Circuit Example

Our implementation of the GMW protocol takes as input (at each party running the protocol)
three files that contain configuration information, the input of the party in question, and a descrip-
tion of a boolean circuit for the function f of interest. (All parties are assumed to be running with
identical copies of the circuit.)
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In Figure 6 we show an example circuit along with its description using our representation. The
circuit description uses the following format:

• The first line of the file has the form n X, where X denotes the number of parties participating
in the protocol.

• The second line of the file contains a d followed by several numbers providing an overall
description of the circuit: the total number of wires in the circuit, the number w of the first
non-input wire (i.e., wires 0 to w − 1 are input wires), and the number of XOR gates in the
circuit.

• For each party, there is a line in the file containing an i followed by the party’s id, the number
of the first input wire belonging to that party, and the number of the last input wire belonging
to that party. (We assume wires are numbered such that every party provides inputs on a
consecutive set of wires.)

• For each party, there is a line in the file containing an o followed by the party’s id, the
number of the first output wire belonging to that party, and the number of the last output
wire belonging to that party. (We assume wires are numbered such that every party receives
outputs on a consecutive set of wires.) If a party receives no output, the number of the last
output wire for that party is set to 0.

• For each party, there is a line in the file containing a v followed by an integer denoting the
number of bits that should be used to represent each item in that party’s input file. (E.g., if
the input file of party 0 contains a ‘4’ then this value will be represented as the 3-bit integer
‘100’ if this line of the file contains ‘v 0 3’, but will be represented as the 5-bit integer ‘00100’
if this line of the file contains ‘v 0 5’.) Each bit in the ultimate representation of the integer
will correspond to one of the input wires of the party.

• The remaining lines of the file describe the gates in the circuit. For each gate, we list (a) the
number of the output wire of this gate (which also serves as the gate id); (b) the gate type,
which can be either input (0), AND (1), or XOR (2); (c) the numbers of the left and right
input wires (set to −1 if these are input gates); and (d) the out-degree of the gate. If the
out-degree is non-zero, then the ids of the gates that receive the output of the current gate
are listed. Gate ids 0 and 1 are reserved for the constants 0 and 1, respectively.
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