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Abstract. In this paper, we revisit the Computational Square-Root
Exponent Problem (CSREP), and give a more generic condition such
that CSREP is polynomial-time equivalent to the Computational Diffie-
Hellman Problem (CDHP) in the group with prime order. The results
obtained in this paper contain Zhang et al.’s results at IWCC2011. We
also analyze the existence of such condition. Although primes satisfying
such condition are rare (compare to all primes), it can be regarded as an
evidence that CSREP may be equivalent to CDHP.
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1 Introduction

The discrete logarithm problem (DLP) and the Diffie-Hellman problem as cryp-
tographic primitives play an important role in modern cryptology. For example
the Diffie-Hellman key exchange [6], the ElGamal encryption [7], and the official
U.S. Digital Signature Algorithm (DSA) [8], etc. Due to Pohlig and Hellman
attack [17], it is restricted to groups of prime order p in this paper, where the
DLP is the problem to find x ∈ Zp given (g, gx), and the DHP or computational
Diffie-Hellman problem(CDHP) is the problem to compute gab given (g, ga, gb),
here g ∈ G be a generator of group G. Maurer and Wolf [12, 14] have proved
that, for every cyclic group G with prime order p, there exists polynomial time
algorithm that reduces the computation of DLP in G to the computation of
CDHP in G if we are able to find an elliptic curve, called auxiliary elliptic curve,
over Fp with smooth order.

There are many variations of DLP and DHP, such as constrained DLP[15],
P-DH problems[9], Inverse Computational Diffie-Hellman Problem (Inv-CDHP),
Square Computational Diffie-Hellman Problem (Squ-CDHP), Diffie-Hellman Knowl-

edge (DHK) problem[5], etc. For Inv-CDHP(the problem to compute ga
−1

given
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(g, ga)) and Squ-CDHP(the problem to compute ga
2

given (g, ga)), due to the re-
sults of [2, 13, 19], we have the following fact: CDHP, Inv-CDHP and Squ-CDHP
are polynomial time equivalent.

The computational square-root exponent problem (CSREP) is firstly pro-
posed by Konoma et al. [10] in 2004, which is a problem to compute a value
whose discrete logarithm is a square root of the discrete logarithm of a given
value. CSREP can be regarded as a variations of CDHP. Konoma et al. used
CSREP to analyze reduction between the discrete logarithm problem modulo a
prime and the factoring problem. They also showed that CSREP is the first prob-
lem known to stay between the computational Diffie-Hellman problem and the
decisional Diffie-Hellman problem with respect to the computational reduction.

However, as showed by Zhang et al. at [23], that under proper conditions
the CSREP is polynomial-time equivalent to the Computational Diffie-Hellman
Problem (CDHP). That means Konoma et al.’s claim is not right.

In this paper, we will give more witness that the CSREP is polynomial-time
equivalent to the CDHP. The conditions showed in this paper are more generic
than Zhang et al.’s results.

The remainder of this paper is organized as follows. In Section 2, we define
certain notations and recall the computational square-root exponent problem.
We discuss the P-DH function and CSREP in section 3, we provide and prove
our main result in section 4 and discuss the existence of the group which satisfied
the main theorem. We present an algorithm and certain example in section 5
and conclude the paper in section 6.

2 CSREP and Preliminaries

2.1 CSREP and DSREP

In [10], Konoma et al. defined two new problems called Computational Square-
Root Exponent Problem (CSREP) and Decisional Square-Root Exponent Prob-
lem (DSREP). Konoma et al.’s definitions for CSREP and DSREP are over the
multiplicative group modulo a prime p. We recall the definitions for CSREP and
DSREP in any cyclic group with order q as follows:

Definition 1. CSREP Let G be a cyclic group of order q and let g ∈ G be a

generator of G. Given g and ga as input, output ga
1
2 if a is a quadratic residue

modulo q. Otherwise, output ⊥.

Definition 2. DSREP Let G be a cyclic group of order q and let g ∈ G be a
generator of G. Given g, ga and y as input, decide whether the discrete logarithm

of y is a square root of the discrete logarithm of ga. That is, output 1 if y = ga
1
2

and 0 if y 6= ga
1
2 .

Similar to the gap Diffie-Hellman problem, when we introduce the bilinear
pairing into the group G, we can obtain the gap CSREP, i.e., in such group G,
the DSREP is easy, and the CSREP is still hard.

Let G be (mutiplicative) cyclic groups of order q. Let g be a generator of G.



Definition 3. A map e : G×G → GT (here GT is another mutiplicative cyclic
group such that |G| = |GT | = q ) is called a bilinear pairing if it satisfies the
following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Zq, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1. In other words, if g is a generator of G, then

e(g, g) generates GT .
3. Computability: There is an efficient algorithm to compute e(u, v) for all

u, v ∈ G.

We say that G is a bilinear group if there exists a group GT , and a bilinear
pairing e : G × G → GT as above. Such groups can be found on supersingular
elliptic curves or hyperelliptic curves over finite fields, and the bilinear parings
can be derived from the Weil or Tate pairing.

Furthermore, Zhang et al. [21] designed a new signature scheme without
random oracles from bilinear pairings and the CSREP. Zhang et al. [22] also
proposed a new designated confirmer signature scheme from bilinear pairings
and the hardness of the CSREP.

Due to the method of Pohlig and Hellman [17], the hardness of DLP on the
group G of order q can be reduced to DLP on the group with the order of the
largest prime factor of q. Therefore, for the following sections we focus on the
cases where the order of group G is a prime p.

2.2 Quadratic residue modulo p and its polynomial representation

Let p be an odd prime and a be an integer relatively prime to p. We say that
the integer a is a quadratic residue of p if the congruence x2 ≡ a ( mod p) has
a solution. Otherwise, we say a is a quadratic nonresidue of p.

Definition 4 (Legendre symbol). Suppose p is an odd prime. For any integer

a > 0, we define the Legendre symbol
(

a
p

)

as follows:

(

a

p

)

=

{

1 if a is a quadratic residue modulo p
−1 if a is a quadratic nonresidue modulo p

Theorem 1 (Euler’s Criterion). Suppose p is an odd prime. Then

(

a

p

)

≡ a(p−1)/2(mod p).

A polynomial f(x) ∈ Fp[x] is called a polynomial representation of the square
root function mod p if it satisfies the equation

√
x ≡ f(x) mod p whenever x

is a quadratic residue. It is well known that the simple formula a
p+1
4 mod p

gives a square root of a when p ≡ 3 mod 4. Let p− 1 = 2sn with n odd. Agou
et al.[1] proved the existence of polynomial representations f(x) of the square
root function of degree deg(f) ≤ (p − 3)/2 and length (the number of nonzero
terms) at most 2s−1. Carella[4] utilized a different method to generate specific



polynomial representations of the square root function, the formulas for the cases
s = 2, 3 and 4 are also given.

For example, when p = 23n+ 1,

√
x = f(x) = 2−2x(n+1)/2[z3n(1− x2n)(1 − xnz2n) + zn(1− x2n)(1 + xnz2n)

+z2n(1 + x2n)(1 − xn) + (1 + x2n)(1 + xn)],

where z is a quadratic nonresidue modulo p.

2.3 Some notations

To analyze and clarify the complexity of various cryptography primitives, a use-
ful complexity analysis is to show reductions among these primitives. Generally,
to prove the equivalence of two problems, it may be easier to show the reduc-
tion relationship between them. Therefore, before describing the mathematical
problems, we need the following notations from complexity theory.

� We say problem A is polynomial time reducible to problem B, denoted by
B ⇒ A, if there exists a polynomial time algorithm R for solving problem
A that makes calls to a subroutine for problem B. In this case, we also say
the problem B is harder than the problem A.

� We say that A and B are polynomial time equivalent if A is polynomial
time reducible to B and B is polynomial time reducible to A.

3 CSREP and P-Diffie-Hellman Function

Kiltz [9] suggested a toolbox of cryptographic functions called P-Diffie-Hellman
functions. In particular, Kiltz proved that computing P-Diffie-Hellman function
is computationally equivalent to computing DHP for certain class of groups.
We briefly review the necessary facts about P-Diffie-Hellman function using the
same notations as [9].

Let G be a finite cyclic group whose order |G| is an n−bit integer. Let Z|G|

denote the ring of integer residue classes modulo |G|. Let Pk
l be the family of

sets of all non-linear polynomials P (a, b) over Z|G| of the form

P (a, b) =
∑

i,j∈{0...l}

cija
ibj

with coefficients cij ∈ Z|G| and |cij | bounded by k.
For a cyclic finite group G, a fixed generator g of G and a polynomial P ∈

P = P
⌊|G|/2⌋
|G|−1 , define the P-Diffie-Hellman function, P-DH: G×G → G as

P = DH(ga, gb) := gP (a,b).

Clearly computing the P-DH function cannot be harder than computing the
DH function for a polynomial P (a, b) due to the computation of P (a, b) can



be obtained by repeated multiplication or squaring(i.e., given ga and gb, any

monomial gcija
ibj can be computed by repeated multiplication or squaring in

the exponent), therefore, CDHP ⇒ P-DH.
Kiltz proved the following results(Theorem 3 in [9]):

For l ∈ O(
√
logn), and for every P,Q ∈ P

poly(n)
l the following relation holds:

P − CDH ⇔ Q− CDH(⇔ CDH).

Notice that CDH is in P
poly(n)
l .

The square root function mod p has a polynomial representation due to Agou
et al.’s work, therefore, CSREP can be regarded as P-Diffie-Hellman function

problem. When the polynomial P of the square root function mod p is in P
poly(n)
l ,

here n = log p, then using Kiltz’s result, we have CDHP ⇔ CSREP in group G
with order prime p.

However, we can not get CSREP ⇒ CDHP using Kiltz’s method. Because
when we regard CSREP as P-Diffie-Hellman function problem, the degree of P

is about |G|, i.e., P is not in P
poly(n)
l .

4 Relation Between CSREP and CDHP

We will describe the main result of this paper in this section. When the order of
the group satisfies certain conditions, the CSREP is polynomial time equivalent
to the CDHP. We first define a new integer sequence, and explain the relation of
this integer sequence and CSREP, then give the main theorem. We also discuss
the relation of the main result of this paper and Zhang et al.’s results in [23].

4.1 A new integer sequence

For any positive integer a, we define a sequence {ai} as follows:

a0 = a,

ai+1 =

{

ai

2 if ai is even
ai−1
2 + a if ai is odd

(1)

If there is an integer T > 0 such that aT = a, we call this sequence is periodic.
The period of the sequence is the smallest such integer T .

A basic result about the period of the above sequence is: if the period of the
sequence defined by a is T , then we have aT−1 = 1. This is because if aT = a,
then

aT = a =
aT−1

2
or aT = a =

aT−1 − 1

2
+ a

So, aT−1 = 2a (this is impossible, since ai < 2a from the construction of the
sequence), or aT−1 = 1. Therefore, aT−1 = 1.

For example:



a = 17, the sequence defined by 17 with period 10:

17, 25, 29, 31, 32, 16, 8, 4, 2, 1

a = 38, the sequence defined by 38 with period 20:

38, 19, 47, 61, 68, 34, 17, 46, 23, 49, 62, 31, 53, 64, 32, 16, 8, 4, 2, 1

4.2 CSREP is equivalent to CDHP in some groups

Assume that x
1
2 mod p ≡ ±xλ mod p. When we repeat to solve the square

root for x, we have:
x

1
2 ≡ ±xλ

x
1
4 ≡ (x

1
2 )

1
2 ≡ (xλ)

1
2 ≡

{

±x
λ
2 if λ is even

±x
λ−1
2 + 1

2 ≡ ±x
λ−1
2 +λ if λ is odd

(2)

Therefore, x
1

2i ≡ ±xλi−1 , here λi−1 is the i−1-th item of the integer sequence
defined by λ. So the above integer sequence is related to CSREP. We have the
following main result:

Theorem 2. Let G be a cyclic group of prime order p and let g ∈ G be generator
of G. When x is a quadratic residue modulo p, if x

1
2 ≡ ±xλ mod p holds, and if

the period of the sequence constructed by λ using above method is polynomial in
log p, then computing CSREP in G is polynomial time equivalent to computing
CDHP in G.

Proof . Clearly we have CDHP ⇒ CSREP . Now we prove that CSREP ⇒
CDHP .

Due to the work of Maurer et al.[13], Bao et al.[2] and Sadeghi et al.[19], we
have CDHP ⇔ Squ-CDHP. Therefore, if we can prove that CSREP ⇒ Squ-
CDHP, then we have CSREP ⇒ CDHP .

Given a CSREP-oracle A, on input g, ga for a ∈ Z∗
p, A output ga

1
2 , if a is a

quadratic residue modulo p. Otherwise, output ⊥.
The following we want to compute ga

2

from g and ga for a ∈ Z∗
p through

calling the oracle A.
Assume that x

1
2 ≡ ±xλ( mod p)(For example: if p = 4k − 1, then λ = k),

the sequence defined by λ with period T is

λ0 = λ, λ1, λ2, ..., λT−2 = 2, λT−1 = 1.

When we call the oracle A one time on g and ga, we have

ga
1
2 = g±aλ

= g±aλ0
= A(g, ga).

For ±aλ0 , there is only one element is quadratic residue of p when p = 4k − 1,
we call the oracle A again and obtained



A(g, ga
λ

) = g±aλ1
or A(g, g−aλ

) = g±aλ1

Continue calling the oracle A on the last output of A :

A(g, ga
λ1
) = g±aλ2

or A(g, g−aλ1
) = g±aλ2

.......

So we can compute ga
2

from (g, ga) by iteratively calling oracle A T − 1
times.

Therefore, if the period T is polynomial in log p, then computing CSREP in
G is polynomial time equivalent to computing CDHP in G. �

Given an integer a, how to determine the period T of the sequence defined
by a using the construction of Section 4.1? We find that the period is related to
the order of 2 modulo 2a− 1:

Theorem 3. The period of the sequence defined by a is Order(2, 2a − 1), here
Order(2, 2a − 1) means the order of 2 modulo 2a− 1.

Proof . If the period of the sequence defined by a is T , then we have aT−1 = 1,
aT−2 = 2, ..., aT−s = 2s−1, ..., aT−j = 2j−1( mod 2a− 1),

aT−j−1 = 2j = 2aT−j or 2aT−j−1 − 2a+ 1 = 2aT−j( mod 2a− 1),

.......

a0 = a = 2T−1 mod 2a− 1.

Therefore, 2T = 2a( mod 2a− 1) = 1( mod 2a− 1).
If Order(2, 2a− 1) = l, then we have

2l ≡ 1( mod 2a− 1) ≡ 2a( mod 2a− 1),

Since Gcd(2, 2a− 1) = 1, so, 2l−1 ≡ a( mod 2a− 1). We have

2l−1 = u(2a− 1) + a = u(2a− 1) + a0

u and a have same parity, i.e., if a is odd (or even), then u is odd(or even).
Assume that a0, a1, a2, ... is the sequence defined by a.

2l−2 = u1(2a− 1) + a1

u1 = u/2 or (u − 1)/2 has same parity with a1.

2l−i = ui−1(2a− 1) + ai−1

ui−1 = ui−2/2 or (ui−2 − 1)/2 has same parity with ai−1.
There exists a h < l, such that uh = 0.

2l−h−1 = uh(2a− 1) + ah = ah

Therefore, al−1 = 1 and al = a. �



4.3 Relation to Zhang et al. and Roh et al.’s results

Zhang et al. analyzed the complexity of the CSREP in [23], and firstly showed
that under proper conditions the CSREP is polynomial-time equivalent to the
CDHP. The following theorem is the main result in [23].

Theorem 4. [23] Let G be a cyclic group of prime order p and let g ∈ G be
generator of G. Let p = 4k − 1, for some k, i, j ∈ Z, and i, j are polynomial in
log p, if one of the following conditions is satisfied:

1). ki ≡ ±2j mod p− 1
2). k ≡ 2j + 1 mod p− 1
3). k ≡ 2j − 2j−1 + 1 mod p− 1
4). k ≡ 22j ± 2j + 1 mod p− 1
5). k ≡ 22j+1 ± 2j + 1 mod p− 1

then computing CSREP in G is polynomial time equivalent to computing CDHP
in G.

Now we will show that the results in Theorem 2 are more generic than Zhang
et al.’s results which include the results in Theorem 4. That is we need to show
when k satisfies the conditions in Theorem 4, then the Order(2, 2k − 1) is also
polynomial in log p, here p = 4k − 1.

For ki ≡ ±2j mod p − 1, we have ki ≡ ±2j mod 4k − 2, so, ki ≡ ±2j

mod 2k−1. Notice that k ≡ 2−1 mod 2k−1. Therefore, 2−i ≡ ±2j mod 2k−1,
this is equivalent to 2i+j ≡ ±1 mod 2k − 1, i.e., Order(2, 2k − 1) = i + j or
2(i+ j) are also polynomial in log p.

For k ≡ 2j +1 mod p− 1, we have k ≡ 2j +1 mod 2k− 1. So, 2−1 ≡ 2j +1
mod 2k − 1, this is equivalent to 2j+1 + 2 ≡ 1 mod 2k − 1, then 2j+1 ≡ −1
mod 2k− 1. Therefore, 22j+2 ≡ 1 mod 2k− 1, i.e., Order(2, 2k− 1) = 2j +2 is
also polynomial in log p.

For k ≡ 2j − 2j−1 + 1 mod p − 1, we have k ≡ 2j − 2j−1 + 1 mod 2k − 1.
So, 2−1 ≡ 2j − 2j−1 +1 mod 2k− 1, 2j+1 +2 = 2(2j +1) ≡ 2j +1 mod 2k− 1,
then 2j+1 ≡ 1 mod 2k−1(this is impossible due to 2k−1 is odd) or 2j+1 ≡ 0
mod 2k − 1. Therefore, 22j ≡ 1 mod 2k − 1, i.e., Order(2, 2k − 1) = 2j is also
polynomial in log p.

For k ≡ 22j±2j+1 mod p−1, we have k ≡ 22j±2j+1 mod 2k−1. So, 2−1 ≡
22j±2j+1 mod 2k−1, 22j+1±2j+1+2 ≡ 1 mod 2k−1, then 22j+1±2j+1+1 ≡ 0
mod 2k−1, 22j+1+1 ≡ ±2j+1 mod 2k−1, and (22j+1+1)2 ≡ (±2j+1)2 ≡ 22j+2

mod 2k − 1. i.e., 22j+2 + 1 ≡ 0 mod 2k − 1. Therefore, 28j+4 ≡ 1 mod 2k − 1,
i.e., Order(2, 2k − 1) = 8j + 4 is also polynomial in log p.

For k ≡ 22j+1±2j+1 mod p−1, we have k ≡ 22j+1±2j+1 mod 2k−1. So,
2−1 ≡ 22j+1±2j+1, 22j+2±2j+1+2 ≡ 1 mod 2k−1, then 22j+2±2j+1+1 ≡ 0
mod 2k− 1. Therefore (2j+1− 1)(22j+2+2j+1+1) ≡ 23j+3− 1 ≡ 0 mod 2k− 1,
i.e., 23j+3 ≡ 1 mod 2k − 1, or, (2j+1 + 1)(22j+2 − 2j+1 + 1) ≡ 23j+3 + 1 ≡ 0
mod 2k − 1, i.e., 26j+6 ≡ 1 mod 2k − 1. This means Order(2, 2k − 1) = 3j + 3
or 6j + 6 are also polynomial in log p.



We point out an error in Zhang et al.’s result. Notice that, in the original
Theorem 2 of [23], there is a “± ” following “ ≡ ” at each case. Zhang et al. only
gave the proof for all “+” cases, and for the “−” cases, Zhang et al. said: “For
the case of ki ≡ −2j, k ≡ −(2j + 1) , k ≡ −(2j − 2j−1 + 1), k ≡ −(22j ± 2j + 1)

and k ≡ −(22j+1 ± 2j +1) (mod p− 1), using above method, we can get ga
−2

by

iteratively calling oracle A3, so we can get ga
−1

by iteratively calling oracle A3

one more time, this is the Inv-CDHP.” However, we find that when we consider
the case of “ − ”, beside case 1, the claim of other cases are not right, i.e., we
can not get ga

−2

by iteratively calling oracle A3 polynomial times in log p. For
example, when k ≡ −(2j + 1) mod p− 1, when we call oracle A3(same as A in

this paper) one time, we obtained g−2j−1. We call oracle A3 again on g−2j−1,

we have g−2j−1−(−2j−1). So when iteratively calling oracle A3 j times on ga, we
have

ga
2j−2j−1+...−2+1

when j is even

or

ga
−(2j−2j−1+...−2+1)

when j is odd

In general, we can not get ga
−2

from above two cases through polynomial of j
times calling to oracle A3. For example,

p = 265920482364817107078114609131 = 4×66480120591204276769528652283−1

here k = 66480120591204276769528652283, k ≡ −2112 − 1 mod p− 1, i.e., j =
112. However, Order(2, 2k − 1) = 10703610197842957295104500 is very large
compare to j = 112. For other cases of “ − ”, they can be verified that the
Order(2, 2k − 1) are usually very large.

Very recently, Roh et al. also analyzed the complexity of the CSREP(they
called SRDHP) in [18], and proposed the following theorem:

Theorem 5. [18] Let G be a cyclic group of prime order p and let g ∈ G be
generator of G. Let p − 1 = 2st. If 2s is of order (logp)O(1), then SDHP and
SRDHP are polynomial time equivalent.

The results proposed in this paper mainly focuses on the case of p ≡ 3 mod 4
or p ≡ 5 mod 5(We need that the polynomial of the quadratic residue function
modulo p is a monomial). In such case, s = 1 or s = 2, i.e., for the case of p ≡ 3
mod 4 or p ≡ 5 mod 5, 2s is of order (logp)O(1). So, Roh et al.’s result are more
generic than the results proposed in this paper. However, the method used in
this paper seams simple.

5 How to find such groups?

From the Theorem 2 and Theorem 3, for a group with prime order p, when
the polynomial of the quadratic residue function modulo p is a monomial, i.e.,
x

1
2 ≡ ±xλ mod p, and the Order(2, 2λ − 1) is polynomial in log p, then the



CSREP is polynomial-time equivalent to the CDHP. How many primes are there
satisfying Theorem 2? By Li and Pomerance [11, 16], assuming GRH, most n
coprime to b have λ(n)/lb(n) small, where lb(n) denotes the mutliplicative order
of b in Z/nZ∗ and λ(n) denotes the order of the largest cyclic subgroup in
Z/nZ∗. This means that for any random integer a, to make Order(2, 2a− 1) = l
small is very infrequent. So, for some cryptographic group used in practical
applications(for example, NIST ECC, IEEE P1363, SECG, ect.), it can not prove
that CSREP=CDHP using the proposed method.

However, when we consider the pairing based cryptosystem, there are some
papers [3][20] to suggest using Mersenne prime number(i.e., p = 2n − 1) or
generalized Mersenne prime number(p = 2n ± 2m ± 1) for the order p of the
group G. This is because the computation of fp,P (Q) for the Tate pairing or
Weil pairing is very efficient in this case. For example, when p = 2190 + 295 − 1,
since pP = (295(2190−95+1)−1)P involves only one addition and one subtraction
plus 190 doublings. For this example, Order(2, 2k − 1) = 17860.

Although primes satisfying such condition of Theorem 2 are rare (compare
to all primes), it can be regarded as an evidence that CSREP may be equivalent
to CDHP. Furthermore, we can confirm that there does exist certain primes that
satisfy the conditions of Theorem 2. Now we describe an algorithm to find such
prime p with p ≡ 3 mod 4. Notice that p = 4k − 1 and 2T ≡ 1 mod 2k − 1,
here T is polynomial in log p. We assume that T < log2 p.

The equation 2T ≡ 1 mod 2k − 1 is equivalent to 2T = n(2k − 1) + 1 for
some integer n. Therefore, we have

k =
2T − 1 + n

2n
for certain integers k, T, n.

Then the question of finding primes p that satisfy the conditions of Theorem
2, is equivalent to find the above integers k, n and T such that p = 4k − 1 is
a prime. More precisely, we have the following Algorithm 1. Through setting λ
and c in Algorithm 1, we can get a prime with any bits satisfies Theorem 2.

Algorithm 1 Finding primes for Theorem 2 with λ bits

Require: T1 = λ− 1, T2 = λ− 1 + c: the range of T .
Ensure: The prime p.
1: for T = T1 to T2 do

2: for n = 2T−T1 to 2T+1−T1 do

3: a← 2T − 1 + n, b← 2n
4: if b divides a then

5: k ← a/b, p← 4k − 1
6: if (p is prime) then

7: return p
8: end if

9: end if

10: end for

11: end for



Using Algorithm 1, we try to find a prime of 160 bits satisfies Theorem 2.
Thus, we have the following example.

We set λ = 160, c = 8, then we get the prime as

p = 1120192871726680081018393165195713931233289613779

then

k = 280048217931670020254598291298928482808322403445.

Moreover, we have Order(2, 2k − 1) = 166.

When we set λ = 192, c = 20, then we get the prime as

p = 3824766795215059247472462993205509473524193507871094590019

then

k = 956191698803764811868115748301377368381048376967773647505.

Moreover, we have Order(2, 2k − 1) = 210.

It is not hard to find the auxiliary elliptic curve for the groups with orders
for these primes, that means the DLP, CDHP and CSREP are polynomial time
equivalent with respect to the computational reduction in these groups.

6 Conclusion

Konoma et al. proposed a new variant of computational Diffie-Hellman problem:
CSREP, and used CSREP to analyze reduction between the discrete logarithm
problem modulo a prime and the factoring problem. They also showed that
CSREP is the first problem known to stay between the computational Diffie-
Hellman problem and the decisional Diffie-Hellman problem with respect to the
computational reduction. In this paper, we studied CSREP, and give a more
generic condition such that CSREP is polynomial-time equivalent to the Com-
putational Diffie-Hellman Problem (CDHP) in the group with prime order. The
results obtained in this paper contain Zhang et al.’s results at IWCC2011. We
also analyze the existence of such condition. Although there are too few(compare
with all primes) such primes satisfying the condition, this case can be regarded as
an evidence that CSREP may be equivalent to CDHP. That means that CSREP
maybe not the problem known to stay between the CDHP and the DDHP with
respect to the computational reduction.
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