
Mutual Private Set Intersection
with Linear Complexity?

Myungsun Kim, Hyung Tae Lee, and Jung Hee Cheon

ISaC & Dept. of Mathematical Sciences, Seoul National University,
599 Gwanangno, Gwangak-gu, Seoul 151-747, Korea

{msunkim,htsm1138,jhcheon}@snu.ac.kr

Abstract. A private set intersection (PSI) protocol allows players to
obtain the intersection of their inputs. While in its unilateral version
only the client can obtain the intersection, the mutual PSI protocol en-
ables all players to get the desired result. In this work, we construct a
mutual PSI protocol that is significantly more efficient than the state-
of-the-art in the computation overhead. To the best of our knowledge,
our construction is the first result with linear computational complexity
in the semi-honest model. For that, we come up with an efficient data
representation technique, called prime representation.

Keywords: Mutual Private Set Intersection, Prime Representation

1 Introduction

The mutual Private Set Intersection (PSI) problem is the following: both of two
players with private sets learn the intersection of their sets without releasing
any other information to each other. Roughly speaking, a mutual PSI (mPSI)
protocol is a secure computation protocol for the ideal functionality FmPSI :
(XA, XB)→ (XA ∩XB , XA ∩XB) where XA (resp., XB) is a private set of the player
A (resp., B). This paper’s main goal is to construct a secure mPSI protocol that
is more efficient than existing work.

There has been much research on the PSI problem. Examples include [2, 14,
19, 16, 5, 18, 17, 10, 9, 11, 7]. In contrast to our work, however, most of prior work
except for [19, 5, 11, 7] is focused on solving the unilateral PSI problem.1 In this
problem, two players – a server and a client – are allowed to interact on their
private sets such that the client only learns the intersection of their input sets,
while the server learns nothing.

According to De Cristofaro and Tsudik [10], a mutual PSI protocol can be
easily obtained by two instantiations of a unilateral PSI protocol. This argument
works fairly well under the semi-honest model. Given a secure mPSI protocol
designed by the above approach, consider a way to transform it to one secure
in the malicious model. In general, we enforce a malicious player to behavior

? This paper is to be (was) presented at WISA 2011.
1 In [10], the authors call this problem a one-way version of the PSI problem.

as a semi-honest player using zero-knowledge proof techniques. In this model,
however, since there is no way to prevent a player from prematurely suspending
the execution one of users always can abort when he obtains the intersection and
before his counterpart obtains the intersection [15]. Therefore, this approach has
a principal limitation to get an mPSI protocol with better security. This is the
main reason why we choose not to pursue the direction.

This work may find applications in real-life business requiring enhanced pri-
vacy. For example, our work is useful in the relationship-graph example in so-
cial networks of Mezzour et al. [21]. A social relationship can correspond to a
private personal real-world relationship. Further, the relationship paths are of-
ten used for access control mechanisms: nearby people deserve a higher level of
trust. Thus, the discovery of relationship paths may be maliciously used in the
large-scale targeting and monitoring of multiple individuals in real life based
on exposed relationship paths. Mezzour et al. [21] present techniques to protect
the privacy of relationship paths in a social network by means of private set
intersection.

1.1 Our Contributions

We begin with the novel work by Kissner and Song [19]. Their set-intersection
protocol incurs O(k2) computation but linear communication overhead where
k is the cardinality of each private set. Recall that our goal is to construct a
secure and efficient mPSI scheme, more specifically, an mPSI scheme with linear
computational complexity in the semi-honest model.

Contributions of our work include:

– We present a new representation technique. We call it Prime Representation.
In contrast to prior work, we represent each element in a private set as a
prime number in Z+. This technique enables to significantly improve the
computation complexity.

– We construct an mPSI protocol more efficient than prior work in the com-
putation overhead. To the best of our knowledge, our mPSI protocol is the
first result with linear computational complexity in the semi-honest model.

1.2 Related Work

Mutual PSI Protocols Kissner and Song [19] propose an mPSI protocol using
oblivious polynomial evaluation (OPE) technique [22]. This protocol is secure in
the semi-honest and also malicious model with quadratic computation complex-
ity in the cardinality of set. As mentioned before, they use zero-knowledge proofs
(ZKP) to prevent players from deviating the protocol. Later, Dachman-Soled et
al. [11] propose an improved construction using Shamir’s secret sharing instead
of ZKPs. Complexity of their work amounts to O(k2 log k+k log2 k) in computa-
tion. Camenisch and Zaverucha [5] propose an mPSI protocol for certified sets.
Their protocol also builds on OPE and achieves quadratic computation over-
head. Finally, Cheon et al. [7] improve efficiency of Kissner and Song’s protocol

2

using the fast Fourier transformation. Complexity of this protocol amounts to
sub-quadratic (O(k log2 k)) in computation, which is not still linear.

Unilateral PSI Protocols Freedman et al. [14] introduce the PSI problem and
first present protocols based on OPE. The construction in the semi-honest model
incurs quadratic computational complexity. But, the number of modular expo-
nentiations can be reduced to O(k log log k) exponentiations for server and O(k)
exponentiations for client. Later, Hazay and Lindell [16] propose one solution
using oblivious pseudorandom functions (OPRF). This protocol has been later
improved by Jarecki and Liu [18]. The latter incurs the linear computational
complexity for each server and client. More recently, Hazay and Nissm [17] im-
prove Freedman et al.’s construction by combining with OPRF. Another family
of unilateral PSI protocols utilize blind-RSA signatures [6]. De Cristofaro and
Tsudik [10] present unilateral PSI protocols with linear complexity. De Cristo-
faro et al. [9] provide a unilateral PSI protocol secure in malicious setting with
the same complexity.

Organization The remainder of this paper is organized as follows. In the next
section, we briefly introduce the security model and the cryptographic tool.
Section 3 provides a full explanation of our representation technique. We present
our construction in Section 4 along with analysis. Finally, in Section 5 we discuss
how to convert our semi-honest protocol to a malicious one.

2 Preliminaries

In this section, we present our cryptographic tools and security model.

2.1 Additive Homomorphic Encryption

Our construction requires a semantically-secure public-key encryption scheme
that holds the group homomorphism of addition and multiplication by a con-
stant. Let Epk(·) denote the encryption with a key pair (pk, sk). Precisely speak-
ing, an additive homomorphic encryption scheme Epk supports the following
operations that can be performed without knowledge of the private key: (1)
Given two encryptions Epk(m1) and Epk(m2), we can efficiently compute the en-
cryption of (m1 + m2), denoted by Epk(m1 + m2) = Epk(m1) +h Epk(m2), (2)
Given some constant c and an encryption Epk(m), we can also efficiently obtain
Epk(cm) = c ∗h Epk(m). This property is satisfied by the Paillier encryption [23]
or the ElGamal encryption [13], but our protocol utilizes the Paillier encryption.

Remark 1 One can say the ElGamal encryption [13] can be applied to get the
same property. In fact, when an encoding to an individual element a in a set is
defined as a 7→ ga where g is a generator of a cyclic group, one can use the El-
Gamal encryption and can enjoy the homomorphic properties under addition as
well. However, one can easily see that the ElGamal encryption does not provide
the efficient decryption.

3

Threshold Decryption Working from Shoup’s threshold version of RSA in [24],
Damg̊ard and Jurik propose in [12] a threshold version of Paillier’s encryption
scheme. Threshold encryption requires a pre-determined number of players to
collaborate on fully decrypting a message. Any collaboration between fewer than
the specified number of contributors does not result in a complete decryption.

2.2 Security Model

We mainly consider the semi-honest model rather than the malicious model. Of
course, our final goal is to construct an mPSI secure against malicious adver-
saries; but sometimes it is not easy to directly obtain the desired result and so
we first construct an mPSI protocol secure in the semi-honest model. We then
convert this to an construction secure in the malicious model using ZKPs.

In the semi-honest model, all players behavior according to the protocol
specification. Security in this model is straightforward: (1) Correctness. an mPSI
protocol is correct if at the conclusion of execution all of two players output the
exact intersection (possible empty) of their respective sets. (2) Privacy. an mPSI
protocol is private if no players learn information about the subset elements on
each player that are not in the intersection of their respective sets.

3 Prime Representation

In this section, we describe the basic intuition of our data representation tech-
nique, which is called prime representation.

We begin with explaining the rationale behind prime representation. Roughly
speaking, our idea is to represent the individual elements of a set as prime num-
bers. As mentioned above, in Freedman et al.’s protocol [14] a set is represented
as a polynomial and the elements of the set is as its roots. That is, a player
represents elements in his private set, X = {a1, . . . , ak}, as the roots of a k-

degree polynomial on a ring R, f(x) =
∏k
i=1(x − ai) ∈ R[x]. Most of mPSI

protocols [19, 5, 7] follow this idea.
Our basic observations are:

– Each linear term of the polynomial f(x) is irreducible in the ring of polyno-
mials.

– The fundamental reason that existing mPSI schemes are not practically ef-
ficient is that polynomial multiplication and evaluation over encrypted data
are too expensive.

Accelerating these operations needs a well-known method called the fast Fourier
transformation, or simply FFT. Then polynomial multiplication incurs linear
complexity in multiplications on R. However, this technique requires a polyno-
mial to be written by point-value pairs instead of its coefficients. Thus when there
are required to evaluate at the product of polynomials, we again have to rewrite
the polynomial by its coefficients. In fact, all prior work based on OPE should do
polynomial evaluation in the last step. This last step for polynomial evaluation

4

over encrypted data requires at least O(k log2 k) exponentiations. This is the
direction that Cheon et al. pursue in [7].

The essence of our idea is simple. While OPE-based mPSIs view each element
ai ∈ X as an irreducible element (x − ai) ∈ R[x], we view each element ai as
an irreducible element in R where i ∈ [1, k]. Here we should use R that has
non-trivial irreducible elements, for example, the integers.

3.1 Map-To-Prime

The trivial algorithm for prime representation is as follows. Let R = Z. Given as
input an element a ∈ X, using a hash function H : {0, 1}∗ → Z it first computes
α = H(a). The algorithm then determines whether α is prime or composite. If
α is prime, the algorithm outputs α and terminates; otherwise it increments α
and checks if α + 1 is prime or not. The algorithm repeats this process until
obtaining prime.

The above algorithm appears to be suitable for our purpose. However, this
solution may be still problematic: if a probabilistic algorithm (e.g., Miller-Rabin
algorithm) is employed to determine whether a given value is prime, some com-
posite numbers could be declared “probably prime” with some probability. This
may make our protocol work incorrectly. Therefore, we have to use a deter-
ministic algorithm for primality test such as the Agrawal-Kayal-Saxana (AKS)
algorithm [1]. In turn, we face to the problem that the AKS algorithm is not
efficient enough to be used in practice.

In order to address both non-determinism and inefficiency, we utilize the
prime number table Pη that contains η-bit primes. Then we only have to define
a random hash function to an index of the table. More specifically, denote by ℘
a function to a prime table ℘ : {0, 1}∗ → Pη and denote by H a hash function
H : {0, 1}∗ → {1, . . . , `} where ` is a constant. However, we can see that the
function ℘ is not collision-free and must be accommodated in some way. For
that, we define a process that throws prime numbers into ` buckets, such that
each bucket contains at most m elements. We will briefly analyze the collision
probability later in this section. Our simple algorithm is as follows:

1. Access to a prime table Pη consisting of η-bit primes.
2. For each ai ∈ X

– αi = ℘(ai)
– Add αi to a bucket Bj where j = H(αi) for some j ∈
{1, . . . , `}.

3. Return {Bj}`j=1.

Brief Analysis. When it is assumed that the function ℘ is uniformly random, the
probability that collision does not occur in m results of ℘ from distinct elements
is (

1− 1

|Pη|

)
× · · · ×

(
1− m

|Pη|

)
≥
(

1− m

|Pη|

)m
.

5

In our protocol, because we do not need to take care of collision between data
elements in different buckets and the average number of elements in each bucket
is small (e.g., m ≈ 10), the probability that collision by ℘ occurs in a given bucket
is negligible if the size of Pη is sufficiently large (e.g., |Pη| = 220). Moreover, the
size of Pη does not depend on the cardinality of datasets since the problem of
large datasets can be addressed by adding to the number of buckets. The set of
all 20-bit primes is a good example of Pη.

4 Our mPSI Protocol

In this section, we provide our mPSI protocol secure against a semi-honest adver-
saries and analyze the security of the proposed mPSI protocol. Then we compare
the complexities with previous mPSI protocols.

Notation. We denote the map-to-prime function by ℘ : {0, 1}∗ → Pη and a uni-
form random hash function by H : {0, 1}∗ → {1, . . . , `} where ` is the number of
buckets. Epk(·) denotes a threshold additive homomorphic encryption scheme. In
particular, in this paper we use a threshold version [12] of Paillier’s cryptosys-
tem [23] with 2048-bit Paillier modulus N2, whose message space is Z∗N .

4.1 Protocol Description

Now, we are ready to describe our mPSI. Each player A,B participates in the
protocol with own private input XA = {a1, . . . , ak} and XB = {b1, . . . , bk}, respec-
tively. For each private element, each player first calculates its bucket index and
then maps to a prime using ℘. Then, for each bucket index j, the player A (resp.
the player B) computes Aj =

∏
j=H(ai)

℘(ai) (resp., Bj =
∏
j=H(bi)

℘(bi)).

In addition, the player A (resp., the player B) chooses random elements r1, r2
(resp., s1, s2) in Zb√N/4c for each bucket. Then for each bucket, players A and
B do the following:

1. The player A (resp., the player B) computes Epk(r2), Epk(A2
j), Epk(r1A

2
j)

(resp., Epk(s1), Epk(B2
j), Epk(s2B

2
j)) and sends them to his counterpart.

2. Each player computes Epk((r1 + s1)A2
j + (r2 + s2)B2

j) using additive homo-
morphic property.

3. Players A and B perform a threshold decryption to obtain (r1 + s1)A2
j +

(r2 + s2)B2
j .

4. Each player checks whether ℘(a)2 | (r1 + s1)A2
j + (r2 + s2)B2

j or not for all

own private input a whose bucket index is j. If ℘(a)2 divides (r1 + s1)A2
j +

(r2 + s2)B2
j , then a is included in the intersection.

6

Common Input: (Epk(·), H, ℘)

Player A’s private input: Player B’s private input:
XA = {a1, . . . , ak} XB = {b1, . . . , bk}

For all i = 1, . . . , k, For all i = 1, . . . , k,
AH(ai) ← AH(ai) · ℘(ai) BH(bi) ← BH(bi) · ℘(bi)

For each j = 1, . . . , `

r1 ←R Zb
√
N/4c, s1 ←R Zb

√
N/4c,

r2 ←R Zb
√
N/4c, s2 ←R Zb

√
N/4c,

computes computes
Epk(r2), Epk(A2

j), Epk(r1A
2
j) Epk(s1), Epk(B2

j), Epk(s2B
2
j)

Epk(r2),Epk(A
2
j),Epk(r1A

2
j)

-
Epk(s1),Epk(B

2
j),Epk(s2B

2
j)�

computes computes
Epk((r1 + s1)A2

j + (r2 + s2)B2
j) Epk((r1 + s1)A2

j + (r2 + s2)B2
j)

= (A2
j ∗h Epk(s1)) = (B2

j ∗h Epk(r2))
+h(r2 ∗h Epk(B2

j)) +h Epk(r1A
2
j) +h(s1 ∗h Epk(A2

j)) +h Epk(s2B
2
j)

+hEpk(s2B
2
j) +hEpk(r1A

2
j)

Players A and B perform a threshold decryption to obtain (r1 + s1)A2
j + (r2 + s2)B2

j . Then each player
checks whether ℘(a)2 divides (r1+s1)A2

j +(r2+s2)B2
j or not for all a in his private set, satisfying j = H(a).

If ℘(a)2 | (r1 + s1)A2
j + (r2 + s2)B2

j , a belongs to XA ∩ XB .

Fig. 1. Our mPSI for Semi-Honest Model (mPSI-SH)

4.2 Security Analysis

Correctness Players participating in the protocol correctly obtain the inter-
section of participating players’ private inputs. The following lemma shows that
our protocol gives the correctness with overwhelming property.

Lemma 1 (Correctness) Protocol mPSI-SH correctly computes for the func-
tion FmPSI with overwhelming property.

Proof. When a is an element in the intersection XA ∩ XB , ℘(a) divides Aj and
Bj for the bucket j = H(a). Hence ℘(a)2 divides A2

j , B
2
j , and (r1 +s1)A2

j +(r2 +

s2)B2
j . Therefore, each player learns that a is an element in the intersection.

Assume that a is not an element in the intersection XA ∩ XB . We do not
consider a is not in XA and not in XB , since no players try to check the divisibility
of ℘(a)2. Without loss of generality, suppose a is in XA, but not in XB . Then,
℘(a) divides Aj , but does not divide Bj . Hence ℘(a)2 divides A2

j , but does not

divide B2
j .

7

In order that ℘(a)2 does not divide (r1+s1)A2
j+(r2+s2)B2

j , ℘(a)2 should not
divide r2 + s2. Since r2 and s2 are chosen randomly in Zb√N/4c, the probability

that ℘(a)2 divides r2 + s2 is
1

℘(a)2
. It is the probability that the player A

misunderstands that a belongs to the intersection. When the bit size of primes

in Pη is 20-bit, the probability becomes about
1

240
. �

Remark 2 One may object that the message (r1 + s1)A2
j + (r2 + s2)B2

j may be
wrap-rounded by the modular exponentiation of the encryption scheme. Although
it is assumed that H is a uniform random hash function, it occurs that some
buckets have more than m elements where m is a pre-fixed value such as 10.
When players are faced with this situation, they select another uniform random
hash function and increase the number of buckets.

In general, players set m to 10 and use P20 in the protocol. Then since ri’s
and si’s (i = {1, 2}) are chosen at random in Zb√N/4c, Aj and Bj are about

20m-bit, (r1 + s1)A2
j + (r2 + s2)B2

j does not exceed N where N is an 1024-bit
integer.

Privacy During participating in our mPSI-SH protocol, an adversary can only
obtain inputs of a player who is manipulated by himself, encrypted values, and
the last value (r1 + s1)Aj + (r2 + s2)Bj . Suppose that a utilized additive ho-
momorphic threshold encryption Epk(·) is semantically secure. Without loss of
generality, it is assumed that the player B is manipulated by the adversary. In
order that the adversary learns any information of the player A, he has to find
the factor of Aj in the equation

(r1 + s1)Aj + (r2 + s2)Bj = d.

Since s1, s2, d and Bj are known values to the adversary, it is equivalent to find
the factor of an appropriate value of x in the equation

xy + c1x+ c2z = c3, (1)

for variables x, y and z and constant c1, c2 and c3, where x can be a product of
m primes in table Pη. Equation (1) can be substituted by the equation

xy + c1z = c2. (2)

As far as we know, Equation (2) has finitely many positive integer solutions but
there is no efficient algorithm to find solutions. Hence we believe the following
conjecture is true.

Conjecture 1 For variables x, y, z and given constant c1, c2, there is no effi-
cient algorithm to find all solutions for Equation (2).

Moreover, since z is chosen at random in Zb
√
N/4c, the number of possible values

of z is about 2510. Hence one has to factor about 2510 (c2 − c1z)’s to solve
Equation (2).

8

The following lemma guarantees the security of our mPSI-SH assuming Con-
jecture 1 is true and an additive homomorphic threshold encryption is semanti-
cally secure.

Lemma 2 (Privacy) Assume that an additive homomorphic threshold encryp-
tion Epk(·) is semantically secure and Conjecture 1 is true, with overwhelming
probability, any adversary learns no more information than would be obtained by
using the same private inputs in the ideal model with a trusted third party.

Proof. Since we know that an instance of additively homomorphic encryption
is semantically secure, a corrupted player (say B) obtains no information from
ciphertexts received from his counterpart.

After engaging in a threshold decryption, the corrupted player learns

I = (r1 + s1)A2
j + (r2 + s2)B2

j .

Since only one of players can be controlled over by the adversary, ri’s (i = {1, 2})
look to be random and are unknown to the adversary.

Hence, by Conjecture 1, I = (r1 + s1)A2
j + (r2 + s2)B2

j = xy + c1z + c2 for
some variables x, y and z and constants c1 and c2, reveals no information about
the private inputs of the honest player (say A), with overwhelming probability,
except for that given by computing the intersection of their private sets. �

4.3 Efficiency Analysis

In this subsection, we analyze the computational and communicational com-
plexity of our mPSI protocol. Also we compare the complexities with those of
previous mPSI protocols.

In our protocol, we utilize integer multiplications, modular exponentiations (ME)
and integer divisions. Among these operations, ME is the most expensive oper-
ations. Hence, we analyze and compare the computational complexity based on
the number of MEs.

Complexity of Our mPSI-SH In our protocol, each player sends three ci-
phertexts per each bucket. Also each player sends one element to perform a
threshold decryption per each bucket. Hence the total communication complex-
ity of mPSI-SH is 8` ≈ 8k/m ciphertexts when ` is the number of buckets, k
is the cardinality of private input sets, and m is a pre-fixed number which is
the bound of the number of elements in a bucket. Therefore, the communication
complexity of mPSI-SH is O(k).

In case of the computational complexity, it is assumed that the threshold
Paillier encryption [12] is utilized, which requires 2 MEs for one encryption and
3 MEs (1 ME for share decryption and 2 MEs for share combining) for a threshold
decryption per each player. Hence, per each bucket, each player requires 6 MEs
for encryptions, 2 MEs for Epk((r1 + s1)A2

j + (r2 + s2)B2
j) computation using

additive homomorphic property and 3 MEs for a threshold decryption. Therefore,
the total computational complexity is 22` ≈ 22k/m MEs and hence it is O(k).

9

Table 1. Complexity Comparison

Protocol Computation Communication

[19] O(k2) O(k)

[11] O(k2 log k + k log2 k) O(k log2 k)

[5] O(k2) O(k)

[7] O(k log2 k) O(k)

OURS O(k) O(k)

Comparison with Previous Works As mentioned before, Kissner and Song [19],
Dachman-Soled et al. [11], Camenisch and Zaverucha [5], and Cheon et al. [7]
proposed mPSI protocols. Referred to previous analyses, their work has linear
communication complexity and more than quasi-linear computational complex-
ity. Table 1 compares our mPSI protocol with the complexity of previous mPSI
protocols when two players participate in the protocol.

Remark 3 (ElGamal Encryption vs. Paillier Encryption) While our mPSI-
SH can not utilize the threshold ElGamal encryption scheme, previous mPSI’s [19,
5, 7] can utilize the ElGamal encryption or a threshold ElGamal encryption. In
case of the ElGamal or a threshold ElGamal encryption over elliptic curves, the
ciphertext size is 320-bit, but that of the threshold Paillier encryption is 2048-
bit. We would like to note that since our protocol requires 7k/m ciphertexts, the
total transmitted bits are similar to those of other protocols. When m = 10, our
protocol transmits 1433.6k (= 2048 · 7k/10) bits. However, protocols in [19, 5, 7]
transmit 3480k, 960k and 3480k bits, respectively.2

In case of ME, 160-bit ME over 1024-bit modulus is about 30 times faster
than 1024-bit ME over 2048-bit modulus. Hence, ME in the ElGamal encryption
is 30 times faster than that in the Paillier encryption. However the factor m can
cancel out the effect of the use of the ElGamal encryption. Since the constant
term of the computational complexity of other mPSI protocols are similar with
that of ours, the relation between the computational complexities still holds.

5 Transformation to a Malicious Protocol

In this section, we discuss modifications of the protocol mPSI-SH so as to be
secure in the malicious model. We add zero-knowledge proofs to mPSI-SH in
order to ensure the correctness of all computation. Note that we just provide a
sketch for a way to construct a malicious protocol instead of detailed descriptions.
Moreover, it should be pointed out that in general generic zero-knowledge proofs
are not efficient – especially range proof used in our protocol, and so although
our malicious protocol still has the asymptotically linear complexity it may work
inefficiently.

We take a look at deviating activities by a malicious player (let say B). The
following malicious activities should be taken care:

2 The communication complexity of protocols in [19, 5, 7] are 12k, 3k and 12k, respec-
tively.

10

1. A malicious player uses a random si such that si ≥ b
√
N
4 c for i = 1, 2.

2. A malicious player makes a product Bj for j ∈ [1, `] that is multiplied by
more than m primes.

Recall that any other correctness can be detected at the beginning of a threshold
decryption. For example, one may think that as a verifier the player A should
check the player B has correctly multiplied Epk(A2

j) by s1. However, if the cor-
rupted player B participates in the threshold decryption with different values
committed to in encryptions, the honest player can detect his counterpart has a
different value and so he can abort the protocol.

Zero-Knowledge Proofs We use PK{(a)|φ(a)} to denote a zero-knowledge
proof of knowledge of the value a that satisfies a publicly computable relation
φ. For the Paillier encryption, we can efficiently construct zero-knowledge proofs
using well-known constructions [3, 8, 4]. Let C = (G,C,O) be the generation, the
commit and the open algorithm of a trapdoor commitment scheme [20].

– PK{(α1, α2)|u = C(α1)∧v = Epk(α2)∧w = α1 ∗h v}: a zero-knowledge proof
of knowledge that C encrypts α1α2 (mod N) [8, Sec. 8.1.2].

– PK
{

(r)|C = Epk(r) ∧ r ∈
[
0, b
√
N
4 c
]}

: a zero-knowledge proof of knowledge

that r lies in r ∈
[
0, b
√
N
4 c
]

[4].

– PK
{

(α1, . . . , αm)| ∧mi=1 (ui = C(αi)) ∧m−1i=1 (vi = Epk(αi+1)) ∧m−1i=1 (wi = wi−1 ∗h vi)
}

where w0 = α1: the generalized proof of PK{(α1, α2)|u = C(α1) ∧ v =
Epk(α2) ∧ w = α1 ∗h v} for m tuples {α1, . . . , αm} [3, 8].

Transformation Recall that the primary purpose of this section is to show
that using generic zero-knowledge techniques we can convert our mPSI-SH to
one that is secure in the malicious model. To do so, when the player A sends
Epk(r2) to the player B, he sends it along with a zero-knowledge proof of range
proof (the second PK in the above list). The player A sends Epk(r1A

2
j) along

with a zero-knowledge proof of the correct multiplication, i.e., the first PK.
Further, he sends Epk(A2

j) along with the third PK, which is the generalization
of a zero-knowledge proof of the correct multiplication.

6 Conclusion

In this work, primarily we present a mutual private set intersection protocol with
linear complexity. Further we compare our construction with existing work and
show it is secure in the semi-honest model. However, there is still remaining work
as follows: (1) present a detailed description for the malicious mPSI protocol, (2)
show that this construction is secure in the malicious model in the simulation
paradigm, and (3) finally extend it to the multiparty setting.

11

References

1. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics
(2), 160(2):781–793, 2004.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
database. In A. Halevy, Z. Ives, and A. Doan, editors, SIGMOD, pages 86–97,
2003.

3. J. Camenisch. Proof systems for general statements about discrete logarithms.
Technical Report TR 260, Dept. of Computer Science, ETH Zurich, 1997.

4. J. Camenisch, R. Chaabouni, and abhi shelat. Efficient protocols for set member-
ship and range proofs. In J. Pieprzyk, editor, Advances in Cryptology-AsiaCrypt,
LNCS 5350, pages 234–252, 2008.

5. J. Camenisch and G. Zaverucha. Private intersection of certified sets. In R. Din-
gledine and P. Golle, editors, Financial Cryptography, LNCS 5628, pages 108–127,
2009.

6. D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest,
and A. Sherman, editors, Advances in Cryptology-Crypto, pages 199–203, 1982.

7. J. H. Cheon, S. Jarecki, and J. H. Seo. Multi-party privacy-preserving set in-
tersection with quasi-linear complexity. In Cryptology ePrint Archive, 2010/512,
2010.

8. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In B. Pfitzmann, editor, Advances in Cryptology-
EuroCrypt, LNCS 2045, pages 280–299, 2001.

9. E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In M. Abe, editor, Advances in Cryptology-
AsiaCrypt, LNCS 6477, pages 213–231, 2010.

10. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear computational and bandwidth complexity. In R. Sion, editor, Financial
Cryptography, LNCS 6052, pages 143–159, 2010.

11. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private
set intersection. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud,
editors, ACNS, LNCS 5536, pages 125–142, 2009.

12. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In K. Kim, editor, Public Key
Cryptography, LNCS 1992, pages 119–136, 2001.

13. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakely and D. Chaum, editors, Advances in Cryptology-
Crypto, LNCS 196, pages 10–18, 1984.

14. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set-
intersection. In C. Cachin and J. Camenisch, editors, Advances in Cryptology-
EuroCrypt, LNCS 3027, pages 1–19, 2004.

15. O. Goldreich. The foundations of cryptography, volume 2. Cambridge University
Press, 2004.

16. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-
ing with security against mailicious and covert adversaries. In R. Canetti, editor,
TCC, LNCS 4948, pages 155–175, 2008.

17. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryptography,
LNCS 6056, pages 312–331, 2010.

12

18. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In O. Reingold, editor,
TCC, LNCS 5444, pages 577–594, 2009.

19. L. Kissner and D. Song. Privacy-preserving set operations. In V. Shoup, editor,
Advances in Cryptology-Crypto, LNCS 3621, pages 241–257, 2005.

20. P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In
C. Cachin and J. Camenisch, editors, Advances in Cryptology-EuroCrypt, LNCS
3027, pages 382–400, 2004.

21. G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos. Privacy-preserving rela-
tionship path discovery in social networks. In J. Garay, A. Miyaji, and A. Otsuka,
editors, CANS, LNCS 5888, pages 189–208, 2009.

22. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC,
pages 245–254, 1999.

23. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology-EuroCrypt, LNCS 1592, pages 223–238,
1999.

24. V. Shoup. Practical threshold signatures. In B. Preneel, editor, Advances in
Cryptology-EuroCrypt, LNCS 1807, pages 207–220, 2000.

13

