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Abstract. In this paper, we present a high speed pairing coprocessor
using Residue Number System (RNS) and lazy reduction. We show that
combining RNS, which are naturally suitable for parallel architectures,
and lazy reduction, which performs one reduction for more than one
multiplication, the computational complexity of pairings can be largely
reduced. The design is prototyped on a Xilinx Virtex-6 FPGA, which
utilizes 7023 slices and 32 DSPs, and finishes one 254-bit optimal ate
pairing computation in 0.664 ms.
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1 Introduction

Pairing-Based Cryptography (PBC) has been utilised to provide efficient and
elegant solutions to several long-standing problems in cryptography, such as
three-way key exchange [23], identity-based encryption [9], identity-based sig-
natures [10], and non-interactive zero-knowledge proof systems [19]. As crypto-
graphic schemes based on pairings are introduced and investigated, the perfor-
mance of pairing computation also receives increasing interests.

The complex pairing computation can be broken down to multiplications and
additions in the underling fields. For example, one 256-bit optimal ate pairing
consists of around ten thousand modular multiplications [1]. Thus, having an
efficient multiplier is the key step to a high performance pairing processor. For
pairings over ordinary curves defined over prime fields Fp, Montgomery algo-
rithm [31] is the most widely deployed reduction algorithm. Using Montgomery
algorithm, the complexity of both multiplication and reduction is Ops2q using
schoolbook method, or Opslog2 3q using Karatsuba algorithm [25], where s is the
number of machine-words to represent p.

Residue Number System (RNS) has a complexity of Opsq for multiplication.
In other words, multiplication is cheaper compared to the Montgomery algo-
rithm. Besides, RNS distributes computation on a group of small integers, and
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are naturally suitable for parallel implementations. For this reason, RNS has
been studied for cryptographic applications and Montgomery algorithm in RNS
context was proposed [3, 26,35,38].

On the other hand, the Montgomery reduction in RNS has a higher com-
plexity than ordinary Montgomery reduction. Fortunately, this overhead of slow
reduction can be partially removed by reducing the number of reductions, also
known as lazy reduction. Lazy reduction in pairing computation was introduced
by Scott [36] and then generalised by Aranha et al. in [1]. In short, it performs
one reduction for multiple multiplications. This is possible for expressions like
AB �CD �EF in Fp. As such, lazy reduction brings a significant reduction of
the complexity.

In this paper, we first illustrate how RNS moduli selection can reduce the
complexity of modular reduction. Then, a pairing coprocessor is proposed using
RNS multiplier. The major contributions of this work are as follows.

– We propose a set of base moduli to reduce the complexity of modular reduc-
tion in RNS.

– We present an efficient Fp multiplier using RNS Montgomery.
– We describe a high-speed pairing processor using the proposed multiplier.

This paper is organised as follows: Section 2 provides the backgrounds on
RNS and pairing. Section 3 introduces a novel specification on RNS parameter
selection to reduce the complexity of modular reduction, and optimised param-
eters are provided for pairing. In Section 4, hardware architecture of the pairing
coprocessor is described. Section 5 illustrates how to perform pairing computa-
tion efficiently on the proposed architecture. Section 6 provides the experimental
results and its analysis. In Section 7, we conclude the paper.

2 Backgrounds and Preliminaries

2.1 Bilinear Pairing

A bilinear pairing is a non-degenerate map e : G1�G2 Ñ GT , where G1 and G2

are additive groups and GT is a subgroup of a multiplicative group. The core
property of map e is linearity in both components, which allows the construction
of novel cryptographic protocols. Popular pairings such as Tate pairing [4], ate
pairing [22], R-ate pairing [28], optimal pairing [39] choose G1 and G2 to be
specific cyclic subgroups of EpFpkq, and GT to be a subgroup of F�

pk
.

The selection of parameters has an essential impact on the security and
performance of a pairing computation. Not all the elliptic curves are suitable for
pairings. Indeed, to achieve higher performance and security, a group of pairing-
friendly curves are constructed. We refer to Freeman [16] for a summary of known
pairing-friendly curves. Barreto and Naehrig [5] (BN) described a parameterised
family of elliptic curves, and it is well-suited for computing asymmetric parings.
BN-curves are defined with E : y2 � x3 � b, b � 0 over Fp, where p � 36u4 �
36u3 � 24u2 � 6u � 1 and n, the order of E, is 36u4 � 36u3 � 18u2 � 6u � 1.
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Note that any u P Z that generates prime p and n will suffice. BN-curves have
embedding degree k � 12. Because of the limited space, we mainly focus on the
discussion of optimal ate pairing on BN-curves.

Let E1 : y2 � x3 � b{ζ be a sextic twist of E with ζ not a cube nor a square
in Fp2 , and Erns be the subgroup of n-torsion points of E, then the optimal ate
pairing is defined as [1, 32]:

aopt : G2 �G1 Ñ GT

pQ,P q Ñ pfr,QpP q � lrrsQ,πppQqpP q � lrrsQ�πppQq,�π2
ppQq

pP qq
p12�1

n

where r � 6u � 2. The group G1 � Erns
�

Kerpπp � r1sq � EpFpqrns and
G2 is the preimage E1pFp2qrns of Erns

�
Kerpπp � rpsq � EpFp12qrns under the

twisting isomorphism ψ : E1 Ñ E. The group GT is the subgroup of n-th roots
of unity µn � F�p12 . The map πp : E Ñ E is the Frobenius endomorphism

πppx, yq � pxp, ypq, and fr,QpP q is a normalized function with divisor pfr,Qq �
rpQq � prrsQq � pr � 1qpOq. The line function, lQ1,Q2pP q, is the line arising in
the addition of Q1 and Q2 evaluated at point P .

Miller [29] proposed an algorithm that constructs fr,Q in stages by suing
double-and-add method. When u is selected as a negative integer, the corre-
sponding Miller algorithm is given as Algorithm 1 [1].

Algorithm 1 Optimal ate pairing on BN curves for u   0

Require: P P G1, Q P G2, r � |6u� 2| �
°tlog2 ru

i�0 ri2
i, where u   0

Ensure: aoptpQ,P q
1: T Ð Q, f Ð 1
2: for i � tlog2 ru� 1 downto 0 do
3: f Ð f2 � lT,T pP q, T Ð 2T
4: if ri � 1 then
5: f Ð f � lT,QpP q, T Ð T �Q
6: end if
7: end for
8: Q1 Ð πppQq, Q2 Ð π2

ppQq

9: T Ð �T, f Ð fp6

10: f Ð f � lT,Q1pP q, T Ð T �Q1

11: f Ð f � lT,�Q2pP q, T Ð T �Q2

12: f Ð f pp
6�1qpp2�1qpp4�p2�1q{n

13: return f

Lazy reduction saves expensive modular reduction computation, especially in
RNS context. Essentially, at least k reductions are required for a multiplication
in Fpk , as the result has k coefficients. We deploy the same tower extension field
as in [1], and only 12 reductions are required for a multiplication in Fp12 :

– Fp2 � Fpris{pi2 � βq, where β � �1
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– Fp6 � Fp2rvs{pv3 � ζq, where ζ � 1� i
– Fp12 � Fp6rws{pw2 � vq or Fp12 � Fp2rW s{pW 6 � ζq

Hence, an element α P Fp12 can be represented in any of the following three
ways:

α � a0 � a1w, where a0, a1 P Fp6
� pa0,0 � a0,1v � a0,2v

2q � pa1,0 � a1,1v � a1,2v
2qw, where ai,j P Fp2

� a0,0 � a1,0W � a0,1W
2 � a1,1W

3 � a0,2W
4 � a1,2W

5

2.2 Residue Number System

A Residue Number System (RNS) represents a large integer with a set of smaller
integers. Let B � tb1, b2, . . . , bsu be a set of pairwise co-prime integers, and
MB �

±s
i�1 bi. The unique RNS representation of any integer X, 0 ¤ X  MB,

is tXuB � tx1, x2, . . . , xsu, where xi � |X|bi , 1 ¤ i ¤ s. Using RNS, arith-
metic operations in Z{MBZ can be efficiently performed. Consider two inte-
gers X,Y and their RNS representations tXuB � tx1, x2, . . . , xsu and tY uB �
ty1, y2, . . . , ysu, then

t|X d Y |MB
uB � t|x1 d y1|b1 , . . . , |xs d ys|bsu.

for d P t�,�,�, {u. The division is available only if Y is coprime with MB,
i.e. the multiplicative inverse of Y exists in B. The set B is also known as a
base, and the element bi, 1 ¤ i ¤ s, is called RNS modulus (pl. moduli). Each
modulus forms a RNS channel, and the operation is carried out independently
in each channel.

Also, the original value of X can be restored from tXuB using the Chinese
Remainder Theorem (CRT):

X �

�����
ş

i�1

���xi �B�1
i

���
bi
�Bi

�����
MB

(1)

where

Bi �
MB

bi
�

s¹
j�1,j�i

bj , 1 ¤ i ¤ s. (2)

What makes RNS extremely interesting is the natural ease for parallel imple-
mentations. For all the basic operations (�,�,�, {), computations between xi
and yi have no dependency on other channels. Besides, the complexity of mul-
tiplication is Opsq, while the complexity of naive multiplication is Ops2q, and
that of Karatsuba multiplication is Opslog 3{ log 2q [25,30]3,4. In order to simplify

3 For the simplicity of the paper, we only use naive multiplication method to count the
number of multiplications and complexity analysis in the remaining paper. Readers
can easily derive the results using Karatsuba method.

4 In practice, the number of modulus in a RNS base and the number of words in normal
binary system to represent field size p are equivalent in the complexity analysis, and
we use s to denote both these parameters.
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channel reduction, pseudo-Mersenne numbers of the form bi � 2w � α, where
α   2

w
2 are chosen as moduli [37].

2.3 RNS Montgomery Reduction

Algorithm 2 shows the Montgomery modular reduction algorithm in RNS con-
text, and for comparison reason, redundant Montgomery algorithm is also pro-
vided. RNS Montgomery algorithm is consistent with the redundant Mont-
gomery algorithm without conditional subtraction in [31,40], with the parameter
R setting to MB. Since R�1 (i.e. M�1

B ) does not exist in base B, a new base,
C � tc1, c2, . . . , csu, where MC is co-prime with MB, is introduced to perform
the division (i.e. pT � QNq{R). Note that all the moduli from both B and C
are pairwise coprime as MB and MC are coprime. The overhead is two base
extensions required in Algorithm 2.

Algorithm 2 RNS Montgomery Reduction [26] and Redundant Montgomery
Reduction [40]

Require: RNS bases B and C with MB,MC ¡ 2N
Require: N , MB, MC are pairwise coprime
Require: tXuB, tXuC, tY uB, tY uC with X,Y   2N

Precompute: tN 1uB Ð t| �N�1|MBuB
Precompute: tM 1uC Ð t|M�1

B |MCuC and tNuC
Ensure: tUuB, tUuC s.t. |U |N � |XYM�1

B |N , U   2N

RNS Montgomery Redundant Montgomery

1 tQuB Ð tT uB � tN 1uB QÐ
��|T |R �N 1

��
R

2 tQuB
Base Extension 1
ÝÝÝÝÝÝÝÝÝÝÝÝÑ tQuC

3 tUuC Ð
�
tT uC � tQuC � tNuC

�
� tM 1uC U Ð pT �QNq{R

4 tUuB
Base Extension 2
ÐÝÝÝÝÝÝÝÝÝÝÝÝ tUuC

The operation to transform the representation in one RNS base to that in
other base is called Base Extension (BE). To compute tXuC � tx11, x

1
2, . . . , x

1
su

given tXuB � tx1, x2, . . . , xsu, one can use Posch-Posch Method [26,34].
Given tXuB, for Eqn(1), there must exist certain integer γ   s such that:

X �

�����
ş

i�1

���xi �B�1
i

���
bi
�Bi

�����
MB

�

�����
ş

i�1

ξi �Bi

�����
MB

�
ş

i�1

ξi �Bi � γ �MB (3)

where ξi �
���xi � B�1

i

���
bi

, 1 ¤ i ¤ s. In Posch-Posch method, γ can be calculated

by the following equation:

γ �

Z ş

i�1

ξi �Bi
MB

^
�

Z ş

i�1

ξi
bi

^
(4)
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In [26], ξi{bi is further approximated by ξi{2
w as bi is chosen as a pseudo-

Mersenne number near 2w. Once γ is obtained, tXuC � tx11, . . . , x
1
su can be

computed as follows:

x1j �

����
ş

i�1

ξi �Bi � γ �MB

����
cj

�

����
ş

i�1

ξi � |Bi|cj � γ � |MB|cj

����
cj

. (5)

The |Bi|cj and |MB|cj , 1 ¤ i, j ¤ s, can be precomputed once B and C are fixed.
Lazy reduction performs only one reduction for patten like AB�CD�EF ,

hence, it trades expensive reduction with multi-precision addition. In RNS con-
text, as multiplication takes only 2s word operations, lazy reduction dramati-
cally decreases the complexity. For instance, to compute AB�CD�EF , it takes
2s2 � 11s word multiplications in RNS, while it takes 4s2 � s using digit-serial
Montgomery modular multiplication [27].

3 RNS and Pairing Parameter Selection

3.1 Specifications on RNS Base Selection

The selection of RNS base has a huge impact on the complexity of reduction.
Clearly, one should choose pseudo-Mersenne numbers as the RNS moduli, since
the reduction by each modulus will be largely simplified. We notice that the
complexity of RNS modular reduction can be reduced when the moduli are near
the same power of 2 and close to each other.

The BE step [Eqn(5)] is the most computational expensive operation in the
RNS Montgomery algorithm. It requires around s2�s word-size multiplications.
Eqn(5) is essentially a matrix multiplication followed by reduction.

�
��
x21
...
x2s

�
�:�

�
��
|B1|c1 � � � |Bs|c1

...
. . .

...
|B1|cs � � � |Bs|cs

�
�
�
��
ξ1
...
ξs

�
�� γ

�
��
|MB|c1

...
|MB|cs

�
� (6)

tXuC � tx11, . . . , x
1
s1u :� t|x21|c1 , . . . , |x

2
s1 |csu (7)

The computational intensiveness comes from Eqn(6), which involves s2 word-
size multiplications. Note the element in the matrix |Bi|cj , 1 ¤ i, j ¤ s, can be
computed as follows:

|Bi|cj �

����
s¹

k�1,k�i

bk

����
cj

�

����
s¹

k�1,k�i

pbk � cjq

����
cj

(8)

Define B̃i,j :�
±s
k�1,k�ipbk�cjq. When the moduli bk and cj are close to each

other, the difference bk� cj is small. In practice, the absolute value of B̃i,j could

be much less than the value of cj (B̃i,j could be a negative number). In other

words, if B̃i,j substitutes |Bi|cj to perform the matrix multiplication, the bit-
length of the operand is much less than the original word-size. The substitution
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of |Bi|cj with B̃i,j will not affect the final result as the possible negative result
is corrected by the following Eqn(7).

Furthermore, there could be at most one even number among all the moduli
because all the moduli are pairwise co-prime. For an odd modulus cj , 2s�1|B̃i,j ,
because there is at most one pbk � cjq term cannot be divided by 2. In practice,
the number of zeros at the least significant bits are usually more than s � 1,
because bk � cj can be 2i, where i ¡ 1. Hence, we can further save the bit-
length by truncation of the least significant zeros, and compensate the result by
left-shifting. We denote B̃i,j after truncation of zeros as B̃1

i,j .

As the bit-length of B̃1
i,j is much shorter than the standard word-size, one

can employ asymmetric multiplier whose inputs are of different bit-length. The
asymmetric multiplier takes less area and is faster than the symmetric standard
word-size multiplier (cf. Sec. 4.1). We denote the bit-length of all B̃i,j in ma-

trix format as LB̃ , and the bit-length matrix of all B̃1 as LB̃1 . The mechanism
of denotation also works for base C, and one operand size of the asymmetric
multiplier inputs is shown by LB̃1 and LC̃1 .

3.2 RNS Parameter Selection

To achieve 128-bit security level, p should be around 256 bits, where Fpk is the
operating field. We set s, the number of moduli in each base to be 8 and the
moduli are chosen near 233 considering the following facts:

– The channel multipliers should be symmetric, because the inputs are of the
same bit-length for all channel multiplications except the matrix multiplica-
tions in BEs.

– In modern FPGA device, DSP slices with 2’s complement 25�18 multipliers
are embedded [41]. To construct a symmetric multiplier using these slices,
the standard word-size (i.e. the bit-length of a modulus) should be equal to
or a little bit less than a multiple of 17 excluding the sign bit.

– s � 8 are the most suitable trade-off. For s � 4, the parallelism is under-
mined, and it needs 9 DSP slices to construct a 51�51 multiplier. For s � 16,
it takes s � 16 loops to perform one matrix multiplication in cox-rower de-
sign [26], while for s � 8, it takes half less loops.

– We select moduli near 233 because some of the moduli are a slightly greater
than 233, and hence all the moduli fit in 34-bit multiplier. If one chooses all
the moduli less than a power of 2, some moduli will have a large Hamming
weight, which implies the channel reduction is expensive.

As the number of moduli and moduli range are decided, we choose the fol-
lowing bases.

B � t2w � 1, 2w � 9, 2w � 3, 2w � 11, 2w � 5, 2w � 9, 2w � 31, 2w � 15 }
C � t2w , 2w � 1, 2w � 3, 2w � 17, 2w � 13, 2w � 21, 2w � 25, 2w � 33 }
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where w � 33. Consequently,

LB̃ �

�
�����������

23 20 21 20 21 20 18 19
22 20 22 20 21 20 18 19
25 23 23 22 23 22 21 22
25 24 25 26 25 26 23 28
29 30 28 28 28 28 28 27
32 33 32 31 31 31 33 31
32 33 32 32 32 32 34 32
33 33 33 32 33 33 37 32

�
����������

, LC̃ �

�
�����������

24 23 23 20 21 20 20 19
25 25 26 24 26 25 24 24
26 27 25 24 24 23 23 23
30 31 30 31 29 29 29 28
28 28 27 27 26 26 26 25
30 30 30 30 29 28 28 28
27 27 27 26 28 29 29 31
30 30 30 33 29 29 29 29

�
����������

After truncation of least significant zeros of B̃i,j , we get:

LB̃1 �

�
�����������

23 20 21 20 21 20 18 19
20 18 20 18 19 18 16 17
22 20 20 19 20 19 18 19
18 17 18 19 18 19 16 21
23 24 22 22 22 22 22 21
22 23 22 21 21 21 23 21
23 24 23 23 23 23 24 23
20 20 20 19 20 20 24 19

�
����������

, LC̃1 �

�
�����������

24 23 23 20 21 20 20 19
23 23 24 22 24 23 22 22
23 24 22 21 21 20 20 20
23 24 23 24 22 22 22 21
22 22 21 21 20 20 20 19
20 20 20 20 19 18 18 18
18 18 18 17 19 20 20 22
21 21 21 24 20 20 20 20

�
����������

Notice that all of B̃1
i,j and C̃ 1

i,j are less than 25 bits, and they fit in one operand
of FPGA DSP slice, while the standard 34-bit operands do not. For the ease of
implementation, we do not truncate all the least significant zeros. Instead, all
the B̃i,j in the same row are truncated with the same number of zeros, and we
do not truncate more zeros when all elements in a row fit in 25 bits.

3.3 Pairing Parameter Selection

Lazy reduction reduces complexity in RNS (cf. Sec. 2.3). In order to perform
lazy reduction, the allowed range for input to reduction should be big enough.
For instance, to compute AB�CD�EF , the allowed input should be as big as
3p2 instead of p2. In normal binary number system, one can perform conditional
correction to keep the sum always in the operating range, and the redundancy is
no need too much. However, in RNS, as the comparison of two number values are
prohibitive computational intensive, one can hardly tell whether to perform the
conditional correction. Hence, the actual operating range should have enough
redundancy to perform lazy reduction.

According to our observation, the operating range should be greater than
22p2 (the computation of f0,0 requests the largest operating range, c.f. Sec.5).
Furthermore, the redundant Montgomery algorithm along with the approxima-
tion of ξi{bi in Eqn(4) requires 9 times of redundancy [20, 26]. Thus, MB �±s
i�1 bi, where bi P B, should be greater than 9 � 22 � p [20].
For demonstration, we choose u � �p262 � 255 � 1q, and consequently, p is

a 254-bit prime and 198p   MB holds. We admit the security level is slightly
weak than 128-bit. However, the little compromise will gain great performance
improvement. Also as p � 3 mod 4, multiplications by β � �1 can be computed
as simple subtractions in F2

p [33].
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Fig. 1. Pairing coprocessor hardware architecture

4 Coprocessor Architecture Design

Fig. 1 shows the whole hardware architecture of the proposed pairing coproces-
sor, which contains 8 processing elements (PEs) and each PE employs one dual
mode multiplier.

4.1 Dual Mode Multiplier

Using the DSP slices embedded in FPGA can improve the performance dramat-
ically. The dominating DSP slice in advanced FPGAs is made of a signed 25�18
bit multiplier, a 17-bit left shifter, an accumulator, and other processing ele-
ments. Excluding the sign bit, it is actually a 24�17 multiplier. Two such DSPs
can form a signed 35�25 multiplier, and four DSPs can form a signed 35�35
multiplier in a speed-optimised fashion (in fact, 4 DSPs can form an 35�42
multiplier without external logic, but it is useless in this work).

Fig. 1(a) illustrates the hardware architecture of the dual mode multiplier.
One such multiplier is made of 4 DSP slices, and can work either as a 35�35
multiplier, or two 35�25 multipliers. The partial products from DSP slices are
added by the accumulator inside of DSP slices, while the partial products after
addition (i.e. the full products of 35�25) are added in an adder tree fashion. The
adder tree balances the timing of the two 35�25 multiplier, and accelerates the
partial product summation.
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The advantages of the dual mode multiplier are:

– The same hardware for standard word-size multiplication can perform two
matrix multiplication at the same time, which saves area.

– It saves half of the matrix multiplication time as the two multiplications are
taken at the same time.

– The time to perform 35�25 multiplication is shorter than that of 35�35
multiplication, as there are less partial products to accumulate.

4.2 Processing Elements

Each Processing Element (PE) preforms operations in one channel of B and
one channel of C. Fig. 1(b) shows the internal design of a PE. There is a dual
mode multiplier, an adder, 2 RAMs for multiplier inputs and 2 RAMs for adder
inputs, 3 accumulators, and a channel reduction module. In order to avoid data
fetch latency, two RAMs are attached to the dual mode multiplier and the two
operands are supplied simultaneously. As addition is also an important channel
operation, dedicated adder and RAMs are designed. The two 35�25 products
are added directly as such mode is dedicated to the matrix multiplication step,
and all the products should be added together finally in matrix multiplication.

One accumulator is dedicated for matrix multiplication of the base extension
step, which can shift to compensate the truncated zeros, and handle cox value (cf.
Alg. 3). The other two accumulators are to compute polynomial multiplication.
As modular reduction will not takes simultaneously, only one modular reduction
module is employed for each PE.

4.3 Coprocessor Architecture

We deploy the cox-rower architecture model [26]. The design of pairing copro-
cessor is showed in Fig. 1(c). There are s � 8 PEs, and each PE performs the
operations in its channel. The module cox, named by the authors of [26], is an
accumulator to provide result correction information for all PEs in the BE op-
eration. The ξ register receives the ξ values from every PE and delivers two ξ
values to all PEs at a time.

A ROM is deployed in the top level, which stores the assembly code for
all PEs. The controller reads these instructions from the ROM, distributes the
control signals to all PEs and ξ registers, and renews the instruction pointer. One
can program his own code to control the data flow. This provides high flexibility
to different applications. Indeed, one can perform almost all algorithms on Fp
where p is around 256-bit, not only optimal ate pairing on BN curves, but also
other pairing on other curves or ECC.

5 Pairing Computation on the Proposed Coprocessor

5.1 RNS Modular Reduction

For modular reduction, the cox-rower algorithm [26] is adopted. Using the dual
mode multiplier, each PE performs two element multiplications at a time for
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matrix multiplication in the BE operation. Hence, the cox-rower algorithm is
modified as Algorithm 3. In this algorithm, Step 4-6 distribute the computation
of γ in Eqn(6) to each loop, and the operations are the same for all the channels.
The cox module performs these accumulations and provides value l to each
PE for result correction. As the number of loops is reduced from s to s{2, the
modular reduction operation is essentially accelerated.

Algorithm 3 Cox-rower algorithm for k-th PE with two element multiplications
at a time
Require: |X|bk
Ensure: |X|ck

Precompute: B�1
k , B̃1

i,k, 1 ¤ i ¤ s, |MB|ck , biasck
1: ξk Ð xk �B

�1
k

2: y � 0, z � 0
3: for i � 0 to ps{2 � 1q do
4: y Ð y � ξi � ξi�s{2

5: lÐ ty{2wu, {l P 0, 1, 2}
6: y Ð |y|2w

7: z Ð z � pξi � B̃
1
i,k � ξi�s{2 � B̃

1
pi�s{2q,kq � 2biasck � l � |MB|ck

8: end for
9: return z

5.2 Back to Schoolbook Method for Field Operations

Karatsuba-like method has been used intensively in field operations in literature
to save the expensive multiplication [1, 6, 21, 36]. For a Fp2 multiplication, it is
computed as follows:

pa0 � a1iqpb0 � b1iq � pa0b0 � a1b1q � pa0b1 � a1b0qi

� pa0b0 � a1b1q � rpa0 � a1qpb0 � b1q � a0b0 � b0b1si (9)

In Eqn(9), 3 multiplications are deployed instead of 4 using schoolbook or
naive method, but the overhead is 3 more additions. In normal positional nubmer
system, this method saves computation power, as multiplication, with complexity
of Ops2q, is much more expensive than addition, whose complexity is Opsq. How-
ever, in RNS, the complexities of multiplication and addition are the same. Both
multiplication and addition take 2s operations. Hence, the schoolbook method
involves less operations (counting both additions and multiplications) and is
employed.

Furthermore, accumulator after multiplier can be deployed to hide the la-
tency of products addition, reduce memory access, and simplify control. Also,
Karatsuba method requires larger redundancy (for the Fp2 example, operating
range is enlarged from 2p2 to 6p2), which will decrease the security level given
fixed operating range.
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For Fp12 multiplication, the schoolbook method also provides an elegant so-
lution. Using lazy reduction, one multiplication in Fp12 needs only 12 reductions
and it is computed as follows:

f � g �
¸

j�k 6

fj � gk �W
j�k � p

¸
j�k¥6

fj � gkq � ζ �W
j�k�6 (10)

where f, g P Fp2rW s{pW 6 � ζq, and fj , gk P Fp2 , 1 ¤ j, k ¤ 6, are the coefficients
of f, g, respectively. The two coefficients of the intermediate results of fj � gk are
less than 2p2, and the coefficients of fj � gk � ζ is less than 4p2.

According to Eqn(10), fj � gk � ζ is one fundamental operation (such kind
of computation also exists in point doubling and addition formulas). Let fj �
f0 � f1 � i and gk � g0 � g1 � i, then

fj � gk � ζ � pf0g0 � f1g1 � f0g1 � f1g0q � pf0g0 � f1g1 � f0g1 � f1g0q � i

Note that all the four products, f0g0, f1g1, f0g1, f1g0, are used to compute both
the results, and the two accumulator design can calculate the two results at the
same time with the same product inputs.

5.3 High Level Operations in Pairing Algorithm

Miller Loop We adopt the homogeneous coordinates proposed in [11]. Again,
we use schoolbook method to avoid more additions. Table 1 provides the formulas
for point doubling, addition and line raising, along with the pipeline groups and
operation counts. M,S,R represent square, multiplication and reduction in Fp2 ,
respectively, and m, r represent multiplication and reduction in Fp. The cost of
square in Fp is also denoted as m as there is no dedicated hardware to optimize
it. As we use schoolbook method, M � 4m, S � 3m, and R � 2r. Each pipeline
group has 5R or 6R, and this way of grouping makes the best effort to squeeze
the pipeline bubbles.

Finial Steps The finial steps of an optimal pairing include Final Addition (FA,
Line 10, 11 in Alg. 1) and Final Exponentiation (FE, Line 12 in Alg. 1). The
operation count is given in Table 2. The formulas for FA are the same with the
point addition formulas in the Miller loop, but for the second step, only line
raising is kept and the computation for T Ð T � Q2 is skipped because the
point value will not be used any more. The Frobenius endomorphism of Q1, Q2

computation is also included in FA count in Table 2.
For FE step, the power pp12 � 1{nq is factored into three small exponents:

pp6�1q, pp2�1q, and pp4�p2�1q{n. To compute pp6�1q, it requires an inversion.
The formulas from [36] is utilized, and we find that when the computation of
inversion and multiplication is integrated, the multiplication turns to a square.
The explicit formula is given as Algorithm 4. Eventually, one needs to perform
an inversion in Fp. We employ Fermats little theorem, i.e. d�1 � dp�2 mod p
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Table 1. Pipeline design and operation count of Miller loop

Condition Step Operations Count

ri � 0

1
A � y21 , B � 3b1z21 , C � 2x1y1

3S � 2M � 5R
D � 3x21, E � 2y1z1

2
x3 � pA� 3BqC, y3 � A2 � 6AB � 3B2, z3 � 4AE

2S � 3M � 4m� 5R
l0 � pB �Aqζ, l3 � yPE, l4 � xPD

3 f � f2 6S � 15M � 6R

4 f � f � l 18M � 6R

ri � 1

1
A � y21 , B � 3b1z21 , C � 2x1y1 5S � 4M � 6R
D � 3x21, E � 2y1z1, f0 � pf2q0

2
x3 � pA� 3BqC, y3 � A2 � 6AB � 3B2, z3 � 4AE

2S � 6M � 4m� 6R
l0 � pB �Aqζ, l3 � yPE, l4 � xPD, f1 � pf2q1

3
A � y3 � yQz3, B � x3 � xQz3 4S � 12M � 4m� 6R

f2,3,4,5 � pf2q2,3,4,5

4 f � f � l 18M � 6R

5
C � A2, D � B2

2S � 2M � 4m� 5R
l0 � pxQA� yQBqζ, l3 � yPB, l4 � xPA

6
C � z3C, E � BD, D � x3D

12M � 6R
f0,1,2 � pf � lq0,1,2

7
x3 � BpE � C � 2Dq, y3 � Ap3D � E � Cq � y3E 13M � 6R

z3 � z3E, f3,4,5 � pf � lq3,4,5

if p is prime. This is because the proposed coprocessor has no ability to per-
form extended Euclidean algorithm or other algorithms which have less complex-
ity, otherwise new module dedicated for these algorithms should be developed.
The problem with this exponentiation in Fp is that the computation cannot be
pipelined. Indeed, only one stage is taken out of all pipeline stages, which causes
low pipeline occupation rate and a huge waste (c.f. Sec. 6).

The formula for the last exponentiation comes from [12]. In a recently paper
[1], using cyclotomic subgroup structure to accelerate this hard exponentiation is
proposed. However, it requires three more inversions, and as we stated, inversion
is very expensive and inefficient on our platform, hence this method is not used.

6 Experimental Results and Discussion

6.1 Experimental Results

The prototype of the prposed pairing coprocessor design is implemented on Xil-
inx Virtex-6 XC6VLX240T-2 FPGA. The tool for synthesise, simulation and
implementation is Xilinx ISE 12.4.

The logic utilisation is provided by Table 3. As there are 8 PEs and each
PE contains 4 DSP slices, the total number of DSP is 32. The block RAM
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Algorithm 4 Computation of fp
6�1 in Fp12

Require: f P Fp12 � Fp2 rW s{pW 6 � ζq, and f �
°5

j�0 fj �W
j , where fj P Fp2

Ensure: fp6�1

1: f Ð
°5

j�0p�1qj � fj �W
j

2: aÐ f2
0 � p�2f1f5 � 2f2f4 � f2

3 qζ
bÐ 2f0f2 � f2

1 � p�2f3f5 � f2
4 qζ

cÐ 2f0f4 � 2f1f3 � f2
2 � f2

5 ζ
3: AÐ a2 � bcζ, B Ð cζ � ab, C Ð b2 � ac
4: F � F0 � F1iÐ aA� pbC � cBqζ, where F0, F1 P Fp

5: dÐ F 2
0 � F 2

1

6: dÐ d�1

7: F Ð d � F0 � d � F1 � i
8: f Ð f2 � pA � F �B � F �W 2 � C � F �W 4q
9: return f

Table 2. Operation count of final steps

Step Operations Operation Count

FA1
Q1 Ð πppQq M � 2m�R

T Ð T �Q1 and lT,Q1pP q 2S � 11M � 8m� 13R
f Ð f � lT,Q1pP q 18M � 6R

FA2
Q2 Ð πppQ1q M � 2m�R
lT,�Q2pP q 4M � 8m� 5R

f Ð f � lT,�Q2pP q 18M � 6R

fp6�1

Before d�1 9S � 12M � 2m� 7R� r
d�1 � dp�2 294m� 294r
After d�1 6S � 36M � 16R

fp2�1 fp2�1 M̃ � R̃� 8m� 4R

fp4�p2�1{n

aÐ f6|u|�5 64S̃ � 4M̃ � 68R̃

bÐ ap�1 M̃ � R̃� 3M � 4m� 5R

fp, fp2 , fp3 6M � 12m� 12R

T Ð b � pfpq2 � fp2 2M̃ � S̃ � 3R̃

T Ð T 6u2�1 126S̃ � 12M̃ � 138R̃

fp3 � T � b � pfp�1q9 � f4 7M̃ � 5S̃ � 12R̃

(BRAM) serves as the ROM and stores the assembly code. With fine tuned
pipeline steps, the coprocessor can operate at 250MHz. The pipeline depth is 8
cycles (bypass the accumulator), or 9 cycles (with accumulation). With latency
hidden by pipeline, a multiplication only takes 2 cycles and a reduction takes
13 cycles. Due to the addition at Step 3 in Alg. 2, there will be an idle cycle
for each pipeline group. Note that it would take 21 cycles for reduction without
dual mode multiplier, and our design saves 38% of the time for reduction with
the same hardware.

Table 4 gives the number of multiplications and reductions in Fp for all the
computations employed in Miller loop. The overhead of additions is hidden by the



A High Speed Pairing Coprocessor Using RNS and Lazy Reduction 15

Table 3. Logic Utilization

Logic Utilization Used Available Utilization

# DSP48E1s 32 2,016 1%
# Slice Register 19,194 595,200 3%
# Slice LUTs 25,618 297,600 9%
# Occupied Slices 7,032 74,400 9%
# 18Kb BRAM 48 832 6%

Table 4. Number of operations and cycles per computation in Miller loop

2T and T+Q and f2 f � l Miller’s loop
lT,T pP q lT,QpP q Ate Optimal

#Multiplication 39 54 78 72 - -
#Reduction 20 26 12 12 - -
#Cycles 340 456 313 301 128531 64084

Table 5. Number of operations and cycles per computation in final steps

Step Operation # Cycles # Idle Cycles Occupation Rate

Final Addition
FA1 799 7 99.1%
FA2 566 50 91.2%

fp6�1 dp�2 mod p 25537 21127 17.3 %
Others 1333 240 82.0%

fp2�1 fp2�1 573 9 98.4%

fp4�p2�1{n

f6|u|�5 21812 68 99.7%

T 6u2�1 44778 138 99.7%
Others 6905 47 99.3%

Total
Ate 100578 21629 78.5%

Optimal 101943 21686 78.7%

accumulators and carefully-designed pipeline input sequence. The cycle counting
for each operation are also shown in Table 4. Out of the 64084 cycles, the multi-
plier is left idle for only 268 cycles. In other words, the pipeline occupation rate
is 99.58%. Table 5 provides the timing information for the final exponentiation.
The efficiency is very poor in the inversion operation, as most of the pipeline is
left idle and the ξ delivery latency cannot be hidden in this stage. However, the
occupation rate for other steps is high, especially for multiplication and square
in Fp12 .

6.2 Comparison and Discussion

Table 6 lists the performance of software and hardware implementation reported
in recent literature. Compared with the other hardware implementations [15,17,
24], our design achieves a speed-up of factor 3 at least. This design is the first
hardware work which computes a pairing within 1 ms. On the other hand, the
software implementations achieve very high performance, partially with the help
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Table 6. Performance comparison of software and hardware implementations of pair-
ings

Design Pairing Security Platform Algorithm Area Freq. Cycle Delay
[bit] [MHz] [ms]

This ate
127

Xilinx FPGA RNS 7032 Slices
250

229109 0.916
design optimal ate (Virtex-6) (Parallel) 32 DSP48E1s 166027 0.664

[13] optimal ate 127
Altera FPGA RNS

4233 A; 165 176111 1.07
(Stratix III) (Parallel)

[15]
ate

128
ASIC HMM

183 kGates 204
861,724 4.22

optimal ate (130 nm) (Digit-serial) 592,976 2.91
Tate 1,730,000 34.6

[17] ate 128 Xilinx FPGA Blakley [8] 52k Slices 50 1,207,000 24.2
optimal ate (Virtex-4) 821,000 16.4

Tate 11,627,200� 34.4
[24] ate 128 ASIC Montgomery 97 kGates 338 7,706,400� 22.8

optimal ate (130 nm) 5,340,400� 15.8

[14]
Tate over

128
Xilinx FPGA 4755 Slices

192 428,853 2.23F35�97 (Virtex-4) - 7 BRAMs

[21]
ate

128 64-bit Core2 Montgomery
-

2400
15,000,000 6.25

optimal ate 10,000,000 4.17
[18] ate 128 64-bit Core2 Montgomery 2400 14,429,439 6.01
[32] optimal ate 128 Core2 Quad Hybrid Mult. - 2394 4,470,408 1.86
[6] optimal ate 126 Core i7 Montgomery - 2800 2,330,000 0.83
[1] optimal ate 127 Phenom II Montgomery - 3000 : 1,562,000 0.52

[2] ηT over F21223 128 Xeon (8 cores) - - 2000 3,020,000 1.51
[7] ηT over F3509 128 Core i7 (8 cores) - - 2900 5,423,000 1.87

� Estimated by the authors.
: Processor frequency is not mentioned in the original paper. We take 3.0 GHz (typical
frequency) for delay estimation.
; It has 8 Rowers, each consisting of 2 36x36 DSP blocks and one 9x9 multiplier.

of the powerful 64-bit CPUs. Although it have not broken the software record,
the speed of our work is already close to that of software.

An independent work using RNS and lazy reduction to compute crypto-
graphic pairing is reported by Duquesne and Guillermin [13] 5. Our design differs
from this implementation mainly in two steps: the selection of the base for RNS
and the architecture of the processing elements. By selecting the RNS bases (un-
der certain specification), we reduce the size of multipliers for base extension and
thus speed up the reduction. Furthermore, although both works use schoolbook
multiplication, the accumulator used in our PE hides the lattency introduced
by addition and subtraction. Our design is about 37% faster than the design
in [13]. However, due to the difference in the platform, it is difficult to give a fair
comparison on the efficiency of the architectures.

Both RNS-based pairing processors achieve higher performance than the ones
using Montgomery (e.g. [24]), Hybrid Montgomery [15] and Blakley [17] algo-
rithms. The results confirm the reduction of computational complexity by RNS.
Indeed, multiplying two 256-bit integers (without considering the reduction) re-

5 The first version of our paper was submitted to a conference before this paper was
listed on Cryptology ePrint Archive.
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quires only 16 times 32x32-bit multiplications, while Karatsuba multiplication
requires 27 of them. The RNS reduction is indeed slower than traditional Mont-
gomery reduction, but this overhead is largely reduced by lazy reduction. The
results of [13] and the results of our implementation have demonstrated the
efficiency of RNS in pairing implementations.

7 Conclusions

In this paper we present an efficient pairing processor that utilises RNS and
lazy reduction. We describe a set of moduli that are suitable for RNS base
for 254-bit multiplications. The proposed architecture is prototyped on Xilinx
Virtex-6 FPGA, which utilizs 7032 slices and 32 DSPs and can run at 250 MHz.
The coprocessor finishes one optimal pairing in 0.664 ms. To the best of our
knowledge, this is by far the fastest hardware implementation for pairings that
achieves 127-bit security.
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