
A preliminary version of this paper appears in the proceedings of CRYPTO 2011. This is the full
version.

Authenticated and Misuse-Resistant Encryption of

Key-Dependent Data

Mihir Bellare1 Sriram Keelveedhi2

Abstract

This paper provides a comprehensive treatment of the security of authenticated encryption (AE)
in the presence of key-dependent data, considering the four variants of the goal arising from the
choice of universal nonce or random nonce security and presence or absence of a header. We present
attacks showing that universal-nonce security for key-dependent messages is impossible, as is security
for key-dependent headers, not only ruling out security for three of the four variants but showing that
currently standarized and used schemes (all these target universal nonce security in the presence of
headers) fail to provide security for key-dependent data. To complete the picture we show that the
final variant (random-nonce security in the presence of key-dependent messages but key-independent
headers) is efficiently achievable. Rather than a single dedicated scheme, we present a RO-based
transform RHtE that endows any AE scheme with this security, so that existing implementations
may be easily upgraded to have the best possible seurity in the presence of key-dependent data.
RHtE is cheap, software-friendly, and continues to provide security when the key is a password, a
setting in which key-dependent data is particularly likely. We go on to give a key-dependent data
treatment of the goal of misuse resistant AE. Implementations are provided and show that RHtE has
small overhead.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/users/mihir. Supported in part by
NSF grants CNS-0904380 and CCF-0915675.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: sriramkr@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/users/skeelvee/. Supported in
part by NSF grants CNS-0904380 and CCF-0915675.

Contents

1 Introduction 1

2 Definitions 5

3 Impossibility Results 7

4 The RHtE transform and its security 11

5 Misuse Resistant Authenticated Encryption 23

6 Implementation results 27

i

1 Introduction

The key used by BitLocker to encrypt your disk may reside on the disk. The key under which a secure
filesystem is encrypted may itself be stored in a file on the same system. The result is encryption of
key-dependent data.

There is growing recognition that security of key-dependent data, first defined to connect cryptog-
raphy to formal methods [17] and provide anonymous credentials [23], is a more direct and widespread
concern for secure systems. The problem is particularly acute when keys are passwords, for many of
us store our passwords on our systems and systems store password hashes. If nothing else, one can-
not expect applications to ensure or certify that their data is not key-dependent, making security for
key-dependent data essential for easy-to-use, robust and misuse-resistant cryptography.

This paper provides a comprehensive treatment of security for key-dependent data for the central
practical goal of symmetric cryptography, namely authenticated encryption. For each important variant
of the goal we either show that it is impossible to achieve security or present an efficient solution. Our
attacks rule out security for in-use and standardized schemes in their prescribed and common modes
while our solutions show how to adapt them in minimal ways to achieve the best achievable security.
Let us now look at all this more closely.

Background. The standard IND-CPA and IND-CCA goals that our encryption schemes are proven
to meet do not guarantee security when the message being encrypted depends on the key. (In the
symmetric setting, we mean the single key used for both encryption and decryption.) Black, Rogaway
and Shrimpton (BRS) [17] extend IND-CPA to allow key-dependent messages (KDMs). The adversary
provides its encryption oracle with a function ϕ, called a message-deriving function, that the game
applies to the target key K to get a message M , and the adversary is returned either an encryption
of M under K or the encryption of 0|M |, and must be unable to tell which. (They, and we, actually
consider a multi-key setting, but the single-key setting will simplify the current discussion.) They
present a simple random-oracle (RO) model solution.

Post-BRS work has aimed mainly at showing existence of schemes secure against as large as possible
a class of message deriving functions without random oracles [18, 35, 4, 20, 22, 19, 7, 24, 16, 3, 37].
The schemes suffer from one or more of the following: they are in the asymmetric setting while data
encryption in practice is largely symmetric; they are too complex to consider usage; or security is
provided for a limited, mathematical class of message-deriving functions which does not cover all key-
dependencies in systems.

Backes, Pfitzmann and Scedrov (BPS) [6] define KDM-security for a basic form of authenticated
encryption and and show that Encrypt-then-MAC [11] achieves it if the encryption scheme is KDM
secure and the MAC is strongly unforgeable (remarkably, no KDM security is required from the MAC),
resulting in RO model solutions via [17]. In this paper we will extend their treatment of AE in several
directions.

Setting. Privacy without authenticity, meaning plain (IND-CPA) encryption, is of limited utility. The
most important symmetric primitive in practice is authenticated encryption (AE), which provides both
privacy and integrity. This is evidenced by numerous standards and high usage: CCM [49, 48] is in
IEEE 802.11, IEEE 802.15.4, IPSEC ESP and IKEv2; GCM [38] is standardized by NIST as SP 800-
38D; EAX [15] is in ANSI C12.22 and ISO/IEC 19772; OCB 2.0 [44, 46] is in ISO 19772. Consideration
of KDM security for these standards is compelling and urgent but has not been done. We seek to fill
this gap.

Symmetric encryption schemes take as input a nonce, also called an IV. Classically — [9] follow-
ing [29]— this was chosen at random by the encrypter. We call this random-nonce security (r). Later
schemes targeted universal-nonce security (u) [43, 45, 47] where security must hold even when the ad-
versary provides the nonce, as long as no nonce is re-used. This is adopted by the above-mentioned
standards.

1

(ki, ki) (kd, kd) (ki, kd) (kd, ki)

u Yes No No No

r Yes No No Yes

Figure 1: Each of message and header may be key-dependent (kd) or key-independent (ki), leading to the four
choices naming the columns. Security could be universal-nonce (u) or random-nonce (r), leading to the two
choices naming the rows. For each of the 8 possibilities, we indicate whether security is possible (Yes, meaning
a secure scheme exists) or impossible (No, meaning there is an attack that breaks any scheme in this category).
The first column reflects known results when inputs are not key-dependent.

Besides key, nonce and message, modern AE schemes, including the above standards, take input a
header, or associated data [43]. The scheme must provide integrity but not privacy of the header. Thus
we must consider that not just the message, but also the header, could be key-dependent.

Abbreviate key-dependent by kd and key-independent by ki. With two choices for nonce type —
nt ∈ {u, r}— two for message type —mt ∈ {kd, ki}— and two for header type —ht ∈ {kd, ki}— we
have 8 variants of AE. The form of AE treated by Backes, Pfitzmann and Scedrov [6] is the special case
of (nt, mt, ht) = (r, kd, ki) in which the header is absent.

Definition. Our first contribution is a definition of security for AE under key-dependent inputs that
captures all these 8 variants in a unified way. The encryption oracle takes functions ϕm, ϕh, and applies
them to the key to get message and header respectively, and the adversary gets back either an encryption
of these under the game-chosen target key, or a random string of the same length. The decryption oracle
takes a ciphertext and, importantly, not a header but a function ϕh to derive it from the key, and either
says whether or not decryption under the key is valid, or always says it is invalid. Varying the way
nonces are treated and from what spaces ϕm, ϕh are drawn yields the different variants of the notion.
A definition of MACs for key-dependent messages emerges as the special case of empty messages.

On a real system, the data may be a complex function of the key, such as a compressed (zipped)
version of file containing, amongst other things, the key, or an error-corrected version of the key. If the
key is a password the system will store its hash that will be encrypted as part of the disk, so common
password-hashing functions must be included as message-deriving functions. All this argues for not
restricting the types of message-deriving or header-deriving functions, and indeed, following [17, 6], we
allow any functions in this role. These functions are even allowed to call the RO, a source of challenges
in proofs.

Underlying the above definition is a new one of the standard AE goal that simplifies that of [47] by
having the decryption oracle turn into a verification oracle, returning, not the full decryption, but only
whether it succeeded or not, along the lines of [11]. When data is key-independent, these and prior
formulations [11, 36] are equivalent, but the difference is important with key-dependent data.

Impossibility results. We present an attack that shows that no AE scheme can achieve universal-
nonce security for key-dependent data. (Regardless of whether or not the header is key-dependent.)
This explains the “No” entries in the first row of Figure 1. The attack requires only that the nonce is
predictable. Thus it applies even when the nonce is a counter, ruling out KDM security for counter-
based AE schemes and showing that the standardized schemes (CCM, GCM, EAX, OCB) are all
insecure for key-dependent messages in this case. The attack does not use the decryption oracle,
so rules out even KDM universal-nonce CPA secure encryption. Thus, the universal-nonce security
proven for the standardized schemes for key-independent messages fails to extend to key-dependent
ones, demonstrating that security for key-dependent messages is a fundamentally different and stronger
security requirement.

An attack aiming to show that no stateful scheme is KDM-CPA secure was described in [17] but the
message-deriving functions execute a search and it is not clear how long this will take to terminate or
whether it will even succeed. (In asymptotic terms, the attack is not proven to terminate in polynomial

2

time.) Our attack extends theirs to use pairwise independent hash functions, based on which we prove
that it achieves a constant advantage in a bounded (polynomial) amount of time. Interestingly, as a
corollary of the bound proven on our modified attack, we are able to also prove a bound on the running
time of the attack of [17], although it was not clear to us how to do this directly.

We also present an attack that shows that no AE scheme can achieve security for key-dependent
headers. (Even for random, rather than universal, nonce security, and even for key-independent mes-
sages.) This explains the “No” entries in columns 2 and 3 of Figure 1. This rules out security of the
standardized schemes even with random nonces in a setting where headers may be key-dependent.

One might consider this trivial with the following reasoning: “Since the header is not kept private,
the adversary sees it, and if it is key-dependent, it could for example just be the key, effectively giving
the adversary the key.” The fallacy is the assumption that the adversary sees the header. In our model,
it is given a ciphertext but not directly given the header on which the ciphertext depends. This choice
of model is not arbitrary but reflects applications, where a key-dependent header is present on the
encrypting and decrypting systems (which may be the same system) but not visible to the adversary.
Instead, the attack exploits the ability of the adversary to test validity of ciphertexts with implicitly
specified headers.

RHtE. We turn to achieving security in the only viable, but still important setting, namely (nt, mt, ht) =
(r, kd, ki). As background, recall that to achieve KDM-CPA security, BRS [17] encrypt message M
by picking R at random and returning H(K∥R)⊕M) where H is a RO returning |M | bits. (Here and
below, it is assumed the decryptor and adversary also get the nonce R, but it is not formally part of the
ciphertext.) We note that this is easily extended to achieve (r, kd, ki)-AE security. To encrypt header
H and message M under key K, pick R at random and return (C, T) where C = H1(K∥R)⊕M and
T = H2(K∥R,H,C) and H1,H2 are ROs.

Randomized Hash then Encrypt (RHtE) is more practical. Unlike the above, it is not a dedicated
scheme but rather transforms a standard (secure only for key-independent data) base AE scheme into a
(r, kd, ki)-secure AE scheme. RHtE, given key L and randomness R, derives subkey K = H(R∥L) via
RO H and then runs the base scheme with key K on the header and message to get the ciphertext C.
Only one-time security of the base scheme is required, so it could even be deterministic. The software
changes are non-intrusive since the code of the base scheme is used unchanged. Thus RHtE can easily
be put on top of existing standards like CCM, GCM, EAX, OCB to add security in the presence of
key-dependent messages. As long as these base schemes transmit their nonce, RHtE has zero overhead
in bandwidth because it can use the base scheme with some fixed, known nonce and use the nonce space
for R. (It is okay to re-use the base-scheme nonce because this scheme is only required to be one-time
secure. Its key is changing with every encryption.) The computational overhead of RHtE is independent
of the lengths of header and message and hence becomes negligible as these get longer.

The proof of security is surprisingly involved due to a combination of three factors. First is that the
message-deriving functions are allowed to call the RO. Second, while the BRS scheme and its extension
noted above are purely information theoretic, the security of RHtE is computational due to the base
scheme, and must be proven by reduction. Third, unlike BRS, we must deal with decryption queries.
To handle all this we will need to invoke the security of the base scheme in multiple, inter-related ways,
leading to a proof with two, interleaved hybrids that go in opposite directions.

To illustrate the issues, let L be the key and let E be the (deterministic) encryption function of the
base scheme. Let ϕ1, . . . , ϕqe be the message-deriving functions in A’s encryption queries. We begin
with a natural hybrid in which the key K = H(Rg∥L) underlying the g-th query, for random g, plays
the role of a key for the base scheme. The reduction to the security of the latter fails if A queries
Rg∥L to the RO. We must consider that it can do this indirectly, meaning the query is made via a
message-deriving function, or directly. But once a reply is provided to the g-th query, A gets Rg. But
ϕi is given L as input so we cannot avoid it querying Rg∥L to the RO for i > g. We handle this by
having the hybrid move from real to random replies rather than the other way round, so that ϕi does
not even have to be computed by the reduction when i > g. One would imagine that A cannot make the

3

bad RO query directly because it does not know L. The subtle point is that the truth of this relies on
the assumed security of the base scheme and must itself be proved by reduction. This reduction involves
another hybrid that, to avoid the same issue arising in another place, goes in the opposite direction,
first random then real. The second hybrid has the peculiar feature that the games in its constituent
steps are differently weighted. On top of all this we must deal with decryption queries which are not
present for BRS.

Some indication of the complexity of the proof is provided by the fact that the bound we finally
achieve in Theorem 4.1 is weaker than we would like. It is an interesting open problem to either prove
a better bound for RHtE or provide an alternative scheme with such a bound.

Extensions. In filesystem encryption, as with most applications, security is likely to stem from your
password pw. The system stores a hash pw = h(pw) of it to authenticate you and an AE scheme must
then encrypt or decrypt using pw. Key dependent data is now an even greater concern. One reason is
that users tend to write their passwords in files in their filesystems. The other reasons is that pw is a
function of pw that must be stored on the system and thus will be encrypted with disk encryption. To
address this, we show that RHtE is secure even when its starting key L is a password as long as the
latter is drawn from a space that, asymptotically, has super-logarithmic min-entropy.

The security discussed so far relies crucially on using fresh randomness with each encryption. This is
fine in theory but in real systems, failures of random-number generation (RNG) due to poorly gathered
entropy or bugs are all too common and have lead to major security violations [28, 32, 21, 41, 40, 1, 50,
26]. Simply asking that system designers get their RNGs “right” is unrealistic. Misuse-resistant [17]
or hedged [8] encryption take a different approach, mitigating the damage caused by RNG failures by
providing as much security as possible when randomness fails.

We extend this to the key-dependent data setting in Section 5. A misuse resistant AE scheme for
key-dependent data provides two things. First, it must continue to provide (r, kd, kd)-security when the
nonce is random. Second, even for nonces that are entirely adversary controlled (and may repeat), the
scheme must meet a second condition that we define to capture its providing the security of deterministic
AE in the presence of key-dependent data. In the latter case it is impossible to protect against certain
classes of message-deriving functions. We show however that RHtE provides security against any class
of functions satisfying the output-unpredictability and collision-resistance conditions of [10]. This is a
fairly significant class, containing functions of pragmatic interest.

Implementation. We implemented RHtE for base schemes CCM, EAX and GCM, with SHA256
instantiating the RO. The results, provided in Section 6, show for example that with CCM the slowdown
is 11% for 5KB messages and only 1% for 50KB messages. The implementations use the crypto++ library
on a Intel Core i5 M460 CPU running at 2.53 GHz with code compiled using g++ -O3 for data sizes
small enough to fit in the level 2 cache.

Related work. The issue (key-dependent messages) was pointed out as early as Goldwasser and Mi-
cali [29], and asymmetric encryption of decryption keys was treated by Camenisch and Lysyanskaya [23],
but a full treatment of key-dependent message (KDM) encryption awaited BRS [17], who provided RO
model KDM-CPA secure schemes. Researchers then asked for what classes of message-deriving func-
tions one could achieve KDM security in the standard model, providing results for both symmetric and
asymmetric encryption under different assumptions [18, 35, 4, 20, 22, 19, 7, 24, 16, 3, 37]. On the more
practical side, Backes, Dürmuth and Unruh [5] show that RSA-OAEP [12, 27] is KDM-secure in the
RO model. Backes, Pfitzmann and Scedrov [6] treat active attacks and provide and relate a number of
different notions of security.

By showing that IND-CPA security does not even imply security for the encryption of 2-cycles, Acar,
Belenkiy, Bellare and Cash [2] and Green and Hohenberger [31] settled a basic question in this area
and showed that achieving even weak KDM-security requires new schemes, validating previous efforts
in that direction. Acar et. al. [2] also connect KDM secure encryption to cryptographic agility. Haitner
and Holenstein [33] study the difficulty of proving KDM security by blackbox reduction to standard

4

primitives.
Halevi and Krawczyk [34] consider blockciphers under key-dependent inputs. Muñiz and Stein-

wandt [39] study KDM secure signatures. González, in an unpublished thesis [30], studies KDM secure
MACs.

Motivated by attacks on SSH, Paterson and Watson [42] consider notions of security (in the standard
ki-data context) which allow the attacker to interact in a byte-by-byte manner with the decryption
oracle. Our treatment does not encompass such attacks, and extending the model of [42] to allow
key-dependent data is an interesting direction for future work.

2 Definitions

We provide a unified definition for universal and random nonce AE security and then extend this to
definitions of universal and random nonce AE security in the presence of key-dependent messages and
headers.

Notation. If S is a (finite) set then s←$ S denotes the operation of picking s from S at random and
|S| is the size of S. Read the term “efficient” as meaning “polynomial-time” in the natural asymptotic
extension of our concrete framework. If x is a string then |x| denotes its length and x[i] denotes its i-th
bit. The empty string is denoted ε. By a1∥ . . . ∥an, we denote the concatenation of strings a1, . . . , an.
Unless otherwise indicated, an algorithm may be randomized. We denote by y←$ A(x1, x2, . . .) the
operation of running A on the indicated inputs and fresh random coins to get an output denoted y. For
integers k,w let Fun(k,w) be the set of all functions ϕ for which there exists an integer ol(ϕ), called
the output length of ϕ, such that ϕ: ({0, 1}k)w → {0, 1}ol(ϕ). Input-deriving functions will be drawn
from this set. Let Cns(k,w) be the subset of Fun(k,w) consisting of constant functions, restricting
attention to which drops KDI (key-dependent input) notions of security down to their standard, non-
KDI counterparts.

Games. Some of our definitions and proofs are expressed via code-based games [14]. Such a game
—see Figure 2 for an example— consists of procedures that respond to adversary oracle queries. In an
execution of game G with an adversary A, the latter must make exactly one Initialize query, this being
its first oracle query, and exactly one Finalize query, this being its last oracle query. In between, it can
query other game procedures. Each time it makes a query, the corresponding game procedure executes,
and what it returns, if anything, is the response to A’s query. The output of Finalize, denoted GA, is
called the output of the game, and we let “GA ⇒ d” denote the event that this game output takes value
d. If Finalize is absent it is understood to be the identity function, so the game output is the adversary
output. Boolean flags are assumed initialized to false and BAD(GA) is the event that the execution of
game G with adversary A sets flag bad to true. The running time of an adversary by convention is the
worst case time for the execution of the adversary with the game defining its security, so that the time
of the called game procedures is included.

AE syntax. A symmetric encryption scheme SE = (K, E ,D) is specified by a key generation algorithm
K that returns k-bit strings, an encryption function E : {0, 1}k×{0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}∗ and
decryption function D: {0, 1}k×{0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}∗ ∪{⊥}. Inputs to E are key, nonce,
header and message, and output is a ciphertext. Inputs to D are key, nonce, header and ciphertext, and
output is a message or ⊥. We refer to k as the keylength and n as the noncelength. Both E and D are
deterministic, it being the way nonces are handled by the games defining security that will distinguish
universal-nonce and random-nonce security. We require that D(K,N,H, E(K,N,H,M)) = M for all
values of the inputs shown. We also require that E is length respecting in the sense that the length of a
ciphertext depends only on the length of the message and header. Formally, there is a function cl(·, ·)
called the ciphertextlength such that |C| = cl(|M |, |H|) for any C that may be output by E(·, ·,H,M).

As in [45, 47], D takes the nonce and header as an input. (In this view, the ciphertext in standard
counter-mode encryption does not incude the counter. It is up to the application to transmit nonce

5

proc Initialize // KIAESE,nt

K←$K
S ← ∅
b←$ {0, 1}
proc Enc(N,H,M) // KIAESE,nt

If (nt = r) then N ←$ {0, 1}n
If (b = 1) then C ← E(K,N,H,M)
Else c← cl(|M |, |H|) ; C←$ {0, 1}c
S ← S ∪ {(N,H,C)}
Return (N,C)

proc Dec(N,H,C) // KIAESE,nt

If (N,H,C) ∈ S then return ⊥
If (b = 1) then M ← D(K,H,N,C)
Else M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Finalize(b′) // KIAESE,nt

Return (b′ = b)

proc Initialize(w) // KDAESE,nt

For j = 1, . . . , w do
Kj ←$K ; Sj ← ∅

b←$ {0, 1}
proc Enc(j,N, ϕh, ϕm) // KDAESE,nt

M ← ϕm(K1, . . . ,Kw) ; H ← ϕh(K1, . . . ,Kw)
If (nt = r) then N ←$ {0, 1}n
If (b = 1) then C ← E(Kj , N,H,M)
Else c← cl(ol(ϕm), ol(ϕh)) ; C←$ {0, 1}c
Sj ← Sj ∪ {(N,H,C)}
Return (N,C)

proc Dec(j,N, ϕh, C) // KDAESE,nt

H ← ϕh(K1, . . . ,Kw)
If (N,H,C) ∈ Sj then return ⊥
If (b = 1) then M ← D(Kj , N,H,C)
Else M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Finalize(b′) // KDAESE,nt

Return (b′ = b)

Figure 2: On the left is game KIAESE,nt defining AE-security of encryption scheme SE = (K, E ,D),
where nt ∈ {u, r} indicates universal or random nonce. On the right is game KDAESE,w,nt defining KDI
AE-security of SE.

and header if necessary, so the “ciphertext” in practice may be more than the output of E , but in
many settings the receiver gets nonce and header in out-of-band ways.) But our treatment differs from
standard ones [9] in that the nonce must be explicitly provided to D even when it is random. This
means that, for randomized schemes, we are limited to ones that make the randomness public, but this
is typically true. The restriction is only to compact and unify the presentation. Otherwise we would
have needed separate games to treat universal and random nonce security.

AE security. We now define standard (neither message nor header is key-dependent) AE security for
SE = (K, E ,D). Consider game KIAESE,nt shown on the left side of Figure 2. Define the advantage
of adversary A via Advae-nt

SE (A) = 2Pr[KIAEA
SE,nt ⇒ true] − 1. When nt = u the definition captures

what we call universal-nonce security. (It is simply called nonce-based security in [45, 43, 47].) It is
understood that in this case we only consider A that is unique-nonce, meaning we have N ̸= N ′ for any
two Enc queries N,H,M and N ′,H ′,M ′. Security is thus required even for adversary-chosen nonces
as long as no nonce is used for more than one encryption. When nt = r, the adversary-provided nonce
in Enc is ignored, a random value being substituted by the game, and we have random-nonce security,
in the classical spirit of randomized encryption [29, 9]. The nonce returned by Enc is redundant in the
u case but needed in the r case and thus always returned for uniformity.

Historically the first definitions of security for AE had separate privacy (IND-CPA) and integrity
(INT-CTXT) requirements [11, 36, 13]. Our version is a blend of the single-game formulation of [47]
and INT-CTXT. Privacy is in the strong sense of indistinguishability from random, meaning ciphertexts
are indistinguishable from random strings, which implies the more common LR-style [9] privacy, namely
that ciphertexts of different messages are indistinguishable from each other. (A subtle point is that the
length-respecting property assumed of E is important for this implication.) The integrity is in the fact
that the adversary can’t create new ciphertexts with non-⊥ decryptions. (“New” means not output

6

by Enc.) Unlike [47], oracle Dec does not return decryptions but only whether or not they succeed.
This simpler version is nonetheless equivalent to the original. IND-CCA is implied by this definition of
AE [11, 43].

KDI security of AE. We now extend the above along the lines of [17, 6] to provide our definition
of security for AE in the presence of key-dependent inputs, considering both key-dependent messages
and key-dependent headers. Consider game KDAESE,nt shown on the right side of Figure 2. Define the
advantage of adversary A via Advae-nt

SE (A) = 2Pr[KDAEA
SE,nt⇒true]−1. The argument w to Initialize

is the number of keys; arguments ϕm, ϕh (message and header deriving functions, respectively) in the
Enc,Dec queries must be functions in Fun(k,w); ol(ϕ) is the output length of ϕ ∈ Fun(k,w); and cl is
the ciphertext length of SE. When nt = u the definition again captures universal-nonce security. That
A is unique-nonce (always assumed in this case) now means that for each j ∈ [1..w] we have N ̸= N ′

for any two Enc queries j,N, ϕm, ϕh and j,N ′, ϕ′
m, ϕ′

h. When nt = r we have random-nonce security.

Messages could be key-dependent or not, and so could headers, giving rise to four settings of inter-
est. These are best captured by considering different classes of adversaries. For Φm,Φh ⊆ Fun(k,w)
let A[Φm,Φh] be the class of all adversaries A for which ϕm in A’s Enc queries is in Φm and ϕh

in its Enc,Dec queries is in Φh. Let A[mt, ht] = A[Φm,Φh] where the values of (Φm,Φh) cor-
responding to (mt, ht) = (kd, kd), (kd, ki), (ki, kd), (ki, ki) are, respectively, (Fun(k,w),Fun(k,w)),
(Fun(k,w),Cns(k,w)), (Cns(k,w),Fun(k,w)), (Cns(k,w),Cns(k,w)). Say that SE = (K, E ,D) is (nt, mt,
ht)-AE secure if Advae-nt

SE (A) is negligible for all efficient A ∈ A[mt, ht].
Now that the header may not be known to the adversary in a Dec query, it does not know in

advance whether or not (H,N,C) ∈ Sj and it deserves to know whether rejection took place due to this
or due to unsuccessful decryption. This why we do not return ⊥ for both but rather ⊥ for one and 0 for
the other. It was to disambiguate these that we found it convenient to modify the starting definition of
AE. The issue is crucial when considering security with key-dependent headers.

In the RO model there is an additional procedure Hash representing the RO. As usual it may
be invoked by the scheme algorithms and the adversary, but, importantly, also by the input-deriving
functions ϕm, ϕh.

For input-deriving functions to be adversary queries it is assumed they are encoded in some way.
Recall that, as per our convention, the running time of A is that of the execution of A with the game, so
A pays in run time if it uses functions whose description or evaluation time is too long. In asymptotic
terms, A is restricted to polynomial-time computable input-deriving functions, and their description
could be set to the Turing-machine that computes them.

Passwords as keys. The key-generation algorithm K in our syntax SE = (K, E ,D) does not have
to output random k-bit strings but could induce an arbitrary distribution, allowing us to capture
passwords. The metric of interest in this case is the min-entropy H∞(K) = − log2(GP(K)), where the
guessing probability GP(K) is defined as the maximum, over all k-bit strings K, of the probability that
K ′ = K when K ′←$K. We aim to provide security as long as the min-entropy of the key-generator is
not too small.

Providing security when keys are passwords is crucial because key-dependent data is more natural
and prevalent in this case. In practice, our keys are largely passwords. They may be stored on disk.
Their hashes are stored on the disk by the system.

3 Impossibility Results

We rule out universal-nonce security for key-dependent messages as well as security for key-dependent
headers.

7

3.1 Universal-nonce insecurity

Standardized schemes all achieve universal-nonce security for ki-messages. This is convenient because
an application-setting often provides for free something that can play the role of a nonce, like a counter.
It also increases resistance to misuse. We would like to maintain this type of security in the presence
of key-dependent data. Unfortunately we show that this is impossible. We show that no scheme is
(u, kd, ki)-AE secure:

Proposition 3.1 Let SE = (K, E ,D) be an encryption scheme. Then there is an efficient adversary
A ∈ A[kd, ki] such that Advae-u

SE (A) ≥ 1/4.

As the proof of the above will show, the attack we present is strong in that the adversary does not
just distinguish real from random encryptions but recovers the key. (A simpler attack is possible if we
only want to distinguish rather than recover the key.) Also the attack works even when the nonce is a
counter rather than adversary controlled. And since the adversary does not use the decryption oracle
we rule out even KDM-CPA security.

We begin with some background and an overview, then prove Proposition 3.1, and finally show how
to apply an underlying lemma to provide the first analysis of an attack in BRS [17].

Background and overview. BRS [17, Section 6] suggest an attack aimed at showing that no
stateful symmetric encryption scheme is KDM-secure. For the purpose of our discussion we adapt it to
an attack on universal-nonce security of an AE scheme SE = (K, E ,D). Let k be the keylength of the
scheme. We will use messages of length m. Let c denote the length of the resulting ciphertexts. Let
Hip(V,C) = V [1]C[1] + · · ·+ V [c]C[c] mod 2 denote the inner product modulo two of c-bit strings V,C.
Let ϕV,i denote the message-deriving function that on input a key K returns the first m-bit message
M such that Hip(V, E(K, i, ε,M)) = K[i], or 0m if there is no such message. (Here we use i as the
nonce and ε as the header.) The adversary can pick V (BRS do not say how, but the natural choice is
at random), query ϕV,i to get (i, C), and then recover K[i] as Hip(V,C), repeating for i = 1, . . . , k to
get K.

The difficulty is that ϕV,i must search the message space until it finds a message satisfying the
condition, and it is unclear how long this will take. In asymptotic terms, this means there is no proof
that the attack runs in polynomial time, meaning is a legitimate attack at all. This issue does not
appear to be recognized by BRS, who provide no analysis or formal claims relating to the attack.

In order to have a polynomial time attack where the key-recovery probability is, say, a constant,
one would need to show that there is a polynomial number l of trials in which the failure probability
to recover a particular bit K[i] of the key is O(1/k). (A union bound will then give the desired result.)
We did not see a direct way to show this. Certainly, for a particular i, the probability that the first
message M fails to satisfy Hip(V, E(K, i, ε,M)) = K[i] is at most 1/2, but it is not clear what is the
failure probability in multiple trials because they all use the same V . The first thought that comes to
mind is to modify the attack so that ϕV1,...,Vl,i now depends on a sequence V1, . . . , Vl of strings, chosen
independently at random by the adversary. On input the key K, the function computes the smallest
j such that Hip(Vj , E(K, i, ε,Mj)) = K[i], where M1,M2, . . . ,Ml is a fixed sequence of messages, and
returns Mj . Although one can prove that this “successful” j is quickly found, the attack fails to work,
since, to recover K[i] = Hip(Vj , C) from the ciphertext C = E(K, i, ε,Mj), the adversary needs to know
j, and it is not clear how the ciphertext is to “communicate” the value of j to the adversary.

We propose a different modification, namely to replace the inner product function with a family
H: {0, 1}s × {0, 1}c → {0, 1} of pairwise independent functions. The message-deriving function ϕS,i,
on input K, will now search for M such that H(S, E(K, i, ε,M)) = K[i]. The adversary can pick S at
random, query ϕS,i to get (i, C), and then recover K[i] as H(S,C), repeating for i = 1, . . . , k to get K.
We will prove that O(k) trials suffice for the search to have failure probability at most O(1/k) for each
i, and thus that the adversary gets a constant advantage in a linear number of trials.

This strategy can be instantiated by the pairwise independent family of functions H: {0, 1}c+1 ×
{0, 1}c → {0, 1} defined by H(S,C) = Hip(S[1] . . . S[c], C)+S[c+1] mod 2 to get a concrete attack that

8

is only a slight modification of the BRS one but is proven to work. Given this, the question of whether
the original attack can be proven to work is perhaps moot, but we find it interesting for historical
reasons. Our results would not at first appear to help to answer this because the inner product function
is not pairwise independent. (For example, 0c is mapped to 0 by all functions in the family.) But
curiously, as a corollary of our proof that the attack works for the particular family H we just defined,
we get a proof that the BRS attack works as well. This is because we show that the attack using H
works for an overwhelming fraction of functions from H, and thus, with sufficient probability, even for
functions drawn only from the subspace of inner-product functions. Let us now proceed to the details.

Attack and analysis. We begin with a general lemma.

Lemma 3.2 Let H: {0, 1}s × {0, 1}c → {0, 1} be a family of pairwise independent hash functions. Let
C1, . . . , Cl ∈ {0, 1}c be distinct and let T ∈ {0, 1}. Then

Pr [∀j : H(S,Cj) ̸= T] ≤ 1

l

where the probability is over a random choice of S from {0, 1}s.

Proof of Lemma 3.2: For each j ∈ {1, . . . , l} define Xj : {0, 1}s → {0, 1} to take value 1 on input
S if H(S,Cj) = T and 0 otherwise. Regard X1, . . . , Xj as random variables over the random choice of
S from {0, 1}s. Let X = X1 + · · · +Xl and let µ = E [X]. By Chebyshev’s inequality, the probability
above is

Pr [X = 0] ≤ Pr [|X − µ| ≥ µ] ≤ Var[X]

µ2
.

Since H is pairwise independent, so are X1, . . . , Xl and hence Var[X] = Var[X1] + · · ·+Var[Xl]. But
for each j we have E [Xj] = 1/2 and Var[Xj] = 1/4, so µ = l/2 and Var[X] = l/4. Thus the above is
at most (l/4)/(l/2)2 = 1/l as desired.

We now use this to prove Proposition 3.1.

Proof of Proposition 3.1: Let k be the keylength, n the noncelength and cl the ciphertextlength
of SE. Let l = 4k. Let NumToStr(j) denote a representation of integer j ∈ {0, . . . , l} as a string of
length exactly m = ⌈log2(l+1)⌉ bits. Let H: {0, 1}s×{0, 1}cl(m,0) → {0, 1} denote a family of pairwise
independent hash functions with s-bit keys. We construct an adversary B that recovers the target key
with probability at least 3/4 when playing the real game, meaning game KDAESE,u with challenge bit
b = 1. From B it is easy to build A achieving advantage at least 1/4. Below we depict B and also
define the message-deriving functions it uses. Nonces are given as integers and assumed encoded as
n-bit strings:

Adversary B

Initialize(1)
For j = 1, . . . , l do

m[j]← NumToStr(j)
S←$ {0, 1}s
For i = 1, . . . , k do

(i, C)←$ Enc(1, i, ϕε, ϕm,S,i) ; L[i]← H(S,C)
Return L

Function ϕm,S,i(K)

M ← NumToStr(0)
For j = 1, . . . , l do

Cj ← E(K, i, ε,m[j])
If H(S,Cj) = K[i] then

M ←m[j]
Return M

Above m is a l-vector over {0, 1}m and ϕε is the constant function that returns the empty string on
every input. In its first step, B initializes the game to play with w = 1, meaning a single target key.
Function ϕm,S,i(K) returns a message from whose encryption under nonce i and empty header one can
recover bit i of the key by encoding this bit as the result of H(S, ·) on the ciphertext. For the analysis,

9

Lemma 3.2 says that for each i, adversary B fails to recover K[i] with probability at most 1/4k. By
the union bound B fails to recover K with probability at most 1/4.

Analysis of the BRS attack. As a corollary of Lemma 3.2 we not only show that the inner-product
function works but that it is worse only by a factor of two:

Lemma 3.3 Let Hip: {0, 1}c×{0, 1}c → {0, 1} be defined by Hip(V,C) = V [1]C[1]+ · · ·+V [c]C[c] mod
2. Let C1, . . . , Cl ∈ {0, 1}c be distinct and let T ∈ {0, 1}. Then

Pr [∀j : Hip(V,Cj) ̸= T] ≤ 2

l
(1)

where the probability is over a random choice of V from {0, 1}c.

Proof of Lemma 3.3: Define H: {0, 1}c+1 × {0, 1}c → {0, 1} by

H(S,C) = Hip(S[1] . . . S[c], C) + S[c+ 1] mod 2 .

This family of functions is pairwise independent. Let G be the set of all S ∈ {0, 1}c+1 such that
H(S,Cj) = T for some j. For b ∈ {0, 1} let Gb be the set of all S ∈ G with S[c + 1] = b. Let ϵ = 1/l.
Lemma 3.2 says that |G| ≥ (1− ϵ)2c+1. But G = G0 ∪G1 and G0, G1 are disjoint so

|G0| = |G| − |G1| ≥ |G| − 2c ≥ (1− ϵ)2c+1 − 2c = (1− 2ϵ)2c .

To conclude we note that the probability on the left of Equation (1) equals 1− |G0|/2c.

With this in hand, one can substitute H by Hip in the proof of Lemma 3.1. By also doubling the value
of l, the analysis goes through and shows that the BRS attack terminates in a linear number of trials
and achieves a constant advantage.

3.2 Header insecurity

We would like to use schemes in such a way that headers are not key-dependent but it may not be
under our control. Applications may create headers based on data present on the system in a way that
results in their depending on the key. We would thus prefer to maintain security in the presence of
key-dependent headers. We show that this, too, is impossible, even when messages are key-independent.
For both nt = u and nt = r, we present attacks showing no scheme is (nt, ki, kd)-secure.

Proposition 3.4 Let SE = (K, E ,D) be an encryption scheme. Then for any nt ∈ {u, r} there is an
efficient adversary A ∈ A[ki, kd] such that Advae-nt

SE (A) ≥ 1/2.

Proof of Proposition 3.4: Let k be the keylength of SE. Again, we present an adversary B that
recovers the key with probability 1, from which A is easily built. Below we depict B and also define the
message-deriving functions it uses. Nonces are given as integers and assumed encoded as n-bit strings:

Adversary B

Initialize(1)
For i = 1, . . . , k do

(Ni, Ci)←$ Enc(1, i, biti, ϕ0) ; Vi ← Dec(1, Ni, ϕ0, Ci)
If Vi = ⊥ then L[i]← 0 else L[i]← 1

Return L

Function biti(K)

Return K[i]

Here ϕc denotes the constant function that returns c ∈ {0, 1}. The header computed and used by the
game in response to the i-th Enc query is K[i]. The header computed and used by the game in response
to the i-th Dec query is 0. Thus, Dec will return ⊥ if K[i] = 0. Otherwise, it will most likely return

10

0 because the headers don’t match, although it might return 1, but in either case we have learned that
K[i] = 1.

The attack has been written so that it applies in both the universal and random nonce cases. In the
first case we will have Ni = i. In the second case, Ni will be a random number independent of i chosen
by the game.

3.3 Remarks

The message-deriving functions used by the adversary in the proof of Proposition 3.1 invoke the encryp-
tion algorithm, which is legitimate since any efficient function is allowed. Having encryption depend
on a RO will not avoid the attack because the message-deriving functions are allowed to call the RO
and can continue to compute encryptions. (In an instantiation the RO will be a hash function and the
system may apply it to the key to get data that is later encrypted.)

We do not suggest that precisely these attacks may be mounted in practice. (The message-deriving
functions in our attacks are contrived.) However, our attacks rule out the possibility of a proof of
security and thus there may exist other, more practical attacks. Indeed, the history of cryptography
shows that once an attack is uncovered, better and more practical ones often follow.

4 The RHtE transform and its security

We describe our RHtE (Randomized Hash then Encrypt) transform and prove that it endows the base
scheme to which it is applied with (r, kd, ki)-AE security.

4.1 The transform

Given a base symmetric encryption scheme SE = (K, E ,D), a key-generation algorithm L returning l-bit
strings, and an integer parameter r representing the length of the random seed used in the key-hashing,
the RHtE transform returns a new symmetric encryption scheme SE = RHtE[SE,L, r] = (L, E ,D). It
has L as its key-generation algorithm, keylength l, noncelength r and the same ciphertextlength as the
base scheme. Its encryption and decryption algorithms are defined as follows, where Hash: {0, 1}r+l →
{0, 1}k is a RO, L ∈ {0, 1}l is the key, R ∈ {0, 1}r is the nonce (which in the security game will be
random), H is the header and M is the message:

Algorithm E(L,R,H,M)

K ← Hash(R ∥L) ; C ← E(K,H,M)
Return C

Algorithm D(L,R,H,C)

K ← Hash(R ∥L) ; M ← D(K,H,C)
Return M

The base scheme SE = (K, E ,D) is assumed to achieve standard (nt, ki, ki)-AE security, with nt being
either u or r. It is assumed to be a standard (as opposed to RO) model scheme. This is not a restriction
because for the type of security we assume of it (no key-dependent data) there is no need to use a RO
and none of the standardized, in use schemes do, and in any case the assumption is only for simplicity.
We are not concerned with keys of the base scheme being passwords because, in standard schemes, they
aren’t. (Most of the time the key is an AES key.) So it is assumed that K returns random strings of
length k. We only require one-time security of the base scheme. Accordingly we assume it is nonceless
and deterministic and drop the nonce input above for both encryption and decryption. One can obtain
such a scheme from standard ones by fixing a single, public nonce and hardwiring it into the algorithm.
The repeated use of the nonce causes no problems since the key K is different on each encryption.

We want the constructed scheme SE to provide security not only when its keys are full-fledged
cryptographic ones but also when they are passwords. Hence we view as given an (arbitrary) key-
generation algorithm L returning l-bit strings under some arbitrary distribution, and design SE to have
L as its key-generation algorithm.

11

proc Initialize(w) // All

For j = 1, . . . , w do Lj ←$ L ; Sj ← ∅
proc Dec(j, R,H,C) // F1,1,F0,1

If (R,H,C) ∈ Sj then return ⊥
M ← D(Lj , R,H,C))
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Dec(j, R,H,C) // F1,0,F0,0

If (R,H,C) ∈ Sj then return ⊥
Return 0

proc Enc(j,N,H, ϕ) // F1,1,F1,0

R←$ {0, 1}r ; C←$ E(Lj , R,H, ϕ(L1, . . . , Lw))
Sj ← Sj ∪ {(R,H,C)}
Return (R,C)

proc Enc(j,N,H, ϕ) // F0,1,F0,0

c← cl(ol(ϕ), |H|) ; C←$ {0, 1}c
R←$ {0, 1}r ; Sj ← Sj ∪ {(R,H,C)}
Return (R,C)

proc Finalize(b′) // All

Return (b′ = 1)

Figure 3: Games Fα,β for α, β ∈ {0, 1}. Next to each procedure we write the games in which it occurs.

The ciphertext returned is a ciphertext of the base scheme but this is deceptive since in practice
R will have to be transmitted too to enable decryption. Nonetheless, in common usage, there will be
no bandwidth overhead. This is because we must compare to a standard use of the base scheme where
it too uses and transmits a nonce. We have saved this space by fixing this nonce and can use it for
R. However, if we are in a mode where the base scheme gets the nonce out-of-band, we have r bits of
bandwidth overhead. The computational overhead is independent of the message size. Implementations
with base schemes CCM, EAX and GCM (see Section 6) show that for the first the slowdown is 11%
for 5KB messaegs and only 1% for 50KB messages.

The BRS scheme [17] is purely RO-based, and one needs ROs with outputs of length equal to the
length of the message. In our scheme the RO is used only for key-derivation and its output length is
independent of the length of the message to be encrypted. In this sense, the reliance on ROs is reduced.

4.2 Security of RHtE

The following theorem says that if the base scheme is secure for key-independent headers and messages
then the constructed scheme is random-nonce secure for key-dependent messages and key-independent
headers.

Theorem 4.1 Let SE = (K, E ,D) be a base symmetric encryption scheme as above. Let L be a key-
generation algorithm with keylength l and let r be a positive integer. Let SE = RHtE[SE,L, r] be the RO
model symmetric encryption scheme associated to SE,L, r as above. Let A ∈ A[kd, ki] be an adversary
making qe Enc queries, qd Dec queries and qh Hash queries, and let w ≤ 2H∞(L)−1 be the number of
keys, meaning the argument of A’s Initialize query. Then there is an adversary D such that

Advae-r
SE

(A) ≤ (24q2e + 2qd) ·Advae
SE(D) +

8wqeqh + 2w(w − 1)qe
2H∞(L) +

2qe(qh + 2qew)

2r
. (2)

Adversary D makes only one Enc query and has the same number of Dec queries and the same time
complexity as A.

We have omitted the nt superscript in the advantage of D because SE is nonceless. That only one-time
security is required of SE is reflected in the fact that D makes only one Enc query. We remark that the
bound in Theorem 4.1 does not appear to be tight. It is an interesting open problem to either provide
a proof with a better bound or an alternative scheme for which a tight bound can be proved.

4.3 Proof overview

As we noted in Section 1 the proof is surprisingly involved because message-deriving functions are allowed
to query the RO and because the assumed security of the base scheme must be invoked in multiple,

12

inter-related ways in different parts of the argument, leading to two hybrids in opposite directions, one,
unusually, with steps that are differently weighted.

Assume for simplicity that w = 1, meaning there is a single target key, denoted L. Also assume A
makes no Dec queries. Denote by ϕ1, . . . , ϕqe the message-deriving functions in its Enc queries and
ignore the corresponding headers. Picking index g at random we set up a hybrid in which the i-th Enc
query ϕi is answered by encrypting message ϕi(L) under L as in the real game if i < g and answered
at random if i > g, the g-th query toggling between real and random to play the role of the challenge
for an adversary B against the base scheme. Let R1, . . . , Rqe denote the random nonces chosen by the
game. The reduction B cannot answer hash oracle query Rg∥L because the reply is its target key so a
bad event is flagged if A either makes this query directly, or indirectly via a message-deriving function.
But once query g has been answered, A has Rg and thus for queries i > g, nothing can prevent ϕi

from querying Rg∥L to the RO, and how are these queries to be answered by B? Crucial to this was
doing the hybrid top to bottom, meaning first real then random rather than the other way round.
This enables us to avoid evaluating ϕi on L for post-challenge queries, so that its RO queries do not
need to be answered at all. This leaves the possibility that A directly makes hash query Rg∥L after
it gets Rg. Intuitively this is unlikely because A does not know L. The subtle point is that this relies
on the assumed security of the base scheme and hence must be proven by reduction. However, doing
such a reduction means another hybrid and seems to simply shunt the difficulty to another query. To
get around this circularity, we do the second hybrid in the opposite direction and also with different
“weights” on the different steps.

4.4 Proof of Theorem 4.1

Consider executing A with the games of Figure 3. For simplicity we have not displayed procedure Hash,
which implements the RO and is called by E ,D. We need to bound

Pr[FA
1,1]− Pr[FA

0,0] =
(
Pr[FA

1,1]− Pr[FA
0,1]

)
+

(
Pr[FA

0,1]− Pr[FA
0,0]

)
(3)

and will bound the two terms in turn, meaning that, leaving the decryption oracle fixed to the real one,
we will first turn answers to encryption queries from real to random and then, leaving them at random,
flip the decryption oracle to ⊥.

For the first step we consider games G,H of Figure 4. Game G sets up a hybrid in which the first
g−1 Enc queries are answered by real encryption, the g-th toggles between real and random depending
on bit b, and the rest are answered by random ciphertexts. This aims to set up a reduction to the
assumed security of SE for the g-th encryption with K playing the role of the key underlying the game
of the adversary attacking SE. This adversary would not know K and, to allow it to simulate A, hash
queries that would need to return K are flagged and removed from the now simulatable game H at the
cost of the probability of setting bad. The decryption oracle is the real one, in both games. Procedure
IHash has been introduced to answer indirect hash queries, namely those made by ϕ, Enc or Dec,
because they will have to be treated differently from direct hash queries of A, still answered by Hash.
The proof of the following is in Section 4.5.

Lemma 4.2 There is an adversary B1 so that

1

qe

(
Pr[FA

1,1]− Pr[FA
0,1]

)
≤ Pr[EB1

1,1]− Pr[EB1
0,1] + 2Pr[BAD(HA)]

The games Eα,β referred to here are in Figure 5. We must now bound the probability that HA sets bad.
The proof of the following is in Section 4.6.

Lemma 4.3 The probability of BAD(HA) is at most

Pr[BAD(HA, 303)] +
qh + 2qew

2r
. (4)

13

proc Initialize // G,H

000 For j = 1, . . . , w do
001 Lj ←$ L ; Sj ← ∅
002 For i = 1, . . . , qe do Ri,j ←$ {0, 1}r
003 i← 0 ; b←$ {0, 1} ; K←$ {0, 1}k
004 g←$ {1, . . . , qe}
proc Enc(j,N,H, ϕ) // G, H

101 i← i+ 1 ; c← cl(ol(ϕ), |H|)
102 If (i ≤ g) then

103 M ← EvalIHash(ϕ,L1, . . . , Lw)
104 If i < g then
105 Ci ← E(IHash(Ri,j ∥Lj), H,M)
106 If (i = g and b = 1) then
107 If H[Ri,j ∥Lj] then

108 bad← true ; K ← H[Ri,j ∥Lj]

109 s← j ; Ci ← E(K,H,M)
110 If (i = g and b = 0) then
111 s← j ; Ci←$ {0, 1}c
112 If i > g then Ci←$ {0, 1}c
113 Sj ← Sj ∪ {(Ri,j ,H,Ci)}
114 Return (Ri,j , Ci)

proc IHash(R ∥L) // G, H

200 If not H[R ∥L] then
201 H[R ∥L]←$ {0, 1}k
202 If (R ∥L = Rg,s ∥Ls) then

203 bad← true ; H[R ∥L]← K
204 Return H[R ∥L]
proc Hash(R ∥L) // G, H

300 If not H[R ∥L] then
301 H[R ∥L]←$ {0, 1}k
302 If (R ∥L = Rg,s ∥Ls) then

303 bad← true ; H[R ∥L]← K
304 Return H[R ∥L]
proc Dec(j, R,H,C) // G,H

400 If (R,H,C) ∈ Sj then return ⊥
401 If (R ∥Lj = Rg,s ∥Ls) then
402 M ← D(K,H,C)
403 Else M ← D(IHash(R ∥Lj),H,C)
404 If M = ⊥ then V ← 0 else V ← 1
405 Return V

proc Finalize(b′) // G,H

500 Return (b′ = b)

Figure 4: Games G,H for the proof of Theorem 4.1. A box around the name of a game next to a
procedure means the boxed code of that procedure is included in the game.

Here BAD(HA, x) is the event that bad is set at line x. The argument makes crucial use of the fact
that the games provide random answers to post-challenge Enc queries. This is what allows us to not
evaluate ϕ post-challenge. Had we done the hybrids in the opposite direction, beginning with random
answers and then providing real ones, the probability that IHash sets bad could be large. We now need
to bound the first term above where subtle issues arise.

Post-challenge, A has Rg,s. If the probability Pr[BAD(HA, 303)] that HA sets bad at line 303 is to
be small, we expect that it is because A is unlikely to know Ls and thus unlikely to query Rg,s ∥Ls.
We might think, accordingly, that Pr[BAD(HA, 303)] is unconditionally bounded by qh/2

H∞(L), but
this turns out to be wrong. In fact, the argument is necessarily computational, relying on the assumed
security of SE. To see this, suppose E(K,M) = M for all M (no header). Let A’s first Enc query be 1, ϕ
where ϕ(L1, . . . , Ln) = L1, and suppose g > 1. In response, A gets (R1,1, E(IHash(R1,1 ∥L1), L1)) =
(R1,1, L1), and thus has L1. It uses j = 1 in all subsequent Enc queries as well (it does not matter what
is the corresponding ϕ) so that s is set to 1 at line 107 or 109. After it receives Rg,1 from the response
to its g-th Enc query, it can make hash query Rg,1 ∥L1 since it knows L1 and thus sets bad whenever
g > 1, meaning with (high) probability 1− 1/qe.

Of course, if SE is secure it will not be that E(K,M) = M for all M . But what this means is that
bounding Pr[BAD(HA, 303)] must rely on the assumed security of SE. Towards obtaining this bound,
consider game Ig,h of Figure 6, which is parameterized by g, h. It provides random responses to the
first h Enc queries, then provides real responses until it gets to the g-th query, to which it responds as
does H. Subsequent queries get random responses. The game returns true when bad is set in procedure
Hash. We have

Pr[BAD(HA, 303)] = 1
qe

∑qe
g=1 Pr[I

A
g,0] . (5)

14

proc Initialize(w) // All

K←$ {0, 1}k ; S ← ∅
proc Dec(R,H,C) // E1,1,E0,1

If (R,H,C) ∈ S then return ⊥
M ← D(K,R,H,C)
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Dec(R,H,C) // E1,0,E0,0

If (R,H,C) ∈ S then return ⊥
Return 0

proc Enc(N,H,M) // E1,1,E1,0

R←$ {0, 1}n ; C ← E(K,R,H,M)
S ← Sj ∪ {(H,C)}
Return (R,C)

proc Enc(N,H,M) // E0,1,E0,0

c← cl(|M |, |H|) ; R←$ {0, 1}n
C←$ {0, 1}c ; S ← S ∪ {(H,C)}
Return (R,C)

proc Finalize(b′) // All

Return (b′ = 1)

Figure 5: Games Eα,β for α, β ∈ {0, 1}.

Towards bounding this we begin by considering game Ig,g−1. In the case b = 0, all Enc queries receive
random answers and thus Enc does not leak any information about Ls. We would like to say that this
leads to an unconditional bound on the probability that bad is set at line 303 but this fails to consider
Dec queries whose answers can still depend on Ls. Using the fact that these answers, however, depend
only on entries H[· ∥Ls] we do succeed in unconditionally bounding the probability that bad is set in
game Ig,g−1 when b = 0. The assumed security of SE can then be used to say that bad is set not much
more often when b = 1. All this is captured by the following whose proof is in Section 4.7.

Lemma 4.4 There is an adversary B2 so that

1
qe

∑qe
g=1Pr

[
IAg,g−1

]
≤ 1

2
Pr[EB2

1,1]−
1

2
Pr[EB2

0,1] +
4wqh + w(w − 1)

2H∞(L)+1

The next lemma bridges the gap from Ig,g−1 to Ig,0. An unusual aspect of the proof of the following,
which appears in Section 4.8, is that adversary B3 will need to assign different weights to the different
hybrids.

Lemma 4.5 There is an adversary B3 so that

1
q2e

∑qe
g=1

(
Pr

[
IAg,0

]
− Pr

[
IAg,g−1

])
≤ Pr[EB3

1,1]− Pr[EB3
0,1]

From Lemma 4.5 and Lemma 4.4 we have the following, which bounds the first term of Equation (3).

Lemma 4.6 There is an adversary D1 such that

Pr[FA
1,1]− Pr[FA

0,1] ≤ 24q2e ·Advae
SE(D1) +

4wqeqh + w(w − 1)qe
2H∞(L) +

2qe(qh + 2qew)

2r
. (6)

The proof is in Section 4.9. We proceed to bound the second term of Equation (3). Game J of Figure 7
responds to the first g − 1 Dec queries correctly, to the g-th either correctly or by ⊥ depending on
whether b = 1 or b = 0, and to the rest by ⊥. Enc queries all receive random answers. This aims to set
up a reduction to the assumed security of SE with K[g] playing the role of the key underlying the game
of the adversary attacking SE. To allow such an adversary to simulate A, hash queries that would need
to return any of the keys are flagged and removed from the now simulatable game L at the cost of the
probability of setting bad. The proof of the following is in Section 4.10.

Lemma 4.7 There is an adversary B4 so that

1

qd

(
Pr[FA

0,1]− Pr[FA
0,0]

)
≤ Pr[EB4

SE,0,1]− Pr[EB4
SE,0,0] + 2Pr[BAD(LA)]

15

proc Initialize // Ig,h
000 For j = 1, . . . , w do
001 Lj ←$ L ; Sj ← ∅
002 For i = 1, . . . , qe do Ri,j ←$ {0, 1}r
003 i← 0 ; b←$ {0, 1} ; K←$ {0, 1}k

proc Enc(j,N,H, ϕ) // Ig,h
100 i← i+ 1 ; c← cl(ol(ϕ), |H|)
101 If (i ≤ g) then

102 M ← EvalIHash(ϕ,L1, . . . , Lw)
103 If (i ≤ h) then Ci←$ {0, 1}c
104 If (h < i < g) then
105 Ci ← E(IHash(Ri,j ∥Lj), H,M)
106 If (i = g and b = 1) then
107 s← j ; Ci ← E(K,H,M)
108 If (i = g and b = 0) then
109 s← j ; Ci←$ {0, 1}c
110 If i > g then Ci←$ {0, 1}c
111 Sj ← Sj ∪ {(Ri,j ,H,Ci)}
112 Return (Ri,j , Ci)

proc IHash(R ∥L) // Ig,h
200 If not H[R ∥L] then
201 H[R ∥L]←$ {0, 1}k
202 Return H[R ∥L]
proc Hash(R ∥L) // Ig,h
300 If not H[R ∥L] then
301 H[R ∥L]←$ {0, 1}k
302 If (R ∥L = Rg,s ∥Ls) then bad← true
304 Return H[R ∥L]
proc Dec(j, R,H,C) // Ig,h
400 If (R,H,C) ∈ Sj then return ⊥
401 If (R ∥Lj = Rg,s ∥Ls) then
402 M ← D(K,H,C)
403 Else M ← D(IHash(R ∥Lj),H,C)
404 If M = ⊥ then V ← 0 else V ← 1
405 Return V

proc Finalize(b′) // Ig,h
500 Return bad

Figure 6: Games Ig,h for 0 ≤ h ≤ g − 1 ≤ qe − 1.

proc Initialize // J,L

000 For j = 1, . . . , w do
001 Lj ←$ L ; Sj ← ∅
002 For i = 1, . . . , qe do Ri,j ←$ {0, 1}r
003 g←$ {1, . . . , qd}
004 For d = 1, . . . , qd do K[d]←$ {0, 1}k
005 i, d← 0 ; b←$ {0, 1}
proc Enc(j,N,H, ϕ) // J,L

100 i← i+ 1 ; c← cl(ol(ϕ), |H|)
101 Ci←$ {0, 1}c ; Sj ← Sj ∪ {(Ri,j ,H,Ci)}
102 Return (Ri,j , Ci)

proc Hash(R ∥L) // J , L

200 If not H[R ∥L] then
201 H[R ∥L]←$ {0, 1}k
202 If Ind[R ∥L] then
203 bad← true ; H[R ∥L]← K[Ind[R ∥L]]
204 Return H[R ∥L]

proc Dec(j, R,H,C)) // J

300 If (R,H,C) ∈ Sj then return ⊥
301 If not Ind[R ∥Lj] then
302 d← d+ 1 ; Ind[R ∥Lj]← d
303 e← Ind[R ∥Lj]
304 If H[R ∥Lj] then

305 bad← true ; K[e]← H[R ∥Lj]

307 If (e < g) then M ← D(K[e],H,C)
308 If ((e = g) and (b = 1)) then
309 M ← D(K[e],H,C)
310 If ((e = g) and (b = 0)) then return 0
311 If (e > g) then return 0
312 If M = ⊥ then V ← 0 else V ← 1
313 Return V

proc Finalize(b′) // J,L

400 Return (b = b′)

Figure 7: Games J,L to bound second term in Equation (3).

16

We must now bound the probability that LA sets bad. Assume L1, . . . , Lw are distinct, which happens
except with probability w(w − 1)/2H∞(L)+1. Now the role of Lj as an index to H can be played by j.
Since the boxed code is omitted in game L, the tests of lines 202 and 304 need not be perfomed there.
Rather, the queries can be recorded and the tests to set bad done in Finalize. At this point L1, . . . , Lw

are not referred to by the oracles and may also be chosen in Finalize. The flag bad is set only when a
query to Hash involves Lj for some j hence is set with probability at most wqh/2

H∞(L). We conclude
that

Pr[BAD(LA)] ≤ w(w − 1)

2H∞(L)+1
+

w∑
j=1

qh
2H∞(L) − (j − 1)

≤ w(w − 1)

2H∞(L)+1
+

2wqh
2H∞(L) =

4wqh + w(w − 1)

2H∞(L)+1
. (7)

The second inequality above used the assumption, made in the theorem statement, that w ≤ 2H∞(L)−1.
From Lemma 4.7 and Equation (7) we have

Pr[FA
0,1]− Pr[FA

0,0] ≤ qd(Pr[E
B4
SE,0,1]− Pr[EB4

SE,0,0]) +
4wqdqh + w(w − 1)qd

2H∞(L) .

Apply Lemma 4.8 (Section 4.11) to B4. This yields adversary D2 such that

Pr[FA
0,1]− Pr[FA

0,0] ≤ 2qd ·Advae
SE(D2) +

4wqdqh + w(w − 1)qd
2H∞(L) . (8)

Finally let adversaryD runD1 with probability 24q2e/(24q
2
e+2qd) andD2 otherwise. From Equation (3),

Equation (6) and Equation (8) we have Equation (2), concluding the proof of Theorem 4.1.

4.5 Proof of Lemma 4.2

The proof refers to the games of Figure 3 and Figure 5. We have

1

qe

(
Pr[FA

1,1]− Pr[FA
0,1]

)
= 2Pr[GA]− 1 (9)

= 2(Pr[HA] + Pr[GA]− Pr[HA])− 1

≤ 2Pr[HA]− 1 + 2Pr[BAD(HA)] . (10)

Equation (10) follows from the Fundamental Lemma of Game Playing [14] because games G,H are iden-
tical until bad, meaning differ only in code following the setting of bad to true. To justify Equation (9)
note that when b = 1 the first g replies are real and the rest random, and when b = 0 the first g − 1
replies are real and the rest random.

Adversary B1 begins with initializations

For j = 1, . . . , w do
Lj ←$ L ; Sj ← ∅
For i = 1, . . . , qe do Ri,j ←$ {0, 1}r

i← 0 ; g←$ {1, . . . , qe}

Now B1 runs A. It replies to Enc query j,H, ϕ of A via

i← i+ 1 ; c← cl(ol(ϕ, |H|))
If (i ≤ g) then

M ← EvalIHash(ϕ,L1, . . . , Lw)
If i < g then Ci ← E(IHash(Ri,j ∥Lj),H,M)
If (i = g) then s← j ; Ci←$ Enc(H,M)

17

If i > g then Ci←$ {0, 1}c
Sj ← Sj ∪ {(Ri,j ,H,Ci)}
Return (Ri,j , Ci)

In this code, Enc is B1’s own encryption oracle which it calls with message M . B1 replies to IHash or
Hash query R ∥L via

If not H[R ∥L] then H[R ∥L]←$ {0, 1}k
Return H[R ∥L]

It replies to Dec query j, R,H,C via

If (R,H,C) ∈ Sj then return ⊥
If (R ∥Lj = Rg,s ∥Ls) then M ← Dec(H,C)
Else M ← D(IHash(R ∥Lj),H,C)
If M = ⊥ then V ← 0 else V ← 1
Return V

where Dec called in this code is B1’s own decryption oracle. When A halts with output b′, so does
adversary B1. Think of the keyK of game H as being the one underlying games KDAESE,1,1,KDAESE,0,1

for B1. Thus

2Pr[HA]− 1 = Pr[EB1
1,1]− Pr[EB1

0,1] .

4.6 Proof of Lemma 4.3

No information about Rg,s is provided to A until the g-th Enc query is answered, so the probability
that bad is set at line 106 is at most qh/2

r. Once Rg,s is released, however, A could in fact specify a ϕ
whose evaluation would result in hash query Rg,s ∥L. This difficulty is circumvented by the If statement
on line 102, which performs the evaluation of ϕ only if i ≤ g. As a result procedure IHash is not called
by Enc after the challenge. It might be called post-challenge by Dec but due to line 401 this will not
set bad. Thus IHash sets bad only with the probability that some Ri,j equals Rg,s which is at most
qew/2

r+1.

4.7 Proof of Lemma 4.4

For any g ∈ {1, . . . , qe} we claim that

Pr
[
IAg,g−1 | b = 0

]
≤ 2wqh + w(w − 1)

2H∞(L)+1
. (11)

Towards justifying this the first observation is that in Ig,g−1 all Enc queries receive random responses
when b = 0 and thus provide the adversary no information about Ls. We would like thence to conclude
that the probability of setting bad is at most qh/2

l. This is true if there are no Dec queries. To obtain
a bound in the presence of the latter we claim

Pr
[
IAg,g−1 | b = 0 and L1, . . . , Lw are distinct

]
≤ Pr[KA

g] ≤
2wqh
2H∞(L)

where game Kg is in Figure 8. Briefly, when L1, . . . , Lw are distinct, the role of Lj can be played by j as
long as queries to the two hash oracles stay different, so that Lj is no longer referred to by the oracles,
allowing us to move the setting of bad to Finalize. The probability that bad is set is then at most

qh
2H∞(L) − 1

+ · · ·+ qh
2H∞(L) − (w − 1)

≤ 2wqh
2H∞(L) ,

18

proc Initialize // Kg

000 For j = 1, . . . , w do
001 Sj ← ∅
002 For i = 1, . . . , qe do Ri,j ←$ {0, 1}r
003 i← 0 ; K←$ {0, 1}k ; T ← ∅
proc Enc(j,N,H, ϕ) // Kg

100 i← i+ 1 ; c← cl(ol(ϕ), |H|)
101 Ci←$ {0, 1}c ; Sj ← Sj ∪ {(Ri,j ,H,Ci)}
102 If (i = g) then s← j
103 Return (Ri,j , Ci)

proc Finalize(b′) // Kg

500 For j = 1, . . . , w do Lj ← 0l

501 While |{L1, . . . Lw}| < w
502 For j = 1, . . . , w do Lj ←$ L
503 If (T ∩ {L1, . . . , Lw} ̸= ∅) then
504 bad← true
505 Return bad

proc IHash(R ∥ j) // Kg

200 If not H ′[R ∥ j] then
201 H ′[R ∥ j]←$ {0, 1}k
202 Return H ′[R ∥ j]
proc Hash(R ∥L) // Kg

300 If not H[R ∥L] then
301 H[R ∥L]←$ {0, 1}k
302 T ← T ∪ {L}
303 Return H[R ∥L]
proc Dec(j, R,H,C) // Kg

400 If (R,H,C) ∈ Sj then return ⊥
401 If (R ∥ j = Rg,s ∥ s) then M ← D(K,H,C)
402 Else M ← D(IHash(R ∥ j),H,C)
403 If M = ⊥ then V ← 0 else V ← 1
404 Return V

Figure 8: Game Kg for proof of Lemma 4.4 where 1 ≤ g ≤ qe.

the last because we assumed w ≤ 2H∞(L)−1. Since L1, . . . , Lw are distinct except with probability less
than w(w − 1)/2H∞(L) we have Equation (11).

Below we will construct B2 so that

1

qe

qe∑
g=1

(
Pr

[
IAg,g−1 | b = 1

]
− Pr

[
IAg,g−1 | b = 0

])
≤ Pr[EB2

1,1]− Pr[EB2
0,1] . (12)

Assuming this we have

1

qe

qe∑
g=1

Pr
[
IAg,g−1

]
=

1

2qe

qe∑
g=1

(
Pr

[
IAg,g−1 | b = 1

]
+ Pr

[
IAg,g−1 | b = 0

])
=

1

2qe

qe∑
g=1

(
Pr

[
IAg,g−1 | b = 1

]
− Pr

[
IAg,g−1 | b = 0

]
+ 2Pr

[
IAg,g−1 | b = 0

])
≤ 1

2
Pr[EB2

1,1]−
1

2
Pr[EB2

0,1] +
1

qe

qe∑
g=1

4wqh + w(w − 1)

2H∞(L)+1

=
1

2
Pr[EB2

1,1]−
1

2
Pr[EB2

0,1] +
4wqh + w(w − 1)

2H∞(L)+1

which proves the lemma.

We now construct B2 so that Equation (12) is true. Adversary B2 begins with initializations

For j = 1, . . . , w do
Lj ←$ L ; Sj ← ∅

19

For i = 1, . . . , qe do Ri,j ←$ {0, 1}r
i← 0 ; g←$ {1, . . . , qe}

Now B2 runs A. It replies to Enc query of A via

i← i+ 1 ; c← cl(ol(ϕ), |H|)
If (i ≤ g) then

M ← EvalIHash(ϕ,L1, . . . , Lw)
If (i ≤ g − 1) then Ci←$ {0, 1}c
If (i = g) then s← j ; Ci←$ Enc(H,M)
If i > g then Ci←$ {0, 1}c
Sj ← Sj ∪ {(Ri,j ,H,Ci)}
Return (Ri,j , Ci)

where Enc in this code is B2’s own encryption oracle. It replies to IHash, Hash queries as in the
games of Figure 6. It replies to Dec query j, R,H,C via

If (R,H,C) ∈ Sj then return ⊥
If (R ∥Lj = Rg,s ∥Ls) then

V ← Dec(H,C)
Return V

Else M ← D(IHash(R ∥Lj),H,C)
If M = ⊥ then V ← 0 else V ← 1
Return V

where Dec called in this code is B2’s own decryption oracle. When A halts, adversary B2 outputs 1 if
bad was set and 0 otherwise.

4.8 Proof of Lemma 4.5

Adversary B3 will perform a hybrid based on the games of Figure 6 but with the twist that different
hybrids are differently weighted. It begins with initializations

For j = 1, . . . , w do
Lj ←$ L ; Sj ← ∅
For i = 1, . . . , qe do Ri,j ←$ {0, 1}r

i← 0 ; b←$ {0, 1} ; g←$ {1, . . . , qe} ; m←$ {1, . . . , qe}

If g = 1 it outputs 0 and halts. Else it picks h at random from {1, . . . , g − 1}. (For this to make sense
the set must be non-empty which is why we only do it if g > 1.)

Now if m ≥ g then B3 outputs 0 and halts. Else —this happens when 1 ≤ m ≤ g − 1 hence with
probability (g − 1)/qe— it runs A. It replies to Enc query (j,H, ϕ) of A via

i← i+ 1 ; c← cl(ol(ϕ), |H|)
If (i ≤ g) then

M ← EvalIHash(ϕ,L1, . . . , Lw)
If (i ≤ h− 1) then Ci←$ {0, 1}c
If (i = h) then Ci←$ Enc(H,M)
If (h < i < g) then Ci←$ E(IHash(Ri,j ∥Lj),H,M)
If (i = g and b = 1) then s← j ; Ci←$ E(K,H,M)
If (i = g and b = 0) then s← j ; Ci←$ {0, 1}c

20

If i > g then Ci←$ {0, 1}c
Sj ← Sj ∪ {(Ri,j ,H,Ci)}
Return (Ri,j , Ci)

where Enc in this code is B3’s own encryption oracle. It replies to IHash, Hash queries as in the
games of Figure 6. It replies to Dec query j, R,H,C via

If (R,H,C) ∈ Sj then return ⊥
If (R ∥Lj = Rg,s ∥Ls) then

V ← Dec(H,C)
Return V

Else M ← D(IHash(R ∥Lj),H,C)
If M = ⊥ then V ← 0 else V ← 1
Return V

where Dec called in this code is B3’s own decryption oracle. When A halts, adversary B3 outputs 1 if
bad was set and 0 otherwise. We have

Pr[EB3
1,1] =

1

qe

qe∑
g=2

1

g − 1

g − 1

qe

g−1∑
h=1

Pr
[
IAg,h−1

]
=

1

q2e

qe∑
g=2

g−1∑
h=1

Pr
[
IAg,h−1

]
and

Pr[EB3
0,1] =

1

qe

qe∑
g=2

1

g − 1

g − 1

qe

g−1∑
h=1

Pr
[
IAg,h

]
=

1

q2e

qe∑
g=2

g−1∑
h=1

Pr
[
IAg,h

]
.

Subtracting we get

Pr[EB3
1,1]− Pr[EB3

0,1] =
1

q2e

qe∑
g=2

(
Pr

[
IAg,0

]
− Pr

[
IAg,g−1

])
=

1

q2e

qe∑
g=1

(
Pr

[
IAg,0

]
− Pr

[
IAg,g−1

])
.

In the last step we were able to start the summation index at 1 rather than 2 because if g = 1 then
games Ig,0 and Ig,g−1 are the same.

4.9 Proof of Lemma 4.6

We have

1

qe

qe∑
g=1

Pr
[
IAg,0

]
≤ qe ·

(
Pr[EB3

1,1]− Pr[EB3
0,1]

)
+

1

qe

qe∑
g=1

Pr
[
IAg,g−1

]
≤ qe ·

(
Pr[EB3

1,1]− Pr[EB3
0,1]

)
+

1

2

(
Pr[EB2

1,1]− Pr[EB2
0,1]

)
+

4wqh + w(w − 1)

2H∞(L)+1
. (13)

From Lemma 4.2, Equation (4), Equation (5) and Equation (13) we have

Pr[FA
1,1]− Pr[FA

0,1]

≤ 4q2e ·
3∑

j=1

(
Pr[E

Bj

1,1]− Pr[E
Bj

0,1]
)
+

4wqeqh + w(w − 1)qe
2H∞(L) +

2qe(qh + 2qew)

2r
.

Let adversary B′
1 pick j at random in {1, 2, 3} and run Bj . Now apply Lemma 4.8 (Appendix 4.11) to

B′
1.

21

4.10 Proof of Lemma 4.7

We have

1

qd

(
Pr[FA

0,1]− Pr[FA
0,0]

)
= 2Pr[JA]− 1 (14)

= 2(Pr[LA] + Pr[JA]− Pr[LA])− 1

≤ 2Pr[LA]− 1 + 2Pr[BAD(LA)] . (15)

Equation (15) follows from the Fundamental Lemma of Game Playing [14] because games J,L are iden-
tical until bad, meaning differ only in code following the setting of bad to true. To justify Equation (14)
note that when b = 1, decryption under the first g keys yields real responses, the rest ⊥, and when
b = 0 decryption under the first g − 1 keys yields real responses, the rest ⊥. The boxed code ensures
that key assignments remain consistent with responses to Hash queries.

Adversary B4 begins with initializations

For j = 1, . . . , w do
Lj ←$ L ; Sj ← ∅
For i = 1, . . . , qe do Ri,j ←$ {0, 1}r

g←$ {1, . . . , qd}
For d = 1, . . . , qd do

If (d ̸= g) then K[d]←$K
i, d← 0

Now B4 runs A. It replies to Enc query j,H, ϕ of A via

i← i+ 1 ; c← cl(ol(ϕ), |H|)
Ci←$ {0, 1}c ; Sj ← Sj ∪ {(Ri,j ,H,Ci)}
Return (Ri,j , Ci)

B4 replies to Hash query R ∥L via

If not H[R ∥L] then H[R ∥L]←$ {0, 1}k
Return H[R ∥L]

It replies to Dec query j, R,H,C via

If (R,H,C) ∈ Sj then return ⊥
If not Ind[R ∥Lj] then d← d+ 1 ; Ind[R ∥Lj]← d
e← Ind[R ∥Lj]
If (e < g) then M ← D(K[e], H,C)
If (e = g) then

V ← Dec(H,C)
Return V

If (e > g) then M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

where Dec called in this code is B4’s own decryption oracle. When A halts with output b′, so does
adversary B4. Think of the key K[g] of game L as being the one underlying games E0,1,E0,0 for B4.
Thus

2Pr[LA]− 1 = Pr[EB4
0,1]− Pr[EB4

0,0] .

22

4.11 Splitting lemma

Lemma 4.8 Let SE = (K, E ,D) be a symmetric encryption scheme. Let B1, B2 be adversaries. Then
there are adversaries D1, D2 such that

Pr[EB1
1,1]− Pr[EB1

0,1] ≤ 2 ·Advae
SE(D1) (16)

Pr[EB2
0,1]− Pr[EB2

0,0] ≤ 2 ·Advae
SE(D2) . (17)

The running times and number of oracle queries of D1, D2 equal those of B1, B2 respectively.

Proof: We will construct D1,0, D1,1 such that

Pr[EB1
1,1]− Pr[EB1

0,0] ≤ Advae
SE(D1,0)

Pr[EB1
0,0]− Pr[EB1

0,1] ≤ Advae
SE(D1,1) .

Let D1 pick d ∈ {0, 1} at random and run D1,d and Equation (16) follows by adding the equations
above. The construction of D1,0 is straightforward. Adversary D1,1 runs B1, replying to Enc queries
by random strings and to Dec queries via its own Dec oracle, and returns 1− b′ where b′ is the output
of B1. The proof of Equation (17) is similar and is omitted.

5 Misuse Resistant Authenticated Encryption

r nonces are to be randomly chosen, with the adversary having no control over the process. But, in
real systems, if the PRNG used is broken or if the adversary gains control over the system, the nonce
can no longer be assumed to be random. To capture these conditions, we look at two misuse resistance
scenarios: MR1 security, where the nonce is not random but guaranteed to be unique each time, say
due to a bad PRNG, and MR2 security, where we make no assumptions on the nonce: the adversary
may provide any nonce it feels like. The security guarantees that can be provided under such conditions
are weaker, but we show that our scheme degrades gracefully, providing security against a large class of
functions. We note that the MR1 setting is the same as universal nonces but we make the distinction
to emphasize that we are aiming for a weaker kind of security not ruled out by our impossibility results.
Misuse resistant authenticated encryption was first considered by Rogaway and Shrimpton in [47].

Definitions. AE-security of a scheme SE under MR1 and MR2 can be defined via the same game
KIAESE and corresponding advantage statement we used above in the randomized case, with appropriate
relaxations on the nonces. When nt = mr1, KIAESE captures MR1 security, the adversary being
constrained not to repeat nonces. Setting nt = mr2 captures MR2 security, which means that the
nonces may be chosen arbitrarily by the adversary. We base the security on the type of adversary: a
MR1 adversary always chooses a fresh nonce and a MR2 adversary need not. KDM security under MR1
and MR2 is defined analogously for an adversary A ∈ A[Φ, ki].
Restrictions on Φ. Having seen that it is not possible to achieve full KDM security under MR1
or MR2 (MR1 security is the same as universal nonce security, as mentioned earlier), we now look
at classes of functions Φ that RHtE can support under MR1 and MR2. In MR1, Φ cannot contain
Hash. Otherwise, the adversary can choose ϕ = Hash(K ∥N) and set the nonce to be N , forcing the
encryption of the key under itself in the base scheme. We note that deterministic AE is a special case
of MR2, one where the adversary chooses to use a fixed nonce. In deterministic encryption schemes,
KDM security is not meaningful for all classes of functions. The adversary can learn some properties of
the key by checking the equality of returned ciphertexts either between KDM queries or between KDM
and normal queries. For example, the adversary can learn the most significant bit of the ciphertext by
comparing its encryption to the encryption of 0 and 1. Such issues do not occur in randomized KDM

23

encryption, but are unavoidable when only one ciphertext is possible for a given plaintext. As a result,
we would require that Φ only contain functions whose value cannot be guessed by the adversary (unless
they are constant) on a random key with non-negligible probability and that it be hard to pick collisions
between functions in Φ.

To formalize this requirement on Φ, we recall the notions of output unpredictability and collision
resistance for a class of functions from [10]. Let Φ consist of functions ϕ : ({0, 1}l)w → {0, 1}∗. We devise
a game OPCRΦ,w,r,t,L, which consists of a single Finalize routine to which an adversary playing the
game submits two sets (P,X), P ⊂ Φ and X ⊂ {0, 1}∗. The game generates Lj ←$ L, j ∈ {1, 2, . . . , w}.
The adversary wins if {ϕ(L1, L2, . . . , Lw) : ϕ ∈ P} ∩X ̸= ∅ or |{ϕ(L1, L2, . . . , Lw) : ϕ ∈ P}| < |P |, with
|P | < r and |X| < t. In other words, the adversary wins if two functions in P have the same value or if
one of the functions in Φ evaluates to one of the elements of X. We denote Pr[OPCRA

Φ,w,r,t,L ⇒ true] by

Advopcr
Φ,w,r,t,L(A). If the keyspace is viewed as the finite field F of size 2H∞(L), the set of polynomials over

Fn with non zero degree is an example of a Φ with good collision resistance and output unpredictability
properties.

We can now state the security of SE = RHtE[SE,L, r] under MR1 and MR2. Let A be an adversary
that makes message queries from a class Φ that does not contain Hash. We releate the security of SE
to the security of SE with the same kind of nonces.

Theorem 5.1 For every MR1 adversary A ∈ A[Φ, ki], there exists an adversary B1 such that

Advae-mr1
SE

(A) ≤ 2(qe + qd) ·Advae-mr1
SE (B1) +

2w · qh
2H∞(L) ,

where qe, qd and qh are the number of encryption, decryption and random oracle queries made by A
respectively and w is the number of keys, provided by A as the argument to Initialize.

Theorem 5.2 For every MR2 adversary A ∈ A[Φ, ki], there exist adversaries B1 and B2 such that

Advae-mr2
SE

(A) ≤ 2(qe + qd) ·Advae-mr2
SE (B1) + 2 ·Advopcr

Φ′,w,qkd,qki,L(B2) +
2w · qh
2H∞(L) ,

where qe, qd and qh are the number of encryption, decryption and random oracle queries, w is the number
of keys, provided by A as the argument to Initialize and qki and qkd are the numbers of normal and
key-dependent encryption queries made by A respectively. Φ′ = Φ− Cns(l, w).

The proofs proceed similar to the proof in the random nonce case, but are simpler since Hash is not
a part of Φ. Towards proving these two theorems, we introduce two games, G and H (Figure 9). G
is similar to KDAESE (Figure 2), except that keys Ki, which would have been generated during the
encryption and decryption routines of SE are drawn explicitly during initialization. This would not
change the game’s behavior, as long as the simulated random oracle is maintained correctly: if R[Lj ||N]
is already defined during the i-th encryption query Enc(j,N, ·, ·), Ki is updated to this value. Every
time the adversary queries Enc with a fresh nonce-key pair, a new Ki is used for encryption and R is
updated to reflect this change. Dec uses a new Ki or the appropriate existing one depending on the
nonce and key provided by the adversary. We have

Pr[KDAEA
SE
] = Pr[GA]. (18)

H and G are identical-until-bad games. To see this, we note that the difference between the two games
is in how R is maintained. Specifically, in H, R is not updated when a new Ki is used after the adversary
makes an encryption or decryption query with a new key-nonce pair. The adversary cannot notice this
unless it makes a query to Hash with a key-nonce pair that was queried already. From the code of
Hash, such a query would set bad. H does not revert Ki when R[Lj ∥N] is already defined at line 106,
but this follows after bad is set. Moreover, it can be shown that

Pr[BAD(HA, 106)] = 0.

24

proc Initialize // G,H

000 For j = 1, . . . , w do
001 Lj ←$ L ; Sj ← ∅
002 For i = 1, . . . , qe + qd do
003 Ki←$ {0, 1}k ; Ti ← ⊥
004 For x ∈ {0, 1}∗ do R[x]← ⊥
005 i← 0 ; b←$ {0, 1} ; bad← true

proc Enc(j,N,H, ϕ) // G, H

100 i← i+ 1 ; c← cl(ol(ϕ), |H|) ; p = i
101 M ← Eval(ϕ,L1, . . . , Ln)
102 For t ∈ 1, . . . i− 1 do
103 If Tt = (N, j) then p = t
104 If p = i and R[Lj ∥N] ̸= ⊥ then

105 bad← true ; Ki ← R[Lj ∥N]

106 C1 ← E(Kp,M,H,N) ; C0←$ {0, 1}c
107 Tp ← (N, j) ; R[Lj ∥N]← Kp

108 Sj ← Sj ∪ {(N,C,H)}
109 Return (N,Cb)

proc Hash(L ∥N) // G, H

200 For j ∈ 1, . . . , w do
201 If (L = Lj) then bad← true
202 If R[L ∥N] = ⊥ then R[L ∥N]←$ {0, 1}k
203 Return R[L ∥N]

proc Dec(j,N,H,C) // G,H

300 If (N,H,C) ∈ Sj then return ⊥
301 For t ∈ 1, . . . i− 1 do
302 If Tt = (N, j) then
303 M ← D(Kt, N,H,C)
304 If M = ⊥ then V ← 0 else V ← 1
305 Return V
306 i← i+ 1 ; Ti ← (N, j)

307 R[Lj ∥N]← Kp

308 M ← D(Ki, C,N,H)
309 If M = ⊥ then V ← 0 else V ← 1
310 Return V

proc Finalize(b′) // G,H

400 Return (b′ = b)

Figure 9: Games G,H for the proofs of Theorem 5.1 and Theorem 5.2. A box around the name of a
game next to a procedure means the boxed code of that procedure is included in the game.

Line 106 checks if R at a fresh nonce key pair had been already defined. The only way this could have
happened is that A queried Hash at this point. But such a query would have already set bad in Hash.
This is why we require Hash to be excluded from Φ; otherwise, setting bad at 106 would be trivial.
In H, the keys Ki are not used anywhere else except in the E and D calls, which makes it possible to
simulate H if access to an encryption and decryption oracle is provided. We show that if A is a MR1
adversary, there exists a MR1 adversary for SE, B1, running Initialize with qe + qd keys such that

Advae-mr1
SE (B1) ≥ Pr[HA|b = 1]− Pr[HA|b = 0]. (19)

We note that B1 is a KIAE adversary, but with multiple keys. The same equation holds in the MR2
case. Given an adversary A playing H, an adversary B1 can be constructed that simulates A to play
KIAESE,qe+qd . B1 chooses w l-bit strings L1, L2, . . . Lw randomly and runs A with these as the keys. The
keys K1, . . .Kqe+qd in H correspond to the keys in the KIAESE game with qe+qd keys. B1 implements a
random oracle Hash that A can query. To handle an encryption query with Lj , B1 maps Hash(Lj ∥Ni)
to key i in KIAESE (although B1 does not know those keys’ values) where Ni is the ith unique nonce.
This way, B1 can forward all the encryption and decryption queries with Ki in H to the Enc and Dec
oracles with key i in KIAESE, after evaluating the function. Finally, B1 outputs 1 if A outputs 1. B1

does not have to do anything else with Ki and can simulate H correctly. Furthermore, B1 uses the
same nonces as those provided by A. B2 is similar to B1 but also keeps track of bad. From the previous
arguments, to do so, B2 only needs to monitor queries to Hash and check if any such query contains
one of Li as a prefix. It outputs 1 if bad was set.

Advae-mr1
SE (B2) ≤ Pr[BAD(HA)|b = 1]− Pr[BAD(HA)|b = 0]. (20)

Now we bound the probability of bad getting set in H when b = 0. In the MR1 case, each encryption
query gets a fresh nonce and hence returns a randomly generated ciphertext. A learns nothing about

25

the keys Li during the interaction. It follows that

Pr[BAD(HA)|b = 0] ≤ n · qh
2H∞(L) . (21)

This argument would not hold in the MR2 case, however. The adversary could repeat the same nonce
and the previous discussion about deterministic encryption would apply. To handle this, let us divide
Φ into Const = Cns(l, w), the set of constant functions and Φ′ = Φ − Const. Rather than bound the
probability of setting bad combinatorially, we are required to relate it to Φ. We show that there exists
an adversary B3 for every MR2 adversary A such that

Pr[BAD(HA)|b = 0] ≤ Advopcr
Φ′,w,qkd,qki,L(B3) +

n · qh
2H∞(L) . (22)

where qki and qkd are the numbers of normal and key-dependent encryption queries and qh is the number
of random oracle queries made by A respectively. Let E denote the event that two of A’s queries produce
the same ciphertext. A does not learn anything about any of the keys unless two of its queries produce the
same ciphertext since all the ciphertexts are random. Consequently, Pr[BAD(HA)|b = 0 ∧ ¬E] = n·qh

2H∞(L) .
Let B3 be an adversary playing OPCRΦ′,w,qkd,qki,L. B3 simulates a random oracle, returns random
ciphertexts for any Enc queries made by A (while tracking them) and ⊥ for any Dec queries. This is
an exact simulation of a H execution when b = 0 till A makes two Enc queries that would have returned
the same ciphertext (A would have caused E). But such a pair of queries would mean that either two
queries A made with functions from Φ′ have collided or A guessed the value of a function in Φ′. Either
way, this would correspond to a win for B3 in its OPCRΦ′,n game.

Pr[E] ≤ Advopcr
Φ′,w,qkd,qki,L(B3)

Pr[BAD(HA)|b = 0] ≤ Pr[E] + Pr[BAD(HA)|b = 0 ∧ ¬E]

≤ Advopcr
Φ′,w,qkd,qki,L(B3) +

n · qh
2H∞(L) .

B3 runs in time comparable to A. Returning to the proof of Theorem 5.1 and Theorem 5.2, we have
shown that G and H are identical-until-bad, H can be simulated and bounded Pr[BAD(HA)|b = 0]. We
can construct a B (Lemma 5.3) running in time comparable to B1 and invoking Initialize with just
one key instead of qe + qd keys, such that

Advae-mr1
SE (B1) ≤ (qe + qd)Advae-mr1

SE (B).

Combining this with equations (18, 19, 20, 21 and 22) proves the statement of the theorem.

Advae-mr1
SE

(A) = Pr[GA|b = 1]− Pr[GA|b = 0]

≤ Pr[HA|b = 1]− Pr[HA|b = 0] + Pr[BAD(HA)]

≤ Pr[HA|b = 1]− Pr[HA|b = 0] + 2Pr[BAD(HA)|b = 0]

+ Pr[BAD(HA)|b = 1]− Pr[BAD(HA)|b = 0]

≤ Advae-mr1
SE,qe+qd

(B1) +Advae-mr1
SE,qe+qd

(B2) +
2n · qh
2H∞(L)

≤ 2(qe + qd)Advae-mr1
SE (B) +

2w · qh
2H∞(L) .

The MR2 case follows in a similar manner, with the additional B3 term. We note that the running time
of B1 depends on the key dependent queries made by A since B1 has to evaluate them.

26

proc Initialize(w)

For i = 1, . . . , w do Ki←$K ; Si ← ∅
s←$ {1, 2, . . . , w} ; b←$ {0, 1}
proc Enc(i,N,H,M)

If (s+ b ≤ i) then C ← E(Ki, N,H,M)
Else c← cl(|M |, |H|) ; C←$ {0, 1}c
Si ← Si ∪ {(H,C)} ; Return C

proc Dec(i,H,C)

If (H,C) ∈ Si then Return ⊥
If (s+ b ≤ i) then M ← D(Ki, H,C)
Else M ← ⊥
If M = ⊥ then V ← 0 else V ← 1
Return V

proc Finalize(b′)

Return (b′ = b)

Figure 10: Game G for Lemma 5.3.

Hash Scheme
RHtE Relative Running Time

KeySetup 5KB 50KB 500KB

SHA256

CCM 2.73 1.11 1.01 1.00
EAX 1.94 1.10 1.01 1.00

GCM-2k 1.66 1.10 1.02 1.00
GCM-64k 1.19 1.09 1.02 1.00

Figure 11: Table showing relative slowdown of RHtE with SHA256 in Crypto++ for common AE
schemes and different message sizes. KeySetup is the relative slowdown in the keysetup phase alone.
GCM-2k and GCM-64k correspond to GCM implemented with tables of corresponding size.

Lemma 5.3 For every adversary A, there exists B running in comparable time such that

Advae-mr1
SE (A) ≤ w ·Advae-mr1

SE (B).

where w is the number of keys, provided by A to Initialize.

Proof: We consider a game G (Figure 10) which runs a hybrid between KIAE with b = 0 and b = 1.
We have

1

w
Advae-mr1

SE (A) = 2Pr[GA]− 1.

A KIAESE adversary B can be constructed as follows: B picks a random s < n, generates s keys to
handle the encryption and decryption queries with the first s keys, forwards queries with key s + 1 to
its own Enc and Dec oracles and returns returns random answers and ⊥ to encryption and decryption
queries with other keys. Clearly, 2 Pr[GA] − 1 ≤ Advae-mr1

SE (B), proving the claim. The proof for the
MR2 case is similar.

6 Implementation results

We recall that RHtE works on an existing AE scheme and a hash function. We ran RHtE with common
AE schemes like CCM, EAX and GCM (with tables of 2k and 64k entries) to measure the slowdown
relative to the original schemes, using a truncated version of SHA256 as the hash function and setting
l = r = k = 128. We ran these tests using Crypto++ [25], a standard cryptography library. The
measurements in Figure 11 correspond to a Intel Core i5 M460 64-bit CPU running at 2.53 GHz with
code compiled using g++ -O3 for data sizes small enough to fit in the level 2 cache. For our purposes, the
relative performance of these routines is of more importance. From Figure 11, we can observe that even
at modest message sizes of around 50KB, the slowdown due to RHtE is no more than 1%. Futhermore,
if algorithms like GCM are implemented with large tables and in turn a lot of precomputation in the
key-setup phase, the RHtE overhead is even less noticeable.

27

References

[1] P. Abeni, L. Bello, and M. Bertacchini. Exploiting DSA-1571: How to break PFS in SSL with EDH, July
2008. http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html. (Cited on page 4.)

[2] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular encryption.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 403–422. Springer, May 2010. (Cited
on page 4.)

[3] B. Applebaum. Key-dependent message security: Generic amplification and completeness. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 527–546. Springer, May 2011. (Cited on page 1,
4.)

[4] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryp-
tion based on hard learning problems. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
595–618. Springer, Aug. 2009. (Cited on page 1, 4.)

[5] M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent messages. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 506–523. Springer, Dec. 2008. (Cited on page 4.)

[6] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks - brsim/uc-
soundness of dolev-yao-style encryption with key cycles. Journal of Computer Security, 16(5):497–530, 2008.
(Cited on page 1, 2, 4, 7.)

[7] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In H. Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444. Springer, May 2010. (Cited on page 1,
4.)

[8] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key
encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 232–249. Springer, Dec. 2009. (Cited on page 4.)

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In 38th FOCS, pages 394–403. IEEE Computer Society Press, Oct. 1997. (Cited on page 1, 6.)

[10] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, May
2003. (Cited on page 4, 24.)

[11] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, Dec. 2000. (Cited on page 1, 2, 6, 7.)

[12] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, May 1994. (Cited on page 4.)

[13] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in
plaintexts for efficient cryptography. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 317–330. Springer, Dec. 2000. (Cited on page 6.)

[14] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. (Cited on page 5, 17, 22.)

[15] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. K. Roy and W. Meier, editors,
FSE 2004, volume 3017 of LNCS, pages 389–407. Springer, Feb. 2004. (Cited on page 1.)

[16] N. Bitansky and R. Canetti. On strong simulation and composable point obfuscation. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 520–537. Springer, Aug. 2010. (Cited on page 1, 4.)

[17] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer,
Aug. 2003. (Cited on page 1, 2, 3, 4, 7, 8, 12.)

28

[18] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision diffie-hellman.
In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer, Aug. 2008. (Cited
on page 1, 4.)

[19] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup indis-
tinguishability - (or: Quadratic residuosity strikes back). In T. Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 1–20. Springer, Aug. 2010. (Cited on page 1, 4.)

[20] Z. Brakerski, S. Goldwasser, and Y. T. Kalai. Black-box circular-secure encryption beyond affine functions.
In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 201–218. Springer, Mar. 2011. (Cited on page 1,
4.)

[21] D. R. Brown. A weak randomizer attack on RSA-OAEP with e=3. IACR ePrint Archive, 2005. (Cited on
page 4.)

[22] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor, EUROCRYPT 2009, volume
5479 of LNCS, pages 351–368. Springer, Apr. 2009. (Cited on page 1, 4.)

[23] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer, May 2001. (Cited on page 1, 4.)

[24] R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and point obfuscation. In
D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 52–71. Springer, Feb. 2010. (Cited on page 1,
4.)

[25] W. Dai. Crypto++ library. http://www.cryptopp.com. (Cited on page 27.)

[26] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the windows random number generator. In
P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 476–485. ACM Press, Oct.
2007. (Cited on page 4.)

[27] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption.
Journal of Cryptology, 17(2):81–104, Mar. 2004. (Cited on page 4.)

[28] I. Goldberg and D. Wagner. Randomness in the Netscape browser. Dr. Dobb’s Journal, January 1996. (Cited
on page 4.)

[29] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984. (Cited on page 1, 4, 6.)

[30] M. González. Cryptography in the Presence of Key Dependent Messages. PhD thesis, Florida Atlantic
University, 2009. (Cited on page 5.)

[31] M. Green and S. Hohenberger. CPA and CCA-secure encryption systems that are not 2-circular secure.
Cryptology ePrint Archive, Report 2010/144, 2010. http://eprint.iacr.org/. (Cited on page 4.)

[32] Z. Gutterman and D. Malkhi. Hold your sessions: An attack on Java session-id generation. In A. Menezes,
editor, CT-RSA 2005, volume 3376 of LNCS, pages 44–57. Springer, Feb. 2005. (Cited on page 4.)

[33] I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption. In O. Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 202–219. Springer, Mar. 2009. (Cited on page 4.)

[34] S. Halevi and H. Krawczyk. Security under key-dependent inputs. In P. Ning, S. D. C. di Vimercati, and
P. F. Syverson, editors, ACM CCS 07, pages 466–475. ACM Press, Oct. 2007. (Cited on page 5.)

[35] D. Hofheinz and D. Unruh. Towards key-dependent message security in the standard model. In N. P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 108–126. Springer, Apr. 2008. (Cited on page 1,
4.)

[36] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation. In
B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299. Springer, Apr. 2000. (Cited on page 2,
6.)

29

[37] T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption with KDM
security. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 507–526. Springer,
May 2011. (Cited on page 1, 4.)

[38] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (gcm) of operation.
In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355.
Springer, Dec. 2004. (Cited on page 1.)

[39] M. G. Muñiz and R. Steinwandt. Security of signature schemes in the presence of key-dependent messages.
Tatra Mt. Math. Publ., 47:15–29, 2010. (Cited on page 5.)

[40] M. Mueller. Debian OpenSSL predictable PRNG bruteforce SSH exploit, May 2008.
http://milw0rm.com/exploits/5622. (Cited on page 4.)

[41] K. Ouafi and S. Vaudenay. Smashing SQUASH-0. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of
LNCS, pages 300–312. Springer, Apr. 2009. (Cited on page 4.)

[42] K. G. Paterson and G. J. Watson. Plaintext-dependent decryption: A formal security treatment of SSH-
CTR. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 345–361. Springer, May 2010.
(Cited on page 5.)

[43] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS 02, pages
98–107. ACM Press, Nov. 2002. (Cited on page 1, 2, 6, 7.)

[44] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC.
In P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31. Springer, Dec. 2004. (Cited on
page 1.)

[45] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, editors, FSE 2004, volume
3017 of LNCS, pages 348–359. Springer, Feb. 2004. (Cited on page 1, 5, 6.)

[46] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption. In ACM CCS 01, pages 196–205. ACM Press, Nov. 2001. (Cited on page 1.)

[47] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer, May / June 2006. (Cited on
page 1, 2, 5, 6, 7, 23.)

[48] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Undated manuscript. Submission
to NIST, available from their web page, June 2002. (Cited on page 1.)

[49] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). RFC 3610 (Informational),
Sept. 2003. (Cited on page 1.)

[50] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: Results from
the 2008 Debian OpenSSL vulnerability. In IMC. ACM, 2009. (Cited on page 4.)

30

