
Analysis of the SSH Key Exchange Protocol

Stephen C. Williams

Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB, United Kingdom,

williams@cs.bris.ac.uk

Abstract. We provide an analysis of the widely deployed SSH protocol’s key exchange
mechanism. We exploit the design of the SSH key exchange to perform our analysis
in a modular manner. First, a shared secret key is obtained via a Diffie-Hellman key
exchange. Next, a transform is applied to obtain the application keys used by later
stages of SSH. We define models, following well-established paradigms, that clarify the
security provided by each type of key. Previously, there has been no formal analysis
of the SSH key exchange protocol. We provide a modular proof of security for the
SSH shared secret and application keys. We show that although the shared secret
key exchanged by SSH is not indistinguishable, the transformation then applied yields
indistinguishable application keys. Our proofs use random oracles to model the hash
function used within SSH.

Keywords: SSH; key exchange; security proof

1 Introduction

The SSH protocol is one of the most widely deployed secure network protocols, along-
side TLS and IPSec. It was originally designed to replace remote login protocols which
sent unprotected information over the network, e.g. Telnet. Since then, SSH has be-
come a general purpose tool for securing Internet traffic. Currently, SSH Version 2
is the most recent specification for SSH, defined in a collection of RFCs [22–25], and
the version we consider throughout this paper.

The SSH key exchange protocol, specified in [24], is the component of SSH re-
sponsible for parties agreeing upon the keys used by the various primitives later in
the SSH protocol. The key exchange stage is the first part of the SSH algorithm to
run, and occurs in the clear, as no session keys have yet been established to secure
communication. Before describing our results we first recall the structure of the SSH
key exchange protocol (Figure 1). The protocol proceeds in three stages. Stage 1 is
the “Hello” phase, where first an identification string, I, is sent to initiate the pro-
tocol, followed by a list of supported algorithms, X. This algorithm list details the
supported Diffie–Hellman key groups, signature schemes and certificate formats used
by the key exchange, along with the symmetric encryption schemes, MAC and com-
pression functions used once keys are established. Next, Stage 2 runs and the parties
agree upon a shared secret key, s. This is done via a Diffie–Hellman based key ex-
change. The server confirms its identity to the client by sending its public key, pkS ,
verified by some certificate authority, sigCA(pkS), and a signature of the digest, h, of
the message transcript and shared secret key. The session identifier sid is set to be the
digest, h. Notice as the shared secret key is required when computing the digest, the
protocol provides explicit key confirmation to the client. Hence, the protocol is not

a vanilla (signed) Diffie–Hellman key exchange. Finally in Stage 3, the shared secret
key, session identifier and digest are used to generate six application keys, computed
via ki = Hi(s||h||sid). For SSH, Hi is the SHA-1 hash function, and for each value of
i, a different ASCII character is inserted at a well defined point within the plaintext.
The application keys are used as an initial IV, encryption key and integrity key, with
two sets for each; one for the client to server, and one for the server to client. Anal-
ysis on the use, but not establishment, of the application keys has been previously
undertaken [4, 20], and is not part of our work.

Note, we assume the existence of some PKI which authenticates public keys during
Stage 2 of the key exchange. Thus we do not consider PKI attacks.

Client Server

1. Hello Phase IC-
IS�

rC
$←− {0, 1}128

XC = (rC ||algsC) XC-

rS
$←− {0, 1}128

XS� XS = (rs||algsS)

2. Shared Secret a
$←− {2, . . . , q − 1}

Exchange A← ga

A -

b
$←− {1, . . . , q − 1}

B ← gb

s← Ab

h← H0(IC ||IS ||XC ||XS ||
pkS ||A||B||s)

σ ← sigskS
(h)

D = (pkS , sigCA(pkS), B, σ)
D�

s← Ba

h← H0(IC ||IS ||XC ||XS ||
pkS ||A||B||s)

If verpkS
(h, σ) = false then abort

Set sid = h Set sid = h

3. Application Key For i = {1, . . . , 6} For i = {1, . . . , 6}
Generation ki ← Hi(s||h||sid) ki ← Hi(s||h||sid)

Fig. 1. The SSH key exchange protocol. The connection string of the client (resp. server) is given by
IC (resp. IS). The algorithms supported the client (resp. server) are denoted by algsC (resp. algsS).
Hash functions are denoted Hj for j = {0, . . . , 6}, and modelled as random oracles.

The model we use to analyse the SSH key exchange closely follows that of Morris-
sey, Smart and Warinschi (MSW) [18], and we use a similar methodology. We analyse
the protocol in a modular manner, by first giving a model for the security of the
shared secret key. The shared secret key is clearly not indistinguishable due to the
signature sent during Stage 2. Therefore, we only require security of the shared secret
in the one-way sense, i.e. the adversary has to recover the entire key. This is based
on a weakened version of the Blake-Wilson, Johnson and Menezes (BJM) model [8]
and is used by MSW including an adaptation to reflect the situation where only
the server possesses a certified public key. Thus, the server is authenticated to the

client; however the converse is not true or required. Furthermore, SSH bases part-
nering around session identifiers established during a run of the protocol. Therefore,
unlike the work of MSW, we do not use notions of matching conversations [6] and
instead base our notions of partnering around the session identifiers, using techniques
of Bellare, Pointcheval and Rogaway (BPR) [5]. The combination of these various
approaches allows us to give a model which more closely mimics the real world than
any previous model.

The key exchange of SSH encodes its information (excluding the identification
strings, IC and IS) using the Binary Packet Protocol (BPP), defined in [24]. A BPP
packet is a concatenation of packet length, padding length, the payload, random
padding and a MAC. In Figure 1 we detail only information contained within the
payload field. During the key exchange, the MAC is always omitted, and all data is
sent unencrypted. Once keys are established, the packet (excluding the MAC) are
encrypted. If one were to define partnering directly around matching conversations,
then a trivial attack exists. An adversary is clearly able to alter the random padding;
the padding is never checked at the key exchange stage, and such alterations would
go unnoticed by the parties. However, the padding is never used by the protocol, so
this form of tampering does not affect security of the keys. Again, by using session
identifiers to define partnering, this trivial attack is irrelevant.

The model we give for application key security closely follows a combination of
the BJM and MSW models. We now require key indistinguishability as opposed to
just one-way key security. Here, the adversary must decide whether it is given the real
exchanged session key, or a random session key. Again, we use the previously described
adaptations to the BJM model, whereby partnering is based on the adaptations of
BPR, and we are only concerned with an authenticated server as introduced by MSW.

Our results reduce the security of the shared secret key to that of the decisional
Diffie–Hellman (DDH) problem. This is a novel proof technique to many given in the
literature, who tend to reduce to a gap-DH assumption, whereby the adversary is
given access to a DDH oracle [17, 18]. Such gap-DH style proofs are unable to cope
with the shared secret key being part of the signed digest sent from the server to the
client. The modular nature of our proof shows that any protocol providing one-way
key security, along with appropriate server authentication, may replace the shared
secret key exchange stage of the SSH protocol. The transform given to generate the
application keys will then yield indistinguishable keys.

Our proofs use random oracles to model the hash function used as part of the
SSH key exchange protocol. As such, the standard caveats of using the random oracle
model apply.

1.1 Related Work

Surprisingly, there has been no formal security analysis of the key exchange stage of
the SSH protocol. Instead, research has focused on the later stages of the protocol
where keys are already established. We call this later stage of SSH the “application
layer”. The first formal security analysis of the application layer of SSH was under-
taken by Bellare, Kohno and Namprempre (BKN) [4]. Their work focused on the
Binary Packet Protocol (BPP) of SSH and assumed keys had already been securely
established. The authors particularly focused on details such as the mode of operation
and use of initialization vectors. Several possible weaknesses in the BPP were found,

including one first reported by Dai [14]. The proposed fixes to the BPP were shown
to be provably secure.

However, Albrecht et al. exposed various plaintext-recovering attacks against SSH
[2]. These attacks were possible because the original security analysis of BKN ne-
glected to consider the underlying data structure used by the SSH BPP in their
security proofs. Later, Paterson and Watson provided a formal security treatment of
the application layer of SSH [20], focusing specifically on improving the model of BKN
to avoid the pitfalls exposed by Albrecht et al. Although the key exchange of SSH
does use the SSH BPP to format messages sent over the network, the key exchange
is undertaken in the clear, so all elements of the SSH packet (length fields, payload,
padding) are known to an adversary. This makes the plaintext-recovery attacks of
Albrecht et al. not applicable in our setting.

Interestingly, Diffie et al. provided several different attacks against various Diffie–
Hellman based key exchange schemes [15]. The shared secret key of SSH is computed
via Diffie–Hellman key exchange. However, it does not succumb the attacks of [15].
This is largely due to the server signing the (digest of the) message transcript and the
computed Diffie–Hellman key. Including the key also provides the client with explicit
key confirmation.

The seminal work of Bellare and Rogaway (BR) gave the first model for key
exchange [6, 7]. This work was in part driven by results such as those of Diffie et al.
[15]. Following this initial work, there have been a number of other models proposed
for key exchange in various applications and environments [1, 3, 5, 8–12, 17–19, 21].
These models largely fall within two groups: Those based upon simulation [3, 12, 21],
and those based upon games [5, 8, 9, 11, 17, 18]. Typically the security goal is that of
key indistinguishability, where an adversary must determine if it is given the real
exchanged session key, or a random key. Our model falls into the category of game
based models, which, it has been argued, have certain drawbacks [11], but also several
benefits over simulation based techniques. An analysis of SSH in a simulation based
setting where one achieves composition [12] may prove beneficial. However, one must
take care on the use of UC session identifiers which must be unique and predetermined
[11, 13]. The SSH protocol actually defines these session identifiers during the course
of the protocol, so whether the UC framework could be adapted to reflect this is
unknown.

We use the techniques of various other game based models in our work. In [5] Bel-
lare et al. introduce a notion of partnering based upon session identifiers. A session
identifier is computed according to the protocol algorithm being run. If two sessions
share the same session identifier, they are considered to be partners. An alternative
to this would be to re-use the original definitions of [6], where the notion of match-
ing conversations is formally defined. However, the SSH protocol explicitly defines a
session identifier as part of its execution, so we take this more natural approach for
our models. By slightly tweaking the results presented here it is simple to show for
SSH, if two sessions have agreed upon the same session identifier then a matching
conversation has occurred. This assumes one ignores the previously discussed issues,
and only considers the payload field of the SSH BPP.

The execution and security models presented here are close to those defined by
Morrissey, Smart and Warinschi (MSW) [18] for TLS/SSL. They model the setting
where only one party involved in the execution (namely the server) has a certified pub-

lic key. The MSW model uses matching conversations, so we adapt their techniques to
use session identifiers. The execution model of MSW, and indeed our work, is strongly
related to work by Blake-Wilson, Johnson and Menezes (BJM) and similar models [8,
9, 17]. The BJM model of [8] extended the original work of Bellare and Rogaway [6] to
the public key setting for authenticated key agreement (AK) and authenticated key
agreement with key confirmation (AKC). In [17], Kudla and Paterson give a modular
proof technique to show the security of a key agreement protocol relative to some
gap assumption. Moreover, they propose how one can transform a one-way security
definition into an indistinguishability definition via a generic transform [16, 17]. This
technique is adapted by MSW [18] and we adopt a similar method to these.

A model closely related to those discussed is that of Canetti and Krawczyk [11].
This model contains an additional corruption capability, whereby the adversary may
receive the entire internal session state of a session. In particular, the adversary may be
given the ephemeral secrets used in sessions. This query is the only essential difference
to the work of Bellare and Rogaway as shown by Choo et al. [13]. The shared secret
key of SSH can be shown to be insecure when given an adversary with such powerful
corruption capabilities. It may be possible to show security of the shared secret key
by assuming secure erasures as done for similar protocols [11, 12].

2 Basic Security Model

The security models used in this paper are based on the earlier work of Bellare et al.
[3, 6, 7], refined by BJM [8] and adapted by BPR [5] and MSW [18].

We now give a general description of the common elements of the models required.
Later we specialise this general model for the different tasks required of the various
keys used in the SSH protocol.
Registered and unregistered users. We model the setting where there are two
kinds of users. Registered users (with identities in some set U) and unregistered users
(with identities in some set U ′). Each user in U ∈ U has associated to it some public
key pkU and the corresponding secret key skU . The set U is used to model the set of
servers of the SSH protocol, and the set U ′ of clients which do not have long term
asymmetric keys.
Execution Model. We consider only two party interactive protocols, that is pro-
grams in which an initiator and responder communicate over some insecure communi-
cation channel. Each party runs some program, where messages are received from the
communication channel, a response is computed which is output onto the communica-
tion channel. We call one execution of the program of the initiator (resp. responder)
the initiator session (resp. responder session). Each party may engage in multiple,
concurrent, initiator and responder sessions.

As standard we assume the adversary is an arbitrary probabilistic polynomial
time algorithm with complete control of the communication channel. That is, the
adversary intercepts all messages and can respond with any message of its choice. We
model this by providing the adversary with access to oracles corresponding to some
(initiator or responder) sessions of the protocol.
Oracle state. Each oracle maintains internal state consisting of the variables of the
protocol, along with additional data required to model various security requirements
required. We generally ignore the details of the exact local variables required and

overlook the exact details of execution. For all our models we require the following
variables within the oracle state:

– τO ∈ {⊥} ∪ {0, 1}∗ – The transcript of all messages sent and received by the
oracle O. Additional (non-secret) information related to the execution may also
be added to the transcript.

– roleO ∈ {⊥, initiator, responder} – Stores whether this session is an initiator
session, or responder session.

– pidO ∈ {⊥} ∪ U ∪ U ′ – The identity of the intended partner session.
– sidO ∈ {⊥}∪{0, 1}∗ – The session identifier is used to define the “partner” session.
– sO ∈ Sss ∪ {⊥} – The shared secret key derived by the protocol. For SSH the set
Sss is a group [24] and we require that |Sss| ≥ 2η. Whenever γO 6= accepted we
assume that sO =⊥.

– γO ∈ {running, accepted, rejected} – Details whether the execution for oracle O
has finished successfully or not. If γO = running then we assume execution has
not yet finished, otherwise if γO = accepted then execution is assumed to have
finished correctly or γO = rejected if execution finishes unsuccessfully. We assume
if γO = accepted then sidO 6=⊥.

– δO ∈ {uncorrupted, corrupted} – This flag shows if this session has been corrupted
by the adversary.

– ωO ∈ {unrevealed, revealed} – Denote whether the shared secret key has been
revealed by the adversary.

When execution of a game begins, an initialisation phase is run. This generates all
long term keys for identities in U , and the above variables are initialised so that τO,
roleO, pidO, sidO and sO are set to be undefined, γO ← running, δO ← uncorrupted
and ωO ← unrevealed.

Queries. Following the initialisation of the game, the adversary takes control of the
execution and begins issuing queries defined as follows:

– NewSession(U, role) – This establishes a new session of the protocol for the user
U ∈ U ∪U ′ where role ∈ {initiator, responder}. We write Π i

U for the i-th session
of user U .

– Send(O,msg) – Simulate the message msg being sent to an oracle O. This query
returns a response computed according to the session maintained by oracle O.

– Corrupt(U) – This corrupts an identity where U ∈ U . The long term secret skU is
returned and the following actions are taken. For all sessions O = Π i

U with i ∈ Z,
where γO = running, the value of δO is set to corrupted. No further action between
these oracles and the adversary may take place. Furthermore the adversary may
not make any NewSession(U, role) queries. We say that the party U has been
corrupted.

– Reveal(O) – If γO = accepted, the adversary receives the shared secret sO of
the oracle O. The value ωO is set to revealed. We say that the session has been
revealed and the adversary is unable to make further queries to this session. If
γO 6= accepted then this query does nothing.

– Check(O, s) – Allows the adversary to check whether it knows the shared secret
held by the oracle O. For O = Π i

U with i ∈ Z and s ∈ Sss, if γO = accepted and
s = sO then true is returned. Otherwise false is returned to the adversary.

At the end of a session’s execution the role, partner ID, and oracle state (excluding
the shared secret key) are added to the transcript. The execution of the game halts
whenever the adversary decides to terminate execution.

3 Shared Secret Exchange

In this section we specialise the basic security model to analyse the security of the
shared secret key of the SSH protocol. The exchange of this shared secret key is shown
in Step 2 of Figure 1. The shared secret key is used to generate the application keys.

We require only weak security for the shared secret key. Specifically, we require
that an adversary be unable to fully recover the shared secret key for a pair of “honest”
sessions. The adversary is able to adaptively corrupt parties, reveal the shared secret
key of sessions and may check to see if some string s is equal to the shared secret key
exchanged for that session.

Only a certain type of oracle may be considered as a valid target for the adversary,
to avoid trivial breaks of the scheme. Such oracles are called “fresh”, and these are
uncorrupted, unrevealed oracles which have successfully completed their execution
whose partners have not been corrupted or revealed.

Definition 1. Fresh Shared Secret Key Oracle A shared secret key oracle O is said
to be fresh is all the following conditions hold:

(1) δO = uncorrupted, (2) ωO = unrevealed, (3) γO = accepted, (4) ∃V ∈ U such
that V is uncorrupted and pidO = V , and (5) no revealed oracle O∗ = Π i

V has session
identifier sidO∗ = sidO.

Recall, for SSH only the server is authenticated to the client. Hence, in condition (4)
notice that the definition specifies an oracle is only considered to be fresh if its partner
session is a registered user (i.e. a server). Therefore, we do not examine the security
of any session where an adversary has caused two unregistered users to share a key.
We also note it is perfectly possible under this definition for two servers to engage in
communication, as may occur in reality.

Security game for shared secret keys. We define the security of shared secret
key protocol Π via the game ExecOW-SS

Π,A (η) between an adversary A and a challenger
C as follows:

1. The challenger, C, generates the long term public/private keys for each user U ∈ U
by running the appropriate key generation algorithm on the security parameter
η. The public keys are returned to A.

2. The adversary, A, is allowed to make as many NewSession, Send, Corrupt, Reveal
and Check queries as it wishes.

3. At some point adversary A outputs a pair (O∗, s∗), where O∗ is some shared secret
oracle and s∗ ∈ Sss. Adversary A now terminates.

We say that the adversary wins if its output (O∗, s∗) is such that O∗ is fresh and
sO = s∗. In this case the output of ExecOW-SS

Π,A (η) is set to 1. Otherwise the output of
the game is set to 0. We give the advantage of A in winning the ExecOW-SS

Π,A game by

AdvOW-SS
Π,A (η) = Pr

[
ExecOW-SS

Π,A (η) = 1
]
.

The probability is taken over all random coins used in the execution.
The following definition describes the situation when some party U (a client or

server) has engaged in a session with some party V (a server only), which has suc-
cessfully finished execution, but there is no session of V which is partnered with U .
This is used to ensure a server is authenticated to the client.

Definition 2. Let NoPartneringΠ,A(η) be the event that at some point during the
execution of ExecOW-SS

Π,A (η) for two uncorrupted parties U ∈ U ∪ U ′ and V ∈ U there
exists an oracle O = Π i

U for i ∈ Z with pidO = V , γO = accepted, and yet no
oracle O∗ = Πj

V for j ∈ Z has session identifier sidO∗ = sidO and shared secret key
sO∗ = sO.

The following definition tells us that a protocol is a secure shared secret key
protocol. That is the shared secret key is secret in the one-way sense, and no honest
party will incorrectly accept a key.

Definition 3. Shared Secret Key Security A shared secret key protocol is secure if it
satisfies all the following:

– Correctness: At the end of execution of a benign adversary, which correctly relays
messages, any two oracles which share the same session identifier hold the same
shared secret key, which is distributed uniformly at random over the key space Sss.

– Key secrecy: A shared secret key protocol Π satisfies the OW-SS key secrecy if
for any p.p.t adversary A, its advantage AdvOW-SS

Π,A (η) is a negligible function in
the security parameter.

– No Partnering: For any p.p.t adversary A, the probability the NoPartneringΠ,A(η)
event occurs is a negligible function in the security parameter.

The security requirements given here are weaker than the more standard require-
ments of key exchange protocols [5, 6, 8], despite the adversary having similar powers
to existing models. Since a signature is sent from the server to the client, as the final
step of the shared secret key exchange, key indistinguishability of the shared secret
key is not achieved.

Note, the conditions on correctness and no partnering on the shared secret key
together imply implicit key confirmation. Furthermore, the definitions given provide
security against man-in-the-middle attacks and unknown-key-share attacks.

The model here does not consider the secure establishment of a shared secret
key between two unregistered parties. Morrissey et al. [18] give an adaptation to the
standard definition of matching conversations [6], so only one party in the execution,
i.e. the server, is required to hold a certified key. We use a similar technique to define
the NoPartnering event. However, this is modified to reflect that we base partnering
upon session identifiers, not matching conversations. Although the SSH protocol itself
allows two unregistered parties to perform a key exchange, such a session would
require the user to “trust” the long term key sent by the party acting as the server
in such an exchange. Otherwise an adversary would be able to trivially impersonate
this user. As such, we do not consider this situation.

We now discuss the security of the shared secret key exchange protocol used in
SSH. Let FGps be a family of prime order groups and Sig = (gen, sig, ver) be a public
key signature scheme. For (G, q, g) ← G(η), where η is the security parameter, the

shared secret key exchange of SSH is a Diffie–Hellman key gxy for x, y ∈ Z×
q randomly

chosen by the two participants. The set of shared secret keys is set to G, and we write
SS(Sig,FGps) for the resulting protocol (Steps 1 and 2 of Figure 1).

It has previously been shown that if parties sign only their sent values, i.e. gx

or gy, then this does not meet the requirements of an authenticated key agreement
protocol [15]. However, the SSH protocol demands the server signs a digest of the
entire message transcript and the shared secret gxy. This authenticates the server to
the client and provides the client with explicit key confirmation.

Theorem 1. Let FGps be a family of groups of prime order for which the decisional
Diffie–Hellman assumption holds, and let Sig be a secure digital signature scheme.
Then Π = SS(Sig,FGps) is a secure shared secret key protocol.

Proof. That the protocol is correct in the presence of a benign adversary is clear.
We prove that for any adversary A against Π, there exists an algorithm B for the
decisional Diffie–Hellman problem and an adversary C against Sig such that

AdvOW-SS
SS(Sig,FGps),A(η) < AdvDDH

FGps,B(η) + nP ·AdvSEF-CMA
Sig,C (η)

and
Pr

[
NoPartneringSS(Sig,FGps),A(η)

]
≤ nP ·AdvSEF-CMA

Sig,C (η) + ε(η),

where nP denotes a bound on the number of participants in the set U and ε(η) is a
negligible function in the security parameter.

Let A be an adversary against the OW-SS security of the shared secret key ex-
change protocol Π of the SSH protocol. We define E to be the event that at the end of
execution of ExecOW-SS

Π,A (η) the oracle O∗ = Π i∗
U∗ that A outputs has on its transcript

an incoming message (pkpidO∗ , sigCA(pkpidO∗), g
b, sig(h)) that was not output by any

other honest oracle in the game. Recall h = H0(IU∗ ||IpidO∗ ||XU∗ ||XpidO∗ ||pkpidO∗ ||ga||
gb||gab). Since h = sidO∗ , the event E occurs if and only if the event NoPartnering
occurs.

We have that

Pr
[
ExecOW-SS

Π,A (η) = 1
]

= Pr
[
ExecOW-SS

Π,A (η) = 1 ∩ E
]

+ Pr
[
ExecOW-SS

Π,A (η) = 1 ∩ ¬E
]

= Pr
[
ExecOW-SS

Π,A (η) = 1|E
]
· Pr [E]

+ Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
]
· Pr [¬E]

< Pr
[
ExecOW-SS

Π,A (η) = 1|E
]

+ Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
]

We now construct two algorithms, B against the DDH problem in the family FGps
and C against the SEF-CMA of the underlying signature scheme Sig, according to
whether or not the event E occurs or not.

First assume that the event E does not occur. Then we construct the algo-
rithm B against the DDH problem in FGps as follows. Algorithm B is given as input

the security parameter η and an instance of the decisional Diffie–Hellman problem
(G, q, g, ga, gb, gc) in the group (G, q, g) ← G(η). Now B acts as the challenger to A
in an ExecOW-SS

Π,A (η) game. To do this B generates nP identities U and n′P identities
U ′. Now B runs the key generation algorithm of the public key signature scheme Sig
with security parameter η to obtain public/private key pairs of all elements in U .
Next algorithm B calls A using this data.

Algorithm A starts to make NewSession, Send, Check, Corrupt and Reveal queries
which B answers in the following way:

– If A makes a Corrupt(U) query, B returns skU and A is no longer able to make
any queries to oracles belonging to U .

– When a Send(O,msg) query is made to an oracle O = Π i
U , if O is in the “Hello”

phase, then B responds as in the actual protocol. Otherwise:
• Algorithm B generates a random value rO ∈ {1, . . . , q − 1}.
• If U is an initiator and the last message sent by O was a XU message in the

“Hello” phase then B sets x = (ga)rO and returns x to A.
• Else if U is an initiator, for each oracle belonging to pidO, B checks to find
O∗ such that O∗ output the message msg. If no such oracle exists, then set
γO = rejected, since signature verification will fail (otherwise the event E has
occurred) and return ⊥. Otherwise retrieve the generated value rO∗ for oracle
O∗ and set s = (gc)rOrO∗ . Verify that the signature received as part of msg is
valid, and act appropriately (either accepting or rejecting s). Return ⊥ to A.

• Otherwise U is a responder, so B sets B = (gb)rO . For each oracle belonging
to pidO, B checks to find O∗ such that O∗ output the message msg, now
B can obtain the value rO∗ used to generate msg. Next B computes sO =
(gc)rOrO∗ , If no such O∗ was found then set sO = msgrO . Compute h =
H0(IpidO ||IU ||XpidO ||XU || pkU ||msg||B||sO), where IpidO all other values are
obtained from τO, and reply with (pkU , sigCA(pkU), B, sigskU

(h)). Note that if
no O∗ was found and this response is delivered to any oracle, verification of
the signature will fail (otherwise the event E has occurred).

– If a Check(O, s) query is made then B checks if γO = accepted and s = sO then
true is returned. Otherwise false is sent back to A.

– If a Reveal(O) query is made and γO = accepted then B returns sO to A and sets
ωO to revealed.

In this way B is able to answer all the queries of A and hence simulates the envi-
ronment of A. Therefore A will eventually terminate and output a pair (O†, s†) with
O† = Π i†

U† .
Since we have assumed that the event E does not occur, there will be an entry

on the transcript τO† of the form (pkU∗ , sigCA(pkU∗), (gb)rO∗ , sigskU∗ (h)), with h con-
structed by some oracle O∗, as previously described. This means the oracle O† holds
the shared secret sO† = (gc)rO†rO∗ . If s† = sO† then the output of the game is set
to 1, i.e. ExecOW-SS

Π,A = 1, and algorithm B will guess that gc = gab. Otherwise, the
output of the game is set to 0 and B will guess that gc 6= gab.

The advantage of the DDH problem is defined as

AdvDDH
FGps,B(η) =

∣∣∣Pr
[
ExecDDH,0

FGps,B(η) = 0
]
− Pr

[
ExecDDH,1

FGps,B(η) = 1
]∣∣∣ ,

where ExecDDH,0
FGps,B denotes the game where gc = gab and ExecDDH,1

FGps,B is the game where
gc 6= gab. Since B guesses gc = gab when ExecOW-SS

Π,A = 1, this gives

Pr
[
ExecDDH,b

FGps,B(η) = b
]

= max
{

0,Pr
[
ExecOW-SS

Π,A (η) = 0|¬E
]

− Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
] }

,

and it is clear that

Pr
[
ExecOW-SS

Π,A (η) = 0|¬E
]

+ Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
]

= 1.

If we assume that gab 6= gc then gc is a uniformly random element of SSS. Therefore
sO† = (gc)rO†rO∗ is a uniformly random element of SSS. All information seen by the
adversary for oracle O† (excluding sigskU∗ (h)) is independent to sO† . Furthermore,
h is the output of a random oracle, so we are guaranteed that sigskU∗ (h) leaks no
information about the secret sO† . Thus, the probability s† = sO† = (gc)rO†rO∗ when
gc 6= gab is 1

|SSS| , i.e.

Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
]
≤ ε(η).

Therefore,

Pr
[
ExecDDH,1

FGps,B(η) = 1
]

=
∣∣∣Pr

[
ExecOW-SS

Π,A (η) = 0|¬E
]
− Pr

[
ExecOW-SS

Π,A (η) = 1|¬E
]∣∣∣

= 1− ε(η).

Since we have

AdvDDH
FGps,B(η) =

∣∣∣Pr
[
ExecDDH,0

FGps,B(η) = 0
]
− Pr

[
ExecDDH,1

FGps,B(η) = 1
]∣∣∣

=
∣∣∣Pr

[
ExecDDH,0

FGps,B(η) = 0
]
− 1

∣∣∣
and since

Pr
[
ExecDDH,0

FGps,B(η) = 0
]

= max
{

0,Pr
[
ExecOW-SS

Π,A (η) = 0|¬E
]

− Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
] }

it follows that when gc = gab (i.e. the shared secret computed in the OW-SS game is
the real shared secret)

Pr
[
ExecOW-SS

Π,A (η) = 0|¬E
]
≥ 1−AdvDDH

FGps,B(η) + ε(η)

and therefore

Pr
[
ExecOW-SS

Π,A (η) = 1|¬E
]
≤ AdvDDH

FGps,B(η) + ε(η).

where ε(η) is a negligible function in the security parameter.
We now consider the case when the event E does occur. There are two possibilities.

Either there exist oracles O∗ = Π i∗
U∗ , with U∗ ∈ U ∪ U ′ and O′ = Πj′

V ′ , with V ′ ∈ U ,
such that sidO∗ = sidO′ and sO∗ 6= sO′ , or there exists oracle O∗ such that no other

oracle has session identifier sidO∗ . We first consider the former. Since sidO∗ = sidO′ , we
have H0(IU∗ ||IV ′ ||XU∗ ||XV ′ ||pkV ′ ||A||gb||Ab) = H0(IU∗ ||I†||XU∗ ||X†||pkV ′ ||A||gc† ||
Ac†), for some adversarially chosen I†, X†, c† 6= b. This gives sO∗ = Ac† 6= Ab = sO′ .
However, since H0 is a random oracle, it is clear the probability an adversary selects
the values I†, X† and c† correctly is a negligible function in the security parameter.

We now consider the case where there exists an oracle O∗ = Π i∗
U∗ for U∗ ∈ U ∪U ′,

such that no other oracle has session identifier sidO∗ . We construct the algorithm C
against the SEF-CMA of the signature scheme used as follows. Algorithm C is given the
security parameter, η, a public verification key pk† and the corresponding signature
oracle Osk†

sig .

Algorithm C acts as the challenger to A in the ExecOW-SS
Π,A game. First C generates

nP identities U and n′P identities U ′. Now C randomly selects an oracle U † ∈ U and
sets pkU† = pk† and skU† =⊥. Algorithm C then runs the key generation algorithm of
the public key signature scheme with security parameter η to obtain public/private
keys for all identities U ∈ U \ {U †}. Setup of the ExecOW-SS

Π,A game is completed by
passing the sets of identities and all public keys to adversary A.

Adversary A now starts to make NewSession, Send, Check, Corrupt and Reveal
queries, which C answers in the following way:

– If a Corrupt query is made and U 6= U † then C returns skU , and A can no longer
query any oracle belonging to identity U . If U = U † then C aborts.

– When a Send(O,msg) query is made for oracle O = Π i
U , if U 6= U † or O is still

in the “Hello” phase then C responds as in the correct execution of the protocol.

Otherwise C selects b $←− {1, . . . , q − 1}, computes B ← gb, A ← msg, s ← Ab

and obtains h = H0(IpidO ||IU† ||XpidO ||XU† ||pkU† ||A||B||s), where IpidO and all
other values are obtained from the oracle transcript τO. Algorithm C obtains a
signature on h using its signature oracle and sends (pkU† , sigCA(pkU†), B,Osk†

sig (h))
as the response to A.

– If a Check(O, s) or Reveal(O) query is made then C knows the shared secret of the
queried oracle so can answer these queries honestly.

If C does not abort, then the environment of A is simulated perfectly and so eventually
A will output a pair (Π i∗

U∗ , s∗).
Let O∗ = Π i∗

U∗ , if pidO∗ = U † and ExecOW-SS
Π,A (η) = 1, then there exists an entry

of the form (pkU† , sigCA(pkU†), B, sigsk
U† (h)) on the transcript τO∗ of O∗, where the

signature sigsk
U† (h) has correctly verified under pkU† . Since the event E has occurred

this entry did not come from U †, so was not a signature output by Osk†

sig . Therefore
C reconstructs h using the transcript τO∗ and outputs the pair (h, sigsk

U† (h)), which
is a valid forgery in the SEF-CMA game. As U∗ is randomly selected, independently
from the choices of A we obtain

AdvSEF-CMA
Sig,C (η) ≥ 1

np
· Pr

[
ExecOW-SS

Π,A (η) = 1|E
]
,

and the result now follows.

4 Application Keys

In this section we extend the basic security model to analyse the security of the
application keys generated from the shared secret key exchange stage of the SSH
protocol.

As discussed in the introduction, we focus on protocols of a specific form: First a
shared secret key is agreed by the parties via some shared secret key exchange protocol
Π. Next the application keys are generated by some application key generation Σ.
In SSH, the application keys are derived by applying some hash function to the
shared secret key as discussed in Section 1. We refer to the application key, k, as the
concatenation of the application keys ki generated for SSH (Step 3, Figure 1). We
write Π;Σ for the full protocol where the shared secret key is exchanged using Π
and application keys are generated by running Σ on the exchanged shared secret key.

We extend the definitions of Section 2 to model the requirements of the application
keys. We assume that application keys belong to some set SAK, where |SSAK| ≥ 2η,
where η is the security parameter. Application key oracles, Q = Σi

U , maintain the
variables previously described, namely τQ, roleQ, pidQ, sidQ, γQ, δQ and ωQ. The
shared secret is stored in sQ. Additionally they have a new variable kQ ∈ SAK, for
the application key obtained in the session, and we introduce the variable ψQ ∈
{uncompromised, compromised} and explain below when this is set.

The adversary is granted additional powers to those previously described. The
adversary may make the new query Compromise(Q). This query returns the appli-
cation key kQ to the adversary and sets ψQ to compromised. Note that since the
adversary may still make Reveal queries to obtain the shared secret key, we introduce
the Compromise query under a different name for clarity.

To capture the security requirements of application keys we grant the adversary
access to the new query Test. When a Test(Q) query is made, a bit b ∈ {0, 1} is
randomly selected. Next if b = 0 the key kQ is returned to the adversary, otherwise a
randomly selected element of SAK is returned to the adversary.

An application key oracle is a valid target for the Test query if it is considered
“fresh”, where the notion of freshness is similar to that of shared secret key exchange.
Namely, the oracle is uncorrupted, unrevealed, uncompromised and has accepted some
application key, where the partner session has also not been corrupted, revealed or
compromised.

Definition 4. Fresh Application Key Oracle Let Q be an application key oracle. Or-
acle Q is said to be fresh if all the following conditions hold:

(1) δQ = uncorrupted, (2) ωQ = unrevealed, (3) ψQ = uncompromised, (4) γQ =
accepted, (5) ∃V ∈ U such that V is uncorrupted and pidQ = V , and (6) no revealed
or compromised oracle Q∗ has session identifier sidO∗ = sidQ.

Security game for application key exchange protocols. We define the se-
curity of an application key protocol Π;Σ via the game ExecIND-AK

Π;Σ,A (η) between an
adversary A and the challenger C as follows:

– Challenger C generates the long term public/private keys for each user U ∈ U ,
and returns the public keys to A.

– Adversary A is able to make as many NewSession, Send, Corrupt, Reveal, Check
and Compromise queries as it wishes.

– At any point in the game, the adversary A may make a single Test(Q∗) query.
– The adversary outputs a bit b′ and terminates.

We say that the adversary A wins if Q∗ is fresh at the end of the game and b = b′,
where b is the bit selected when the Test query is made. If this occurs then the output
of ExecIND-AK

Π;Σ,A is set to 1. Otherwise the output is set to 0. We give the advantage of
A in winning the ExecIND-AK

Π;Σ,A game by

AdvIND-AK
Π;Σ,A (η) =

∣∣∣∣Pr
[
ExecIND-AK

Π;Σ,A (η) = 1
]
− 1

2

∣∣∣∣ .
Using this we now define the security of an application key exchange protocol.

Definition 5. Application Key Security An application key exchange protocol is se-
cure if it satisfies the following conditions:

– Correctness: In the presence of a benign adversary which honestly relays mes-
sages, any two oracles which share the same session identifier, will, at the end of
execution, hold the same application key, which is distributed uniformly at random
over the application key space SAK.

– Key secrecy: An application key exchange protocol Π;Σ satisfies IND-AK key
secrecy if for any p.p.t. adversary A, its advantage AdvIND-AK

Π;Σ,A (η) is a negligible
function in the security parameter.

– No Partnering: The probability of the event NoPartneringΠ;Σ,A(η) occurring, for
any p.p.t. adversary A, is negligible function in the security parameter.

The model given here provides strong guarantees for the application keys used.
The security requirements given provide standard key indistinguishability guarantees.

We now show that the application key exchange protocol obtained from any secure
shared secret key exchange protocol and the application key generation protocol of
SSH is secure.

For any shared secret key exchange protocol Π, and set of hash functions H =
{H1, . . . H6} we write (Π;AKSSH(H)) for the application key exchange protocol ob-
tained by extending Π with the application key generation of SSH. The following
theorem gives us that, starting with a shared secret key exchange protocol secure
in the sense of Definition 3, the above transformation gives a secure application key
protocol.

Theorem 2. Let Π be a secure shared secret key exchange protocol and a set of
random oracles be given by H = {H1, . . . H6}. Then (Π;AKSSH(H)) is a secure ap-
plication key exchange protocol.

Proof. It is clear that in the presence of a benign adversary the protocol is correct.
Let A be an IND-AK adversary against (Π;AKSSH(H)), where H is the set of random
oracles H = {H1, . . . ,H6}.

We prove for any adversary A, there exists an algorithm B against the OW-SS
security of the shared secret and an adversary C against the NoPartnering event such
that

AdvIND-AK
Π;Σ,A (η) < AdvOW-SS

B,Π (η) + Pr
[
NoPartneringΠ,C(η)

]
.

Since the Σ stage of the protocol Π;Σ does not send any messages, it is clear
that if the event NoPartneringΠ;Σ,A(η) occurs, then for an adversary C playing the
game ExecOW-SS

Π,C (η) the event NoPartneringΠ,C(η) would occur. The construction of C
is in the obvious manner. Thus it follows that

Pr
[
NoPartneringΠ;Σ,A(η)

]
= Pr

[
NoPartneringΠ,C(η)

]
≤ ε(η),

where ε(η) is a negligible function in the security parameter.
It now remains to consider when the event E does not occur. We construct al-

gorithm B against the ExecOW-SS
Π,B (η) game, where B acts as the challenger in an

ExecIND-AK
Π;Σ,A (η) game against A. The algorithm B simulates H1, . . . ,H6 by maintain-

ing six lists H1-list, . . . , H6-list of queries and responses to the oracles H1, . . . ,H6.
The input to algorithm B as part of the ExecOW-SS

Π,B (η) game is used as the input to
adversary A.

Algorithm B answers A’s Corrupt, Reveal and Check queries by forwarding these
to the challenger of B and passing the response back to A. When A makes the query
Send(O,msg), algorithm B passes this to its challenger, and forwards the response to
A. Algorithm B records all such Send queries and their responses, so for each oracle
O, algorithm B has a copy of the transcript τO.

If A makes a Compromise(O) query, then B makes a query Reveal(O) to its chal-
lenger and uses the returned shared secret key, s, and the values on B’s copy of the
transcript τO to construct h = H0(IC ||IS ||XC ||XS ||pkS ||A||B||s). Algorithm B calls
its oracles H1, . . . ,H6 on input (s||h||h) to obtain k = k1|| . . . ||k6. The appropriate
values are stored on H-lists, H1-list, . . . , H6-list, and k is returned to A.

At some point A will make a Test query. Algorithm B returns a random key from
the key space SAK to adversary A.

Eventually A will terminate and output its guess for the bit b. We find that if
ExecIND-AK

Π;Σ,A (η) = 1, then sinceH1, . . . ,H6 are modelled as random oracles, adversaryA
must have queried one (or more) of the oracles H1, . . . ,H6 with inputs corresponding
to the shared secret key of an application key oracle O∗. In addition the oracle O∗

must be fresh in the ExecOW-SS
Π,B (η) game.

Algorithm B now scans each of theH-lists and checks whether s∗ of the component
(s∗||h∗||h∗) from the H-lists corresponds to the shared secret key of oracle O∗. This
is done using the Check query. When the correct key is found, algorithm B outputs
(O∗, s∗) and terminates.

The theorem now follows.

References

1. Abdalla, M., Chevassut, O., Pointcheval, D.: One-time verifier-based encrypted key exchange.
In: Public Key Cryptography – PKC 2005. (2005) 47–64 Springer LNCS 3386.

2. Albrecht, M., Paterson, K., Watson, G.: Plaintext recovery attacks against SSH. In: IEEE
Symposium on Security and Privacy. (2009) 16–26 IEEE Computer Society.

3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of
authentication and key exchange protocols. In: Proceedings of the 13th Annual ACM Symposium
on Theory of Computing. (1998) 419–428 ACM.

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH authenti-
cated encryption scheme: A case study of the encode-then-encrypt-and-MAC paradigm. ACM
Transactions on Information and Systems Security 7(2) (2004) 206–241

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary
attacks. In: Advances in Cryptology – EUROCRYPT 2000. (2000) 139–155 Springer-Verlag
LNCS 1807.

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Advances in Cryptology
– CRYPTO 1993. (1993) 232–249 Springer-Verlag LNCS 773.

7. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party case. In:
27th Symposium on Theory of Computing – STOC 1995. (1995) 57–66 ACM.

8. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis.
In: IMA International Conference on Cryptography and Coding. (1997) 30–45 Springer-Verlag.

9. Blake-Wilson, S., Menezes, A.: Entity authentication and authenticated key transport proto-
cols employing asymmetric techniques. In: Security Protocols Workshop 1997. (1998) 137–158
Springer LNCS 1361.

10. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie–Hellman key
exchange - the dynamic case. In: Advances in Cryptology – ASIACRYPT 2001. (2001) 290–309
Springer Verlag LNCS 2248.

11. Canetti, R., Krawczyk, H.: Analysis of key exchange protocols and their use for building secure
channels. In: Advances in Cryptology – EUROCRYPT 2001. (2001) 453–474 Springer-Verlag
LNCS 2045.

12. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels.
In: Advances in Cryptology – EUROCRYPT 2002. (2002) 337–351 Springer-Verlag LNCS 2332.

13. Choo, K.K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models for
key establishment protocols. In: Advances in Cryptology – ASIACRYPT 2005. (2005) 585–604
Springer Verlag LNCS 3788.

14. Dai, W.: An attack against SSH2 protocol (6th Feb 2002) E-mail to the SECSH Working Group
available from ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail.

15. Diffie, W., Oorschot, P.V., Wiener, M.: Authentication and authenticated key exchanges. De-
signs, Codes and Cryptography 2(2) (1992) 107–125

16. Kudla, C.: Special signature schemes and key agreement protocols (2006) PhD Thesis, Royal
Holloway University of London.

17. Kudla, C., Paterson, K.: Modular security proofs for key agreement protocols. In: Advances in
Cryptology - ASIACRYPT 2005. (2005) 549–565 Springer Verlag LNCS 3788.

18. Morrissey, P., Smart, N., Warinschi, B.: The TLS handshake protocol: A modular analysis.
Journal of Cryptology 23(2) (2010) 187–223

19. Paterson, K., Stebila, D.: One-time-password-authenticated key exchange. In: ACISP 2010.
(2010) 264–281 Springer Verlag LNCS 6168.

20. Paterson, K., Watson, G.: Plaintext-dependent decryption: A formal security treatment of SSH-
CTR. In: Advances in Cryptology – EUROCRYPT 2010. (2010) 345–361 Springer-Verlag LNCS
6110.

21. Shoup, V.: On formal models for secure key exchange (version 4) (Preprint, 1999)
22. Ylonen, T., Lonvick, C.: The secure shell (SSH) protocol architecture (2006) RFC 4251.
23. Ylonen, T., Lonvick, C.: The secure shell (SSH) authentication protocol (2006) RFC 4252.
24. Ylonen, T., Lonvick, C.: The secure shell (SSH) transport layer protocol (2006) RFC 4253.
25. Ylonen, T., Lonvick, C.: The secure shell (SSH) connection protocol (2006) RFC 4254.

