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Abstract

Verifiable secret sharing (VSS) is an important primitive in distributed cryptography that
allows a dealer to share a secret among n parties in the presence of an adversary controlling
at most t of them. In the computational setting, the feasibility of VSS schemes based on com-
mitments was established over two decades ago. Interestingly, all known computational VSS
schemes rely on the homomorphic nature of these commitments or achieve weaker guarantees.
As homomorphism is not inherent to commitments or to the computational setting in general, a
closer look at its utility to VSS is called for. In this paper, we demonstrate that homomorphism
of commitments is not a necessity for computational VSS in the synchronous or in the asyn-
chronous communication setting. We present new VSS schemes based only on the definitional
properties of commitments that are almost as good as existing VSS schemes based homomor-
phic commitments. Furthermore, they have significantly lower communication complexities than
their (statistical or perfect) unconditional counterparts. Considering the feasibility of commit-
ments from any claw-free permutation, one-way function or collision-resistant hash function, our
schemes can be an excellent alternative to unconditional VSS in the future.

Further, in the synchronous communication model, we observe that a crucial interactive
complexity measure of round complexity has never been formally studied for computational
VSS. Interestingly, for the optimal resiliency conditions, the least possible round complexity
in the known computational VSS schemes is identical to that in the (statistical or perfect)
unconditional setting: three rounds. Considering the strength of the computational setting, this
equivalence is certainly surprising. In this paper, we show that three rounds are actually not
mandatory for computational VSS. We present the first two-round VSS scheme for n ≥ 2t + 1
and lower-bound the result tightly by proving the impossibility of one-round computational VSS
for t ≥ 2 or n ≤ 3t. For the remaining condition of t = 1 and n ≥ 4, we present a one-round VSS
scheme. We also include a new two-round VSS scheme using homomorphic commitments that
has the same communication complexity as the well-known three-round Feldman and Pedersen
VSS schemes.

Keywords: Verifiable Secret Sharing, Round Complexity, Commitments, Homomorphism

1 Introduction

The notion of secret sharing was introduced independently by Shamir [38] and Blakley [3] in 1979. Since
then, it has remained an important topic in cryptographic research. For integers n and t such that n > t ≥ 0,
an (n, t)-secret sharing scheme is a method used by a dealer D to share a secret s among a set of n parties
(the sharing phase) in such a way that in the reconstruction phase any subset of t+ 1 or more honest parties
can compute the secret s, but subsets of size t or fewer cannot. Since in some secret sharing applications the
dealer may benefit from behaving maliciously, parties also require a mechanism to confirm the correctness
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of the dealt values. To meet this requirement, Chor et al. [9] introduced verifiability in secret sharing, which
led to the concept of verifiable secret sharing (VSS).

VSS has remained an important area of cryptographic research for the last two decades [1,5,11–13,15,24–
26,29,33,34]. In the literature, VSS schemes are categorized based on the adversarial computational power:
computational VSS schemes and unconditional VSS schemes. In the former, the adversary is computationally
bounded by a security parameter, while in the latter the adversary may possess unbounded computational
power. Naturally, the computational VSS schemes are significantly more practical and efficient in terms of
message and communication complexities as compared to the unconditional schemes. Thus, the majority of
the recent research has been focussed on devising practical constructions for unconditional VSS. In this work,
we revisit the concept of computational VSS [5, 11, 15, 33] to settle the round complexity of computational
VSS based on minimal cryptographic assumptions (which is cryptographic commitment in our case) and to
investigate the role of homomorphism of commitment schemes in the context of VSS. For the later case, we
show homomorphism of commitment schemes is not a necessity for VSS and thereby VSS can be constructed
based on the definitional properties of commitment schemes.

Motivation and Contributions. The major savings in the computational VSS schemes come from
the use of cryptographic commitments. Interestingly, we find that all computational VSS schemes in the
literature except [15, App. A] (which satisfies weaker conditions; see related work) require these commit-
ments to be homomorphic. However, homomorphism is not inherent to cryptographic commitments; it is
an additional property provided by discrete logarithm (DLog), Pedersen [34] and few other commitment
schemes. Results such as [39] increase our natural curiosity towards avoiding use of homomorphic discrete
logarithm and Pedersen commitments. As we elaborate later in the paper, commitments can be designed
from general primitives such as one-way functions or collision-free hash functions; but, homomorphism may
not be guaranteed in these constructions. Furthermore, relying on as little assumptions as possible without
much loss in efficiency is always a general goal in cryptography. Therefore, computational VSS schemes
based only on the definitional properties of commitments can be interesting to study.

In this paper, we show that homomorphism is not a necessity for VSS in both synchronous (known and
bounded message delays) and asynchronous (unbounded message delays) communication model. While our
VSS schemes (in both network settings) based on any commitment scheme are almost as good as the existing
computational VSS protocols using homomorphic commitment schemes, they are considerably better than
the unconditional VSS schemes. Therefore, if the existing computational VSS schemes become ineffective in
the future possibly due to [39], our schemes will be more suitable than their unconditional counterparts in
applications such as asynchronous Byzantine agreement protocols.

In the synchronous communication model with a broadcast channel, Gennaro et al. [13] initiated the
study of round complexity (number of rounds required to complete an execution) and proved a lower bound
of three rounds during the sharing phase and one round during the reconstruction phase for unconditional
VSS. The work was further extended in [12,25] with tight polynomial time constructions, and in [26,29] by
improving the bounds in a statistical scenario where the VSS properties are held statistically and can be
violated with a negligible probability.

To the best of our knowledge, the round complexity of computational VSS has never being formally
analyzed in the synchronous VSS literature. We observe that the round complexity of all known practical
computational VSS protocols [11, 34] for the optimal resilience of n ≥ 2t + 1 is the same as that of un-
conditional VSS schemes: three rounds in the sharing phase.1 This similarity is surprising considering the
usage of commitments in computational VSS. We analyze the round complexity of computational VSS with
homomorphic and non-homomorphic commitments.

1. We show the impossibility of 1-round computational VSS protocol in the standard communication
model under consideration; specifically, we prove that a computational VSS scheme with one round
in the sharing phase is impossible for t ≥ 2 or n ≤ 3t. However, we find that there exists a special
1-round VSS construction for t = 1 and n ≥ 4, when the dealer is one of the participants. We present
a 1-round construction for n ≥ 2t + 1 for the weaker notion of weak verifiable secret sharing (WSS),
which might be of some theoretical interest. We note that our 1-round computational VSS does not
differ from 1-round statistical VSS [29] in terms of possibility results.

1Note that it is possible to reduce a round in sharing in [11, 34] but that asks for a sub-optimal resilience of
n ≥ 3t + 1. Further, with a much stronger assumption of non-interactive zero-knowledge (NIZK), it is possible to
reduce the number of sharing rounds to one for n ≥ 2t+ 1 in the public key infrastructure [18].
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2. We then tighten our lower-bound result by providing a 2-round computational VSS scheme for n ≥
2t + 1 using any commitment scheme. Existing VSS schemes [11, 15, 34] based on homomorphic
commitments require three rounds for n ≥ 2t + 1. Comparing with unconditional VSS schemes, we
notice that the message and communication complexities of our scheme are at least a linear factor
better. Also, our scheme is better in terms of round complexity or resilience bound as compared to
all known unconditional VSS schemes.
We then provide a VSS scheme for n ≥ 2t + 1 using homomorphic commitments that has same
message and communication complexities but requires one less round of communication as compared
to [11,15,34]. Our scheme, therefore, is an ideal replacement for [11,15,34] in each of their applications.

Organization. In the rest of this section, we review the related work. In Section 2, we describe our
adversary model and definitions of verifiable secret sharing and cryptographic commitments. For the sake
of clarity, we present all our results on VSS in the synchronous communication model in Section 3. This
section starts with a 2-round VSS scheme based on any commitment scheme in subsection 3.2, followed by
the impossibility results for 1-round VSS in subsection 3.3 that implicitly show the round optimality of our
2-round protocol. We complete this section with a 1-round VSS for the special case of (t = 1 and n ≥ 4) and
an efficient 2-round VSS based on homomorphic commitment that improves the communication complexity
of our 2-round VSS of subsection 3.2. We then consider VSS in asynchronous communication model in
Section 4. Here, we present our asynchronous VSS protocol using any commitments with optimal resilience,
i.e., n ≥ 3t + 1. In Section 5, we discuss a few interesting open problems. In Appendix A, we present an
efficient one-round WSS scheme for n ≥ 2t+ 1. Most of our proofs have been shifted to Appendix B.

Related Work. For our work in the synchronous setting, we closely follow the network and adversary
model of the best known VSS schemes: Feldman VSS [11] and Pedersen VSS [34]. These schemes are called
non-interactive as they require unidirectional private links from the dealer to the parties; non-dealer parties
speak only via the broadcast channel. Our protocol assumes nearly the same network model; however, in
addition, we also allow parties to send messages to the dealer over the private channel. In practice, it is
reasonable to assume that private links are bidirectional. Note that we do not need any private communica-
tion links between non-dealer parties. This network relaxation is an advantage of computational VSS over
unconditional VSS as Pedersen [34] proved that unconditional VSS schemes are impossible in the network
where only the dealer is connected to the parties by private communication channel and a common broadcast
medium is available.

It is also important to compare our work with unconditional VSS as we work towards reducing the cryp-
tographic assumptions required for computational VSS. In unconditional or information theoretic settings,
there are two different possibilities for the VSS properties; they can be held perfectly (i.e., error-free) or
statistically with negligible error probability. Assuming a broadcast channel, perfect VSS is possible if and
only if n ≥ 3t + 1 [2], while statistical VSS is possible for n ≥ 2t + 1 [36]. Gennaro et al. [13] initiated
the study of the round complexity of unconditional VSS, which was extended by Fitzi et al. [12] and Katz
et al. [25]. They concentrate on unconditional VSS with perfect security and show that three rounds in
the sharing phase are necessary and sufficient for n ≥ 3t + 1. In the statistical scenario, Patra et al. [29]
show that n ≥ 3t+ 1 is necessary and sufficient for 2-round statistical VSS. Recently, Kumaresan et al. [26]
extended the result to prove that 3 rounds are enough for designing statistical VSS with n ≥ 2t+ 1.

The round complexity is never studied formally for computational VSS. In the standard model that we
follow in this paper, the best known computational VSS protocols [11, 15, 34] require two rounds; however,
they work only for a suboptimal resilience of n ≥ 3t + 1. Although these schemes can also be adopted
for n ≥ 2t + 1, they then ask for three rounds. In addition, the only known VSS among these that does
not mandate homomorphic commitments, [15, App. A], does not satisfies the generally required stronger
commitment property of VSS. In this paper, we improve all the above results by showing that two rounds
are necessary and sufficient for (stronger) VSS with n ≥ 2t + 1 using (homomorphic or non-homomorphic)
cryptographic commitments. We note that it is also possible to achieve 1-round VSS in the presence of
a public-key infrastructure (PKI) employing NIZK proofs [18]. However, NIZK proofs requires a common
reference string or a random oracle. Furthermore, the scheme of [18] can only achieve computational secrecy,
whereas our schemes can obtain unconditional (or computational) secrecy as required.

For our work in the asynchronous setting, we follow the standard model of Cachin et al. [5]. In the
asynchronous communication setting, Cachin et al. [5], Zhou et al. [40], and more recently Schultz et al. [37]
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suggested computational VSS schemes: AVSS (Asynchronous VSS), APSS (Asynchronous Proactive Secret
Sharing), and MPSS (Mobile Proactive Secret Sharing) respectively. Of these, the APSS protocol is im-
practical for any reasonable n and t, as it has an exponential

(
n
t

)
factor in the message complexity (number

of messages transferred), while MPSS is developed for a more mobile setting where the set of the system
nodes has to change completely between two consecutive phases. On other hand, AVSS cleverly assimilates
a bivariate polynomial into Bracha’s reliable broadcast [4] to construct an AVSS scheme with O(n2) message
complexity and O(n3) communication complexity. Therefore, AVSS is certainly the most practical compu-
tational VSS protocol in the literature. However, all of the above schemes rely on homomorphism of the
commitment scheme. We avoid the use of homomorphism, while maintaining the communication complexity
of the VSS of [5]. Note that our protocol is significantly efficient in all aspects as compared to unconditional
VSS schemes [6, 7, 30,31] in the asynchronous communication model.

2 Preliminaries

We work in the computational security setting, where κ denotes the security parameter of the system, in
bits. A function ε(·) : N→ R+ is called negligible if for all c > 0 there exists a κ0 such that ε(κ) < 1/κc for
all κ > κ0. In the rest of this paper, ε(·) denotes a negligible function.

We assume that the dealer’s secret s lies over a finite field Fp, where p is an κ bits long prime. Our
polynomials for secret sharing belong to Fp[x] or Fp[x, y], and the indices for the parities are chosen from
Zp. Without loss of generality, we assume these indices to be {1, . . . , n}.

2.1 Adversary Model

We consider a network of n parties P = {P1, P2, . . . , Pn}, where a distinguished party D ∈ P works as a
dealer. Our adversary A is t-bounded and it can compromise and coordinate actions of up to t out of n
parties. We also assume that the adversary is adaptive; it may corrupt any party at any instance during a
protocol execution as long as the number of corruptions is bounded by t. A party is called honest, if it is
not under the adversarial control.

We work in the synchronous as well as the asynchronous communication settings in this paper, and
postpone the discussions on communication setting to the respective sections. We describe the synchronous
communication model in Section 3.3 and the asynchronous communication model in Section 4.

2.2 VSS and Variants

We now present the definition of VSS [13]. A VSS protocol among n parties P = {P1, P2, . . . , Pn} with a
distinguished party D ∈ P consists of two phases: a sharing phase and a reconstruction phase.

Sharing. Initially, D holds an input s, referred to as the secret, and each party Pi may hold an independent
random input ri. The sharing phase may consist of several rounds of interaction between parties. At
the end of the sharing phase, each honest party Pi holds a view vi that may be required to reconstruct
the dealer’s secret later.

Reconstruction. In this phase, each party Pi publishes its entire view vi from the sharing phase, and a
reconstruction function Rec(v1; . . . ; vn) is applied and is taken as the protocol’s output.

We call an n-party VSS protocol, with t-bounded adversary A, an (n, t)-VSS protocol if it satisfies the
following conditions:

Secrecy. If D is honest then the adversary’s view during the sharing phase reveals no information about s.
More formally, the adversary’s view is identically distributed for all different values of s.

Correctness. If D is honest then the honest parties output the secret s at the end of the reconstruction
phase.

Commitment. If D is dishonest, then at the end of the sharing phase there exists a value s∗ ∈ Fp ∪ {⊥},
such that at the end of the reconstruction phase all honest parties output s∗.
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In the asynchronous communication setting, VSS also has two more termination properties: liveness and
agreement. We describe them in Section 4, before we present our asynchronous VSS protocols.

A VSS protocol is considered efficient if the total computation and communication performed by all
parties is polynomial in n and the security parameter κ. The optimal resiliency bound for VSS is n ≥
2t+ 1 [17] in the synchronous communication model and n ≥ 3t+ 1 [2] in the asynchronous communication
model.

Variants of VSS. A few variants of VSS have been introduced as required in secret sharing applications.
We briefly describe those below.

1. In our VSS definition, we assume that secrecy is unconditional, while correctness and commitment
are computational. We can have a variation where secrecy is computational, and correctness and
commitment are unconditional in nature. This is easily possible as the security and correctness of a
VSS scheme are derived respectively from the hiding and binding of the commitment scheme under
use. Our lower bound results hold for this variation as well.

2. In our VSS, the reconstruction may end with ⊥. By fixing a default value in Fp (say 0) that will be
output instead of ⊥, it is possible to say that s∗ ∈ Fp. As suggested in [13, Sec. 2.1], there is even a
stronger VSS definition possible. The stronger definition has exactly the same secrecy and correctness
properties, but has a stronger commitment property:

Strong Commitment. Even if D is dishonest, each party locally outputs a share of the secret chosen
only from Fp at the end of the sharing phase, such that the joint shares output by honest parties
are consistent with a specified secret sharing scheme.

Assuming Shamir’s secret sharing, this property means that at the end of the sharing phase, there
exists a t-degree polynomial f(x) such that a share si held by every honest party Pi is equal to f(i).
Our 1-round protocol in Section 3.4 and the first asynchronous protocol in Section 4.2 satisfy the basic
VSS definition. On the other hand, our 2-round protocols in sections 3.2 and 3.5, and our second
asynchronous protocol in Section 4.3 satisfy the stronger definition.

3. Another stronger variant of VSS considers dealer D to be an external party (i.e., D /∈ P) and allows
the t-bounded adversary to corrupt the dealer and up to t additional parties in P.
Our lower bound results and all of our protocols except our 1-round VSS in Section 3.4 hold for this
variant as well. We show that 1-round VSS with an external dealer is impossible even when t = 1
irrespective of the value of n and the number of rounds in the reconstruction phase.

In the VSS literature, a strictly weaker primitive called weak verifiable secret sharing (WSS) has also
been studied. It is generally used as a stepping stone toward the main goal of obtaining a VSS scheme.
In Appendix A, we discuss our findings about WSS in the computational setting. Also, note that we work
on VSS as a standalone primitive in this paper. The required VSS properties, specially the commitment
property, may change in some VSS application. We consider that to be an interesting future work and briefly
discuss in Section 5.

2.3 Commitment Schemes

Commitment schemes are important components of many cryptographic protocols. A cryptographic com-
mitment scheme is a two-phase cryptographic protocol between a committer and a verifier.

Commit Phase. Given a message m, a committer runs [C, (m, d)] = Commit(m) and publishes C as a
commitment that binds her to a specific message m (binding) without revealing it (hiding). The
function may output an opening value (or a witness) d.

Open Phase. The committer opens commitment C by revealing (m, d) to a verifier. The verifier can then
check if the message is consistent with the commitment (i.e., m ?= Open(C,m, d)).

We note that the commitment schemes also require a setup that generally involves choosing the cryptographic
parameters. This can easily be included in the VSS setup and thus we do not consider it in detail.

A commitment scheme cannot be unconditional (perfect) binding and hiding at the same time, and
the impossibility also holds in the statistical case. As a result, commitments come in two dual flavors:
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perfect (or statistical) binding but computational hiding commitments, and perfect (or statistical) hiding
but computational binding commitments. In many applications of commitments, they may never be opened
or opened only after a long time. In such scenarios, the binding property must be satisfied while the
application is running, however the committed values should remain hidden forever, and thus commitments
of the second type are generally considered advantageous as compared to commitments of the first type.

Perfect hiding but computational binding (under the DLog assumption) Pedersen commitment [34] is
most commonly used in computational VSS. It has an interesting additive homomorphic property that a
product of two commitments C1 and C2 (associated respectively with messages m1 and m2) commits to
an addition of the committed messages (m1 + m2). However, with its reliance on the DLog assumption,
Pedersen commitment will not be suitable once quantum computers arrive. On the other hand, commitments
of both types can be achieved from any one-way function [19–21, 23, 27]. In this paper, we concentrate
and use the commitments of the second type, whose efficient constructions are possible from any claw-free
permutation [8, 16], any one-way permutation [28] or any collision-free hash function [22]. Note that, along
with being non-homomorphic, some of the above commitment constructions are also interactive in the nature
and involve two or more rounds of communication. However, we restrict ourselves to the non-interactive
commitment constructions as the interactive commitment constructions may increase the rounds complexity
of the VSS schemes.

3 VSS in the Synchronous Network Model

Before presenting our results in the synchronous setting, we describe our synchronous communication model
in detail.

3.1 Synchronous Communication Model

We closely follow the bounded-synchronous communication model with private and authenticated links and
a broadcast channel [11,15,34]. Here, the dealer is connected to every other party by a private, authenticated
and bidirectional link. Note that we do not require communication links between any two non-dealer parties
in P. We further assume that all parties have access to a common broadcast channel that satisfies the
terminating reliable broadcast properties [32]: it allows a party to send a message to all other parties and
every party is assured that all parties have received the same message in the same round.

In the synchronous model, the distributed protocols operate in a sequence of rounds. In each round,
a party performs some local computation, sends messages (if any) to the dealer through the private and
authenticated link, and broadcasts some information over the broadcast channel. By the end of the round,
it also receives all messages sent or broadcast by the other parties in the same round.

In our synchronous communication model, along with being adaptive and t-bounded, we allow the
adversary to be rushing: in every round of communication it can wait to hear the messages of the honest
parties before sending (or broadcasting) its own messages. By round complexity of VSS, we mean the
number of rounds in the sharing and reconstruction phases of any execution. Although, it is possible to have
more than one round during the reconstruction phase [29], all of our protocols ask for single round during
reconstruction. Therefore, in this paper, we denote the round complexity of a VSS protocol as the number
of rounds in its sharing phase.

3.2 2-Round VSS for n ≥ 2t + 1 from any Commitment

In this section, we present a 2-round sharing and 1-round reconstruction VSS protocol for n ≥ 2t+ 1. Our
2-round VSS protocol allows any form of commitment. Feldman and Pedersen VSS schemes require three
rounds for n ≥ 2t + 1. The general structure of the sharing phase of their three round VSS schemes is:
In the first (distribution) round, the dealer sends shares to parties and publishes a commitment on these
shares. In the second round, parties may accuse (through broadcast) the dealer of sending inconsistent
shares, which he resolves (through broadcast) in the third round. It is impossible to have distribution and
accusation in the same round. Therefore, in order to reduce the number of rounds to two, the accusation
and resolution rounds in VSS are collapsed into one.To achieve this, the set of parties (in addition to dealer)
performs some communication in the first round. We then employ a commitment-based modification of
standard round-reduction technique from unconditional VSS protocols [13, Sect. 3.1]. It involves every
party publicly committing to some randomness and sending that randomness to the dealer in the first round.
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The dealer uses this randomness as a blinding pad to broadcast the shares in the next round. Further, we
use bivariate polynomial instead of univariate polynomials used in Feldman or Pedersen VSS. In the absence
of homomorphism and without using bivariate polynomial, we do not know how the parties can check if the
degree of a shared univariate polynomial is t without using expensive NIZK proofs.

Overview. In our 2-round protocol, dealer D chooses a t-degree symmetric bivariate polynomial F (x, y)
such that F (0, 0) = s, the secret that he wants to distribute. Note that all of our protocols in this paper
work also with the asymmetric bivariate polynomials. However, for ease of understanding, we always use
symmetric polynomials in our descriptions. Dealer D gives the univariate polynomial fi(x) = F (x, i) to every
party Pi and publicly commits to evaluations fi(j) for j ∈ [1, n]. As already mentioned, we allow every party
to communicate to D independently in the first round. Specifically, every party Pi sends n random values
privately to D and publicly commits them. At the end of the first round, every party checks the consistency
of his received univariate polynomial with the commitments of D and D checks consistency of his received
values with the corresponding commitments of the individual parties. The second round communication
consists of only broadcasts. Any inconsistency between the public commitments and private values as well
as the pairwise inconsistencies in the bivariate polynomial distribution (i.e, fi(j)

?= fj(i)) are sorted out in
the second round. Note that there will be agreement among the parties at the end of local computation of
sharing phase; i.e. if D is discarded, then every honest party knows it, and similarly, every honest party will
have identical copy of Q, the set of parties allowed to take part in the reconstruction phase.

In the reconstruction phase, every party discloses (or broadcasts) their respective univariate polynomials.
They are verified with respect to the public commitments and the consistent polynomials are used for
the reconstruction of the bivariate polynomial and consequently the committed secret s. We present the
protocol in Figure 1. We prove that the 2-Round-VSS protocol satisfies the stronger variant of VSS defined
in Section 2.2.

Theorem 3.1. Protocol 2-Round-VSS is a 2-round computational VSS scheme for n ≥ 2t+ 1.

We prove the secrecy, correctness and strong commitment properties of VSS to show that the above
theorem holds. For a detailed proof, refer to Appendix B.

The sharing phase of our 2-Round VSS protocol requires O(n2κ) bits of broadcast and O(n2κ) bits of
private communication, while the reconstruction phase requires O(n2κ) bits of broadcast. This communica-
tion complexity is at least a linear factor lower than the unconditional VSS schemes. On the other hand,
it is also a linear factor higher than the communication complexity of 3-round Pedersen or Feldman VSS.
This difference arises due to the use of bivariate polynomial in our protocol, which results from the lack
of homomorphism in the commitment scheme under use. We suppose this increase in the communication
complexity is a price paid for a reduction in the assumptions. In subsection 3.5, we present a more efficient
VSS protocol using homomorphic commitments that has same communication complexity as Pedersen or
Feldman VSS, but requires one less round of communication.

3.3 (Im)possibility Results for 1-Round VSS

Here, we prove the impossibility of 1-Round VSS except when t = 1 and n ≥ 4, which lower-bounds
computational VSS for n ≥ 2t+ 1 and any t to a round complexity of 2. Our 2-round protocol presented in
the previous section thus has an optimal round complexity. Our results hold irrespective of computational
or unconditional nature of the secrecy property.

Theorem 3.2. 1-round VSS is impossible for t > 1 and n ≥ 4, irrespective of the number of rounds in the
reconstruction phase.

Proof Outline. The proof of this theorem is very similar to the proof of Theorem 7 of [29]. We prove the
theorem by contradiction. So we assume that 1-round VSS, say Π, with t = 2 exists. Without loss of
generality, we assume D to be some party other than P1. We then show that for any execution if party P1

receives some particular piece of information from the dealer, then she will reconstruct a particular secret in
the reconstruction phase irrespective of what P2, . . . , Pn has received from the dealer. This of course allows
us to show a breach of secrecy of Π, since P1 could be the sole corrupted party and can distinguish the secret
when he receives the particular information.

7



Protocol 2-Round-VSS(D,P, s)
Sharing Phase: Two Rounds

Round 1: Dealer D

• chooses a random symmetric bivariate polynomial F (x, y) of degree-t such that F (0, 0) = s

• computes [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where fij = F (i, j)

• assigns Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j

• sends (fij , rij) to Pi for j ∈ [1, n] and broadcasts Comij for i, j ∈ [1, n]

Every other party Pi

• chooses two sets of n random values (pi1, . . . , pin) and (gi1, . . . , gin).

• computes [PComij , (pij , qij)] = Commit(pij) and [GComij , (gij , hij)] = Commit(gij) for i, j ∈ [1, n].

• sends (pij , qij) and (gij , hij) for j ∈ [1, n] to D, and broadcasts PComij and GComij for j ∈ [1, n].

Round 2: Dealer D, for every party Pi,

• verifies if pij
?
= Open(PComij , pij , qij) and gij

?
= Open(GComij , gij , hij) for j ∈ [1, n]

• broadcasts (αij , βij) for all j ∈ [1, n] such that αij = fij + pij and βij = rij + gij if the verification
succeeds, and broadcasts (fij , rij) for all j ∈ [1, n] otherwise.

Party Pi

• verifies if deg(fi(x))
?
= t and fij

?
= Open(Comij , fij , rij) for j ∈ [1, n]

• broadcasts nothing if the verifications succeeds, and broadcasts (pij , qij) and (gij , hij) for j ∈ [1, n]
otherwise.

Pi is said to be happy if she broadcasts nothing, while considered unhappy otherwise.

Local Computation: Every party Pk

1. discards D and halts the execution of 2-Round-VSS, if

• Comij 6= Comji for some i and j

• D broadcasts (fij , rij) such that fij 6= Open(Comij , fij , rij) for some i and j

• D broadcasts fij for j = [1, n] such that they define polynomial of degree > t for some i

• D broadcasts (fij , rij) and (fji, rji) for some i and j such that (fij 6= fji) or (rij 6= rji)

• D broadcasts (αij , βij) and Pi broadcasts (pij , qij) and (gij , hij) such that pij =
Open(PComij , pij , qij), gij = Open(GComij , gij , hij) for all j; and (f ′ij 6= Open(Comij , f

′
ij , r

′
ij) or

deg(f ′i(x)) > t) where f ′ij = αij − pij , r′ij = βij − gij and f ′i(x) is the polynomial defined by
f ′ijs for j ∈ [1, n].

2. discards an unhappy party Pi, if she broadcasts pij and gij for j ∈ [1, n] such that pij 6=
Open(PComij , pij , qij) or gij 6= Open(GComij , gij , hij) for some j. Let Q be the set of non-discarded
parties.

3. outputs (fkj , rkj) for j ∈ [1, n] as received in round 1, if Pk is happy and in Q. If she is unhappy and
belongs to Q then she outputs (fkj , rkj) for j ∈ [1, n] if they are broadcasted in round 2. Otherwise, Pk

computes (fkj , rkj) for j ∈ [1, n] as fkj = αkj − pkj and rkj = βkj − gkj .

Reconstruction Phase: One Round

1. Each Pi in Q broadcasts (f ′ij , r
′
ij) for j ∈ [1, n]

Local Computation: For every party Pk,

1. Party Pi ∈ Q is said to be confirmed if deg(f ′i(x)) = t and f ′ij = Open(Comij , f
′
ij , r

′
ij) for j ∈ [1, n], where

f ′i(x) is the polynomial defined by f ′ij ’s for all j ∈ [1, n].

2. Consider f ′i(x) polynomials of any t+ 1 confirmed parties. Interpolate F ′(x, y) and output s′ = F ′(0, 0).

Figure 1: 2-Round VSS for n ≥ 2t+ 1
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Now for proving the above fact we use a hybrid argument and the fact that two parties can be corrupted
(possibly including the dealer). So we start with an honest execution G of Π for a secret sG. Naturally, in
this case the views of the parties in reconstruction phase will reconstruct secret sG. Next we claim that if the
view of Pn is replaced by any arbitrary view and the rest of the parties view remain same, the reconstruction
phase still will output the same secret sG. This is justified by the correctness property of Π, as D could
be honest and Pn could be the corrupted party who inputs an arbitrary view in the reconstruction phase.
We then continue to claim that if the views of Pn−1 and Pn are replaced by any arbitrary views and the
rest of the parties’ view remain same, the reconstruction phase will still output the same secret sG. This is
argued as follows: Assume D is corrupted and he distributes proper information to all the parties (proper
means as per G which is assumed to be an honest execution) except Pn to whom he simply delivers arbitrary
information. Assuming Pn to be honest, the joint views in the reconstruction phase of this execution will be
identical to when D was honest and Pn was corrupted. Hence sG should be reconstructed. Now assume that
apart from D, Pn−1 is also corrupted who inputs wrong view in the reconstruction phase. By commitment
of Π, the arbitrary junk views of Pn−1 (who is corrupted and inputs junk view) and Pn (who is honest but
receives junk view from D in sharing phase) do not stop sG to be reconstructed. This is exactly the place
where we exploit our assumption that t = 2. In the same way as above, we can show that if the views
of Pn−2, Pn−1 and Pn are replaced by any arbitrary views and rest of the parties’ view remain same, still
the reconstruction phase outputs the same secret sG. We may proceed this way to finally prove that even
junk views of parties P2, . . . , Pn do not stop the reconstruction of sG. This clearly implies that the views of
P2, . . . , Pn are independent of secret sG and the view of P1 solely determines the secret. Now if P1 is the
corrupted party, then the secrecy of Π is no longer guaranteed, a contradiction to the fact that Π is a VSS
protocol. For a detailed proof, refer to Appendix B.

Theorem 3.3. 1-round VSS is impossible for n ≤ 3t, irrespective of the number of rounds in the reconstruc-
tion phase.

Proof Outline. This theorem is also proved by contradiction. In brief, we show that if such a scheme exists,
then the the view of any t parties in the sharing phase must determine the secret. This further implies a
breach of secrecy, since adversary A can corrupt and coordinate any t parties. For a detailed proof, refer to
Appendix B.

In Theorem 3.3, we show that 1-round VSS is impossible for n ≤ 3t, which implies the impossibility of
1-round VSS for t = 1 and n ≤ 3. Further, in Theorem 3.2, we show that 1-round VSS is impossible for
t > 1 and n ≥ 4. Therefore, 1-round VSS, if possible, will work for t = 1 and n ≥ 4.

Corollary 3.4. 1-round VSS is possible only if t = 1 and n ≥ 4.

VSS with an External Dealer. Here it can be shown that 1-round sharing VSS is impossible even
in the presence of a single corruption apart from the dealer irrespective of the total number of parties and
number of rounds in the reconstruction phase. Basically, we can follow the proof of Theorem 3.2 and arrive
at the same contradiction while assuming t = 1 and the dealer is corrupted. Hence, we have the following
theorem.

Theorem 3.5. 1-round VSS with an external dealer is impossible for t > 0 irrespective of the number of
parties and the number of rounds in the reconstruction phase.

3.4 1-Round VSS for t = 1 and n ≥ 4

In this section, we prove the sufficiency of Corollary 3.4 by describing a simple 1-round VSS protocol when
t = 1, n ≥ 4 and D ∈ P.

In the sharing phase, dealer D ∈ P does a Shamir-sharing of its secret and publicly commits the
individual shares held by the parties using efficient commitment schemes. Since there is a single round in the
sharing phase, parties may not be able to raise any accusation against the dealer in case the shares are not
consistent with respect to D’s public commitment. In spite of this, our protocol achieves the correctness and
commitment properties of VSS . The key aspect is that D cannot participant in the reconstruction phase.
Now the unique secret committed by the dealer D is defined to be ⊥ if shares of two or more reconstructing
parties are not consistent with the public commitment, or the consistent shares define a polynomial of degree
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Protocol 1-Round-VSS(D,P, s)
Sharing Phase: One Round

1. D ∈ P selects a random polynomial f(x) of degree one, such that f(0) = s.

2. For every i ∈ [1, n], D computes [Ci, (fi, ri)] = Commit(fi) where fi = f(i). He then sends (fi, ri) to Pi

over the private channel and broadcasts Ci for i ∈ [1, . . . , n].

Reconstruction Phase: One Round— D is not allowed to participate

1. Each party Pi broadcasts (fi, ri).

Local Computation: For every party Pk,

1. Party Pi ∈ P \ {D} is said to be confirmed if fi
?
= Open(Ci, fi, ri).

2. If there are two or more non-confirmed parties then output ⊥. Otherwise, interpolate fi of all confirmed
parties to a polynomial f ′(x). If deg (f ′) ≤ 1 then output s = f ′(0) else output ⊥.

Figure 2: 1-Round VSS for t = 1 and n ≥ 4

more than t. Otherwise, the unique secret is the constant term of the polynomial defined by the consistent
shares. A detailed description of the protocol appears in Figure 2.

Theorem 3.6. Protocol 1-Round-VSS is a 1-round computational VSS scheme for t = 1 and n ≥ 4.

We prove the secrecy, correctness and commitments properties of VSS to prove the theorem. For a
detailed proof, refer to Appendix B. This 1-Round VSS protocol is efficient in terms of the communication
complexity. The sharing phase requires O(nκ) bits of broadcast and O(nκ) bits of private communication,
while the reconstruction phase requires O(nκ) bits of broadcast.

3.5 An Efficient 2-round VSS using Homomorphic Commitments

Here we present a 2-round sharing, 1-round reconstruction VSS protocol for n ≥ 2t+ 1 using homomorphic
commitments. As already mentioned, it has exactly the same message and communication complexity as
that of Feldman and Pedersen VSS schemes and requires one less round of interaction for n ≥ 2t + 1.
Conceptually this protocol is similar to our 2-round protocol in Section 3.2 except that we do not need
bivariate polynomials here. We present a brief overview of the protocol and the protocol description below,
and move the proofs to Appendix B.

Overview. Without loss of generality, we use the Pedersen commitment scheme as a representative ho-
momorphic commitment scheme. In the sharing phase, dealer D chooses two random degree-t polynomials
f(x) and r(x) such that f(0) = s. Dealer D then sends fi = f(i) and ri = r(i) to each Pi over the pri-
vate links and broadcasts commitments on the coefficients of f(x) (using the coefficients of r(x) as random
strings). By the end of the second round, every honest party must hold the correct point on the committed
polynomial. To ensure that every Pi sends two pairs (pi, qi) and (gi, hi) in F2

p to dealer D and publicly
commits pi (using qi as a random element) and gi (using hi as a random element). Broadcasts and local
computations in the second round are very similar to our 2-Round-VSS protocol in Section 3.2. The protocol
is now presented in Figure 3. Before we proceed to prove the properties of the protocol, we first note that
there will be agreement among the parties at the end of local computation of sharing phase. That is, if D
is discarded, then every honest party knows it. Similarly, every honest party will have identical copy of Q.

Theorem 3.7. Protocol 2-Round-VSS-Hm in Figure 3 is a 2-round VSS scheme for n ≥ 2t+ 1.

For a proof, refer to Appendix B.
The sharing phase requires O(nκ) bits of communication over both the private links and the broadcast

channel. The reconstruction phase requires O(nκ) bits of communication over the broadcast channel.
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Protocol 2-Round-VSS-Hm(D,P, s)
Sharing Phase: Two Rounds

Round 1:

1. D selects two random polynomials f(x) and r(x) of degree-t, such that f(0) = s. Let f(x) =
a0 + a1x+ . . .+ atx

t and r(x) = b0 + b1x+ . . .+ btx
t.

2. For every i ∈ [1, n], D sends fi = f(i) and ri = r(i) to Pi and broadcasts Comi = Commit(ai, bi) for
i = 0, . . . , t.

3. Every party Pi sends two pairs (pi, qi) and (gi, hi) in F2
p to D and broadcasts commitments PComi =

Commit(pi, qi) and GComi = Commit(gi, hi) .

Round 2:

1. D checks if PComi and GComi are consistent with the received pairs (pi, qi) and (gi, hi). If they are
not consistent, then D broadcasts (fi, ri); else he broadcasts αi = fi + pi and βi = ri + gi.

2. Party Pi checks if Commit(fi, ri) =
∏t

j=0(Comi)
ij

. If not, then Pi broadcasts pairs (pi, qi) and
(gi, hi), else she broadcasts nothing. Party Pi is considered happy in the later case while she is
unhappy in the former case.

Local Computation at the end of Round 2: Every party Pk

1. discards D and halts the execution of 2-Round-VSS-Hm, if D broadcasts

(a) fi, ri for some i and Commit(fi, ri) 6=
∏t

j=0(Comi)
ij

.

(b) αi, βi; and Pi broadcasts (pi, qi) and (gi, hi) such that PComi = Commit(pi, qi) and GComi =

Commit(gi, hi); and Commit(f ′i , r
′
i) 6=

∏t
j=0(Comi)

ij

where f ′i = αi − pi and r′i = βi − gi.

2. discards an unhappy party Pi if she broadcasts (pi, qi) and (gi, hi) such that PComi 6= Commit(pi, qi)
or GComi 6= Commit(gi, hi). Let Q be the set of non-discarded parties.

3. outputs fk, rk as received from D in round 1, if Pk is in Q and happy. An unhappy Pk in Q outputs
fk, rk if they are directly broadcasted by D in round 2. Else Pk computes fk and rk as fk = αk−pk

and rk = βk − gk.

Reconstruction Phase: One Round

1. Each Pi ∈ Q broadcasts f ′i and r′i.

Local Computation: For every party Pk,

1. Party Pi ∈ Q is said to be confirmed if Commit(f ′i , r
′
i) =

∏t
j=0(Comi)

ij

.

2. Consider f ′i values of any t+ 1 confirmed parties and interpolate f ′(x). Output s′ = f ′(0).

Figure 3: 2-Round VSS for n ≥ 2t+ 1 using Homomorphic Commitments

4 VSS in the Asynchronous Communication Model

We now shift our focus to the asynchronous communication setting where VSS is possible for n ≥ 3t + 1.
As we discuss in the related work, all known computational VSS scheme [5, 37, 40] in the asynchronous
communication setting rely on homomorphism of commitments. In this section, we show that homomorphism
is not necessary for computational VSS in the asynchronous communication setting. We build our protocol
from asynchronous VSS [5] as it is the only generic and efficient asynchronous VSS scheme known in the
literature. Further, with its O(n2) messages complexity, it is extremely efficient in terms of the number of
messages. We modify this scheme so that it satisfies the VSS properties when the underlying commitment
need not be homomorphic. However this protocol does not guarantee that every honest party receive their
shares of the secret. Therefore, we present another protocol that achieves this stronger definition using the
previous one as a building block. Our final VSS although increases the communication complexity by a
linear factor in n, it is still highly efficient in all complexity measures as compared to the unconditional
asynchronous VSS schemes [6, 7, 30,31].
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4.1 Asynchronous Communication Model

We follow the communication model of [5] and assume an asynchronous network of n parties P1, . . . , Pn such
that every pair of parties is connected by an authenticated and private communication link. We work against
a t-bounded adaptive adversary that we defined in Section 2.1. In the asynchronous communication setting,
we further assume that the adversary controls the network and may delay messages between any two honest
parties. However, it cannot read or modify these messages as the links are private and authenticated, and it
also has to eventually deliver all the messages by honest parties.

In the asynchronous communication setting, a VSS scheme has to satisfy the liveness and agreement
properties (also called as the termination conditions) along with the secrecy, correctness and commitment
properties described in Section 2.2.

Liveness. If the dealer D is honest in the sharing phase, then all honest parties complete the sharing phase.

Agreement. If some honest party completes the sharing phase, then all honest parties will eventually
complete the sharing phase. If all honest parties subsequently start the reconstruction phase, then all
honest parties will complete the reconstruction phase.

4.2 VSS for n ≥ 3t + 1 from any Commitment

We observe that VSS of [5] heavily relies on homomorphism of the underlying commitment schemes. It is not
even a WSS scheme if we replace the homomorphic commitments by non-homomorphic commitments as the
agreement property is not satisfied. The incapability stems from the fact that verifying the following with
respect to non-homomorphic commitment is not easy: given commitments on n values (associated with n
indices), the underlying values define a degree-t polynomial. However, we find that with subtle enhancements
to VSS of [5], one can obtain an asynchronous VSS protocol that satisfies the standard VSS definition in
Section 2.2. In our enhanced protocol, a majority (t+ 1 or more) of the honest parties receives proper share
of the secret (t-degree univariate polynomial), while the remaining honest parties are assured that there
are t + 1 or more honest parties that have received t-degree univariate polynomial and can complete the
reconstruction phase. The message and communication complexities of our protocol are the exactly same as
that of VSS of [5].

In our protocol, D, as usual, chooses a symmetric bivariate polynomial F (x, y) satisfying F (0, 0) = s.
He then computes an n × n commitment matrix, Com such that (i, j)th entry in Com is the commitment on
F (i, j). Now D delivers fi(x) = F (x, i) and Com to every Pi. In the rest of the protocol the parties try
to agree on Com and check whether their polynomials are consistent with Com or not. We observe that the
parties do not need to exchange and verify their common points on the bivariate polynomial, given that
agreement on Com can be achieved. Because, the parties can now perform local consistency checking of their
polynomial with Com. In our protocol, some honest parties may not receive polynomials consistent with Com,
however, they still help to reach agreement on Com sensing that majority of the honest parties have received
a common Com and also the polynomials received by them are consistent with Com. We describe the protocol
in Figure 4.

Lemma 4.1. Let Pi be the first honest party to send ready message containing Com. Then for every other
honest party Pj that sends ready message containing Com, Com = Com.

Proof. We prove this by contradiction. Let Com 6= Com. The honest Pi has communicated Com after receiving
(echo, Com) from at least 2t+ 1 parties in which at least t+ 1 are honest. Note that an honest party sends
echo and ready messages to all parties including itself. Pj has communicated Com after one of the following
two events has occurred. We show that in every case we arrive at a contradiction: (a) Pj received (echo, Com)
from at least 2t+1 parties: This implies that there is at least t+1 parties who communicated echo signals of
two types, one type containing Com and another type containing Com. However, this implies that the honest
parties in the set of those t+ 1 parties communicate echo message of two types. This is impossible. (b) Pj

received (ready, ·, Com) from at least t + 1 parties, where · can be either share-holder or ?: this implies
that there is at least one honest party, say Pk who communicated the above to Pj . By a chain of arguments,
this case also boils down to the case that there must be some honest party who communicated echo signals
of two types, which is a contradiction. Hence, we prove the lemma.

Lemma 4.2. If some honest party Pi has agreed on Com, then every honest party will eventually agree on
Com.
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Protocol AsynchVSS(D,P, s)
Sharing Phase:
Code for D:

• Choose a random symmetric bivariate polynomial F (x, y) of degree-t such that F (0, 0) = s.

• Compute [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where fij = F (i, j).

• Assign Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j. Let Com be the n× n matrix containing Comij for
j ∈ [1, n] in the ith row.

• Send (send, Com, fi(x), ri(x)) to Pi, where fi(x) = F (x, i), ri(x) is the degree-(n − 1) polynomial defined by
the points ((1, ri1), . . . , (n, rin)).

Code for Pi:

• On receiving (send, Com, fi(x), ri(x)) from D, send (echo, Com) to every Pj if (a) Com is an n × n symmetric

matrix and (b) fi(j)
?
= Open(Comij , fi(j), ri(j)).

• On receiving (echo, Com) from at least 2t + 1 parties (possibly including itself) satisfying that Com received
from Pj is same as received from D, send (ready, share-holder, Com) to every Pj , if you have already sent out
echo messages.

• If you have not sent out any ready signal before:

1. on receiving ready messages from at least t+1 Pj ’s satisfying that Com received from Pj is same as received
from D, send (ready, share-holder, Com) to every Pj , if you have already sent out echo messages.

2. on receiving (ready, share-holder, Com) from at least t + 1 Pj ’s such that all the Com are same but do
not match with the copy received from D, update your Com with this new matrix, delete everything else
received from D and send (ready, ?, Com) to every Pj .

• On receiving ready signals from at least 2t+ 1 parties such that all of them contain same Com as yours and at
least t+ 1 ready signals contain share-holder, agree on Com and terminate.

Reconstruction Phase:
Code for Pi:

1. Send (fi(x), ri(x)) to every Pj if you had sent (ready, share-holder, Com) in the sharing phase.

2. Wait for t+1 (fj(x), rj(x)) messages such that fj(x) is degree-t polynomial, rj(x) is degree-(n−1) polynomial
and fj(k) = Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n], interpolate F (x, y) using those t+ 1 fj(x) polynomials,
compute s = F (0, 0) as the secret.

Figure 4: Asynchronous VSS for n ≥ 3t+ 1 (optimal resilience)

Proof. To prove the lemma, it is enough to prove the following: If some honest party Pi has received 2t+ 1
ready messages with Com such that at least t + 1 of them contain share-holder, then every honest party
will eventually receive the same. If Pi receives ready messages as above, then there are at least t+ 1 honest
parties who send out ready messages with Com and at least one of the honest party’s ready message must
contain share-holder. An honest party sends out ready with share-holder in two cases: (a) She received
at least 2t + 1 echo message with Com and it has sent out echo with Com. Among these 2t + 1 parties
t + 1 are honest and they will eventually receive ready message from all the t + 1 honest parties who also
sent the same to Pi. Hence these t + 1 honest parties will eventually send out ready with share-holder.
Hence eventually every honest party will receive 2t+ 1 ready messages with Com such that at least t+ 1 of
them contain share-holder. (b) She received at least (t + 1) ready messages with Com and she has sent
out echo with Com. Among these (t + 1), there is at least one honest party, say Pk. If Pk has sent ready
with share-holder, then by recursive argument this case will boil down to case (a). However if Pk sends
ready without share-holder, then he has received at least t+ 1 ready massages with share-holder which
ensures existence of another honest Pl who sent ready massage with share-holder. Now again by recursive
argument, this case will boil down to case (a). Hence, we prove the lemma.

The commitment property is the most interesting to prove. It follows from Lemma 4.3.

Lemma 4.3. If some honest party Pi has agreed on Com, then there is a set H of at least t+1 honest parties
each holding degree-t polynomial fj(x) such that it is consistent with Com and there is a symmetric bivariate
polynomial F (x, y) such that F (x, i) = fi(x).
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Proof. If honest Pi has agreed on Com, then she has received 2t + 1 ready messages with Com such that at
least t+ 1 of them contain share-holder. From the previous proof, eventually t+ 1 honest parties (possibly
including Pi) will eventually send out ready with share-holder. So there will be a set of at least t + 1
honest parties who send out ready with share-holder. We claim that this set of honest parties, denoted
by H will satisfy the conditions mentioned in the lemma statement. We notice that the honest parties
in H never update Com and by previous lemma they eventually agree on the same. Also they send out
echo well before sending out ready. This implies each honest party Pi in H ensures that her polynomial
fi(x) (i.e. the points on it) are consistent with Com. Now we proceed to show that there is a symmetric
bivariate polynomial F (x, y) such that F (x, i) = fi(x). This can be shown by showing for every pair (Pi, Pj)
from H, fi(j) = fj(i) holds good. This follows from the fact that Pi and Pj has same Com where they

checked Comij = Comji holds and then Pi and Pj individually ensured fi(j)
?= Open(Comij , fi(j), ri(j)) and

fj(i) ?= Open(Comji, fj(i), rj(i)) respectively. If the above arguments do not hold then corrupted D have
broken binding property of underlying commitment scheme, as he knows how to open Comij in two different
ways.

Using the above lemmas, we can prove the properties of AsynchVSS. We do that in Appendix B.5.

4.3 VSS with the Strong Commitment Property for n ≥ 3t + 1

The AsynchVSS protocol in Figure 4 does not satisfy the strong commitment property. Here, we design
a protocol that satisfies the strong commitment property. We ensure that every honest party receives her
proper share by making the dealer to execute n + 1 parallel inter-related instances of AsynchVSS. We now
briefly discuss our idea and defer the protocol in Appendix B.

Dealer D would like to share his secret s using a symmetric bivariate polynomial F (x, y) such that
F (0, 0) = s. Now apart from F (x, y), D also selects n random symmetric bivariate polynomials F 1(x, y), . . . ,
Fn(x, y) satisfying F (x, i) = F i(x, 0). Now, D runs n + 1 instance of AsynchVSS for F (x, y), F 1(x, y), . . . ,
Fn(x, y) respectively. Let Com, Com1, . . . , Comn are the commitments for these n+1 instances. We can combine
the send, echo and ready messages for these instances to keep the message complexity same as that of VSS
in [5]. Towards the end of the sharing phase of these n+1 AsynchVSS instances, all (honest) parties agree on
Com, Com1, . . . , Comn and the fact that there are at least t+ 1 honest parties who received F (i, y) and F k(x, i)
for all k ∈ [1, n] consistent with the commitments and F k(0, i)’s for all k defines F (i, y). This should hold
because of the way D selected those polynomials. Now these t + 1 honest parties can enable every Pk to
reconstruct F k(x, y) and thereby F (x, k) = F k(x, 0). This is done by running the reconstruction phase of
AsynchVSS for k ∈ [1, n], but sending shares to Pk only. Note that Pk can verify the validity of F k(x, i) sent
to him with respect to his copy of Comk, as agreement on all Com, Com1, . . . , Comn are done beforehand.

5 Future Work

In this paper, we considered computational VSS as a standalone primitive. Our VSS schemes may also be
easily leveraged in applications such as asynchronous Byzantine agreement protocols. However, other VSS
applications such as proactive share renewal and share recovery schemes [24] and distributed key genera-
tion [14, 34] heavily rely on homomorphism of the commitments. It represents an interesting open problem
if we can do better than in the unconditional case (e.g., [10]) for these applications. Further, most of the
threshold cryptographic protocols also rely on homomorphism to verify the correctness. It will be inter-
esting to check the feasibility of these threshold protocols based our VSS schemes without using expensive
zero-knowledge proofs.

Finally, our protocols based on the definitional properties of commitment schemes are expensive (by
a factor of n) in terms of communication complexity in comparison to the respective protocols employing
homomorphic commitments. It is also worthwhile to study whether this gap in communication complexity
is inevitable.
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A 1-Round WSS for n ≥ 2t + 1

In the literature, another primitive weak verifiable secret sharing (WSS), that is strictly weaker than VSS,
is also been used [25, 35, 36]. It is generally defined as a step towards the final VSS protocol. The WSS
setting is the same as for VSS and the definition satisfies the secrecy and correctness properties in Section 2;
however, the commitment property is relaxed to the following definition:

Weak Commitment. If D is faulty then at the end of the sharing phase there is a value s∗ ∈ Fp ∪⊥ such
that at the end of the reconstruction phase, each honest party will output either s∗ or ⊥.

Notice that if the broadcast channel is not used during the reconstruction phase, it is not required that all
honest parties output the same value between s∗ and ⊥; some may output s∗, while others may output ⊥.

Protocol 1-Round-WSS(D,P, s)

Sharing Phase: One Round

1. D selects two random polynomials f(x) and r(x) of degree one, such that f(0) = s.

2. For every i, 2 ≤ i ≤ n, D sends fi = f(i) and ri = r(i) to Pi. D also broadcasts Ci = Commit(f(i), r(i))
for 2 ≤ i ≤ n.

Reconstruction Phase: One Round

1. Each Pi broadcasts fi and ri.

Local Computation: For every party Pk,

1. Party Pi ∈ P \ {D} is said to be confirmed if fi
?
= Open(Ci, fi, ri).

2. If there are more than t non-confirmed parties then output ⊥. Otherwise, interpolate fi of all confirmed
parties to a polynomial f ′(x). If deg (f ′) ≤ t then output s = f ′(0) else output ⊥.

Figure 5: 1-Round WSS for n ≥ 2t+ 1

Here, we present a 1-round WSS protocol with n ≥ 2t+ 1. The idea of our WSS protocol is very similar
to 1-round VSS presented in Section 3.4. However, we allow the dealer D to take part in reconstruction
phase in our WSS protocol. We present our WSS protocol in Figure 5. We note that our protocol achieves
optimal fault tolerance as WSS can be shown to be impossible for honest minority (n ≤ 2t).

B Proofs

Here, we provide more elaborate analyses and proofs of our theorems in the paper.

B.1 Proof for Theorem 3.1: 2-Round VSS for n ≥ 2t + 1

We analyze the secrecy, correctness and strong commitments properties of VSS to prove Theorem 3.1.

Secrecy. The secrecy of the scheme follows from the unconditional hiding property of the underlying
commitment function and the property of symmetric bivariate polynomial. D’s public commitments Comij ’s
will be uniformly distributed given the unconditional hiding property of the underlying commitment function.
Moreover, the αij , βij values for j ∈ [1, n] corresponding to honest Pi’s will be uniformly distributed. Now the
secrecy of the constant term of the D’s degree-t bivariate polynomial follows from the standard information-
theoretic argument [34] against an adversary controlling at most t parties, i.e.,

Pr[A computes s|{Vi for any t parties,Public Information}] = Pr[A computes s],

where Vi represents all the information available at or computable by party Pi at the end of the sharing
phase.
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Correctness. If D is honest, then he will never be discarded. Moreover, all the honest parties will be
happy. Now, correctness will follow if we show that a corrupted Pi ∈ Q is considered as confirmed only when
she broadcasts correct polynomials in the reconstruction phase. Assume that corrupted Pi is considered to
be confirmed even when she broadcasts f ′ij and r′ij for j ∈ [1, n], where these values are not equal to fij

and rij (as given by D). We can then devise an algorithm to break the computational binding property
of the commitment function using this adversary. Therefore, given that the commitment function achieves
computational binding, all the confirmed parties disclose proper fij and rij for j ∈ [1, n]. Therefore, every
honest party will correctly reconstruct F (x, y) and consequently s = F (0, 0).

Strong Commitment. We have to consider the case of a corrupted D. If D is discarded in the sharing
phase, then every party may assume some default predefined value as D’s secret. So we consider the case
when D is not discarded.

Firstly, note that an honest party will never be discarded. Moreover at the end of sharing phase honest
Pi will output n points (i.e. fij ’s for all j ∈ [1, n]) on a degree-t polynomial fi(x) and n values rij such that
for every honest Pj , it holds that fij = fji and rij = rji. We show this by considering all the three cases for
any pair of honest parties (Pi, Pj):

If Pi and Pj are happy, then we have Comij = Comji. Now Pi verified consistency of (Comij , fij , rij), and
Pj verified consistency of (Comji, fji, rji). This implies the pair (fij , rij) is same as (fji, rji), unless
corrupted D had broken the binding property of the commitment function.

If Pi is happy and Pj is unhappy, then (Comij , fij , rij) is consistent and also Comij = Comji. For Pj , we
have two cases: (1) D has broadcasted fj(k) and rjk for k ∈ [1, n]; (2) D broadcasted αik, βik for
k ∈ [1, n] and Pj computed fik = αik − pik, rik = βik − gik. However, in both the above cases, fik

and rik are consistent with Comjk for all k ∈ [1, n] (for otherwise D would have been discarded). This
also implies that tuple (Comji, fji, rji) is consistent. Again unless corrupted D had broken the binding
property of the commitment function, the pairs (fij , rij) and (fji, rji) are identical.

If Pi and Pj are unhappy, then D would have been discarded if the pairs (fij , rij) and (fji, rji) are not
identical.

So unless corrupted D breaks the binding property of commitment function, the polynomials of the honest
parties define symmetric bivariate polynomials, say F (x, y). Now in the reconstruction phase, every honest
party will be considered as confirmed. However, a corrupted party will be considered as confirmed if she
broadcasts points on degree-t polynomial fi(x) = F (x, i) (assuming she does not break binding of commit-
ment function). Let Pi broadcasts n points, say f ′ij ’s, corresponding to f ′i(x) that is different from fi(x).
Then fij must be different from f ′ij at least for one j where Pj is honest. Then f ′ij will not be consistent
with Comij and Pi will not be confirmed. Now it follows that the parties will reconstruct D’s committed
secret s = F (0, 0) in the reconstruction phase.

B.2 Impossibility Results for 1-Round VSS Schemes

We show our impossibility results assuming the underlying network is complete; i.e., every party can com-
municate to everybody else. The same impossibility will definitely hold on the weaker network model that
we consider i.e. only the dealer is connected to every other party.

B.2.1 Proof for Theorem 3.2: Impossibility for t ≥ 2

Without loss of generality, we assume t = 2. The proof is by contradiction. Let the set of parties be
{P1, . . . , Pn}, and assume there exists a 1-round sharing protocol Π for VSS with D being any party other
than P1 (this can be assumed without loss of generality).

Let us now look at the structure of the sharing phase of Π. Let party Pi start with random coin ri.2

In the first round, private messages are exchanged between parties and also parties broadcast messages
individually. The private messages and broadcast messages of Pi are function of its random coin ri. We
denote the private message that Pi sends to Pj by rij , and the broadcast of party Pi by αi. So given ri, we
assume that Pi’s private messages for round one can be deterministically generated. Similarly, we may write

2ri’s are actually random variables here. For different executions of Π, they may take different values.
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αi(ri) to mean that given ri, the broadcast message αi can be generated deterministically. At the end of the
sharing phase, each party locally outputs his view of the sharing phase i.e. all the information (broadcasted
as well as private) seen by that party so far. Figure 6 provide a formal definition of view Vi of a party Pi in
protocol Π.

The view of a party Pi denoted by Vi in protocol Π consists of the random coin ri of Pi and all the messages
(private messages and broadcasts) received by him during the sharing phase of Π.

1. P1, . . . , Pn participate in protocol Π with random coins r1, . . . , rn, respectively. D has input s (implicitly
defined by rD,where rD = ri if Pi is D).

2. Round 1

(a) Private messages communicated by the parties.

i. Private messages of P1: r12, r13, . . . , r1n.

ii. . . . . . ..

iii. Private messages of Pn: rn1, rn2, . . . , rn(n−1).

(b) Broadcasts: α1(r1), . . . , αn(rn).

3. Local outputs:

(a) V1 = (r1, r21, . . . , rn1, α2, . . . , αn).

(b) . . . . . .

(c) Vn = (rn, r1n, . . . , r(n−1)n, α1, . . . , αn−1).

Figure 6: A formal description of the sharing phase of Π

Without loss of generality, we assume that dealer’s secret s is implicitly contained in rD (i.e., the dealer’s
random coin). So far we have discussed about the structure of the sharing phase of protocol Π.

Now let us fix how a reconstruction phase of Π would look like. According to the definition of VSS
protocol, the reconstruction phase can be simulated by a function, say REC, which takes the views of the
parties generated at the end of sharing phase. In other words, given the views of the parties at the end of
the sharing phase, we can always define a function REC to simulate the actual reconstruction phase (that
may require any number of rounds in our context). Let us now define REC formally.

Definition B.1. The reconstruction function REC takes as input the set of views of all the parties that
participate in the reconstruction phase of protocol Π and outputs D’s committed secret irrespective of
whether D is honest or corrupted. Since all the honest parties participate in the reconstruction phase,
REC will have at least n − 2 input views. The corrupted parties may input anything as their view. Let
VH = {Vi|Pi is honest} and let VC = {Vi|Pi is corrupted}. Let s be the fixed secret that D is committed to
in the sharing phase. Then REC satisfies the following,

• For every possible value of VC , REC(VH , VC) = s (follows from correctness property when D is honest;
follows from commitment property when D is corrupted).

For our purpose, we allow REC to internally simulate the behavior of all the parties in the actual
reconstruction phase of Π. That is, REC assumes that all the parties (including those that deviated from the
protocol in the sharing phase) act honestly in the reconstruction phase. Of course this assumption does not
stop a corrupted party to input junk view to REC. What we mean by the previous statements is that once
all the inputs are fed to REC function, REC internally simulates the honest behavior of the parties with the
inputs.

In Figure 7, we present a real execution G of Π, where D’s secret is sG. We denote the view of Pi by
Vi(G) in execution G. By the property of REC, we have the following claim:

Claim B.2. REC(V1(G), . . . , Vn(G)) = sG.

Let V ?
i (G) is defined to be same as Vi(G) with rG

Di is replaced by any value rG
Di. Now we show the

following:

Claim B.3. REC(V1(G), . . . , V ?
n (G)) = sG.
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1. P1, . . . , Pn participate in execution G with random coins rG
1 , . . . , r

G
n , respectively. D has input sG

(implicitly defined by rG
D).

2. Round 1

(a) Private messages communicated by the parties.

i. Private messages of P1: rG
12, r

G
13, . . . , r

G
1n.

ii. . . . . . ..

iii. Private messages of Pn: rG
n1, r

G
n2, . . . , r

G
n(n−1).

(b) Broadcasts: α1(rG
1 ), . . . , αn(rG

n ).

3. Local outputs:

(a) V1(G) = (rG
1 , r

G
21, . . . , r

G
n1, α

G
2 , . . . , α

G
n ).

(b) . . . . . .

(c) Vn = (rG
n , r

G
1n, . . . , r

G
(n−1)n, α

G
1 , . . . , α

G
n−1).

Figure 7: A Real Execution G of Π

Proof: Let in G, the dealer D was honest and Pn was corrupted. At the end of sharing phase, let Pn

replaces rG
Dn (that he has received from D) by any value rG

Dn in his view Vn(G) and inputs it to REC. By
correctness of Π, function REC should output sG. This proves our claim. 2

Claim B.4. REC(V1(G), . . . , V ?
n−1(G), V ?

n (G)) = sG.

Proof: Let in G, the dealer D was corrupted and distributed rG
Di for all i = 1, . . . , n− 1 and rG

Dn (this can
be any value) to Pn. Now if every party (including D) behaves properly and inputs correct views then by
Claim B.3, sG will be reconstructed. On the other hand, let Pn−1 becomes corrupted at the end of sharing
phase (apart from D) and replaces rG

D(n−1) (that he has received from D) by any value rG
D(n−1) in his view

Vn−1(G) and inputs it to REC. By commitment property of Π, function REC should still output sG. This
shows that our claim is true. Our assumption that two parties can be corrupted has been used in this claim. 2

Like this we can proceed and prove the following claim in the same way as in Claim B.4:

Claim B.5. REC(V1(G), . . . , V ?
n−2(G), V ?

n−1(G), V ?
n (G)) = sG.

Therefore we can prove a series of claims in this way and finally land up in the following claim.

Claim B.6. REC(V1(G), V ?
2 (G), . . . , V ?

n−1(G), V ?
n (G)) = sG.

Finally the above Claim clearly shows a violation of the secrecy property of Π because it states that
in any execution, where D gives message rG

D1 to P1, will always output the secret sG at the end of the
reconstruction phase. So if D is honest and adversary passively corrupts P1 in such an execution, he will
come to know that the shared secret is sG, which is a violation of secrecy property. This implies that Π does
not exist and our theorem is correct.

Note that Theorem 3.2 does not hold for WSS due to the fact that WSS requires only weak commitment,
this prevents the argument that all sequences of messages sent to the parties need to be reconstructed to the
same secret.

B.2.2 Proof for Theorem 3.3: Impossibility for n ≤ 3t

Due to the player partitioning technique, it is enough to show that 1-round sharing VSS is impossible for
n ≤ 3 and t = 1. Our proof is by contradiction. Let the set of parties be {P1, P2, P3} with D = P1, and
assume there exists a 1-round sharing protocol Π for VSS.

The general structure of the sharing phase of Π will be same as the description presented in the proof of
Theorem 3.2 restricted to three parties. Also the description for the reconstruction phase of Π will be very
much same as presented in Theorem 3.2. In Figure 8, we present a real execution G of Π, where D’s secret
is sG. We may denote the view of Pi by Vi(G) in execution G.

By the property of REC, we have the following claim:
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1. P1, P2, P3 participate in execution G with random coins rG
1 , r

G
2 , r

G
3 , respectively. D has input sG (im-

plicitly defined by rG
D).

2. Round 1

(a) Private messages communicated by the parties.

i. Private messages of P1: rG
12, r

G
13.

ii. Private messages of P2: rG
21, r

G
23.

iii. Private messages of P3: rG
31, r

G
32.

(b) Broadcasts: α1(rG
1 ), α1(rG

2 ), αn(rG
3 ).

3. Local outputs:

(a) V1(G) = (rG
1 , r

G
21, r

G
31, α

G
2 , α

G
3 ).

(b) V2(G) = (rG
2 , r

G
12, r

G
32, α

G
1 , α

G
3 ).

(c) V3(G) = (rG
3 , r

G
13, r

G
23, α

G
1 , α

G
2 ).

Figure 8: A Real Execution G of Π for P1, P2 and P3

Claim B.7. REC(V1(G), V2(G), V3(G)) = sG.

We now show that REC(?, V2(G), ?) = sG, where ?’s can be replaced by any arbitrary view.

Claim B.8. REC(?, V2(G), ?) = sG, where ?’s can be replaced by any arbitrary view.

Proof: First we show that REC(V1(G), V2(G), ?) = sG. If it is not the case, then Π does not obey correct-
ness when D is honest and P3 is corrupted (and inputs any view to REC). Now consider the case when D

was corrupted and had sent some arbitrary rG
13 to honest P3. So the views of D and P2 remain the same.

The view of P3 becomes V ?
3 (G) = (rG

3 , r
G
13, r

G
23, α

G
1 , α

G
2 ). Then REC(V1(G), V2(G), V ?

3 (G)) = sG holds by
substituting ? = V ?

3 (G) in REC(V1(G), V2(G), ?) = sG. Now if D inputs V ?
1 (G) (which is arbitrary) to REC,

still REC should output sG by commitment property of Π. So we have REC(?, V2(G), ?) = sG. 2

The above claim shows that the view of P2 is enough to reconstruct the secret. This means that if D
was honest and P2 was corrupted then P2 can break the secrecy of Π, which is a contradiction to the fact
that Π is a VSS scheme.

Similar to Theorem 3.2, Theorem 3.3 does not hold for a WSS scheme as WSS requires only weak
commitment. So the argument for the proof of claim REC(?, V2(G), ?) = sG will fall apart in this case. In
fact we can design a 1-round sharing, 1-round reconstruction (2t+ 1, t) WSS protocol.

B.3 Proof for Theorem 3.6: 1-Round VSS for t = 1 and n ≥ 4

We analyze the secrecy, correctness and commitment properties of VSS to prove Theorem 3.6. We assume
any commitment function that provides unconditional (or statistical) hiding and computational binding
under some standard hardness assumption (e.g., Pedersen commitment scheme)

Secrecy. We prove secrecy by showing that given the public information and view Vi comprising of (fi, ri)
at some index i, the adversary has no information about the shared secret s. Formally,

Pr[A computes s|{Vi,Public Information}] = Pr[A computes s]

This follows from the unconditional hiding property of the underlying commitment function using the stan-
dard techniques [34].

Correctness. If D is honest, there is at most one corrupted party in P \ {D}. As every honest party
will always be confirmed, there cannot be more than one non-confirmed parties. Now if the sole corrupted
party is confirmed, then his published values fi and ri are indeed correct point on f(x) and r(x). If it is not
true then the adversary (corrupted party) finds some f?

i and r?
i such that f?

i = Open(Ci, f?
i , r

?
i ). We can
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then devise an algorithm to break the computational binding property of the commitment function using
this adversary. Hence given that the commitment function achieves computational binding, all the confirmed
parties disclose proper fi and ri values and therefore the interpolated polynomials are f(x), r(x), and the
reconstructed secret is s = f(0).

Strong Commitment. If D is corrupted, then all the remaining parties in P \ {D} are honest. We say
that a corrupted D has committed ⊥ if he does either one of the following:

1. if there are more than one party in P \ {D} who received fi and ri that are inconsistent with corre-
sponding public commitments;

2. if the underlying polynomial as implied by the public commitments is of degree more than 1.

If none of the above is the case, then D’s committed secret s is the constant term of degree-1 polynomial that
is implied by the public commitments. Now it is easy to see that ⊥ will be reconstructed when D commits
to ⊥ and likewise, s will be reconstructed when D commits so. We also note that strong commitment holds
unconditionally. That is no matter how much computational power the adversary has, he cannot make a
value that is not committed to be reconstructed by controlling D. This holds because all the participating
parties in reconstruction phase are honest.

B.4 Proofs for the VSS using Homomorphic Commitment

Now we prove the following properties of 2-Round-VSS-Hm.

Secrecy. The secrecy of the scheme mainly follows from the unconditional hiding property of Pedersen
commitment function and the property of degree-t polynomial. In the first round of the protocol, the
adversary receives t points on f(x) and r(x) polynomials and the public commitments on their coefficients.
We claim that the communication in second round does not add any extra information to the adversary’s
view in the first round. In second round, an honest D broadcasts fi and ri only when Pi is corrupted.
Otherwise, D broadcasts αi = fi + pi and βi = ri + gi. Now we note that pi and gi are randomly chosen
and they remain information theoretically secure even the commitments PComi and GComi are public (from
the perfect hiding property of Pedersen’s Commitment function). When pi and gi are used to hide fi and ri
(while revealing αi and β), fi and ri remain as secure as prior to the broadcast of αi and βi. This completes
our claim that round two communication does not add anything extra to the information obtained by the
adversary in the first round of the protocol. Now the perfect secrecy of the secret s follows from the proof
of Petersen [33] (see Theorem 4.4 of [33]) when the adversary receives t points on f(x) and r(x) polynomials
and the public commitments on their coefficients. In brief the secrecy follows from the fact that both f(x)
and r(x) polynomials are of degree t and D’s public commitments Comi will be uniformly distributed given
the unconditional hiding property of Pedersen commitment function.

Correctness. If D is honest, then he will never be discarded. Moreover, all the honest parties will be
happy. Now correctness will follow if we show that a corrupted Pi ∈ Q is considered as confirmed only
when he broadcasts correct values in the reconstruction phase. Assume that corrupted Pi is considered to
be confirmed even when he broadcasts f ′i and r′i where these values are not equal to fi and ri (as given
by the dealer). By homomorphism of commitment scheme,

∏t
j=0(Comi)ij

is the commitment for both pairs
(fi, ri) and (f ′i , r

′
i). This implies corrupted Pi is able to break the computational binding property of the

commitment function. Hence given that the commitment function achieves computational binding, all the
confirmed parties disclose proper fi and ri and therefore f(x) and s = f(0) will be reconstructed correctly.

Strong Commitment. We have to consider the case of a corrupted D. If D is discarded in the sharing
phase, then every party may assume some default predefined value as D’s secret. So we consider the case
when D is not discarded. If D is not discarded, then the polynomials, say f(x) and r(x), defined by the
public commitments of D are degree-t polynomials. We note that an honest party will never be discarded.
Now we need to ensure that at the end of sharing phase honest Pi will output fi and ri, the ith shares of
f(x) and r(x), respectively. We consider two cases:
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Pi is happy: Pi verified that Commit(fi, ri) =
∏t

j=0(Comi)ij

. This implies that the pair (fi, ri) used by Pi

are the correct ones, unless corrupted D had broken the binding property of the commitment function.

Pi is unhappy: We have two cases: (1) D has broadcasted fi and ri; (2) D has broadcasted αi, βi and Pi

computed fi = αi − pi, ri = βi − gi. In both the above cases, fi and ri satisfies Commit(fi, ri) =∏t
j=0(Comi)ij

. So unless corrupted D had broken the binding property of the commitment function,
the pairs (fi, ri) and (f(i), r(i)) are identical.

Now in the reconstruction phase, every honest party will be considered as confirmed. However, a corrupted
party Pi will be considered as confirmed if he broadcasts fi = f(i) and ri = r(i) (assuming he does not break
binding of commitment function). Now it follows that the parties will reconstruct D’s committed secret
s = f(0) in the reconstruction phase.

B.5 Asynchronous VSS with strong commitment

We now proceed to prove the properties of protocol AsynchVSS.

Liveness. If D is honest, then every honest party will eventually send out echo and then ready with
share-holder. Since there are at least 2t+ 1 honest parties, every honest party will eventually agree
on Com.

Agreement. Agreement follows from Lemma 4.2.

Correctness. Correctness follows from Lemma 4.2 and 4.3. Honest dealer case is easy to follow. For a
corrupted dealer the unique secret determined in the sharing phase is nothing but the constant term
of F (x, y) defined by H in Lemma 4.3. In the reconstruction phase, all the parties will reconstruct
D’s secret using the polynomials sent by the honest parties in H. Specifically, every honest party
will definitely consider fj(x), rj(x) sent by party Pj in H. However, we will be done if we show that
any wrong degree-t polynomial fj(x) sent by a corrupted party Pj will never be considered (unless
corrupted Pj breaks binding of commitment). This is ensured by the following check performed
by an honest party before considering Pj ’s polynomial for the reconstruction of F (x, y): fj(k) =
Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n]. This check ensures that fj(x) must match with fj(x) at
the t+ 1 positions corresponding to H. But then it implies fj(x) = fj(x).

Secrecy. Follows from the properties of bivariate polynomial and the hiding of underlying commitment
scheme.

In Figure 9, we present an asynchronous computational VSS scheme that satisfies the strong commitment
properties for n ≥ 3t+ 1 as discussed in Section 4.3
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Protocol AsynchVSS-Strong(D,P, s)
Sharing Phase:
Code for D:

• Choose n + 1 random symmetric bivariate polynomials F (x, y), F 1(x, y), . . . , Fn(x, y) of degree-t such that
F (0, 0) = s and F (x, i) = F i(x, 0).

• Compute [Cij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, and (Cij = Cji) and (rij = rji) for i, j ∈ [1, n]
and i < j, where fij = F (i, j). Let C be the n× n matrix containing Cij for j ∈ [1, n] in the ith row.

• Compute [Ck
ij , (F

k
ij , r

k
ij)] = Commit(F k

ij) for i, j, k ∈ [1, n] and i ≥ j, and (Ck
ij = Ck

ji) and (rk
ij = rk

ji) for
i, j, k ∈ [1, n] and i < j, where fk

ij = F k(i, j). Let Ck be the n× n matrix containing Ck
ij for j ∈ [1, n] in the

ith row.

• Send (send, C, fi(y), ri(y)) and (send, Ck, fk
i (x), rk

i (x)) for k ∈ [1, n] to Pi, where fi(y) = F (i, y), fk
i (x) =

F k(x, i), ri(y) is the degree-(n − 1) polynomial defined by the points ((1, r1i), . . . , (n, rni)) and rk
i (x) is the

degree-(n− 1) polynomial defined by the points ((1, rk
i1), . . . , (n, rk

in)).

Code for Pi:

• On receiving (send, C, fi(y)) and (send, Ck, fk
i (x), rk

i (x)) for all k ∈ [1, n] from D, send (echo, C, C1, . . . , Cn)
to every Pj if

1. C,C1, . . . , Cn are n× n symmetric matrices and

2. fi(k)
?
= fk

i (0) for all k ∈ [1, n] and

3. fi(j)
?
= Open(Cij , fi(j), ri(j)) and

4. fk
i (j)

?
= Open(Ck

ij , f
k
i (j), rk

i (j)) for j, k ∈ [1, n].

• On receiving (echo, C, C1, . . . , Cn) from at least n− t parties satisfying that (C,C1, . . . , Cn) received from Pj

is same as received from D, send (ready, share-holder, C, C1, . . . , Cn) to every Pj , if you have already sent
out echo messages.

• If you have not sent out any ready signal before:

1. on receiving ready messages from at least n − 2t Pj ’s satisfying that (C,C1, . . . , Cn) received from Pj

is same as received from D, send (ready, share-holder, C, C1, . . . , Cn) to every Pj , if you have already
sent out echo messages.

2. on receiving (ready, share-holder, C, C1, . . . , Cn) from at least n−2t Pj ’s such that all the C,C1, . . . , Cn

are same but do not match with the copies received from D, update your C,C1, . . . , Cn with these new
matrices, delete everything else received from D and send (ready, ?, C1, . . . , Cn) to every Pj .

• On receiving ready signals from at least (n − t) parties such that all of them contain same (C,C1, . . . , Cn)
as yours and at least (n − 2t) ready signals contain share-holder, agree on (C,C1, . . . , Cn) and send
(final, f j

i (x), rj
i (x)) to Pj if you had sent (ready, share-holder, C, C1, . . . , Cn).

• Wait for t + 1 (final, f i
j (x), ri

j(x)) messages such that f i
j (x) is degree-t polynomial, ri

j(x) is degree-(n − 1)
polynomial and f i

j (k) = Open(Ci
jk, f

i
j (k), ri

j(k)) for all k ∈ [1, n], interpolate F i(x, y) using those t + 1 f i
j (x)

polynomials, compute fi(x) = F i(x, 0) and terminate with si = fi(0) as the share of secret.

Reconstruction Phase:
Code for Pi:

1. Each Pi sends si to every Pj .

2. On receiving the shares from the parties, apply online error correction of [6] to get back the secret.

Figure 9: Asynchronous VSS with strong commitment for n ≥ 3t+ 1
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