
Fully Homomorphic Encryption without Bootstrapping

Zvika Brakerski
Weizmann Institute of Science

Craig Gentry∗

IBM T.J. Watson Research Center

Vinod Vaikuntanathan†

University of Toronto

Abstract

We present a radically new approach to fully homomorphic encryption (FHE) that dramatically im-
proves performance and bases security on weaker assumptions. A central conceptual contribution in our
work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating
arbitrary polynomial-size circuits), without Gentry’s bootstrapping procedure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-LWE
(RLWE) problems that have 2λ security against known attacks. For RLWE, we have:

• A leveled FHE scheme that can evaluate L-level arithmetic circuits with Õ(λ · L3) per-gate com-
putation – i.e., computation quasi-linear in the security parameter. Security is based on RLWE
for an approximation factor exponential in L. This construction does not use the bootstrapping
procedure.

• A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate computation
(which includes the bootstrapping procedure) is Õ(λ2), independent of L. Security is based on the
hardness of RLWE for quasi-polynomial factors (as opposed to the sub-exponential factors needed
in previous schemes).

We obtain similar results for LWE, but with worse performance. We introduce a number of further
optimizations to our schemes. As an example, for circuits of large width – e.g., where a constant fraction
of levels have width at least λ – we can reduce the per-gate computation of the bootstrapped version to
Õ(λ), independent of L, by batching the bootstrapping operation. Previous FHE schemes all required
Ω̃(λ3.5) computation per gate.

At the core of our construction is a much more effective approach for managing the noise level of
lattice-based ciphertexts as homomorphic operations are performed, using some new techniques recently
introduced by Brakerski and Vaikuntanathan (FOCS 2011).

∗Sponsored by the Air Force Research Laboratory (AFRL). Disclaimer: This material is based on research sponsored by DARPA
under agreement number FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Approved for Public Release, Distribution Unlimited.
†This material is based on research sponsored by DARPA under Agreement number FA8750-11-2-0225. All disclaimers as

above apply.

1 Introduction
Ancient History. Fully homomorphic encryption (FHE) [19, 8] allows a worker to receive encrypted data
and perform arbitrarily-complex dynamically-chosen computations on that data while it remains encrypted,
despite not having the secret decryption key. Until recently, all FHE schemes [8, 6, 20, 10, 5, 4] followed
the same blueprint, namely the one laid out in Gentry’s original construction [8, 7].

The first step in Gentry’s blueprint is to construct a somewhat homomorphic encryption (SWHE) scheme,
namely an encryption scheme capable of evaluating “low-degree” polynomials homomorphically. Starting
with Gentry’s original construction based on ideal lattices [8], there are by now a number of such schemes
in the literature [6, 20, 10, 5, 4, 13], all of which are based on lattices (either directly or implicitly). The
ciphertexts in all these schemes are “noisy”, with a noise that grows slightly during homomorphic addition,
and explosively during homomorphic multiplication, and hence, the limitation of low-degree polynomials.

To obtain FHE, Gentry provided a remarkable bootstrapping theorem which states that given a SWHE
scheme that can evaluate its own decryption function (plus an additional operation), one can transform it
into a “leveled”1 FHE scheme. Bootstrapping “refreshes” a ciphertext by running the decryption function
on it homomorphically, using an encrypted secret key (given in the public key), resulting in a reduced noise.

As if by a strange law of nature, SWHE schemes tend to be incapable of evaluating their own decryption
circuits (plus some) without significant modifications. (We discuss recent exceptions [9, 3] below.) Thus,
the final step is to squash the decryption circuit of the SWHE scheme, namely transform the scheme into one
with the same homomorphic capacity but a decryption circuit that is simple enough to allow bootstrapping.
Gentry [8] showed how to do this by adding a “hint” – namely, a large set with a secret sparse subset that
sums to the original secret key – to the public key and relying on a “sparse subset sum” assumption.

1.1 Efficiency of Fully Homomorphic Encryption
The efficiency of fully homomorphic encryption has been a (perhaps, the) big question following its inven-
tion. In this paper, we are concerned with the per-gate computation overhead of the FHE scheme, defined
as the ratio between the time it takes to compute a circuit homomorphically to the time it takes to compute
it in the clear.2 Unfortunately, FHE schemes that follow Gentry’s blueprint (some of which have actually
been implemented [10, 5]) have fairly poor performance – their per-gate computation overhead is p(λ), a
large polynomial in the security parameter. In fact, we would like to argue that this penalty in performance
is somewhat inherent for schemes that follow this blueprint.

First, the complexity of (known approaches to) bootstrapping is inherently at least the complexity of
decryption times the bit-length of the individual ciphertexts that are used to encrypt the bits of the secret
key. The reason is that bootstrapping involves evaluating the decryption circuit homomorphically – that is,
in the decryption circuit, each secret-key bit is replaced by a (large) ciphertext that encrypts that bit – and
both the complexity of decryption and the ciphertext lengths must each be Ω(λ).

Second, the undesirable properties of known SWHE schemes conspire to ensure that the real cost of
bootstrapping for FHE schemes that follow this blueprint is actually much worse than quadratic. Known
FHE schemes start with a SWHE scheme that can evaluate polynomials of degree D (multiplicative depth
logD) securely only if the underlying lattice problem is hard to 2D-approximate in 2λ time. For this to
be hard, the lattice must have dimension Ω(D · λ).3 Moreover, the coefficients of the vectors used in the

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits that the scheme can evaluate. One
can obtain a “pure” FHE scheme (with a constant-size public key) from a leveled FHE scheme by assuming “circular security” –
namely, that it is safe to encrypt the leveled FHE secret key under its own public key. We will omit the term “leveled” in this work.

2Other measures of efficiency, such ciphertext/key size and encryption/decryption time, are also important. In fact, the schemes
we present in this paper are very efficient in these aspects (as are the schemes in [9, 3]).

3This is because we have lattice algorithms in n dimensions that compute 2n/λ-approximations of short vectors in time 2Õ(λ).

1

scheme have bit length Ω(D) to allow the ciphertext noise room to expand to 2D. Therefore, the size of
“fresh” ciphertexts (e.g., those that encrypt the bits of the secret key) is Ω̃(D2 ·λ). Since the SWHE scheme
must be “bootstrappable” – i.e., capable of evaluating its own decryption function – D must exceed the
degree of the decryption function. Typically, the degree of the decryption function is Ω(λ). Thus, overall,
“fresh” ciphertexts have size Ω̃(λ3). So, the real cost of bootstrapping – even if we optimistically assume
that the “stale” ciphertext that needs to be refreshed can be decrypted in only Θ(λ)-time – is Ω̃(λ4).

The analysis above ignores a nice optimization by Stehlé and Steinfeld [22], which so far has not been
useful in practice, that uses Chernoff bounds to asymptotically reduce the decryption degree down toO(

√
λ).

With this optimization, the per-gate computation of FHE schemes that follow the blueprint is Ω̃(λ3).4

Recent Deviations from Gentry’s Blueprint, and the Hope for Better Efficiency. Recently, Gentry and
Halevi [9], and Brakerski and Vaikuntanathan [3], independently found very different ways to construct FHE
without using the squashing step, and thus without the sparse subset sum assumption. These schemes are the
first major deviations from Gentry’s blueprint for FHE. Brakerski and Vaikuntanathan [3] manage to base
security entirely on LWE (for sub-exponential approximation factors), avoiding reliance on ideal lattices.

From an efficiency perspective, however, these results are not a clear win over previous schemes. Both of
the schemes still rely on the problematic aspects of Gentry’s blueprint – namely, bootstrapping and an SWHE
scheme with the undesirable properties discussed above. Thus, their per-gate computation is still Ω̃(λ4) (in
fact, that is an optimistic evaluation of their performance). Nevertheless, the techniques introduced in these
recent constructions are very interesting and useful to us. In particular, we use the tools and techniques
introduced by Brakerski and Vaikuntanathan [3] in an essential way to achieve remarkable efficiency gains.

An important, somewhat orthogonal question is the strength of assumptions underlying FHE schemes.
All the schemes so far rely on the hardness of short vector problems on lattices with a subexponential
approximation factor. Can we base FHE on polynomial hardness assumptions?

1.2 Our Results and Techniques
We leverage Brakerski and Vaikuntanathan’s techniques [3] to achieve asymptotically very efficient FHE
schemes. Also, we base security on lattice problems with quasi-polynomial approximation factors. (Previ-
ous schemes all used sub-exponential factors.) In particular, we have the following theorem (informal):

• Assuming Ring LWE for an approximation factor exponential in L, we have a leveled FHE scheme
that can evaluate L-level arithmetic circuits without using bootstrapping. The scheme has Õ(λ · L3)
per-gate computation (namely, quasi-linear in the security parameter).
• Alternatively, assuming Ring LWE is hard for quasi-polynomial factors, we have a leveled FHE

scheme that uses bootstrapping as an optimization, where the per-gate computation (which includes
the bootstrapping procedure) is Õ(λ2), independent of L.

We can alternatively base security on LWE, albeit with worse performance. We now sketch our main idea
for boosting efficiency.

In the BV scheme [3], like ours, a ciphertext vector c ∈ Rn (where R is a ring, and n is the “dimension”
of the vector) that encrypts a message m satisfies the decryption formula m =

[
[〈c, s〉]q

]
2
, where s ∈ Rn is

the secret key vector, q is an odd modulus, and [·]q denotes reduction into the range (−q/2, q/2). This is an
abstract scheme that can be instantiated with either LWE or Ring LWE – in the LWE instantiation, R is the
ring of integers mod q and n is a large dimension, whereas in the Ring LWE instantiation, R is the ring of
polynomials over integers mod q and an irreducible f(x), and the dimension n = 1.

4We note that bootstrapping lazily – i.e., applying the refresh procedure only at a 1/k fraction of the circuit levels for k > 1 –
cannot reduce the per-gate computation further by more than a logarithmic factor for schemes that follow this blueprint, since these
SWHE schemes can evaluate only log multiplicative depth before it becomes absolutely necessary to refresh – i.e., k = O(log λ).

2

We will call [〈c, s〉]q the noise associated to ciphertext c under key s. Decryption succeeds as long as
the magnitude of the noise stays smaller than q/2. Homomorphic addition and multiplication increase the
noise in the ciphertext. Addition of two ciphertexts with noise at most B results in a ciphertext with noise at
most 2B, whereas multiplication results in a noise as large as B2. 5 We will describe a noise-management
technique that keeps the noise in check by reducing it after homomorphic operations, without bootstrapping.

The key technical tool we use for noise management is the “modulus switching” technique developed by
Brakerski and Vaikuntanathan [3]. Jumping ahead, we note that while they use modulus switching in “one
shot” to obtain a small ciphertext (to which they then apply Gentry’s bootstrapping procedure), we will use
it (iteratively, gradually) to keep the noise level essentially constant, while stingily sacrificing modulus size
and gradually sacrificing the remaining homomorphic capacity of the scheme.

Modulus Switching. The essence of the modulus-switching technique is captured in the following lemma.
In words, the lemma says that an evaluator, who does not know the secret key s but instead only knows a
bound on its length, can transform a ciphertext c modulo q into a different ciphertext modulo p while
preserving correctness – namely, [〈c′, s〉]p = [〈c, s〉]q mod 2. The transformation from c to c′ involves
simply scaling by (p/q) and rounding appropriately! Most interestingly, if s is short and p is sufficiently
smaller than q, the “noise” in the ciphertext actually decreases – namely, |[〈c′, s〉]p| < |[〈c, s〉]q|.

Lemma 1. Let p and q be two odd moduli, and let c be an integer vector. Define c′ to be the integer vector
closest to (p/q) · c such that c′ = c mod 2. Then, for any s with |[〈c, s〉]q| < q/2− (q/p) · `1(s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod 2 and |[

〈
c′, s

〉
]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

where `1(s) is the `1-norm of s.

Proof. For some integer k, we have [〈c, s〉]q = 〈c, s〉−kq. For the same k, let ep = 〈c′, s〉−kp ∈ Z. Since
c′ = c and p = q modulo 2, we have ep = [〈c, s〉]q mod 2. Therefore, to prove the lemma, it suffices to
prove that ep = [〈c′, s〉]p and that it has small enough norm. We have ep = (p/q)[〈c, s〉]q+〈c′ − (p/q)c, s〉,
and therefore |ep| ≤ (p/q)[〈c, s〉]q + `1(s) < p/2. The latter inequality implies ep = [〈c′, s〉]p.

Amazingly, this trick permits the evaluator to reduce the magnitude of the noise without knowing the
secret key, and without bootstrapping. In other words, modulus switching gives us a very powerful and
lightweight way to manage the noise in FHE schemes! In [3], the modulus switching technique is bundled
into a “dimension reduction” procedure, and we believe it deserves a separate name and close scrutiny. It is
also worth noting that our use of modulus switching does not require an “evaluation key”, in contrast to [3].

Our New Noise Management Technique. At first, it may look like modulus switching is not a very
effective noise management tool. If p is smaller than q, then of course modulus switching may reduce
the magnitude of the noise, but it reduces the modulus size by essentially the same amount. In short, the
ratio of the noise to the “noise ceiling” (the modulus size) does not decrease at all. Isn’t this ratio what
dictates the remaining homomorphic capacity of the scheme, and how can potentially worsening (certainly
not improving) this ratio do anything useful?

In fact, it’s not just the ratio of the noise to the “noise ceiling” that’s important. The absolute magnitude
of the noise is also important, especially in multiplications. Suppose that q ≈ xk, and that you have two
mod-q SWHE ciphertexts with noise of magnitude x. If you multiply them, the noise becomes x2. After
4 levels of multiplication, the noise is x16. If you do another multiplication at this point, you reduce the
ratio of the noise ceiling (i.e. q) to the noise level by a huge factor of x16 – i.e., you reduce this gap very

5The noise after multiplication is in fact a bit larger than B2 due to the additional noise from the BV “re-linearization” process.
For the purposes of this exposition, it is best to ignore this minor detail.

3

fast. Thus, the actual magnitude of the noise impacts how fast this gap is reduced. After only log k levels of
multiplication, the noise level reaches the ceiling.

Now, consider the following alternative approach. Choose a ladder of gradually decreasing moduli
{qi ≈ q/xi} for i < k. After you multiply the two mod-q ciphertexts, switch the ciphertext to the smaller
modulus q1 = q/x. As the lemma above shows, the noise level of the new ciphertext (now with respect to
the modulus q1) goes from x2 back down to x. (Let’s suppose for now that `1(s) is small in comparison to x
so that we can ignore it.) Now, when we multiply two ciphertexts (wrt modulus q1) that have noise level x,
the noise again becomes x2, but then we switch to modulus q2 to reduce the noise back to x. In short, each
level of multiplication only reduces the ratio (noise ceiling)/(noise level) by a factor of x (not something like
x16). With this new approach, we can perform about k (not just log k) levels of multiplication before we
reach the noise ceiling. We have just increased (without bootstrapping) the number of multiplicative levels
that we can evaluate by an exponential factor!

This exponential improvement is enough to achieve leveled FHE without bootstrapping. For any poly-
nomial k, we can evaluate circuits of depth k. The performance of the scheme degrades with k – e.g., we
need to set q = q0 to have bit length proportional to k – but it degrades only polynomially with k.

Our main observation – the key to obtaining FHE without bootstrapping – is so simple that it is easy
to miss and bears repeating: We get noise reduction automatically via modulus switching, and by carefully
calibrating our ladder of moduli {qi}, one modulus for each circuit level, to be decreasing gradually, we
can keep the noise level very small and essentially constant from one level to the next while only gradually
sacrificing the size of our modulus until the ladder is used up. With this approach, we can efficiently evaluate
arbitrary polynomial-size arithmetic circuits without resorting to bootstrapping.

Performance-wise, this scheme trounces previous (bootstrapping-based) FHE schemes (at least asymp-
totically; the concrete performance remains to be seen). Instantiated with ring-LWE, it can evaluate L-level
arithmetic circuits with per-gate computation Õ(λ · L3) – i.e., computation quasi-linear in the security pa-
rameter. Since the ratio of the largest modulus (namely, q ≈ xL) to the noise (namely, x) is exponential in
L, the scheme relies on the hardness of approximating short vectors to within an exponential in L factor.

Bootstrapping for Better Efficiency and Better Assumptions. The per-gate computation of our FHE-
without-bootstrapping scheme depends polynomially on the number of levels in the circuit that is being
evaluated. While this approach is efficient (in the sense of “polynomial time”) for polynomial-size circuits,
the per-gate computation may become undesirably high for very deep circuits. So, we re-introduce boot-
strapping as an optimization6 that makes the per-gate computation independent of the circuit depth, and that
(if one is willing to assume circular security) allows homomorphic operations to be performed indefinitely
without needing to specify in advance a bound on the number of circuit levels. The main idea is that to
compute arbitrary polynomial-depth circuits, it is enough to compute the decryption circuit of the scheme
homomorphically. Since the decryption circuit has depth ≈ log λ, the largest modulus we need has only
Õ(λ) bits, and therefore we can base security on the hardness of lattice problems with quasi-polynomial
factors. Since the decryption circuit has size Õ(λ) for the RLWE-based instantiation, the per-gate computa-
tion becomes Õ(λ2) (independent of L). See Section 5 for details.

Other Optimizations. We also consider batching as an optimization. The idea behind batching is to pack
multiple plaintexts into each ciphertext so that a function can be homomorphically evaluated on multiple
inputs with approximately the same efficiency as homomorphically evaluating it on one input.

6We are aware of the seeming irony of trumpeting “FHE without bootstrapping” and then proposing bootstrapping “as an opti-
mization”. First, FHE without bootstrapping is exciting theoretically, independent of performance. Second, whether bootstrapping
actually improves performance depends crucially on the number of levels in the circuit one is evaluating. For example. for circuits
of depth sub-polynomial in the security parameter, this “optimization” will not improve performance asymptotically.

4

An especially interesting case is batching the decryption function so that multiple ciphertexts – e.g., all
of the ciphertexts associated to gates at some level in the circuit – can be bootstrapped simultaneously very
efficiently. For circuits of large width (say, width λ), batched bootstrapping reduces the per-gate computation
in the RLWE-based instantiation to Õ(λ), independent of L. We give the details in Section 5.

1.3 Other Related Work
We note that prior to Gentry’s construction, there were already a few interesting homomorphic encryp-
tions schemes that could be called “somewhat homomorphic”, including Boneh-Goh-Nissim [2] (evaluates
quadratic formulas using bilinear maps), (Aguilar Melchor)-Gaborit-Herranz [15] (evaluates constant degree
polynomials using lattices) and Ishai-Paskin [12] (evaluates branching programs).

2 Preliminaries
Basic Notation. In our construction, we will use a ring R. In our concrete instantiations, we prefer to use
either R = Z (the integers) or the polynomial ring R = Z[x]/(xd + 1), where d is a power of 2.

We write elements ofR in lowercase – e.g., r ∈ R. We write vectors in bold – e.g., v ∈ Rn. The notation
v[i] refers to the i-th coefficient of v. We write the dot product of u,v ∈ Rn as 〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈

R. When R is a polynomial ring, ‖r‖ for r ∈ R refers to the Euclidean norm of r’s coefficient vector. We
say γR = max{‖a · b‖/‖a‖‖b‖ : a, b ∈ R} is the expansion factor of R. For R = Z[x]/(xd + 1), the value
of γR is at most

√
d by Cauchy-Schwarz.

For integer q, we use Rq to denote R/qR. Sometimes we will use abuse notation and use R2 to denote
the set of R-elements with binary coefficients – e.g., when R = Z, R2 may denote {0, 1}, and when R is a
polynomial ring, R2 may denote those polynomials that have 0/1 coefficients. When it is obvious that q is
not a power of two, we will use dlog qe to denote 1 + blog qc. For a ∈ R, we use the notation [a]q to refer
to a mod q, with coefficients reduced into the range (−q/2, q/2].

Leveled Fully Homomorphic Encryption. Most of this paper will focus on the construction of a leveled
fully homomorphic scheme, in the sense that the parameters of the scheme depend (polynomially) on the
depth of the circuits that the scheme is capable of evaluating.

Definition 1 (Leveled Fully Homomorphic Encryption [7]). We say that a family of homomorphic encryption
schemes {E(L) : L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same decryption
circuit, E(L) compactly evaluates all circuits of depth at most L (that use some specified complete set of
gates), and the computational complexity of E(L)’s algorithms is polynomial (the same polynomial for all
L) in the security parameter, L, and (in the case of the evaluation algorithm) the size of the circuit.

2.1 The Learning with Errors (LWE) Problem
The learning with errors (LWE) problem was introduced by Regev [17]. It is defined as follows.

Definition 2 (LWE). For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2 be an
integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Zn+1

q . In the second distribution,
one first draws s ← Znq uniformly and then samples (ai, bi) ∈ Zn+1

q by sampling ai ← Znq uniformly,
ei ← χ, and setting bi = 〈a, s〉+ ei. The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Regev [17] proved that for certain moduli q and Gaussian error distributions χ, the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a quantum algorithm. We state
this result using the terminology of B-bounded distributions, which is a distribution over the integers where
the magnitude of a sample is bounded with high probability. A definition follows.

5

Definition 3 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the integers, is
called B-bounded if

Pr
e←χn

[|e| > B] = negl(n) .

We can now state Regev’s worst-case to average-case reduction for LWE.

Theorem 1 (Regev [17]). For any integer dimension n, prime integer q = q(n), andB = B(n) ≥ 2n, there
is an efficiently samplable B-bounded distribution χ such that if there exists an efficient (possibly quan-
tum) algorithm that solves LWEn,q,χ, then there is an efficient quantum algorithm for solving Õ(qn1.5/B)-
approximate worst-case SIVP and gapSVP.

Peikert [16] de-quantized Regev’s results to some extent – that is, he showed the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a classical algorithm. (See [16]
for a precise statement of these results.)

Applebaum et al. [1] showed that if LWE is hard for the above distribution of s, then it is also hard when
s’s coefficients are sampled according to the noise distribution χ.

2.2 The Ring Learning with Errors (RLWE) Problem
The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev [14].
We will use an simplified special-case version of the problem that is easier to work with [18, 4].

Definition 4 (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of 2. Let
q = q(λ) ≥ 2 be an integer. LetR = Z[x]/(f(x)) and letRq = R/qR. Let χ = χ(λ) be a distribution over
R. The RLWEd,q,χ problem is to distinguish the following two distributions: In the first distribution, one
samples (ai, bi) uniformly from R2

q . In the second distribution, one first draws s ← Rquniformly and then
samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting bi = ai · s+ ei. The RLWEd,q,χ
assumption is that the RLWEd,q,χ problem is infeasible.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over ideal
lattices can be reduced to it, specifically:

Theorem 2 (Lyubashevsky-Peikert-Regev [14]). For any d that is a power of 2, ring R = Z[x]/(xd + 1),
prime integer q = q(d) = 1 mod d, and B = ω(

√
d log d), there is an efficiently samplable distribution χ

that outputs elements of R of length at most B with overwhelming probability, such that if there exists an
efficient algorithm that solves RLWEd,q,χ, then there is an efficient quantum algorithm for solving dω(1) ·
(q/B)-approximate worst-case SVP for ideal lattices over R.

Typically, to use RLWE with a cryptosystem, one chooses the noise distribution χ according to a Gaus-
sian distribution, where vectors sampled according to this distribution have length only poly(d) with over-
whelming probability. This Gaussian distribution may need to be “ellipsoidal” for certain reductions to go
through [14]. It has been shown for RLWE that one can equivalently assume that s is alternatively sampled
from the noise distribution χ [14].

2.3 The General Learning with Errors (GLWE) Problem
The learning with errors (LWE) problem and the ring learning with errors problem RLWE are syntactically
identical, aside from using different rings (Z versus a polynomial ring) and different vector dimensions over
those rings (n = poly(λ) for LWE, but n is constant – namely, 1 – in the RLWE case). To simplify our
presentation, we define a “General Learning with Errors (GLWE)” Problem, and describe a single “GLWE-
based” FHE scheme, rather than presenting essentially the same scheme twice, once for each of our two
concrete instantiations.

6

Definition 5 (GLWE). For security parameter λ, let n = n(λ) be an integer dimension, let f(x) = xd + 1
where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime integer, letR = Z[x]/(f(x)) andRq = R/qR,
and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Rn+1

q . In the second distribution,
one first draws s ← Rnq uniformly and then samples (ai, bi) ∈ Rn+1

q by sampling ai ← Rnq uniformly,
ei ← χ, and setting bi = 〈ai, s〉 + ei. The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is
infeasible.

LWE is simply GLWE instantiated with d = 1. RLWE is GLWE instantiated with n = 1. Interestingly, as
far as we know, instances of GLWE between these extremes have not been explored. One would suspect
that GLWE is hard for any (n, d) such that n · d = Ω(λ log(q/B)), where B is a bound (with overwhelming
probability) on the length of elements output by χ. For fixed n ·d, perhaps GLWE gradually becomes harder
as n increases (if it is true that general lattice problems are harder than ideal lattice problems), whereas
increasing d is probably often preferable for efficiency.

If q is much larger than B, the associated GLWE problem is believed to be easier (i.e., there is less
security). Previous FHE schemes required q/B to be sub-exponential in n or d to give room for the noise
to grow as homomorphic operations (especially multiplication) are performed. In our FHE scheme without
bootstrapping, q/B will be exponential in the number of circuit levels to be evaluated. However, since
the decryption circuit can be evaluated in logarithmic depth, the bootstrapped version of our scheme will
only need q/B to be quasi-polynomial, and we thus base security on lattice problems for quasi-polynomial
approximation factors.

The GLWE assumption implies that the distribution {(ai, 〈ai, s〉+t ·ei)} is computational indistinguish-
able from uniform for any t relatively prime to q. This fact will be convenient for encryption, where, for
example, a message m may be encrypted as (a, 〈a, s〉+ 2e+m), and this fact can be used to argue that the
second component of this message is indistinguishable from random.

3 (Leveled) FHE without Bootstrapping: Our Construction
The plan of this section is to present our leveled FHE-without-bootstrapping construction in modular steps.
First, we describe a plain GLWE-based encryption scheme with no homomorphic operations. Next, we
describe variants of the “relinearization” and “dimension reduction” techniques of [3]. Finally, in Section
3.4, we lay out our construction of FHE without bootstrapping.

3.1 Basic Encryption Scheme
We begin by presenting a basic GLWE-based encryption scheme with no homomorphic operations. Let λ be
the security parameter, representing 2λ security against known attacks. (λ = 100 is a reasonable value.)

Let R = R(λ) be a ring. For example, one may use R = Z if one wants a scheme based on (standard)
LWE, or one may useR = Z[x]/f(x) where (e.g.) f(x) = xd+1 and d = d(λ) is a power of 2 if one wants
a scheme based on RLWE. Let the “dimension” n = n(λ), an odd modulus q = q(λ), a “noise” distribution
χ = χ(λ) over R, and an integer N = N(λ) be additional parameters of the system. These parameters
come from the GLWE assumption, except for N , which is set to be larger than (2n + 1) log q. Note that
n = 1 in the RLWE instantiation. For simplicity, assume for now that the plaintext space is R2 = R/2R,
though larger plaintext spaces are certainly possible.

We go ahead and stipulate here – even though it only becomes important when we introduce homomor-
phic operations – that the noise distribution χ is set to be as small as possible. Specifically, to base security
on LWE or GLWE, one must use (typically Gaussian) noise distributions with deviation at least some sub-
linear function of d or n, and we will let χ be a noise distribution that barely satisfies that requirement. To

7

achieve 2λ security against known lattice attacks, one must have n ·d = Ω(λ · log(q/B)) whereB is a bound
on the length of the noise. Since n or d depends logarithmically on q, and since the distribution χ (and hence
B) depends sub-linearly on n or d, the distribution χ (and hence B) depends sub-logarithmically on q. This
dependence is weak, and one should think of the noise distribution as being essentially independent of q.

Here is a basic GLWE-based encryption scheme with no homomorphic operations:

Basic GLWE-Based Encryption Scheme:

• E.Setup(1λ, 1µ, b): Use the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-
based scheme (where d = 1) or a RLWE-based scheme (where n = 1). Choose a µ-bit modulus q and
choose the other parameters (d = d(λ, µ, b), n = n(λ, µ, b), N = d(2n + 1) log qe, χ = χ(λ, µ, b))
appropriately to ensure that the scheme is based on a GLWE instance that achieves 2λ security against
known attacks. Let R = Z[x]/(xd + 1) and let params = (q, d, n,N, χ).

• E.SecretKeyGen(params): Draw s′ ← χn. Set sk = s← (1, s′[1], . . . , s′[n]) ∈ Rn+1
q .

• E.PublicKeyGen(params, sk): Takes as input a secret key sk = s = (1, s′) with s[0] = 1 and
s′ ∈ Rnq and the params. Generate matrix A′ ← RN×nq uniformly and a vector e ← χN and set
b← A′s′+ 2e. Set A to be the (n+ 1)-column matrix consisting of b followed by the n columns of
−A′. (Observe: A · s = 2e.) Set the public key pk = A.

• E.Enc(params, pk,m): To encrypt a message m ∈ R2, set m ← (m, 0, . . . , 0) ∈ Rn+1
q , sample

r← RN2 and output the ciphertext c←m + AT r ∈ Rn+1
q .

• E.Dec(params, sk, c): Output m← [[〈c, s〉]q]2.

Correctness is easy to see, and it is straightforward to base security on special cases (depending on the
parameters) of the GLWE assumption (and one can find such proofs of special cases in prior work).

3.2 Key Switching (Dimension Reduction)
We start by reminding the reader that in the basic GLWE-based encryption scheme above, the decryption
equation for a ciphertext c that encrypts m under key s can be written as m = [[Lc(s)]q]2 where Lc(x) is a
ciphertext-dependent linear equation over the coefficients of x given by Lc(x) = 〈c,x〉.

Suppose now that we have two ciphertexts c1 and c2, encrypting m1 and m2 respectively under the
same secret key s. The way homomorphic multiplication is accomplished in [3] is to consider the quadratic
equation Qc1,c2(x)← Lc1(x) ·Lc2(x). Assuming the noises of the initial ciphertexts are small enough, we
obtain m1 · m2 = [Qc1,c2(s)]q]2, as desired. If one wishes, one can view Qc1,c2(x) as a linear equation
Llongc1,c2(x⊗x) over the coefficients of x⊗x – that is, the tensoring of x with itself – where x⊗x’s dimension
is roughly the square of x’s. Using this interpretation, the ciphertext represented by the coefficients of the
linear equation Llong is decryptable by the long secret key s1 ⊗ s1 via the usual dot product. Of course, we
cannot continue increasing the dimension like this indefinitely and preserve efficiency.

Thus, Brakerski and Vaikuntanathan convert the long ciphertext represented by the linear equation Llong

and decryptable by the long tensored secret key s1 ⊗ s1 into a shorter ciphertext c2 that is decryptable by a
different secret key s2. (The secret keys need to be different to avoid a “circular security” issue). Encryptions
of s1 ⊗ s1 under s2 are provided in the public key as a “hint” to facilitate this conversion.

We observe that Brakerski and Vaikuntanathan’s relinearization / dimension reduction procedures are
actually quite a bit more general. They can be used to not only reduce the dimension of the ciphertext, but
more generally, can be used to transform a ciphertext c1 that is decryptable under one secret key vector s1 to

8

a different ciphertext c2 that encrypts the same message, but is now decryptable under a second secret key
vector s2. The vectors c2, s2 may not necessarily be of lower degree or dimension than c1, s1.

Below, we review the concrete details of Brakerski and Vaikuntanathan’s key switching procedures. The
procedures will use some subroutines that, given two vectors c and s, “expand” these vectors to get longer
(higher-dimensional) vectors c′ and s′ such that 〈c′, s′〉 = 〈c, s〉 mod q. We describe these subroutines first.

• BitDecomp(x ∈ Rnq , q) decomposes x into its bit representation. Namely, write x =
∑blog qc

j=0 2j · uj ,
where all of the vectors uj are in Rn2 , and output (u0,u1, . . . ,ublog qc) ∈ R

n·dlog qe
2 .

• Powersof2(x ∈ Rnq , q) outputs the vector (x, 2 · x, . . . , 2blog qc · x) ∈ Rn·dlog qeq .

If one knows a priori that x has coefficients in [0, B] for B � q, then BitDecomp can be optimized in
the obvious way to output a shorter decomposition in Rn·dlogBe2 . Observe that:

Lemma 2. For vectors c, s of equal length, we have 〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 mod q.

Proof.

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
j=0

〈
uj , 2

j · s
〉

=

blog qc∑
j=0

〈
2j · uj , s

〉
=

〈blog qc∑
j=0

2j · uj , s

〉
= 〈c, s〉 .

We remark that this obviously generalizes to decompositions wrt bases other than the powers of 2.
Now, key switching consists of two procedures: first, a procedure SwitchKeyGen(s1, s2, n1, n2, q),

which takes as input the two secret key vectors as input, the respective dimensions of these vectors, and
the modulus q, and outputs some auxiliary information τs1→s2 that enables the switching; and second, a
procedure SwitchKey(τs1→s2 , c1, n1, n2, q), that takes this auxiliary information and a ciphertext encrypted
under s1 and outputs a new ciphertext c2 that encrypts the same message under the secret key s2. (Below,
we often suppress the additional arguments n1, n2, q.)

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q):

1. Run A← E.PublicKeyGen(s2, N) for N = n1 · dlog qe.

2. Set B← A + Powersof2(s1) (Add Powersof2(s1) ∈ RNq to A’s first column.) Output τs1→s2 = B.

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)
T ·B ∈ Rn2

q .

Note that, in SwitchKeyGen, the matrix A basically consists of encryptions of 0 under the key s2. Then,
pieces of the key s1 are added to these encryptions of 0. Thus, in some sense, the matrix B consists of
encryptions of pieces of s1 (in a certain format) under the key s2. We now establish that the key switching
procedures are meaningful, in the sense that they preserve the correctness of decryption under the new key.

Lemma 3. [Correctness] Let s1, s2, q, n1, n2,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let
A · s2 = 2e2 ∈ RNq . Let c1 ∈ Rn1

q and c2 ← SwitchKey(τs1→s2 , c1). Then,

〈c2, s2〉 = 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q

9

Proof.

〈c2, s2〉 = BitDecomp(c1)
T ·B · s2

= BitDecomp(c1)
T · (2e2 + Powersof2(s1))

= 2 〈BitDecomp(c1), e2〉+ 〈BitDecomp(c1),Powersof2(s1)〉
= 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉

Note that the dot product of BitDecomp(c1) and e2 is small, since BitDecomp(c1) is in RN2 . Overall, we
have that c2 is a valid encryption of m under key s2, with noise that is larger by a small additive factor.

3.3 Modulus Switching
Suppose c is a valid encryption of m under s modulo q (i.e., m = [[〈c, s〉]q]2), and that s is a short vector.
Suppose also that c′ is basically a simple scaling of c – in particular, c′ is the R-vector closest to (p/q) · c
such that c′ = c mod 2. Then, it turns out (subject to some qualifications) that c′ is a valid encryption of
m under s modulo p using the usual decryption equation – that is, m = [[〈c′, s〉]p]2! In other words, we
can change the inner modulus in the decryption equation – e.g., to a smaller number – while preserving the
correctness of decryption under the same secret key! The essence of this modulus switching idea, a variant
of Brakerski and Vaikuntanathan’s modulus reduction technique, is formally captured in Lemma 4 below.

Definition 6 (Scale). For integer vector x and integers q > p > m, we define x′ ← Scale(x, q, p, r) to be
the R-vector closest to (p/q) · x that satisfies x′ = x mod r.

Definition 7 (`(R)
1 norm). The (usual) norm `1(s) over the reals equals

∑
i ‖s[i]‖. We extend this to our

ring R as follows: `(R)
1 (s) for s ∈ Rn is defined as

∑
i ‖s[i]‖.

Lemma 4. Let d be the degree of the ring (e.g., d = 1 when R = Z). Let q > p > r be positive
integers satisfying q = p = 1 mod r. Let c ∈ Rn and c′ ← Scale(c, q, p, r). Then, for any s ∈ Rn with
‖[〈c, s〉]q‖ < q/2− (q/p) · (r/2) ·

√
d · γ(R) · `(R)

1 (s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod r and ‖[

〈
c′, s

〉
]p‖ < (p/q) · ‖[〈c, s〉]q‖+ (r/2) ·

√
d · γ(R) · `(R)

1 (s)

Proof. (Lemma 4) We have

[〈c, s〉]q = 〈c, s〉 − kq

for some k ∈ R. For the same k, let

ep =
〈
c′, s

〉
− kp ∈ R

Note that ep = [〈c′, s〉]p mod p. We claim that ‖ep‖ is so small that ep = [〈c′, s〉]p. We have:

‖ep‖ = ‖ − kp+ 〈(p/q) · c, s〉+
〈
c′ − (p/q) · c, s

〉
‖

≤ ‖ − kp+ 〈(p/q) · c, s〉 ‖+ ‖
〈
c′ − (p/q) · c, s

〉
‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) ·
n∑
j=1

‖c′[j]− (p/q) · c[j]‖ · ‖s[j]‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·
√
d · `(R)

1 (s)

< p/2

Furthermore, modulo r, we have [〈c′, s〉]p = ep = 〈c′, s〉 − kp = 〈c, s〉 − kq = [〈c, s〉]q.

10

The lemma implies that an evaluator, who does not know the secret key but instead only knows a bound
on its length, can potentially transform a ciphertext c that encrypts m under key s for modulus q – i.e., m =
[[〈c, s〉]q]r – into a ciphertext c that encrypts m under the same key s for modulus p – i.e., m = [[〈c, s〉]p]r.
Specifically, the following corollary follows immediately from Lemma 4.

Corollary 1. Let p and q be two odd moduli. Suppose c is an encryption of bitm under key s for modulus q –
i.e., m = [[〈c, s〉]q]r. Moreover, suppose that s is a fairly short key and the “noise” eq ← [〈c, s〉]q has small
magnitude – precisely, assume that ‖eq‖ < q/2−(q/p)·(r/2)·

√
d·γ(R)·`(R)

1 (s). Then c′ ← Scale(c, q, p, r)
is an encryption of of bit m under key s for modulus p – i.e., m = [[〈c, s〉]p]r. The noise ep = [〈c′, s〉]p of
the new ciphertext has magnitude at most (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·

√
d · `(R)

1 (s).

Amazingly, assuming p is smaller than q and s has coefficients that are small in relation to q, this trick
permits the evaluator to reduce the magnitude of the noise without knowing the secret key! (Of course, this
is also what Gentry’s bootstrapping transformation accomplishes, but in a much more complicated way.)

3.4 (Leveled) FHE Based on GLWE without Bootstrapping
We now present our FHE scheme. Given the machinery that we have described in the previous subsections,
the scheme itself is remarkably simple.

In our scheme, we will use a parameter L indicating the number of levels of arithmetic circuit that we
want our FHE scheme to be capable of evaluating. Note that this is an exponential improvement over prior
schemes, that would typically use a parameter d indicating the degree of the polynomials to be evaluated.

(Note: the linear polynomial Llong, used below, is defined in Section 3.2.)

Our FHE Scheme without Bootstrapping:

• FHE.Setup(1λ, 1L, b): Takes as input the security parameter, a number of levels L, and a bit b. Use
the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-based scheme (where
d = 1) or a RLWE-based scheme (where n = 1). Let µ = µ(λ, L, b) = θ(log λ + logL) be a
parameter that we will specify in detail later. For j = L (input level of circuit) to 0 (output level), run
paramsj ← E.Setup(1λ, 1(j+1)·µ, b) to obtain a ladder of decreasing moduli from qL ((L + 1) · µ
bits) down to q0 (µ bits). For j = L− 1 to 0, replace the value of dj in paramsj with d = dL and the
distribution χj with χ = χL. (That is, the ring dimension and noise distribution do not depend on the
circuit level, but the vector dimension nj still might.)

• FHE.KeyGen({paramsj}): For j = L down to 0, do the following:

1. Run sj ← E.SecretKeyGen(paramsj) and Aj ← E.PublicKeyGen(paramsj , sj).

2. Set s′j ← sj ⊗ sj ∈ R
(nj+1

2
)

qj . That is, s′j is a tensoring of sj with itself whose coefficients are
each the product of two coefficients of sj in Rqj .

3. Set s′′j ← BitDecomp(s′j , qj).
4. Run τs′′j+1→sj ← SwitchKeyGen(s′′j , sj−1). (Omit this step when j = L.)

The secret key sk consists of the sj’s and the public key pk consists of the Aj’s and τs′′j+1→sj ’s.

• FHE.Enc(params, pk,m): Take a message in R2. Run E.Enc(AL,m).

• FHE.Dec(params, sk, c): Suppose the ciphertext is under key sj . Run E.Dec(sj , c). (The ciphertext
could be augmented with an index indicating which level it belongs to.)

11

• FHE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . (If they are not initially,
use FHE.Refresh (below) to make it so.) Set c3 ← c1 + c2 mod qj . Interpret c3 as a ciphertext under
s′j (s′j’s coefficients include all of sj’s since s′j = sj ⊗ sj and sj’s first coefficient is 1) and output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . If they are not initially,
use FHE.Refresh (below) to make it so.) First, multiply: the new ciphertext, under the secret key
s′j = sj ⊗ sj , is the coefficient vector c3 of the linear equation Llongc1,c2(x⊗ x). Then, output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Refresh(c, τs′′j→sj−1
, qj , qj−1): Takes a ciphertext encrypted under s′j , the auxiliary information

τs′′j→sj−1
to facilitate key switching, and the current and next moduli qj and qj−1. Do the following:

1. Expand: Set c1 ← Powersof2(c, qj). (Observe:
〈
c1, s

′′
j

〉
=
〈
c, s′j

〉
mod qj by Lemma 2.)

2. Switch Moduli: Set c2 ← Scale(c1, qj , qj−1, 2), a ciphertext under the key s′′j for modulus qj−1.

3. Switch Keys: Output c3 ← SwitchKey(τs′′j→sj−1
, c2, qj−1), a ciphertext under the key sj−1 for

modulus qj−1.

Remark 1. We mention the obvious fact that, since addition increases the noise much more slowly than
multiplication, one does not necessarily need to refresh after additions, even high fan-in ones.

The key step of our new FHE scheme is the Refresh procedure. If the modulus qj−1 is chosen to be
smaller than qj by a sufficient multiplicative factor, then Corollary 1 implies that the noise of the ciphertext
output by Refresh is smaller than that of the input ciphertext – that is, the ciphertext will indeed be a
“refreshed” encryption of the same value. We elaborate on this analysis in the next section.

One can reasonably argue that this scheme is not “FHE without bootstrapping” since τs′′j→sj−1
can be

viewed as an encrypted secret key, and the SwitchKey step can viewed as a homomorphic evaluation of the
decryption function. We prefer not to view the SwitchKey step this way. While there is some high-level
resemblance, the low-level details are very different, a difference that becomes tangible in the much better
asymptotic performance. To the extent that it performs decryption, SwitchKey does so very efficiently using
an efficient (not bit-wise) representation of the secret key that allows this step to be computed in quasi-linear
time for the RLWE instantiation, below the quadratic lower bound for bootstrapping. Certainly SwitchKey
does not use the usual ponderous approach of representing the decryption function as a boolean circuit to
be traversed homomorphically. Another difference is that the SwitchKey step does not actually reduce the
noise level (as bootstrapping does); rather, the noise is reduced by the Scale step.

4 Correctness, Setting the Parameters, Performance, and Security
Here, we will show how to set the parameters of the scheme so that the scheme is correct. Mostly, this
involves analyzing each of the steps within FHE.Add and FHE.Mult – namely, the addition or multiplication
itself, and then the Powersof2, Scale and SwitchKey steps that make up FHE.Refresh – to establish that the
output of each step is a decryptable ciphertext with bounded noise. This analysis will lead to concrete
suggestions for how to set the ladder of moduli and to asymptotic bounds on the performance of the scheme.

Let us begin by considering how much noise FHE.Enc introduces initially.

12

4.1 The Initial Noise from FHE.Enc

Recall that FHE.Enc simply invokes E.Enc for suitable parameters (paramsL) that depend on λ and L. In
turn, the noise of ciphertexts output by E.Enc depends on the noise of the initial “ciphertexts” (the encryp-
tions of 0) implicit in the matrix A output by E.PublicKeyGen, whose noise distribution is dictated by the
distribution χ.

Lemma 5. Let nL and qL be the parameters associated to FHE.Enc. Let d be the dimension of the ring
R, and let γR be the expansion factor associated to R. (Both of these quantities are 1 when R = Z.)
Let Bχ be a bound such that R-elements sampled from the the noise distribution χ have length at most
Bχ with overwhelming probability. The length of the noise in ciphertexts output by FHE.Enc is at most
1 + 2 · γR ·

√
d · ((2nL + 1) log qL) ·Bχ.

Proof. Recall that s ← E.SecretKeyGen and A ← E.PublicKeyGen(s, N) for N = (2nL + 1) log qL,
where A · s = 2e for e ← χ. Recall that encryption works as follows: c ← m + AT r mod q where
r ∈ RN2 . We have that the noise of this ciphertext is [〈c, s〉]q = [m+ 2〈r, e〉]q, whose magnitude is at most
1 + 2 · γR ·

∑N
j=1 ‖r[j]‖ · ‖e[j]‖ ≤ 1 + 2 · γR ·

√
d ·N ·Bχ.

Notice that we are using very loose (i.e., conservative) upper bounds for the noise. These bounds
could be tightened up with a more careful analysis. The correctness of decryption for ciphertexts output
by FHE.Enc, assuming the noise bound above is less than q/2, follows directly from the correctness of the
basic encryption and decryption algorithms E.Enc and E.Dec.

4.2 Correctness and Performance of FHE.Add and FHE.Mult (before FHE.Refresh)
Consider FHE.Mult. One begins FHE.Mult(pk, c1, c2) with two ciphertexts under key sj for modulus qj
that have noises ei = [Lci(sj)]qj , where Lci(x) is simply the dot product 〈ci,x〉. To multiply together two
ciphertexts, one multiplies together these two linear equations to obtain a quadratic equation Qc1,c2(x) ←
Lc1(x) ·Lc2(x), and then interprets this quadratic equation as a linear equation Llongc1,c2(x⊗ x) = Qc1,c2(x)
over the tensored vector x ⊗ x. The coefficients of this long linear equation compose the new ciphertext
vector c3. Clearly, [〈c3, sj ⊗ sj〉]qj = [Llongc1,c2(sj ⊗ sj)]qj = [e1 · e2]qj . Thus, if the noises of c1 and c2 have
length at most B, then the noise of c3 has length at most γR ·B2, where γR is the expansion factor of R. If
this length is less than qj/2, then decryption works correctly. In particular, if mi = [〈ci, sj〉]qj]2 = [ei]2 for
i ∈ {1, 2}, then over R2 we have [〈c3, sj ⊗ sj〉]qj]2 = [[e1 · e2]qj]2 = [e1 · e2]2 = [e1]2 · [e2]2 = m1 ·m2.
That is, correctness is preserved as long as this noise does not wrap modulo qj .

The correctness of FHE.Add and FHE.Mult (before FHE.Refresh) is formally captured in the following
lemmas.

Lemma 6. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let s′j = sj ⊗ sj , where the “non-quadratic coefficients” of s′j (namely, the ‘1’ and
the coefficients of sj) are placed first. Let c′ = c1 + c2, and pad c′ with zeros to get a vector c3 such that
〈c3, s′j〉 = 〈c′, sj〉. The noise [〈c3, s′j〉]qj has length at most 2B. If 2B < qj/2, c3 is an encryption of
m1 +m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

Lemma 7. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let the linear equation Llongc1,c2(x ⊗ x) be as defined above, let c3 be the coefficient
vector of this linear equation, and let s′j = sj ⊗ sj . The noise [〈c3, s′j〉]qj has length at most γR · B2. If
γR ·B2 < qj/2, c3 is an encryption of m1 ·m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

13

The computation needed to compute the tensored ciphertext c3 is Õ(dn2j log qj). For the RLWE instan-
tiation, since nj = 1 and since (as we will see) log qj depends logarithmically on the security parameter and
linearly on L, the computation here is only quasi-linear in the security parameter. For the LWE instantiation,
the computation is quasi-quadratic.

4.3 Correctness and Performance of FHE.Refresh
FHE.Refresh consists of three steps: Expand, Switch Moduli, and Switch Keys. We address each of these
steps in turn.

Correctness and Performance of the Expand Step. The Expand step of FHE.Refresh takes as input a long
ciphertext c under the long tensored key s′j = sj ⊗ sj for modulus qj . It simply applies the Powersof2
transformation to c to obtain c1. By Lemma 2, we know that〈

Powersof2(c, qj),BitDecomp(s′j , qj)
〉

=
〈
c, s′j

〉
mod qj

i.e., we know that if s′j decrypts c correctly, then s′′j decrypts c1 correctly. The noise has not been affected
at all.

If implemented naively, the computation in the Expand step is Õ(dn2j log2 qj). The somewhat high
computation is due to the fact that the expanded ciphertext is a (

(nj+1
2

)
· dlog qje)-dimensional vector over

Rq.
However, recall that sj is drawn using the distribution χ – i.e., it has small coefficients of size basically

independent of qj . Consequently, s′j also has small coefficients, and we can use this a priori knowledge
in combination with an optimized version of BitDecomp to output a shorter bit decomposition of s′j – in
particular, a (

(nj+1
2

)
· dlog q′je)-dimensional vector over Rq where q′j � qj is a bound (with overwhelming

probability) on the coefficients of elements output by χ. Similarly, we can use an abbreviated version of
Powersof2(c, qj). In this case, the computation is Õ(dn2j log qj).

Correctness and Performance of the Switch-Moduli Step. The Switch Moduli step takes as input a cipher-
text c1 under the secret bit-vector s′′j for the modulus qj , and outputs the ciphertext c2 ← Scale(c1, qj , qj−1, 2),
which we claim to be a ciphertext under key s′′j for modulus qj−1. Note that s′′j is a short secret key, since it

is a bit vector in Rtj2 for tj ≤
(nj+1

2

)
· dlog qje. By Corollary 1, and using the fact that `1(s′′j) ≤

√
d · tj , the

following is true: if the noise of c1 has length at most B < qj/2 − (qj/qj−1) · d · γR · tj , then correctness
is preserved and the noise of c2 is bounded by (qj−1/qj) ·B + d · γR · tj . Of course, the key feature of this
step for our purposes is that switching moduli may reduce the length of the moduli when qj−1 < qj .

We capture the correctness of the Switch-Moduli step in the following lemma.

Lemma 8. Let c1 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) such that ej ← [〈c1, s′′j 〉]qj
has length at most B and m = [ej]2. Let c2 ← Scale(c1, qj , qj−1, 2), and let ej−1 = [〈c2, s′′j 〉]qj−1 . Then,
ej−1 (the new noise) has length at most (qj−1/qj) ·B + d · γR ·

(nj+1
2

)
· dlog qje, and (assuming this noise

length is less than qj−1/2) we have m = [ej−1]2.

The computation in the Switch-Moduli step is Õ(dn2j log qj), using the optimized versions of BitDecomp
and Powersof2 mentioned above.

Correctness and Performance of the Switch-Key Step. Finally, in the Switch Keys step, we take as input a
ciphertext c2 under key s′′j for modulus qj−1 and set c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), a ciphertext un-
der the key sj−1 for modulus qj−1. In Lemma 3, we proved the correctness of key switching and established
that the noise grows only by the additive factor 2 〈BitDecomp(c2, qj−1), e〉, where BitDecomp(c2, qj−1) is

14

a (short) bit-vector and e is a (short and fresh) noise vector. In particular, if the noise originally had length
B, then after the Switch Keys step is has length at most B+ 2 ·γR ·

∑uj
i=1 ‖BitDecomp(c2, qj−1)[i]‖ ·Bχ ≤

B + 2 · γR · uj ·
√
d ·Bχ, where uj ≤

(nj+1
2

)
· dlog qje · dlog qj−1e is the dimension of BitDecomp(c2).

We capture the correctness of the Switch-Key step in the following lemma.

Lemma 9. Let c2 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) for modulus qj−1 such that
e1 ← [〈c2, s′′j 〉]qj−1 has length at most B and m = [e1]2. Let c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), and let

e2 = [〈c3, sj−1〉]qj−1 . Then, e2 (the new noise) has length at most B + 2 · γR ·
(nj+1

2

)
· dlog qje2 ·

√
d ·Bχ

and (assuming this noise length is less than qj−1/2) we have m = [e2]2.

In terms of computation, the Switch-Key step involves multiplying the transpose of uj-dimensional
vector BitDecomp(c2) with a uj × (nj−1 + 1) matrix B. Assuming nj ≥ nj−1 and qj ≥ qj−1, and using
the optimized versions of BitDecomp and Powersof2 mentioned above to reduce uj , this computation is
Õ(dn3j log2 qj). Still this is quasi-linear in the RLWE instantiation.

4.4 Putting the Pieces Together: Parameters, Correctness, Performance
So far we have established that the scheme is correct, assuming that the noise does not wrap modulo qj or
qj−1. Now we need to show that we can set the parameters of the scheme to ensure that such wrapping never
occurs.

Our strategy for setting the parameters is to pick a “universal” bound B on the noise length, and then
prove, for all j, that a valid ciphertext under key sj for modulus qj has noise length at mostB. This boundB
is quite small: polynomial in λ and log qL, where qL is the largest modulus in our ladder. It is clear that such
a boundB holds for fresh ciphertexts output by FHE.Enc. (Recall the discussion from Section 3.1 where we
explained that we use a noise distribution χ that is essentially independent of the modulus.) The remainder
of the proof is by induction – i.e., we will show that if the bound holds for two ciphertexts c1, c2 at level
j, our lemmas above imply that the bound also holds for the ciphertext c′ ← FHE.Mult(pk, c1, c2) at level
j − 1. (FHE.Mult increases the noise strictly more in the worst-case than FHE.Add for any reasonable
choice of parameters.)

Specifically, after the first step of FHE.Mult (without the Refresh step), the noise has length at most
γR · B2. Then, we apply the Scale function, after which the noise length is at most (qj−1/qj) · γR · B2 +
ηScale,j , where ηScale,j is some additive term. Finally, we apply the SwitchKey function, which introduces
another additive term ηSwitchKey,j . Overall, after the entire FHE.Mult step, the noise length is at most
(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j . We want to choose our parameters so that this bound is at most
B. Suppose we set our ladder of moduli and the bound B such that the following two properties hold:

• Property 1: B ≥ 2 · (ηScale,j + ηSwitchKey,j) for all j.

• Property 2: qj/qj−1 ≥ 2 ·B · γR for all j.

Then we have

(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j ≤
1

2 ·B · γR
· γR ·B2 +

1

2
·B ≤ B

It only remains to set our ladder of moduli and B so that Properties 1 and 2 hold.
Unfortunately, there is some circularity in Properties 1 and 2: qL depends on B, which depends on qL,

albeit only polylogarithmically. However, it is easy to see that this circularity is not fatal. As a non-optimized
example to illustrate this, set B = λa ·Lb for very large constants a and b, and set qj ≈ 2(j+1)·ω(log λ+logL).

15

If a and b are large enough, B dominates ηScale,L + ηSwitchKey,L, which is polynomial in λ and log qL, and
hence polynomial in λ and L (Property 1 is satisfied). Since qj/qj−1 is super-polynomial in both λ and L, it
dominates 2 ·B · γR (Property 2 is satisfied). In fact, it works fine to set qj as a modulus having (j + 1) · µ
bits for some µ = θ(log λ+ logL) with small hidden constant.

Overall, we have that qL, the largest modulus used in the system, is θ(L · (log λ+logL)) bits, and d ·nL
must be approximately that number times λ for 2λ security.

Theorem 3. For some µ = θ(log λ + logL), FHE is a correct L-leveled FHE scheme – specifically, it
correctly evaluates circuits of depth L with Add and Mult gates over R2. The per-gate computation is
Õ(d · n3L · log2 qj) = Õ(d · n3L · L2). For the LWE case (where d = 1), the per-gate computation is
Õ(λ3 · L5). For the RLWE case (where n = 1), the per-gate computation is Õ(λ · L3).

The bottom line is that we have a RLWE-based leveled FHE scheme with per-gate computation that is
only quasi-linear in the security parameter, albeit with somewhat high dependence on the number of levels
in the circuit.

Let us pause at this point to reconsider the performance of previous FHE schemes in comparison to our
new scheme. Specifically, as we discussed in the Introduction, in previous SWHE schemes, the ciphertext
size is at least Õ(λ ·d2), where d is the degree of the circuit being evaluated. One may view our new scheme
as a very powerful SWHE scheme in which this dependence on degree has been replaced with a similar
dependence on depth. (Recall the degree of a circuit may be exponential in its depth.) Since polynomial-
size circuits have polynomial depth, which is certainly not true of degree, our scheme can efficiently evaluate
arbitrary circuits without resorting to bootstrapping.

4.5 Security
The security of FHE follows by a standard hybrid argument from the security of E, the basic scheme de-
scribed in Section 3.1. We omit the details.

5 Optimizations
Despite the fact that our new FHE scheme has per-gate computation only quasi-linear in the security param-
eter, we present several significant ways of optimizing it. We focus primarily on the RLWE-based scheme,
since it is much more efficient.

Our first optimization is batching. Batching allows us to reduce the per-gate computation from quasi-
linear in the security parameter to polylogarithmic. In more detail, we show that evaluating a function f
homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms of the
security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is still
polynomial in the depth L of the circuit computing f .) Batching works essentially by packing multiple
plaintexts into each ciphertext.

Next, we reintroduce bootstrapping as an optimization rather than a necessity (Section 5.2). Bootstrap-
ping allows us to achieve per-gate computation quasi-quadratic in the security parameter, independent of
the number levels in the circuit being evaluated.

In Section 5.3, we show that batching the bootstrapping function is a powerful combination. With this
optimization, circuits whose levels mostly have width at least λ can be evaluated homomorphically with
only Õ(λ) per-gate computation, independent of the number of levels.

Finally, Section 5.5 presents a few other miscellaneous optimizations.

5.1 Batching
Suppose we want to evaluate the same function f on ` blocks of encrypted data. (Or, similarly, suppose we
want to evaluate the same encrypted function f on ` blocks of plaintext data.) Can we do this using less than

16

` times the computation needed to evaluate f on one block of data? Can we batch?
For example, consider a keyword search function that returns ‘1’ if the keyword is present in the data

and ‘0’ if it is not. The keyword search function is mostly composed of a large number of equality tests that
compare the target word w to all of the different subsequences of data; this is followed up by an OR of the
equality test results. All of these equality tests involve running the same w-dependent function on different
blocks of data. If we could batch these equality tests, it could significantly reduce the computation needed
to perform keyword search homomorphically.

If we use bootstrapping as an optimization (see Section 5.2), then obviously we will be running the
decryption function homomorphically on multiple blocks of data – namely, the multiple ciphertexts that
need to be refreshed. Can we batch the bootstrapping function? If we could, then we might be able to
drastically reduce the average per-gate cost of bootstrapping.

Smart and Vercauteren [21] were the first to rigorously analyze batching in the context of FHE. In
particular, they observed that ideal-lattice-based (and RLWE-based) ciphertexts can have many plaintext
slots, associated to the factorization of the plaintext space into algebraic ideals.

When we apply batching to our new RLWE-based FHE scheme, the results are pretty amazing. Evaluat-
ing f homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms
of the security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is
still polynomial in the depth L of the circuit computing f .) As we will see later, for circuits whose levels
mostly have width at least λ, batching the bootstrapping function (i.e., batching homomorphic evaluation
of the decryption function) allows us to reduce the per-gate computation of our bootstrapped scheme from
Õ(λ2) to Õ(λ) (independent of L).

To make the exposition a bit simpler, in our RLWE-based instantiation where R = Z[x]/(xd + 1), we
will not use R2 as our plaintext space, but instead use a plaintext space Rp that is isomorphic to the direct
productRp1×· · ·×Rpd of many plaintext spaces (think Chinese remaindering), so that evaluating a function
once over Rp implicitly evaluates the function many times in parallel over the respective smaller plaintext
spaces. The pi’s will be ideals in our ring R = Z[x]/(xd + 1). (One could still use R2 as in [21], but the
number theory there is a bit more involved.)

5.1.1 Some Number Theory

Let us take a very brief tour of algebraic number theory. Suppose p is a prime number satisfying p =
1 mod 2d, and let a be a primitive 2d-th root of unity modulo p. Then, xd + 1 factors completely into linear
polynomials modulo p – in particular, xd + 1 =

∏d
i=1(x − ai) mod p where ai = a2i−1 mod p. In some

sense, the converse of the above statement is also true, and this is the essence of reciprocity – namely, in the
ring R = Z[x]/(xd + 1) the prime integer p is not actually prime, but rather it splits completely into prime
ideals inR – i.e., p =

∏d
i=1 pi. The ideal pi equals (p, x−ai) – namely, the set of allR-elements that can be

expressed as r1 · p+ r2 · (x− ai) for some r1, r2 ∈ R. Each ideal pi has norm p – that is, roughly speaking,
a 1/p fraction of R-elements are in pi, or, more formally, the p cosets 0 + pi, . . . , (p− 1) + pi partition R.
These ideals are relative prime, and so they behave like relative prime integers. In particular, the Chinese
Remainder Theorem applies: Rp ∼= Rp1 × · · · ×Rpd .

Although the prime ideals {pi} are relatively prime, they are close siblings, and it is easy, in some
sense, to switch from one to another. One fact that we will use (when we finally apply batching to boot-
strapping) is that, for any i, j there is an automorphism σi→j over R that maps elements of pi to elements
of pj . Specifically, σi→j works by mapping an R-element r = r(x) = rd−1x

d−1 + · · · + r1x + r0 to
r(xeij) = rd−1x

eij(d−1) mod 2d + · · · + r1x
eij + r0 where eij is some odd number in [1, 2d]. Notice that

this automorphism just permutes the coefficients of r and fixes the free coefficient. Notationally, we will use
σi→j(v) to refer to the vector that results from applying σi→j coefficient-wise to v.

17

5.1.2 How Batching Works

Deploying batching inside our scheme FHE is quite straightforward. First, we pick a prime p = 1 mod 2d
of size polynomial in the security parameter. (One should exist under the GRH.)

The next step is simply to recognize that our scheme FHE works just fine when we replace the original
plaintext space R2 with Rp. There is nothing especially magical about the number 2. In the basic scheme E
described in Section 3.1, E.PublicKeyGen(params, sk) is modified in the obvious way so that A · s = p · e
rather than 2 · e. (This modification induces a similar modification in SwitchKeyGen.) Decryption becomes
m = [[〈c, s〉]q]p. Homomorphic operations use mod-p gates rather than boolean gates, and it is easy (if
desired) to emulate boolean gates with mod-p gates – e.g., we can compute XOR(a, b) for a, b ∈ {0, 1}2
using mod-p gates for any p as a + b − 2ab. For modulus switching, we use Scale(c1, qj , qj−1, p) rather
than Scale(c1, qj , qj−1, 2). The larger rounding error from this new scaling procedure increases the noise
slightly, but this additive noise is still polynomial in the security parameter and the number of levels, and
thus is still consistent with our setting of parameters. In short, FHE can easily be adapted to work with a
plaintext space Rp for p of polynomial size.

The final step is simply to recognize that, by the Chinese Remainder Theorem, evaluating an arithmetic
circuit over Rp on input x ∈ Rnp implicitly evaluates, for each i, the same arithmetic circuit over Rpi on
input x projected down to Rnpi . The evaluations modulo the various prime ideals do not “mix” or interact
with each other.

Theorem 4. Let p = 1 mod 2d be a prime of size polynomial in λ. The RLWE-based instantiation of FHE
using the ringR = Z[x]/(xd+1) can be adapted to use the plaintext spaceRp = ⊗di=1Rpi while preserving
correctness and the same asymptotic performance. For any boolean circuit f of depth L, the scheme can
homomorphically evaluate f on ` sets of inputs with per-gate computation Õ(λ · L3/min{d, `}).

When ` ≥ λ, the per-gate computation is only polylogarithmic in the security parameter (still cubic in L).

5.2 Bootstrapping as an Optimization
Bootstrapping is no longer strictly necessary to achieve leveled FHE. However, in some settings, it may have
some advantages:

• Performance: The per-gate computation is independent of the depth of the circuit being evaluated.

• Flexibility: Assuming circular security, a bootstrapped scheme can perform homomorphic evaluations
indefinitely without needing to specify in advance, during Setup, a bound on the number of circuit
levels.

• Memory: Bootstrapping permits short ciphertexts – e.g., encrypted using AES – to be de-compressed
to longer ciphertexts that permit homomorphic operations. Bootstrapping allows us to save memory
by storing data encrypted in the compressed form – e.g., under AES.

Here, we revisit bootstrapping, viewing it as an optimization rather than a necessity. We also reconsider
the scheme FHE that we described in Section 3, viewing the scheme not as an end in itself, but rather as a very
powerful SWHE whose performance degrades polynomially in the depth of the circuit being evaluated, as
opposed to previous SWHE schemes whose performance degrades polynomially in the degree. In particular,
we analyze how efficiently it can evaluate its decryption function, as needed to bootstrap. Not surprisingly,
our faster SWHE scheme can also bootstrap faster. The decryption function has only logarithmic depth
and can be evaluated homomorphically in time quasi-quadratic in the security parameter (for the RLWE
instantiation), giving a bootstrapped scheme with quasi-quadratic per-gate computation overall.

18

5.2.1 Decryption as a Circuit of Quasi-Linear Size and Logarithmic Depth

Recall that the decryption function ism = [[〈c, s〉]q]2. Suppose that we are given the “bits” (elements inR2)
of s as input, and we want to compute [[〈c, s〉]q]2 using an arithmetic circuit that has Add and Mult gates
over R2. (When we bootstrap, of course we are given the bits of s in encrypted form.) Note that we will
run the decryption function homomorphically on level-0 ciphertexts – i.e., when q is small, only polynomial
in the security parameter. What is the complexity of this circuit? Most importantly for our purposes, what
is its depth and size? The answer is that we can perform decryption with Õ(λ) computation and O(log λ)
depth. Thus, in the RLWE instantiation, we can evaluate the decryption function homomorphically using our
new scheme with quasi-quadratic computation. (For the LWE instantiation, the bootstrapping computation
is quasi-quartic.)

First, let us consider the LWE case, where c and s are n-dimensional integer vectors. Obviously, each
product c[i] · s[i] can be written as the sum of at most log q “shifts” of s[i]. These horizontal shifts of
s[i] use at most 2 log q columns. Thus, 〈c, s〉 can be written as the sum of n · log q numbers, where each
number has 2 log q digits. As discussed in [8], we can use the three-for-two trick, which takes as input
three numbers in binary (of arbitrary length) and outputs (using constant depth) two binary numbers with
the same sum. Thus, with O(log(n · log q)) = O(log n + log log q) depth and O(n log2 q) computation,
we obtain two numbers with the desired sum, each having O(log n + log q) bits. We can sum the final
two numbers with O(log log n + log log q) depth and O(log n + log q) computation. So far, we have used
depth O(log n + log log q) and O(n log2 q) computation to compute 〈c, s〉. Reducing this value modulo q
is an operation akin to division, for which there are circuits of size polylog(q) and depth log log q. Finally,
reducing modulo 2 just involves dropping the most significant bits. Overall, since we are interested only in
the case where log q = O(log λ), we have that decryption requires Õ(λ) computation and depth O(log λ).

For the RLWE case, we can use the R2 plaintext space to emulate the simpler plaintext space Z2. Using
Z2, the analysis is basically the same as above, except that we mention that the DFT is used to multiply
elements in R.

In practice, it would be useful to tighten up this analysis by reducing the polylogarithmic factors in
the computation and the constants in the depth. Most likely this could be done by evaluating decryption
using symmetric polynomials [8, 9] or with a variant of the “grade-school addition” approach used in the
Gentry-Halevi implementation [10].

5.2.2 Bootstrapping Lazily

Bootstrapping is rather expensive computationally. In particular, the cost of bootstrapping a ciphertext is
greater than the cost of a homomorphic operation by approximately a factor of λ. This suggests the question:
can we lower per-gate computation of a bootstrapped scheme by bootstrapping lazily – i.e., applying the
refresh procedure only at a 1/L fraction of the circuit levels for some well-chosen L [11]? Here we show
that the answer is yes. By bootstrapping lazily for L = θ(log λ), we can lower the per-gate computation by
a logarithmic factor.

Let us present this result somewhat abstractly. Suppose that the per-gate computation for a L-level no-
bootstrapping FHE scheme is f(λ, L) = λa1 · La2 . (We ignore logarithmic factors in f , since they will
not affect the analysis, but one can imagine that they add a very small ε to the exponent.) Suppose that
bootstrapping a ciphertext requires a c-depth circuit. Since we want to be capable of evaluation depth L
after evaluating the c levels need to bootstrap a ciphertext, the bootstrapping procedure needs to begin with
ciphertexts that can be used in a (c+L)-depth circuit. Consequently, let us say that the computation needed
a bootstrap a ciphertext is g(λ, c + L) where g(λ, x) = λb1 · xb2 . The overall per-gate computation is
approximately f(λ, L) + g(λ, c+ L)/L, a quantity that we seek to minimize.

19

We have the following lemma.

Lemma 10. Let f(λ, L) = λa1 · La2 and g(λ, L) = λb1 · Lb2 for constants b1 > a1 and b2 > a2 ≥ 1.
Let h(λ, L) = f(λ, L) + g(λ, c + L)/L for c = θ(log λ). Then, for fixed λ, h(λ, L) has a minimum for
L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)] – i.e., at some L = θ(log λ).

Proof. Clearly h(λ, L) = +∞ at L = 0, then it decreases toward a minimum, and finally it eventually
increases again as L goes toward infinity. Thus, h(λ, L) has a minimum at some positive value of L. Since
f(λ, L) is monotonically increasing (i.e., the derivative is positive), the minimum must occur where the
derivative of g(λ, c+ L)/L is negative. We have

d

dL
g(λ, c+ L)/L = g′(λ, c+ L)/L− g(λ, c+ L)/L2

= b2 · λb1 · (c+ L)b2−1/L− λb1 · (c+ L)b2/L2

= (λb1 · (c+ L)b2−1/L2) · (b2 · L− c− L) ,

which becomes positive when L ≥ c/(b2−1) – i.e., the derivative is negative only when L = O(log λ). For
L < (c−1)/(b2−1), we have that the above derivative is less than−λb1 ·(c+L)b2−1/L2, which dominates
the positive derivative of f . Therefore, for large enough value of λ, the value h(λ, L) has its minimum at
some L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)].

This lemma basically says that, since homomorphic decryption takes θ(log λ) levels and its cost is super-
linear and dominates that of normal homomorphic operations (FHE.Add and FHE.Mult), it makes sense to
bootstrap lazily – in particular, once every θ(log λ) levels. (If one bootstrapped even more lazily than this,
the super-linear cost of bootstrapping begins to ensure that the (amortized) per-gate cost of bootstrapping
alone is increasing.) It is easy to see that, since the per-gate computation is dominated by bootstrapping,
bootstrapping lazily every θ(log λ) levels reduces the per-gate computation by a factor of θ(log λ).

5.3 Batching the Bootstrapping Operation
Suppose that we are evaluating a circuit homomorphically, that we are currently at a level in the circuit that
has at least d gates (where d is the dimension of our ring), and that we want to bootstrap (refresh) all of
the ciphertexts corresponding to the respective wires at that level. That is, we want to homomorphically
evaluate the decryption function at least d times in parallel. This seems like an ideal place to apply batching.

However, there are some nontrivial problems. In Section 5.1, our focus was rather limited. For example,
we did not consider whether homomorphic operations could continue after the batched computation. Indeed,
at first glance, it would appear that homomorphic operations cannot continue, since, after batching, the
encrypted data is partitioned into non-interacting relatively-prime plaintext slots, whereas the whole point of
homomorphic encryption is that the encrypted data can interact (within a common plaintext slot). Similarly,
we did not consider homomorphic operations before the batched computation. Somehow, we need the input
to the batched computation to come pre-partitioned into the different plaintext slots.

What we need are Pack and Unpack functions that allow the batching procedure to interface with “nor-
mal” homomorphic operations. One may think of the Pack and Unpack functions as an on-ramp to and an
exit-ramp from the “fast lane” of batching. Let us say that normal homomorphic operations will always use
the plaintext slot Rp1 . Roughly, the Pack function should take a bunch of ciphertexts c1, . . . , cd that encrypt
messagesm1, . . . ,md ∈ Zp under key s1 for modulus q and plaintext slotRp1 , and then aggregate them into
a single ciphertext c under some possibly different key s2 for modulus q and plaintext slot Rp = ⊗di=1Rpi ,
so that correctness holds with respect to all of the different plaintext slots – i.e. mi = [[〈c, s2〉]q]pi for
all i. The Pack function thus allows normal homomorphic operations to feed into the batch operation.

20

The Unpack function should accept the output of a batched computation, namely a ciphertext c′ such that
mi = [[〈c′, s′1〉]q]pi for all i, and then de-aggregate this ciphertext by outputting ciphertexts c′1, . . . , c

′
d under

some possibly different common secret key s′2 such that mi = [[〈c′i, s′2〉]q]p1 for all i. Now that all of the
ciphertexts are under a common key and plaintext slot, normal homomorphic operations can resume. With
such Pack and Unpack functions, we could indeed batch the bootstrapping operation. For circuits of large
width (say, at least d) we could reduce the per-gate bootstrapping computation by a factor of d, making it
only quasi-linear in λ. Assuming the Pack and Unpack functions have complexity at most quasi-quadratic
in d (per-gate this is only quasi-linear, since Pack and Unpack operate on d gates), the overall per-gate
computation of a batched-bootstrapped scheme becomes only quasi-linear.

Here, we describe suitable Pack and Unpack functions. These functions will make heavy use of the
automorphisms σi→j over R that map elements of pi to elements of pj . (See Section 5.1.1.) We note that
Smart and Vercauteren [21] used these automorphisms to construct something similar to our Pack function
(though for unpacking they resorted to bootstrapping). We also note that Lyubashevsky, Peikert and Regev
[14] used these automorphisms to permute the ideal factors qi of the modulus q, which was an essential tool
toward their proof of the pseudorandomness of RLWE.

Toward Pack and Unpack procedures, our main idea is the following. If m is encoded in the free term
as a number in {0, . . . , p− 1} and if m = [[〈c, s〉]q]pi , then m = [[〈σi→j(c), σi→j(s)〉]q]pj . That is, we can
switch the plaintext slot but leave the decrypted message unchanged by applying the same automorphism
to the ciphertext and the secret key. (These facts follow from the fact that σi→j is a homomorphism, that
it maps elements of pi to elements of pj , and that it fixes free terms.) Of course, then we have a problem:
the ciphertext is now under a different key, whereas we may want the ciphertext to be under the same key
as other ciphertexts. To get the ciphertexts to be back under the same key, we simply use the SwitchKey
algorithm to switch all of the ciphertexts to a new common key.

Some technical remarks before we describe Pack and Unpack more formally: We mention again that
E.PublicKeyGen is modified in the obvious way so that A·s = p·e rather than 2·e, and that this modification
induces a similar modification in SwitchKeyGen. Also, let u ∈ R be a short element such that u ∈ 1 + p1
and u ∈ pj for all j 6= 1. It is obvious that such a u with coefficients in (−p/2, p/2] can be computed
efficiently by first picking any element u′ such that u′ ∈ 1 + p1 and u′ ∈ pj for all j 6= 1, and then reducing
the coefficients of u′ modulo p.

PackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσ1→i(s1)→s2 ←
SwitchKeyGen(σ1→i(s1), s2).

Pack({ci}di=1, {τσ1→i(s1)→s2}di=1): Takes as input ciphertexts c1, . . . , cd such that mi = [[〈ci, s1〉]q]p1 and
0 = [[〈ci, s1〉]q]pj for all j 6= 1, and also some auxiliary information output by PackSetup. For all i, it does
the following:

• Computes c∗i ← σ1→i(ci). (Observe: mi = [[〈c∗i , σ1→i(s1)〉]q]pi while 0 = [[〈c∗i , σ1→i(s1)〉]q]pj for
all j 6= i.)

• Runs c†i ← SwitchKey(τσ1→i(s1)→s2 , c
∗
i) (Observe: Assuming the noise does not wrap, we have that

mi = [[〈c†i , s2〉]q]pi and 0 = [[〈c†i , s2〉]q]pj for all j 6= i.)

Finally, it outputs c ←
∑d

i=1 c
†
i . (Observe: Assuming the noise does not wrap, we have that mi =

[[〈c, s2〉]q]pi for all i.)

UnpackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσi→1(s1)→s2 ←
SwitchKeyGen(σi→1(s1), s2).

21

Unpack(c, {τσi→1(s1)→s2}di=1): Takes as input a ciphertext c such that mi = [[〈c, s1〉]q]pi for all i, and also
some auxiliary information output by UnpackSetup. For all i, it does the following:

• Computes ci ← u ·σi→1(c). (Observe: Assuming the noise does not wrap,mi = [[〈ci, σi→1(s1)〉]q]p1
and 0 = [[〈ci, σi→1(s1)〉]q]pj for all j 6= 1.)

• Outputs c∗i ← SwitchKey(τσi→1(s1)→s2 , ci). (Observe: Assuming the noise does not wrap, mi =
[[〈c∗i , s2〉]q]p1 and 0 = [[〈c∗i , s2〉]q]pj for all j 6= 1.)

Splicing the Pack and Unpack procedures into our scheme FHE is tedious but pretty straightforward.
Although these procedures introduce many more encrypted secret keys, this does not cause a circular security
problem as long as the chain of encrypted secret keys is acyclic; then the standard hybrid argument applies.
After applying Pack or Unpack, one may apply modulus reduction to reduce the noise back down to normal.

5.4 More Fun with Funky Plaintext Spaces
In some cases, it might be nice to have a plaintext space isomorphic to Zp for some large prime p – e.g.,
one exponential in the security parameter. So far, we have been using Rp as our plaintext space, and (due
to the rounding step in modulus switching) the size of the noise after modulus switching is proportional to
p. When p is exponential, our previous approach for handling the noise (which keeps the magnitude of the
noise polynomial in λ) obviously breaks down.

To get a plaintext space isomorphic to Zp that works for exponential p, we need a new approach. Instead
of using an integer modulus, we will use an ideal modulus I (an ideal ofR) whose norm is some large prime
p, but such that we have a basis BI of I that is very short – e.g. ‖BI‖ = O(poly(d) · p1/d). Using an ideal
plaintext space forces us to modify the modulus switching technique nontrivially.

Originally, when our plaintext space was R2, each of the moduli in our “ladder” was odd – that is, they
were all congruent to each other modulo 2 and relatively prime to 2. Similarly, we will have to choose each
of the moduli in our new ladder so that they are all congruent to each other modulo I . (This just seems
necessary to get the scaling to work, as the reader will see shortly.) This presents a difficulty, since we
wanted the norm of I to be large – e.g., exponential in the security parameter. If we choose our moduli qj to
be integers, then we have that the integer qj+1 − qj ∈ I – in particular, qj+1 − qj is a multiple of I’s norm,
implying that the qj’s are exponential in the security parameter. Having such large qj’s does not work well
in our scheme, since the underlying lattice problems becomes easy when qj/B is exponential in d where
B is a bound of the noise distribution of fresh ciphertexts, and since we need B to remain quite small for
our new noise management approach to work effectively. So, instead, our ladder of moduli will also consist
of ideals – in particular, principle ideals (qj) generated by an element of qj ∈ R. Specifically, it is easy to
generate a ladder of qj’s that are all congruent to 1 moduli I by sampling appropriately-sized elements qj
of the coset 1 + I (using our short basis of I), and testing whether the principal ideal (qj) generated by the
element has appropriate norm.

Now, let us reconsider modulus switching in light of the fact that our moduli are now principal ideals.
We need an analogue of Lemma 4 that works for ideal moduli.

Let us build up some notation and concepts that we will need in our new lemma. Let Pq be the half-open
parallelepiped associated to the rotation basis of q ∈ R. The rotation basis Bq of q is the d-dimensional
basis formed by the coefficient vectors of the polynomials xiq(x) mod f(x) for i ∈ [0, d−1]. The associated
parallelepiped is Pq = {

∑
zi · bi : bi ∈ Bq, zi ∈ [−1/2, 1/2)}. We need two concepts associated to this

parallelepiped. First, we will still use the notation [a]q, but where q is now an R-element rather than integer.
This notation refers to a reduced modulo the rotation basis of a – i.e., the element [a]q such that [a]q−a ∈ qR
and [a]q ∈ Pq. Next, we need notions of the inner radius rq,in and outer radius rq,out of Pq – that is, the

22

largest radius of a ball that is circumscribed by Pq, and the smallest radius of a ball that circumscribes Pq. It
is possible to choose q so that the ratio rq,out/rq,in is poly(d). For example, this is true when q is an integer.
For a suitable value of f(x) that determines our ring, such as f(x) = xd + 1, the expected value of ratio
will be poly(d) even if q is sampled uniformly (e.g., according to discrete Gaussian distribution centered at
0). More generally, we will refer to rB,out as the outer radius associated to the parallelepiped determined by
basis B. Also, in the field Q(x)/f(x) overlying this ring, it will be true with overwhelming probability, if q
is sampled uniformly, that ‖q−1‖ = 1/‖q‖ up to a poly(d) factor. For convenience, let α(d) be a polynomial
such that ‖q−1‖ = 1/‖q‖ up to a α(d) factor and moreover rq,out/rq,in is at most α(d) with overwhelming
probability. For such an α, we say q is α-good. Finally, in the lemma, γR denotes the expansion factor of R
– i.e., max{‖a · b‖/‖a‖‖b‖ : a,b ∈ R}.
Lemma 11. Let q1 and q2, ‖q1‖ < ‖q2‖, be two α-good elements of R. Let BI be a short basis (with outer
radius rBI ,out) of an ideal I ofR such that q1−q2 ∈ I . Let c be an integer vector and c′ ← Scale(c, q2, q1, I)
– that is, c′ is an R-element at most 2rBI ,out distant from (q1/q2) · c such that c′ − c ∈ I . Then, for any s
with

‖[〈c, s〉]q2‖ <
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

we have

[
〈
c′, s

〉
]q1 = [〈c, s〉]q2 mod I and ‖[

〈
c′, s

〉
]q1‖ < α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `

(R)
1 (s)

where `(R)
1 (s) is defined as

∑
i ‖s[i]‖.

Proof. We have

[〈c, s〉]q2 = 〈c, s〉 − kq2
for some k ∈ R. For the same k, let

eq1 =
〈
c′, s

〉
− kq1 ∈ R

Note that eq1 = [〈c′, s〉]q1 mod q1. We claim that ‖eq1‖ is so small that eq1 = [〈c′, s〉]q1 . We have:

‖eq1‖ = ‖ − kq1 + 〈(q1/q2) · c, s〉+
〈
c′ − (q1/q2) · c, s

〉
‖

≤ ‖ − kq1 + 〈(q1/q2) · c, s〉 ‖+ ‖
〈
c′ − (q1/q2) · c, s

〉
‖

≤ γR · ‖q1/q2‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ γ2R · ‖q1‖ · ‖q2−1‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

By the final expression above, we see that the magnitude of eq1 may actually be less than the magnitude
of eq2 if ‖q1‖/‖q2‖ is small enough. Let us continue with the inequalities, substituting in the bound for
‖[〈c, s〉]q2‖:

‖eq1‖ ≤ α(d) · γ2R · (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

+γR · 2rBI ,out · `
(R)
1 (s)

≤ (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

≤
(
rq1,in − γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

= rq1,in

23

Since ‖eq1‖ < rq1,in, eq1 is inside the parallelepiped Pq1 and it is indeed true that eq1 = [〈c′, s〉]q1 . Further-
more, we have [〈c′, s〉]q1 = eq1 = 〈c′, s〉 − kq1 = 〈c, s〉 − kq2 = [〈c, s〉]q2 mod I .

The bottom line is that we can apply the modulus switching technique to moduli that are ideals, and this
allows us to use, if desired, plaintext spaces that are very large (exponential in the security parameter) and
that have properties that are often desirable (such as being isomorphic to a large prime field).

5.5 Other Optimizations
If one is willing to assume circular security, the keys {sj} may all be the same, thereby permitting a public
key of size independent of L.

While it is not necessary, squashing may still be a useful optimization in practice, as it can be used to
lower the depth of the decryption function, thereby reducing the size of the largest modulus needed in the
scheme, which may improve efficiency.

For the LWE-based scheme, one can use key switching to gradually reduce the dimension nj of the
ciphertext (and secret key) vectors as qj decreases – that is, as one traverses to higher levels in the circuit.
As qj decreases, the associated LWE problem becomes (we believe) progressively harder (for a fixed noise
distribution χ). This allows one to gradually reduce the dimension nj without sacrificing security, and
reduce ciphertext length faster (as one goes higher in the circuit) than one could simply by decreasing qj
alone.

6 Summary and Future Directions
Our RLWE-based FHE scheme without bootstrapping requires only Õ(λ ·L3) per-gate computation where L
is the depth of the circuit being evaluated, while the bootstrapped version has only Õ(λ2) per-gate computa-
tion. For circuits of width Ω(λ), we can use batching to reduce the per-gate computation of the bootstrapped
version by another factor of λ.

While these schemes should perform significantly better than previous FHE schemes, we caution that the
polylogarithmic factors in the per-gate computation are large. One future direction toward a truly practical
scheme is to tighten up these polylogarithmic factors considerably.

Acknowledgments. We thank Carlos Aguilar Melchor, Boaz Barak, Shai Halevi, Chris Peikert, Nigel
Smart, and Jiang Zhang for helpful discussions and insights.

References
[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and

circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Proceed-
ings of Theory of Cryptography Conference 2005, volume 3378 of LNCS, pages 325–342, 2005.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/344.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. Manuscript, to appear in CRYPTO 2011.

[5] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully-homomorphic
encryption over the integers with shorter public-keys. Manuscript, to appear in Crypto 2011.

24

[6] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lec-
ture Notes in Computer Science, pages 24–43. Springer, 2010. Full version available on-line from
http://eprint.iacr.org/2009/616.

[7] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[9] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arith-
metic circuits. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/279.

[10] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[11] Shai Halevi, 2011. Personal communication.

[12] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

[13] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? Manuscript at http://eprint.iacr.org/2011/405, 2011.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[15] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic encryption
with -operand multiplications. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Com-
puter Science, pages 138–154. Springer, 2010.

[16] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended ab-
stract. In STOC, pages 333–342. ACM, 2009.

[17] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[18] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference on Computational
Complexity, pages 191–204. IEEE Computer Society, 2010.

[19] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–180, 1978.

[20] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[21] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

25

[22] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 377–394. Springer, 2010.

26

