
University of Toronto

Master’s Thesis

Comparing Different Definitions of
Secure Session

Author:
Can Zhang

Supervisor:
Charles Rackoff

January 25, 2011

1 Introduction

One of the strong goals of cryptography is to ensure secure exchange of information between two
parties in the presence of an adversary who has full control over the channel. This means that
the adversary decides what should be delivered to either of the parties, regardless what the two
parties wish to deliver. In particular, we are interested in the following scenario, which we term
as a “session”:

Figure 1: The Session Model

Alice (A) has a stream of message pieces of a fixed size m1,m2, . . . that she would like to share
with Bob (B), and A encrypts each piece and sends the encrypted pieces to B. In our session
model, we allow the two parties to share a random secret key for encryption and decryption. The
secret key can be agreed upon in various ways: two parties can decide on a key via a trusted carrier,
or they can use some public key infrastucture and a key exchange protocol where a random key
can be established securely. In our discussion of sessions, we assume that the two parties start with
a shared key and do not consider the distribution of the key as a part of the session. Technically,
an “encrypted piece” merely refers to the text that A decides to put on the channel for a message
piece. During the transmission of the encrypted pieces, the adversary has access to all the bits
that A puts on the channel and decides what B receives. Once B receives (supposedly) encrypted
pieces from the adversary, if the adversary did not change the encrypted pieces, B should be able
to extract the original message pieces from the encrypted pieces using his decrypting algorithm.

For a session to be secure, two types of security properties need to be satisfied: privacy and
integrity. Essentially, privacy ensures the message pieces that are embedded in the encrypted
pieces remain unknown to the adversary. Integrity asserts that whenever B outputs a message
piece, it must be the same message piece appearing at the corresponding position in the list of A’s
input message pieces. Since the adversary decides what B receives, it can always send garbage to
B. In order to detect invalid encrypted pieces, B has the option to output a special FAIL symbol.
Whenever B outputs FAIL, we say that B “rejects” an encrypted piece. This is crucial to integrity
because if B decrypts everything it sees, an adversary would be able to send anything to B and
B would never be able to tell whether the (supposedly) encrypted pieces are unrelated to the

1

message pieces that A originally has. There are notions of privacy and integrity defined in the
literature for encryption primitives [5], which deal with encryption for one fixed message (in one
piece), but these notions are not sufficient for session encryption. If we handle each message piece
independently during a session, the adversary would be able to alter the meaning of the message
pieces by simply reordering the pieces.

The first goal of this paper is to present a formal definition of “session protocol”. This means
that we will state the components of a session protocol and the conditions that a session protocol
needs to satisfy in order to operate correctly in the absence of an adversary. Rackoff [8] proposes a
simpler definition of session where B rejects all the subsequent (supposedly) encrypted pieces once
B sees an invalid encrypted piece. In our definition, B continues normally after B sees an invalid
encrypted piece. We define session protocol this way so that session protocols are more robust
and closer to the behaviours of popular Internet protocols, which are practical implementations
of sessions. With this richer definition of session protocol, we consider a number of different
definitions of integrity and privacy.

The main goal of this paper is to study the notion of security of session protocols, i.e. “secure
sessions”. In practice, the adversary may have more power than just controlling the channel. In
particular, we are interested in what information that the adversary is allowed to obtain from B
for each (supposedly) encrypted piece, which is a form of chosen-ciphertext attack. Furthermore,
in order to construct a session protocol that is most secure, we need to construct an adversary
that can perform as many types of attack as possible. We will present a sequence of the definitions
of integrity and a sequence of definitions of privacy, and we will show that each definition in the
sequences is more powerful than the previous one.

1.1 History & Related Work

Shared-key cryptography has a long history that dates back at least to 50 BC when Julius Caesar
used a cipher to send messages of military significance. Since then, various encryption techniques
have been invented, but the notion of security was not rigorously discussed until late 1900s. The
seminal work by Goldwasser and Micali [4] proposes definitions of security for public-key encryption
primitives, and this paper had a lot of influence on future work on the definition of security. Several
alternative definitions of security for shared-key encryption primitives have been proposed [1, 6],
and Katz and Young [5] give a systematic analysis of those definitions and catagorize privacy
and integrity (termed as indistinguishability and non-malleability by the authors) as two types of
security for shared-key encryption primitives.

In constrast to substantial discussion on security for encryption primitives, there is little work
on the definition of secure session, where a stream of message pieces are sent rather than a
single message piece. Canetti and Krawczyk [2, 3] introduced the notion of “secure channel” as
a combination of a network authentication protocol and a network encryption protocol. Both of
these two protocols share a key exchange protocol, and each of them has an encryption scheme
for encrypting multiple message pieces; the security of the encryption scheme depends on the
security of the key exchange protocol. Namprempre [7] separates the key exchange protocol from
the encryption schemes and introduces the security of secure sessions under the assumption of
the sharing of a random key. In this definition of security, the definition of integrity reflects the
property that message pieces are allowed to be dropped and received out of order; in our definition
we insist that message pieces arrive in the same order as they are sent, and message pieces are not
allowed to be dropped. On the other hand, Namprempre’s definition of privacy as well as ours
follows the idea of indistinguishability [5], but we differ in the constraints on the adversary in the

2

security experiment.

1.2 The Definition of Session Protocol

A session protocol specifies how A encrypts message pieces and how B decrypts encrypted pieces
in order to extract the message pieces that A originally has. As a basic requirement, a session
protocol must ensure that the session works correctly in the absence of an adversary. The purpose
of a session is to ensure secure delivery of A’s message pieces to B, and one can imagine a session
protocol in which other information can be exchanged between A and B (in particular, B is able
to send things to A) in order to successfully deliver the message pieces. However, we do not allow
B to send information to A in our definition of session protocol, and therefore it is considered to
be unidirectional in this sense. In the lower levels of the implementation of a session protocol,
it might be allowed to send bits back and forth between A and B, which may be carried out
insecurely, but we will ignore such lower-level interactions.

Both encryption and decryption are algorithms which operate on one message piece during each
invocation, and they keep state information needed for future invocations. The reason why the
protocol operates in such a stateful manner is that if session protocols are stateless, the adversary
would be able to arbitrarily rearrange the message pieces without being noticed and therefore
integrity could never be achieved.

In our definition of session protocol, once B receives an invalid encrypted piece (which B rejects
by outputting FAIL), B continues to decrypt the subsequent (supposedly) encrypted pieces. This
is an extension to Rackoff’s original definition of session protocol [8] where B rejects all future
(supposedly) encrypted pieces in the case of an invalid encrypted piece, which makes it easier
to define the notion of security. The original definition effectively results in a more restricted
adversary because the adversary does not have more opportunities to break the protocol after it
sends an invalid encrypted piece to B. However, by allowing protocols to continue after seeing an
invalid encrypted piece, sessions will not be terminated by a single invalid encrypted piece and
hence become more resilient to common disruptions such as noise in the channel.

1.3 The Notion of Security of Session Protocol

As mentioned above, privacy and integrity are the two properties which session protocols must
satisfy to achieve security. Technically, we need both properties to claim a session protocol secure,
which means one can be sure that every message delivered by the system remains secret and
unchanged. However, privacy is not always an essential property in practice if the conversation
does not need to be confidential, whereas usually one will not tolerate any alteration to delivered
message pieces. Therefore we construct our definition of privacy in such a way that it is most
interesting and intuitively correct when the session protocol also satisfies integrity. Readers may
not agree with our view on the relation between privacy and integrity, but it does not affect the
notion of security, which includes integrity and privacy, because a session protocol is useful in
practice only if it achieves integrity.

Our definition of integrity captures the intuitive idea that the adversary cannot trick B into
decrypting into something different from the message pieces that A originally has. Recall that the
adversary has complete control over the channel, and we describe an experiment which defines how
successful the adversary is in breaking the integrity of a session protocol. In this experiment, a
secret key is chosen for both parties and hidden from the adversary; the adversary chooses message
pieces to be encrypted and sees their encrypted pieces; it also chooses (supposedly) encrypted pieces

3

for B and for each such encrypted piece sees if B outputs FAIL. The adversary wins if B outputs
a different message piece at some position in the stream of (supposedly) encrypted pieces from
the piece at the same position in the stream of A’s messages pieces. Since the adversary wins as
soon as B outputs a bad decryption, the adversary may safely assume that B outputs the correct
message piece if it does not output a FAIL symbol. We allow the adversary to choose message
pieces for A because it is hard to otherwise model how the messages are generated. Moreover, we
allow the adversary to see B’s responses to the (supposedly) encrypted pieces because an attacker
may be able to gain access to the local output of B in practice and we require session protocols
to be capable of defending against such attackers as well.

The notion of privacy states that the adversary cannot distinguish the encrypted pieces of two
different message pieces. As with integrity, the security experiment for privacy starts with both
parties sharing a secret key. The adversary chooses message pieces for A and sees their encrypted
pieces. For exactly once in the experiment the adversary chooses two message pieces and sees the
encrypted piece of a random one of them, and the adversary needs to guess which piece of the two
was encrypted. Similarly, the adversary is allowed to see for each piece whether or not B outputs
FAIL; in a session protocol that already satisfies integrity, the adversary knows that B outputs
the correct piece if it does not output FAIL.

Note that even if we claim a session protocol is “secure”, there is a way in which an adversary
can cause any session to be completely useless: whatever the adversary sees from A, it just sends
garbage to B (or does not send anything at all) so that B does not decrypt into anything other
than FAIL. This type of attack is beyond the scope of our discussion since defeating it requires a
richer setting of the internet where the adversary only has control over parts of it. For the purposes
of this paper, the property of integrity only ensures that all successfully decrypted message pieces
must be the ones composed by A.

Ideally, we want session protocols to be as secure as possible, and thus we allow the adversary
maximum control over the channel in our defintion. However, it is not obvious that all of the power
we grant the adversary may be useful in breaking the security of a session protocol. Therefore we
come up with three versions of the adversary. All three adversaries are allowed to see encrypted
pieces of any message piece throughout the experiment, but the difference appears in the way in
which each adversary gains information from B. The first and weakest adversary is only allowed
to send one group of (supposedly) encrypted pieces to B at the end of the experiment (which
means that it is not allowed to choose more message pieces for A) and see which ones B rejects;
the second adversary is allowed to send any number of (supposedly) encrypted pieces to B one
at a time, but it is still only allowed to do so after it finishes choosing message pieces for A; the
strongest adversary is allowed to not only get information from B for an unlimited amount of
time, but also choose message pieces for A and see encrypted pieces of them between rounds of
(supposedly) encrypted pieces sent to B. Although each adversary is semantically stronger than
the previous one, it is not obvious that the differences in the power of the adversary is essential in
enabling it to break a session protocol. In order to show this, we will show that there are protocols
which are secure under one version of the definition but insecure under a stronger one.

1.4 Pseudo-Random Function Generators

Our session protocols are constructed based on the existence of pseudo-random function gener-
ators. A function generator F maps a string s ∈ {0, 1}n to a function Fs : {0, 1}n −→ {0, 1}n
for each integer n. Intuitively, a pseudo-random function generator produces functions that are
indistinguishable from truly randomly generated functions. In order to formally talk about pseudo-

4

randomness of a function generator F , we need to define an adversary for function generators. An
adversary D = {Dn} is a probabilistic polynomial time algorithm with an oracle for a function f
as input. D outputs a bit indicating whether or not f is accepted.

We say a function generator F is pseudo-random if for every adversary D, define the following:

(1) pD(n) = the probability that if s is randomly chosen from {0, 1}n and D is given n and an
oracle for Fs, then D accepts;

(2) rD(n) = the probability that if D is given n and an oracle for a randomly chosen
f : {0, 1}n −→ {0, 1}n, then D accepts;

Then |pD(n)− rD(n)| ≤ 1
nc for every c and sufficiently large n.

2 The Definition of Session Protocol

We now give our formal definition of session protocols. During a session between two parties A
and B, A sends encrypted message pieces to B using ENC , and B decypts them using DEC , and
we assert that B correctly receives everything that A sends with probability 1.

Definition. A session protocol consists of algorithms ENC and DEC , and length functions z(n),
z′(n) and z′′(n). The length functions are computable in time polynomial in n.

ENC has the following bit strings as input: the key k of length n, a message piece m of length
z(n), a “history” h of length z′′(n), and a string of random bits rand if ENC is probablistic.
ENC is computable in time polynomial in n, outputs a bit string of length z′(n) representing the
encrypted piece of m, together with a bit string of length z′′(n) representing the new “history”
that has to be remembered in order to encrypt the subsequent pieces.

DEC has the following bit strings as input: the key k of length n, a supposedly encrypted piece
e of length z′(n) and a “history” h of length z′′(n). DEC (k, e, h) is computable in time polynomial
in n; it outputs either the special symbol FAIL, or of a bit string of length z(n) representing the
decrypted piece together with a bit string of length z′′(n) representing the new history that has
to be remembered in order to decrypt the subsequent pieces.

In the absence of an adversary, the cryptosystem must work correctly. Specifically, the following
condition must be satisfied:

Let m0,m1, . . . be a sequence of pieces each of length z(n). Define the sequences e0, e1, . . . and
h0, h1, . . . and m′0,m

′
1, . . . and h′0, h

′
1, . . . as follows, where k is an n-bit string and rand0, rand1, . . .

are bit strings of appropriate length depending on ENC :
h0 = h′0 = the all 0 string;
(ei, hi+1) = ENC (k,mi, hi, randi);
(m′i, h

′
i+1) = DEC (k, ei, h

′
i).

Then for all i, m′i = mi.

The length of each message piece z(n) specifies the “granularity” of a session protocol. Since
each message requires a signature for authentication, larger message sizes result in fewer pieces
and hence reduces the amount of bits used for authentication. On the other hand, large message
pieces take longer to encrypt and decrypt because encryption and decryption will not be able to
start before the entire message piece (or encrypted piece) is received.

5

3 The Definitions of Integrity

In the experiment for the definition of integrity, the adversary accesses ENC by choosing message
pieces and seeing their encrypted pieces, and it accesses DEC by sending (supposedly) encrypted
pieces to B and sees whether or not B outputs FAIL symbols. The adversary “wins” as soon as
it causes B to output a different message piece from the message piece at the same position in
the stream of input message pieces chosen for A. We say that a session protocol satisfies integrity
if every adversary wins with negligible probability (probability that diminishes as the security
parameter of the session protocol grows).

Recall that we will propose three versions of definition of integrity characterized by how much
and when interaction with both A and B is allowed for the adversary. In the first version, the
adversary is allowed to choose message pieces for A and then send one batch of (supposedly)
encrypted pieces to B at the end of the experiment; in the second version, the adversary is allowed
to choose message pieces for A and then send (supposedly) encrypted pieces to B one at a time at
the end of the experiment; in the last version, the adversary is allowed to choose message pieces
for A or send (supposedly) encrypted pieces to B in arbitrary order at any moment during the
experiment.

3.1 Definition of Integrity #1

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses piece m0 and sees e0, an encrypted piece of m0 by ENC using key k;
then Dn chooses piece m1 and sees an encrypted piece e1;
this continues for a polynomial amount of time l = l(n).
Then Dn chooses a string σ and sends it to B.
B runs DEC on key k and encrypted-piece-stream σ to obtain a sequence of piecesm′0,m

′
1, . . . ,m

′
l′ ,

where each m′i can be a string of length z(n) (in which case it is a decrypted piece) or FAIL symbol.
Define pD(n) to be the probability that there exists an i, 0 ≤ i ≤ l′ such that either of the two

statements is true: (1) i > l; (2) i ≤ l and mi 6= m′i and m′i 6= FAIL.

Definition. We say a session protocol satisfies integrity #1 if for every adversary D as described
above, pD(n) ≤ 1

nc for each c and sufficiently large n.

We state that the adversary “wins” if one of the following happens: 1) the adversary causes
B to output more pieces than what is sent; 2) the adversary causes B to output a different piece
from the piece which is in the same position in the sequence of messages which A encrypts. In
fact, the definition would not become weaker if we insisted that the adversary can never cause B
to output more pieces than what is sent. Suppose that there exists an adversary D that causes
B to output extra pieces — after outputting pieces m′1,m

′
2, . . . ,m

′
l, B continues to output pieces

m′l+1, . . . ,m
′
l′ . Then we can build a new adversary D′ who chooses mi+1, . . . ,ml′ arbitrarily (as

long as they are not equal to m′l+1, . . . ,m
′
l′ respectively) after choosing the first l message pieces,

and now the “extra” message pieces m′l+1, . . . ,m
′
l′ are “incorrect” message pieces.

6

3.2 Definition of Integrity #2

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses piece m0 and sees e0, an encrypted piece of m0 by ENC using key k;
then Dn chooses piece m1 and sees an encrypted piece e1;
this continues for a polynomial amount of time l = l(n).
Then Dn chooses a string e′0 (of length z′(n)), sends it to B; B runs DEC on key k and e′0 to

obtain its decryption m′0 (a string of length z(n) or FAIL symbol); then B lets Dn know whether
the decryption is a FAIL symbol;

then Dn chooses e′1, sends it to B; B runs DEC on key k and e′1 to obtain its decryption m′1
(a string of length z(n) or FAIL symbol); then B lets Dn know whether the decryption is a FAIL
symbol;

this continues for a polynomial amount of time l′(n).
Define pD(n) to be the probability that there exists an i, 0 ≤ i ≤ l′ such that either of the two

statements is true: (1) i > l; (2) i ≤ l and mi 6= m′i and m′i 6= FAIL.

Definition. We say a session protocol satisfies integrity #2 if for every adversary D as described
above, pD(n) ≤ 1

nc for each c and sufficiently large n.

This definition is the same as the previous version except that the adversary now can view the
FAIL/“NOT FAIL” results which B outputs before deciding what to send to B next. Intuitively
the responses from B might provide information related to the secret key and hence help the
adversary break the system. While this is true under our definition of session protocol, if we
let the protocol terminate once B outputs a FAIL symbol as in the original definition of session
protocol [8], then the responses from B would not help the adversary at all: the adversary should
assume that the i-th piece is decrypted correctly because the adversary has already won if it is
decrypted incorrectly, and the adversary has no more chances of breaking the system if B outputs
FAIL.

3.3 Definition of Integrity #3

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses to perform one of the following actions:

(1) Dn chooses a message piece and sees its encrypted piece;

(2) Dn chooses a string of length z′(n), sends it to B; B runs DEC on key k and the string to
obtain its decryption (a string of length z(n) or FAIL symbol); then B lets Dn know whether
the decryption is a FAIL symbol.

then Dn again chooses to perform one of the actions;

7

this continues for a polynomial amount of time. We name the message stream and encrypted-
piece stream in (1) m0,m1, . . . and e0, e1, . . ., respectively; also, we name the string pieces and
their decryptions in (2) e′0, e

′
1, . . . and m′0,m

′
1, . . ., respectively.

Define pD(n) to be the probability that there exists an i, such that mi 6= m′i and m′i 6= FAIL.

Definition. We say a session protocol satisfies integrity #3 if for every adversary D as described
above, pD(n) ≤ 1

nc for each c and sufficiently large n.

This version of integrity allows maximum interaction with A and B for the adversary since now
there is no restriction on how and when the adversary could access ENC and DEC . In particular,
the adversary may choose more message pieces after seeing some responses from B. It is worth
pointing out that in this experiment, the adversary can ask for the decryption of message pieces
even before it chooses any message piece for A. However, an adversary should never be able to
construct the encrypted piece of a certain message piece without seeing its encrypted piece (i.e.
“forging a message piece”), and therefore a secure session should be able to defend against this
kind of attack.

3.4 Relations Between Different Definitions of Integrity

We will show that all three versions of the definition of integrity are different from each other.
Specifically, we will show that the the Definition of Integrity #2 is stronger than the Definition
of Integrity #1, and the Definition of Integrity #3 is stronger than the Definition of Integrity
#2. Recall that each of our session protocols is constructed based on a pseudo-random function
generator. In the proof of each theorem, we construct a session protocol, and show: 1) if there
exists an adversary that breaks the integrity of this session protocol under the weaker definition
of integrity, then there is an adversary which breaks the pseudo-randomness of the underlying
function generator; 2) there is an adversary which breaks the integrity of this session protocol
under the stronger definition of integrity. In the proof of 1), an adversary that breaks the “pseudo-
randomness” of a function generator is essentially an adversary that distinguishes functions that
are generated by pseudo-random function generators from functions that are generated by truly
random ones, and it outputs a bit about whether or not the function is generated by a pseudo-
random function generator.

Theorem 3.1. There exists a session protocol that satisfies the Definition of Integrity #1 but does
not satisfy the Definition of Integrity #2.

Proof. To show that the responses from B may be useful to the adversary, we construct a session
protocol in which DEC reveals one bit of the secret key each time DEC is called using encrypted
pieces of a special format, and therefore the adversary can learn the key and encrypt anything of
its choice. Essentially, the adversary only needs one additional round of access to DEC to send
a different message piece encrypted with the key after sending a batch of (supposedly) encrypted
pieces to B (as in the Definition of Integrity #1) in order to break this session protocol under the
Definition of Integrity #2.

Consider the following session protocol Π = (ENC ,DEC):
Let F be a pseudo-random function generator where Fi : {0, 1}2n −→ {0, 1}n for any integer i.
For an n-bit key k = k0k1 . . . kn−1 and z(n)-bit message pieces m0,m1, . . ., ENC encrypts each

mi by ei = [mi, Fk (̄imi), 0].

8

For a sequence of strings e′0, e
′
1, . . ., each of length 2n+ 1, DEC decrypts each e′i as follows:

Let e′i = [m′i, β
′
i, b], where B is a single bit and controls the “mode” of DEC . When b = 1,

DEC indicates if the i-th bit of the secret key k is 0 or 1 by outputting FAIL or not. When b = 0,
DEC decrypts normally. More formally:

(1) If i < n, b = 1 and ki = 0, output FAIL.

(2) Otherwise, check if β′i = Fk (̄imi). If so, output m′i; if not, output FAIL.

Claim 3.1.1. Session protocol Π = (ENC ,DEC) satisfies the Definition of Integrity #1.

Proof. Suppose that an adversary C breaks the integrity of Π under the Definition of Integrity #1.
We will construct an adversary D that breaks the pseudo-randomness of the underlying function
generator F . Let pC be the probability defined in the Definition of Integrity #1, and assume that
there exists a constant c such that for infinitely many n, pC(n) > 1

nc ; fix such an n.
Suppose we are given a function f : {0, 1}2n −→ {0, 1}n. Dn simulates Cn as follows:
Whenever Cn chooses mi, we see f (̄imi) and give [mi, f (̄imi), 0] to Cn. Suppose this continues

for l times. Then Cn outputs a sequence of strings [m′0, β
′
0, b0], [m

′
1, β

′
1, b1], . . . , [m

′
l′ , β

′
l′ , bl′].

Dn will accept if there is an i, 0 ≤ i ≤ l′, such that β′i = f (̄im′i), and either of the two
statements is true: (1) i > l; (2) i ≤ l and mi 6= m′i and m′i 6= FAIL.

Therefore a pseudo-randomly generated f will be accepted with probability > 1
nc .

If f is randomly generated, it will only be accepted if Cn guesses the value of f on an input it
did not query. Specifically, Cn has l′ guesses, and therefore its probability of success is
1− (1− 1

2n
)l

′
< l′ · 1

2n
.

Claim 3.1.2. Session protocol Π = (ENC ,DEC) does not satisfy the Definition of Integrity #2,
i.e. there exists an adversary that breaks the integrity of Π under the Definition of Integrity #2.

Proof. We will show how to construct such an adversary D. Specifically, we will construct Dn for
any n.

Dn chooses arbitrary message pieces m0,m1, . . . ,mn,mn+1 and sees their respective encrypted
pieces e0, e1, . . . , en, en+1. Let k = k0k1 . . . kn−1.

For each ei = [mi, βi, 0], let e′i = [mi, βi, 1]. (That is, set the last bit of ei to 1). Dn sends
e′0, e

′
1, . . . , e

′
n to B one at a time; if B outputs FAIL on e′i, the adversary knows that ki = 0;

otherwise ki = 1. Therefore Dn learns k by repeating this n times.
With key k, the adversary simply encrypts any different message other than mn+1 and sends

its encrypted piece to B to make B output something different.

We simply combine both claims to conclude the proof of the theorem.

Theorem 3.2. There exists a session protocol that satisfies the Definition of Integrity #2 but does
not satisfy the Definition of Integrity #3.

Proof. We will construct a session protocol where ENC reveals the secret key when asked for the
encrypted piece of a specific message piece, and this message piece is revealed the same way in
which the secret key is in the session protocol for the previous theorem. Therefore the adversary

9

needs to access ENC at least once after sending (supposedly) encrypted pieces to B in order to
reveal the secret key and hence break the protocol.

Consider the following session protocol Π = (ENC ,DEC):
Let F be a pseudo-random function generator where Fi : {0, 1}2n −→ {0, 1}n for any integer i.
For an n-bit key k and z(n)-bit message pieces m0,m1, . . ., ENC sees if any message piece is

the “special” message piece predetermined by the protocol; if so, ENC reveals the secret key in
its output, and encrypts normally otherwise. Specifically, ENC encrypts each mi as follows:

(1) ei = [mi, Fk(i+ 1 ·mi), 0, 0̄], if mi 6= Fk(0̄ · 0̄);

(2) ei = [mi, Fk(i+ 1 ·mi), 0, k̄], if mi = Fk(0̄ · 0̄).

For a sequence of strings e′0, e
′
1, . . ., each of length 3n+ 1, DEC decrypts each e′i as follows:

Let e′i = [m′i, β
′
i, bi, si] and Fk(0̄ · 0̄) = m∗ = m∗0m

∗
1 bi controls the “mode” of DEC and

when bi is 1, it reveals the i-th bit of m∗, which is the “special” message piece.

(1) If i < n, bi = 1 and m∗i = 0, output FAIL;

(2) otherwise, check if Fk(i+ 1 ·m′i) = β′i. If so, output m′i; otherwise output FAIL.

Claim 3.2.1. Session protocol Π = (ENC ,DEC) satisfies the Definition of Integrity #2.

Proof. Suppose that an adversary C breaks the integrity of Π under the Definition of Integrity #1.
We will construct an adversary D that breaks the pseudo-randomness of the underlying function
generator F . Let pC be the probability defined in the Definition of Integrity #2, and assume that
there exists a constant c such that for infinitely many n, pC(n) > 1

nc ; fix such an n.
Suppose we are given a function f : {0, 1}2n −→ {0, 1}n. Dn simulates Cn as follows:
Whenever Cn chooses mi, Dn simulates ENC as follows:

(1) Dn checks if mi = f(0̄ · 0̄); if so, it accepts f .

(2) Otherwise, Dn gives [mi, f(i+ 1mi), 0, 0̄] to Cn.

Whenever Cn chooses to see the decryption of a string e′i = [m′i, β
′
i, bi, si], Dn simulates DEC

as follows:

(1) Dn checks if bi = 1. If so, it checks if the ith bit of f(0̄ · 0̄) is 0; it gives FAIL to Cn if so.

(2) In cases where either of the two checks in (1) fails, Dn checks if β′i = f(i+ 1m′i). If so, it
gives “NOT FAIL” to Cn; it gives FAIL to Cn otherwise.

(3) At any point during the experiment, let l be the number of message pieces Cn has chosen
and l′ be the number of (supposedly) encrypted pieces Cn has chosen to see. Dn will accept
if there is an i, 0 ≤ i ≤ l′, such that either one of the following statments is true: 1) i > l;
2) i ≤ l, β′i = f(i+ 1m′i), mi 6= m′i and m′i 6= FAIL.

10

Therefore a pseudo-randomly generated f will be accepted in two cases: 1) Cn chooses F (0̄ · 0̄);
2) Cn never chooses F (0̄ · 0̄) and tries to break the system normally. f is accepted with probability
1 in 1), and is accepted with probability > 1

nc in 2) because Dn runs a perfect simulation of Cn.
Therefore Cn accepts a pseudo-randomly generated f with a probability higher than 1

nc .
If f is randomly generated, it will be accepted if one of the two things happens: 1) Cn chooses

F (0̄·0̄); 2) Cn guesses the value of f on an input it did not query. Case 1) happens with probability
< l

2n
and case 2) happens with probability < l′

2n
. Therefore, the overall probability that a randomly

generated f is accepted is < l+l′

2n
which is a negligible function of n.

Claim 3.2.2. Session protocol Π = (ENC ,DEC) does not satisfy the Definition of Integrity #3,
i.e. there exists an adversary that breaks the integrity of Π under the Definition of Integrity #3.

Proof. We will show how to construct such an adversary D. Specifically, we will construct Dn for
any n.

Dn chooses arbitrary message pieces m0,m1, . . . ,mn,mn+1 and sees their respective encrypted
pieces e0, e1, . . . , en, en+1. Let Fk(0̄ · 0̄) = m∗ = m∗0m

∗
1 . . .m

∗
n.

For each ei = [mi, βi, 0, 0̄], let e′i = [mi, βi, 1, 0̄]. Dn sends e′0, e
′
1, . . . , e

′
n to B one at a time; if

B outputs FAIL on e′i, the adversary knows that m∗i = 0; otherwise m∗i = 1. Therefore Dn learns
Fk(0̄ · 0̄) by repeating this n times.

Then Dn sends Fk(0̄ · 0̄) to ENC and learns k as the last tuple of the encrypted piece. With key
k, the adversary simply encrypts any different message other than mn+1 and sends its encrypted
piece to B to make B output something different.

We simply combine both claims to conclude the proof of the theorem.

4 The Definitions of Privacy

In the experiment for the definition of privacy, the adversary first chooses a piece index for which
it will later choose two message pieces and see the encrypted piece of a random one of them. Then
the adversary accesses ENC by choosing message pieces and seeing their encrypted pieces, and it
accesses DEC by sending (supposedly) encrypted pieces to B and sees if B outputs FAIL. Finally,
the adversary outputs a guess at which one of the two pieces was encrypted. The adversary “wins”
if its guess is correct. We say that a session protocol satisfies privacy if every adversary wins with
1
2

+ negligible probability.
Similar to integrity, we propose three versions of the definition of privacy characterized by how

much and when interaction with both A and B is allowed for the adversary, and the differences
between these versions are analogous to the definitions of integrity.

4.1 Definition of Privacy #1

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

Dn chooses an integer r; Dn will be trying to learn what the r-th piece of the message is.

11

A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses piece m0 and sees e0, an encrypted piece of m0 by ENC using key k;
then Dn chooses piece m1 and sees an encrypted piece e1;
this continues through piece mr−1 and er−1.
Then Dn chooses two pieces m0 and m1.
A random bit B is chosen but Dn doesn’t see it, and then Dn sees an encrypted piece er of

mch. We call mch the “challenge encryped piece”.
Then Dn chooses piece mr+1 and sees an encrypted piece er+1;
then Dn chooses piece mr+2 and sees an encrypted piece er+2;
this continues for a polynomial amount of time.
Then Dn outputs a string σ and sends it to B. B runs DEC on key k and each piece in the

encrypted-piece-stream σ, and then Dn learns if and for which pieces B outputs FAIL.
Then Dn outputs ch′, a guess at ch.
Define qD(n) = probability(ch = ch′).

Definition. We say a session protocol satisfies privacy #1 if for every adversary D = {Dn} as
described above, qD(n) ≤ 1

2
+ 1

nc for each c and sufficiently large n.

We ask the adversary to choose the piece on which it will make a guess rather than choose
after seeing some (supposedly) encrypted pieces (and decryptions for stronger definitions described
below). It seems that we provide less information to the adversary, but in fact the definition would
not be weakened if we let the adversary choose the piece whenever it wishes. Suppose there exists
an adversary D which breaks a session protocol by choosing the piece to guess after interacting
with A and B, we can construct an adversary D′ that breaks the same protocol by choosing the
piece beforehand: D′ simply randomly picks a message piece to guess and imitates D until D
decides on which piece it is going to guess. If D happens to choose the one on which D′ randomly
“decides”, D′ keeps imitating D and will perform equally well as D; otherwise, D′ flips a coin to
make a guess. Suppose D chooses at most m message pieces, and then the advantage which D′

has over a half is reduced by a factor of m, which is still non-negligible.
If we let the adversary see the decryption of the challenge encrypted piece, the adversary

would be able to trivially break any protocol. However, the adversary obtains the same amount
of information from a “FAIL/NOT FAIL” response as it from the actual decryption for any other
(supposedly) encrypted pieces. As mentioned earlier, our notion of privacy is most interesting
and intuitive when the session protocol also achieves integrity. Therefore if the session protocol
satisfies integrity, the adversary could safely assume that B decrypts correctly when B responds
with “NOT FAIL”.

4.2 Definition of Privacy #2

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

Dn chooses an integer r; Dn will be trying to learn what the r-th piece of the message is.
A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses piece m0 and sees e0, an encrypted piece of m0 by ENC using key k;
then Dn chooses piece m1 and sees an encrypted piece e1;
this continues through piece mr−1 and er−1.

12

Then Dn chooses two pieces m0 and m1.
A random bit ch is chosen but Dn doesn’t see it, and then Dn sees an encrypted piece er of

mch.
Then Dn chooses piece mr+1 and sees an encrypted piece er+1;
then Dn chooses piece mr+2 and sees an encrypted piece er+2;
this continues for a polynomial amount of time.
Then Dn chooses a string e′0 (of length z′(n)), sends it to B, and sees if B outputs FAIL.
then Dn chooses e′1, sends it to B, and sees if B outputs FAIL;
this continues for a polynomial amount of time.
Then Dn outputs ch′, a guess at B.
Define qD(n) = probability(ch = ch′).

Definition. We say a shared-private-key encryption scheme satisfies privacy #2 if for every ad-
versary D = {Dn} as described above, qD(n) ≤ 1

2
+ 1

nc for each c and sufficiently large n.

Similarly to integrity, Privacy #2 allows the adversary to send (supposedly) encrypted pieces
to B one at a time so that it may choose subsequent (supposedly) encrypted pieces according to
B’s responses.

4.3 Definition of Privacy #3

Let (ENC ,DEC , z(n), z′(n), z′′(n)) be a session protocol. The adversary D is a polynomial size
family of circuits {D1, D2, . . .}, where Dn is the adversary for security parameter n. Consider the
following experiment:

Dn chooses an integer r; Dn will be trying to learn what the r-th piece of the message is.
A random n-bit k is chosen, but Dn doesn’t see it.
Dn chooses to perform one of the following actions:

(1) Dn chooses a message piece and sees its encrypted piece. If this is the r-th time Dn has
chosen to perform this action, Dn chooses two pieces m0 and m1 instead; a random bit ch is
chosen but Dn doesn’t see it, and then Dn sees an encrypted piece er of mch.

(2) Dn chooses a string of length z′(n), sends it to B, and sees if B outputs FAIL;

then Dn again chooses to perform one of the actions;
this continues for a polynomial amount of time. We name the message stream and encrypted-

piece stream in (1) m0,m1, . . . and e0, e1, . . ., respectively; also, we name the string pieces in (2)
e′0, e

′
1,

Then Dn outputs ch′, a guess at ch.
Define qD(n) = probability(ch = ch′).

Definition. We say a session protocol satisfies privacy #3 if for every adversary D = {Dn} as
described above, qD(n) ≤ 1

2
+ 1

nc for each c and sufficiently large n.

Similarly to integrity, this is the case where the adversary can access DEC before and while
choosing message pieces for A.

13

4.4 Relations Between Different Definitions of Privacy

Since our definition of privacy is most interesting where session protocols already satisfy integrity,
it makes little sense to discuss protocols which satisfy privacy but not integrity. We adopt the
strongest notion of integrity, i.e. the Definition of Integrity #3. In general, integrity can be
achieved by attaching a “signature” to each message piece, and therefore we can achieve both
privacy and integrity by attaching signatures to encrypted pieces that satisfy privacy.

Similarly to integrity, we will show that the Definition of Privacy #2 is stronger than the
Definition of Privacy #1, and the Definition of Privacy #3 is stronger than the Definition of
Privacy #2. In the proof of each theorem, we construct a session protocol and show: 1) if there
exists an adversary that breaks the privacy of this session protocol under the weaker definition
of privacy, then there exists an adversary that also breaks the pseudo-randomness of one of the
underlying function generators; 2) if there exists an adversary that breaks the integrity of this
session protocol under the Definition of Integrity #3, then there exists an adversary that breaks the
pseudo-randomness of the other one of the underlying function generators; 3) there is an adversary
that breaks the integrity of this session protocol under the stronger definition of integrity.

Theorem 4.1. There exists a session protocol that satisfies the Definition of Privacy #1 and the
Definition of Integrity #3, but does not satisfy the Definition of Privacy #2.

Proof. As in the session protocol Theorem 3.2, we construct a session protocol that reveals one
bit of a “password” in each output of DEC , and by later providing the “password” to DEC it
reveals whether 0̄ or 1̄ was encrypted into the challenge encrypted piece.

Consider the following session protocol Π = (ENC ,DEC):
Let F , G be pseudo-random function generators, where Fk : {0, 1}n −→ {0, 1}n, and

Gk′ : {0, 1}2n −→ {0, 1}n for any n-bit string k, k′. Let kk′ be the session key, where k and k′ are
the n-bit keys for F and G, respectively.

For z(n)-bit message pieces m0,m1, . . ., ENC encrypts each mi by ei = [αi, 0̄, 00, Gk′ (̄iαi)],
where αi = mi ⊕ Fk(i+ 1). Here αi is an encrypted piece that satisfies privacy #1, and we sign
αi to satisfy integrity. Notice that we are not signing the two middle fields because it is crucial
to be able to change those bits in order to trigger the special modes where DEC reveals critical
information. Also, this still satisfies integrity since those bits are indepedent of the content of the
message pieces and changing them will not result in a different message when decrypted.

For a sequence of strings e′0, e
′
1, . . ., each of length 3n+ 1, DEC decrypts each e′i as follows:

Let e′i = [α′i, pwd i, bi, β
′
i], where pwd i is n-bit long and bi is two-bit long. If bi = 01, we call e′i

a guess query, which indicates that DEC should reveal the next bit in the password. (When
bi = 10, the adversary can use pwd i to cause B to reveal whether or not the message piece is all
zeros.)

(1) (Integrity Check) Check if β′i = Gk (̄iα′i); if not, output FAIL;

(2) otherwise, perform the following action:

(a) (Password) if bi = 01, then let j be the number of guess queries that DEC has seen
so far; if j < n and the jth bit of Fk(0̄) is 0, output FAIL;

(b) (Answer to the Challenge) if bi = 10 and pwd i = Fk(0̄) and α′i ⊕ Fk(i+ 1) = 0̄,
output FAIL;

(c) otherwise m′i = α′i ⊕ Fk(i+ 1).

14

Claim 4.1.1. Session protocol Π = (ENC ,DEC) satisfies the Definition of Privacy #1.

Proof. Suppose that an adversary C = {Cn} breaks the privacy of Π under the Definition of
Privacy #1. We will construct an adversary D which breaks the pseudo-randomness of the un-
derlying function generator F . Let qC be the probability defined in the Definition of Privacy #1,
and assume that there exists a constant c such that for infinitely many n, qC(n) > 1

2
+ 1

nc ; fix such
an n. We will construct an adversary Dn that breaks the pseudo-randomness of F on key length
n.

We construct Dn as follows, given a function f : {0, 1}n −→ {0, 1}n:
Dn chooses a random k′ for G. Dn simulates both A and Cn:
When Cn asks for the encrypted piece of mi, Dn computes αi = mi ⊕ f(i+ 1) and gives the

encrypted piece ei = [αi, 0̄, 00, Gk′ (̄iαi)] to Cn.
When Cn chooses two pieces m0 and m1, Dn randomly chooses one, remembers its choice ch

and gives Cn the encrypted piece of mch.
When Cn sends a sequence of strings e′0e

′
1 . . . e

′
i . . . to B, for each of the pieces Dn simulates

DEC as follows (let e′i = [α′i, pwd i, bi, β
′
i]):

(1) If β′i 6= Gk′ (̄iα
′
i), Dn gives FAIL to Cn;

(2) otherwise, perform the following:

(a) If bi = 01, let j be the number of guess queries Dn has seen so far and it checks if j < n
and the jth bit of f(0̄) is 0; if so, Dn gives FAIL to Cn; otherwise it gives “NOT FAIL”
to Cn.

(b) If bi = 10 and pwd i = f(0̄), Dn checks if α′i ⊕ f(i+ 1) = 0̄; if so, it gives FAIL to Cn.

(c) In all other cases, Dn gives “NOT FAIL” to Cn.

Finally, when Cn outputs a guess at ch, Dn accepts if it is equal to ch, otherwise Dn rejects.
When f is a truly random function, if Cn correctly guesses the value of f(0̄) before it sends a

string to B, it can use f(0̄) to learn which piece was encrypted and therefore its success at guessing
ch is 1. Suppose that l is the number of message pieces Cn chooses in total, and the adversary has
at most l chances to guess f(0̄) by choosing a message to be 0̄ for A. Therefore the probability
that the adversary guesses f(0̄) correctly is < l · 1

2n
. In all other cases, the only information Cn

sees about ch is mch ⊕ f(i+ 1) and no other encrypted piece uses f(i+ 1). Hence the adversary
learns no information about ch. Also note that no information about f is revealed in step (1),
and so receiving a FAIL due to step (1) will not help Cn. Therefore the overall probability that
ch′ = ch is < 1

2
+ l · 1

2n
· 1
2
.

When f is Fk for a random k, the probability that Dn accepts is p(n) > 1
2

+ 1
nc ; and when f

is a truly random function, the probability is < 1
2

+ l · 1
2n
· 1
2
. Therefore the difference is at least

1
nc − l

2n+1 >
1
nc′ , for some integer c′.

Claim 4.1.2. Session protocol Π = (ENC ,DEC) satisfies the Definition of Integrity #3.

Proof. Suppose that an adversary C breaks the integrity of Π under the Definition of Integrity
#3. We will construct an adversary D which breaks the pseudo-randomness of the underlying
function generator G. Let pC be the probability defined in the Definition of Integrity #3, and
assume that there exists a constant c such that for infinitely many n, pC(n) > 1

nc ; fix such an n.

15

Suppose we are given a function g : {0, 1}2n −→ {0, 1}n. Dn chooses a random key k for F .
Then Dn simulates A and Cn as follows:

When Cn chooses mi, Dn computes αi = mi ⊕ Fk(i+ 1) gives the encrypted piece
ei = [αi, 0̄, 00, g(̄iαi)] to Cn.

When Cn sends a sequence of strings e′0e
′
1 . . . e

′
i . . . to B, for each of the pieces Dn simulates

DEC as follows (let e′i = [α′i, pwd i, bi, β
′
i]):

(1) If β′i 6= g(̄iα′i), Dn gives FAIL to Cn;

(2) otherwise, perform the following:

(a) If bi = 01, let j be the number of guess queries Dn has seen so far and it checks if j < n
and the jth bit of Fk(0̄) is 0; if so, Dn gives FAIL to Cn.

(b) If bi = 10 and pwd i = Fk(0̄), Dn checks if α′i⊕Fk(i+ 1) = 0̄; if so, it gives FAIL to Cn.

(c) In all other cases, Dn computes m′i = α′i ⊕ Fk(i+ 1) and gives “NOT FAIL” to Cn.

Let l be the number of message pieces Cn chooses for A and l′ be the number of (supposedly)
encrypted pieces Cn sends to B. Dn will accept g if there is an i, 0 ≤ i ≤ l′, such that one of the
following statment is true: 1)i > l; 2) i ≤ l, β′i = g(̄iα′i), mi 6= m′i and m′i 6= FAIL.

Since Dn runs a perfect simulation of the security experiment for Cn, a pseudo-randomly
generated g will be accepted with probability > 1

nc .
Since step (2) does not reveal any information about g, any responses produced in step (2)

will not help the adversary. Therefore if g is randomly generated, it will only be accepted if Cn

guesses the value of g on an input it did not query. Since Cn has l′ chances to guess the value of
g, its probability of success is < l′ · 1

2n
.

Claim 4.1.3. Session protocol Π = (ENC ,DEC) does not satisfy the Definition of Privacy #2,
i.e. there exists an adversary that breaks the privacy of Π under the Definition of Privacy #2.

Proof. We will show how to construct such an adversary D. Specifically, we will construct Dn for
any n.

Dn chooses r = n+ 1; that is, it will try to guess the (n+ 1)-th message piece.
Dn chooses m0,m1, . . . ,mn−1 arbitrarily and sees their encrypted pieces of the form [αi, 0̄, 0̄, βi].
Then Dn chooses 0̄ and 1̄ and sees the encrypted piece of one of them er = [αr, 0̄, 0̄, βr].
Then Dn sends e′0, e

′
1, . . . , e

′
n−1 where e′j = [αj, 0̄, 1̄, βj] for j = 0, 1, . . . , n − 1, and learns each

bit of Fk(0̄) from outputs of DEC .
Then Dn sends [αi, Fk(0̄), 0̄, βi] to B; if B output FAIL, D outputs ch′ = 0; otherwise it outputs

1.
Since Dn always sends a correct message-signature pair to DEC , DEC will never output FAIL

due to invalid β’s. Therefore probability(ch′ = ch) = 1 and Dn breaks the privacy of Π.

We simply combine all three claims to conclude the proof.

Theorem 4.2. There exists a session protocol that satisfies the Definition of Privacy #2 and the
Definition of Integrity #3, but does not satisfy the Definition of Privacy #3.

16

Proof. The difference between Privacy #2 and #3 is that the adversary in Privacy #3 is allowed
to choose more message pieces for A after it sends (supposedly) encrypted pieces to B. Therefore
we need to construct a session protocol that can be broken if we let ENC reveal some secret
information. In order to force the adversary to access ENC at least one more time after seeing
some responses from B, we make a particular message piece into a special message piece. Similarly
to the session protocol in Theorem 4.1, the adversary first send some (supposedly) encrypted pieces
and learn the special message piece from the responses of B one bit at a time. Then the adversary
chooses the special message piece for A, and ENC reveals a password in the encrypted piece of the
special message piece. Finally, the adversary inserts the password in an encrypted piece and learn
some information about the message piece that is encrypted, which helps with guessing whether
0̄ or 1̄ was encrypted as the challenge encrypted piece.

Consider the following session protocol Π = (ENC ,DEC):
Let F , G be pseudo-random function generators, where Fk : {0, 1}n −→ {0, 1}n, and

Gk′ : {0, 1}2n −→ {0, 1}n for any integer k, k′. Let kk′ be the session key, where k and k′ are the
n-bit keys for F and G, respectively.

For z(n)-bit message pieces m0,m1, . . ., ENC encrypts each mi as follows:

(1) (Password) If mi = Fk(0̄), ei = [αi, Fk(1̄, 00, Gk′ (̄iαi)], where αi = mi ⊕ Fk(i+ 2));

(2) otherwise, ei = [αi, 0̄, 00, Gk′ (̄iαi)], where αi = mi ⊕ Fk(i+ 2) and βi = Gk′ (̄iαi).

For a sequence of strings of length 3n+ 1 e′0, e
′
1, . . ., DEC decrypts each e′i as follows:

Let e′i = [α′i, pwd i, bi, β
′
i], where pwd i is n-bit long and bi is two-bit long. If bi = 01, we call e′i

a guess query, which indicates that DEC should reveal the next bit in the password. (When
bi = 10, the adversary can use pwd i to cause B to reveal whether or not the message piece is all
zeros.)

(1) (Integrity Check) If β′i 6= Gk′ (̄iα
′
i), output FAIL;

(2) otherwise, perform the following:

(a) (Special Message Piece) if bi = 01, then let j be the number of guess queries that
DEC has seen so far; if j < n and the jth bit of Fk(0̄) is 0, output FAIL;

(b) (Answer to the Challenge) if bi = 10 and pwd i = Fk(1̄) and α′i ⊕ Fk(i+ 2) = 0̄,
output FAIL;

(c) otherwise m′i = α′i ⊕ Fk(i+ 2).

Claim 4.2.1. Session protocol Π = (ENC ,DEC) satisfies the Definition of Privacy #2.

Proof. Suppose that an adversary C = {Cn} breaks the privacy of Π under the Definition of
Privacy #2. We will construct an adversary D which breaks the pseudo-randomness of the un-
derlying function generator F . Let qC be the probability defined in the Definition of Privacy #2,
and assume that there exists a constant c such that for infinitely many n, qC(n) > 1

2
+ 1

nc ; fix such
an n. We will construct an adversary Dn that breaks the pseudo-randomness of F on key length
n.

We construct Dn as follows, given a function f : {0, 1}n −→ {0, 1}n:
Dn chooses a random k′ for G. When Cn asks for the encrypted piece of mi, Dn simulates

ENC as follows:

17

(1) Dn checks if mi = f(0̄); if so, it gives [αi, f(1̄), 00, Gk′ (̄iαi)] to Cn, where αi = mi⊕ f(i+ 2);

(2) otherwise it gives [αi, 0̄, 00, βi] to Cn, where αi = mi ⊕ f(i+ 2) and βi = Gk′ (̄iαi).

When Cn chooses two pieces, Dn randomly chooses one, remembers its choice ch and gives Cn

its encrypted piece (by simulating ENC in the same way as in the previous step).
When Cn sends a string e′i to B, Dn simulates DEC as follows: (Let e′i = [α′i, pwd i, bi, β

′
i].)

(1) If β′i 6= Gk (̄iα′i), Dn gives FAIL to Dn;

(2) otherwise, perform the following:

(a) if bi = 01, then let j be the number of guess queries that DEC has seen so far; if the
jth bit of f(0̄) is 0, Dn gives FAIL to Cn;

(b) if bi = 10 and pwd i = f(1̄) and α′i ⊕ f(i+ 2) = 0̄, Dn gives FAIL to Cn;

(c) in all other cases, Dn gives “NOT FAIL” to Cn.

Finally, when Cn outputs a guess at ch, Dn accepts if it is equal to ch, otherwise Dn rejects.
When f is a truly random function, if the adversary correctly guesses the value of f(0̄) (before it

is allowed to send stuff to B) or f(1̄), its success at guessing ch is 1. This happens with probability
< 2l · 1

2n
where l is the number of message pieces and (supposedly) encrypted pieces Cn chooses for

both A and B in total and is a polynomial of n. (the exact probability is lower than this because
there are fewer chances of guessing the value of f(0̄).) In all other cases, the only information the
adversary sees about ch is mch ⊕ f(i+ 2) and no other encrypted piece uses f(i+ 2). Hence the
adversary learns no information about ch. Also note that no information about f is revealed in
step (1), and so receiving a FAIL due to step (1) will not help Cn. Therefore the overall probability
that ch′ = ch is < 1

2
+ 2l

2n
· 1
2
.

When f is Fk for a random k, the probability that Dn accepts is p(n) > 1
2

+ 1
nc ; and when

f is a truly random function, the probability is < 1
2

+ 2l
2n
· 1
2
. Therefore the difference is at least

1
nc − 1

2n
− 2l

2n+1 >
1
nc′ , for some integer c′.

Claim 4.2.2. Session protocol Π = (ENC ,DEC) satisfies the Definition of Integrity #3.

Proof. Suppose that an adversary C = {Cn} breaks the integrity of Π under the Definition of
Integrity #3. We will construct an adversary D break the pseudo-randomness of the underlying
function generator G. Let pC be the probability defined in the Definition of Integrity #3, and
assume that there exists a constant c such that for infinitely many n, pC(n) > 1

nc ; fix such an n.
Suppose we are given a function g : {0, 1}2n −→ {0, 1}n. Dn chooses key k for F . Then Dn

simulates A and Cn as follows:
When Cn asks for the encrypted piece of mi, Dn simulates ENC as follows:

(1) Dn checks if mi = Fk(0̄); if so, it gives [αi, Fk(1̄), 00, g(̄iαi)] to Cn, where αi = mi⊕Fk(i+ 2);

(2) otherwise it gives [αi, 0̄, 00, βi] to Cn, where αi = mi ⊕ Fk(i+ 2) and βi = Gk′ (̄iαi).

When Cn sends a string e′i to B, Dn simulates DEC as follows: (Let e′i = [α′i, pwd i, bi, β
′
i].)

(1) If β′i 6= g(̄iα′i), Dn gives FAIL to Cn;

18

(2) otherwise, perform the following:

(a) if bi = 01, then let j be the number of guess queries that DEC has seen so far; if j < n
and the jth bit of Fk(0̄) is 0, Dn gives FAIL to Cn;

(b) if bi = 10 and pwd i = Fk(1̄) and α′i ⊕ Fk(i+ 2) = 0̄, Dn gives FAIL to Cn;

(c) in all other cases, Dn computes m′i = α′i ⊕ Fk(i+ 2) and gives “NOT FAIL” to Cn.

At any point during the experiment, let l be the number of message pieces Cn has chosen for A
and l′ be the number of (supposedly) encrypted pieces Cn has sent to B. Dn will accept g if there
is an i, 0 ≤ i ≤ l′, such that one of the following statment is true: 1)i > l; 2) i ≤ l, β′i = g(̄iα′i),
mi 6= m′i and m′i 6= FAIL.

Since Dn runs a perfect simulation of the security experiment for Cn, a pseudo-randomly
generated g will be accepted with probability > 1

nc .
Since step (2) does not reveal any information about g, any responses produced in step (2)

will not help the adversary. Therefore if g is randomly generated, it will only be accepted if Cn

guesses the value of g on an input it did not query. Therefore its probability of success is < l · 1
2n

.

Claim 4.2.3. Session protocol Π = (ENC ,DEC) does not satisfy the Definition of Privacy #3,
i.e. there exists an adversary that breaks the privacy of Π under the Definition of Privacy #3.

Proof. We will show how to construct such an adversary D. Specifically, we will construct Dn for
any n.

Dn chooses r = n+ 1; that is, it will try to guess the (n+ 1)-th message piece.
Dn choosesm0,m1, . . . ,mn−1 arbitrarily and sees their encrypted pieces of the form [αi, 0̄, 00, βi].
Then Dn chooses 0̄ and 1̄ and sees the encrypted piece of one of them er = [αr, 0̄, 00, βr].
Then Dn sends e′0, e

′
1, . . . , e

′
n−1 where e′j = [α′j, 0̄, 01, βj] for j = 0, 1, . . . , n− 1, and learns each

bit of Fk(0̄) from outputs of DEC .
Then Dn sends Fk(0̄) to ENC and learns Fk(1̄);
Then Dn sends [αi, Fk(1̄), 10, βi] to B; if B outputs FAIL, D outputs ch′ = 0; otherwise it

outputs 1.
Since Dn always sends a correct message-signature pair to DEC , DEC will never output FAIL

due to invalid β’s. Therefore probability(ch′ = ch) = 1 and Dn breaks the privacy of Π.

We simply combine both claims to conclude the proof of the theorem.

5 More Robust Notions of Session Protocol

There are various ways in which an error may occur during a session, and it would be ideal to
reduce the loss of message pieces from those errors as much as possible. In a session protocol
that is secure under our definition of security, if a (supposedly) encrypted piece is altered during
transmission, which causes B to output a FAIL symbol, the subsequent (supposedly) encrypted
pieces are still decrypted normally. Therefore our definition of session protocol has some resilience
against this type of error. However, if two (supposedly) encrypted pieces swap positions when
they arrive at B, B would output FAIL on both encrypted pieces. Similarly if a (supposedly)

19

encrypted piece is dropped or a new encrypted piece is inserted, the subsequent encrypted pieces
would arrive out of their original positions, which would cause B to output FAIL on all of them.
Nonetheless, there are alternative definitions of session protocol that offer the ability to recover
from those types of error.

We can grant session protocols the ability to recover from out-of-order pieces by asking the
decrypting algorithm to output the indices of the decrypted pieces. Upon successful decryption of
a (supposedly) encrypted piece, DEC outputs a pair (i,m) where i is the index of the decrypted
piece. In the case of an unsuccessful decryption (i.e. DEC rejects), DEC outputs a special symbol
FAIL as in our previous definition. The adversary is considered to have broken the integrity if an
encrypted piece is decrypted into something different from the message piece with the same index
in the input stream of message pieces. Under this definition of session protocols, if a message is
out-of-order, duplicated or missing, the indices of the output would reflect the errors immediately.
This definition also results in different definitions of integrity and privacy. In particular, the
adversary now should be able to see the index of a message piece as a part of the response from
B.

These definitions of session protocol provide protection for message pieces that arrive out of
order, but it is still impossible to recover encrypted pieces on which B outputs FAIL symbols.
Another change that we can make is to allow B to send responses to A so that A is able to learn
whether message pieces have been delivered successfully. Again, the definition of session security
would need to be modified appropriately because the adversary may be able to gain information
from this additional phase of interaction between A and B. However, the information B sends to
A is also controlled by the adversary. As a result, the information exchanged in this phase is also
subject to the adversary to the same degree as in our previous definition. It would be interesting
to propose a formal definition of session protocol in this setting, but we will omit it from this
paper.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmet-
ric encryption: Analysis of the DES modes of operation. In In Proceedings of 38th Annual
Symposium on Foundations of Computer Sci ence (FOCS 97, 1997.

[2] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Advances in Cryptology EUROCRYPT 2001, volume 2045, pages 453–474,
2001.

[3] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In Advances in Cryptology EUROCRYPT 2002, volume 2332, pages 337–351, 2002.

[4] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[5] Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic
private-key encryption. In Journal of Cryptology, pages 245–254. ACM Press, 2000.

[6] Michael Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press,
Princeton, NJ, USA, 1994.

20

[7] Chanathip Namprempre. Secure channels based on authenticated encryption schemes: A
simple characterization. In Advances in Cryptology ASIACRYPT 2002, volume 2501, pages
111–118, 2002.

[8] Charles Rackoff. Lecture notes for introduction to cryptography. http://www.cs.toronto.

edu/~rackoff/2426f08/notes4.pdf, 2008.

21

