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Abstract. In this paper we analyze the recently proposed light-weight block cipher PRINT-
Cipher. Applying algebraic methods and SAT-solving we are able to break 8 rounds of
PRINTCipher-48 with only 2 known plaintexts and 9 rounds under some additional as-
sumptions. We show that it is possible to break the full 48-round cipher by assuming a
moderate leakage of internal state bits or even just Hamming weights. Such a simulation
side-channel attack has practical complexity. We investigate applicability of our method to
cryptanalysis of the full PRINTCipher-48.
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1 Introduction

The target of this paper is the light-weight block cipher PRINTCipher proposed in 2010 at CHES
[1]. PRINTCipher proposes a security solution for low cost devices such as RFID tags. In particular,
PRINTCipher aims to facilitate secure usage of integrated circuit (IC) printing for RFID tags. An
interesting feature of such “printing” is that a tag can obtain key dependent circuitry already at
the manufacturing phase. As a result, the authors of [1] propose to use the same key for all rounds,
but implementing key-dependent S-Boxes that may be “printed” when a tag is manufactured. In
cryptographic sense, PRINTCipher pushes even further the limits of lightweight block cipher design
set by such ciphers as PRESENT [2] and KATAN/KTANTAN-family [3]. In fact the authors claim
that e.g. PRINTCipher-48 that is claimed to provide 80-bit security may be implemented with
almost three times as less gate equivalents (GEs) than the 80-bit version of PRESENT.

Naturally, the question of security for such an extremely lightweight design arises. The first
cryptanalytic results known to us is the differential cryptanalysis of 24 rounds of the cipher using
the entire code-book [4]. A much more powerful result is proposed in [5]. In this paper the authors
show that there exist a non-negligible portion (252 for PRINTCipher-48 with 80 bit keys and 2102

for PRINTCipher-96 with 160 bit keys) of weak keys. For these keys the cipher is easily broken
with only several plaintext pairs, which makes the attack practical for these weak keys. Note,
however, that the invariant coset attack of [5] may be easily overcome by adjusting the round
counter appropriately, see Section 2.3 of [5]. Therefore, analyzing PRINTCipher still is of interest
and serves further and deeper understanding of light weight design principles, which PRINTCipher
is using extensively.

Note that although the IC printing technology itself is “in its infancy”, side channel security
is still of theoretical interest. The preprint [6] addresses, in particular, security of PRINTCipher
against the fault injection. There the authors show that by introducing faults into just one nibble
position at some last rounds and having 12–24 effective faulty samples it is possible to dramatically
reduce the key space to be searched.

In this paper we propose algebraic cryptanalysis of round reduced PRINTCipher-48 using
SAT-solving. Algebraic cryptanalysis combined with SAT-solving has become a popular tool in
analyzing stream (e.g. [7]) and block ciphers (e.g. [9,8,10]). We show that we are able to break
8 rounds of the cipher having only 2 known plaintext pairs faster than the brute force. We are



able to break 9 rounds assuming knowledge of 50 key bits out of 80. The success of this attack
(i.e. it is faster than the brute force) is around 3/4. Note that although the number of rounds we
can break is rather low, the data complexity of these attacks is minimal. As indicated in [11], it is
important to consider low data complexity attacks on block ciphers due to possible applications
of block ciphers other than encryption.

Moreover, we show that assuming knowledge of internal state bits at round 4, we are able to
break the full 48 rounds of PRINTCipher-48 in practical time. For example, assuming knowing
6 output bits of 2 S-Boxes (3 bits each) at round 4 for 12 known plaintext/ciphertext pairs, we
estimate total key recovery in less than 2 hours on average. Relaxing the knowledge of internal
state bits by knowing only Hamming weights of inputs and outputs to the 2 first S-Boxes at
round 4, we estimate recovery of the 80-bit key in less than 3 days on average using 12 pairs of
plaintext/ciphertext.

The paper is structured as follows. Section 2 gives a brief description of PRINTCipher-48.
Then in Section 3 we elaborate on algebraic representations of the S-Boxes. Section 4 is a brief
overview of SAT-solving technique and conversion techniques used in this paper. Section 5 provides
detailed analysis of tools and conversion techniques that are further used in Section 6 to attack
the cipher. Section 6 has several subsections. Section 6.1 gives results of algebraic cryptanalysis
of the round-reduced PRINTCipher-48. Section 6.2 observes an interesting property of the cipher,
which is then applied to side channel analysis in Section 6.3. Final Section 6.4 discusses potential
applications of the idea in Section 6.2 to the attack on the full PRINTCipher-48 with 48 rounds.
We conclude in Section 7 and outline there some open problems.

Main results of the paper are contained in Sections 6.1, 6.3, and 6.4.

2 PRINTCipher

PRINTCipher is a substitution-permutation network. The cipher is largely inspired by the light-
weight block cipher PRESENT [2]. The main differences with PRESENT is absence of the key
schedule (all round key are the same and are equal to the master key) and key-dependent S-Boxes.
PRINTCipher comes in two variations: PRINTCipher-48 encrypts 48 bits blocks with 80 bit key
and has 48 rounds, PRINTCipher-96 encrypts 96 bit blocks with 160 bit key and has 96 rounds.
Here we present a short overview of the cipher, referring the reader to [1] for a more detailed
description and analysis. In this paper we concentrate on the smaller version PRINTCipher-48.
The encryption process of PRINTCipher-48 is organized as in Algorithm 1.

Algorithm 1 Encryption with PRINTCipher-48

Require:
- 48-bit plaintext p
- 80-bit key k = (sk1, sk2), where sk1 is 48 bits and sk2 is 32 bits

Ensure: 48-bit ciphertext c
Begin
state := p
for i = 1, . . . , 48 do

state := state⊕ sk1
state := Perm(state)
state := state⊕RCi

state := SBOX(state, sk2)
end for
c := state
return c
End

Some comments to Algorithm 1 follow. The linear diffusion layer Perm implements a bit
permutation similar to PRESENT. It allows full dependency on plaintext and key bits already at



round 4. RCi for i = 1, . . . , 48 is a 6-bit round counter that is placed in the last two 3-bit nibbles.
The S-Box layer SBOX is a layer of 16 3-bit S-Boxes numbered 0, . . . , 15, where each S-Box is
chosen according to the value of two corresponding bits of the subkey sk2. Therewith there are
4 possible S-Boxes at each position called V0, V1, V2, V3 in [1]. One may also consider this as a
composition of a key dependent bit permutation that acts on nibbles of 3 bits and then followed
by the layer of fixed S-Boxes, each one being a 3-bit S-Box with the truth table

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

This S-Box, called V0 in [1], is preceded by a key-dependent permutation defined by the fol-
lowing table:

a1 a0 Permutation

0 0 (0,1,2)

0 1 (0,2,1)

1 0 (1,0,2)

1 1 (2,1,0)

Here the three input bits are permuted according to the two consecutive key bits from the key
sk2 called a0 and a1. Figure 1 provides an illustration for one encryption round of PRINTCipher-
48.

Fig. 1. Round function of PRINTCipher-48, cf. Figure 1 of [1]

As has been already mentioned in Section 1, in [5] the authors propose an attack on PRINTCi-
pher that works for a large set of weak keys. In Section 2.3 of [5] it is indicated that it is possible



to overcome the attack by spreading the round counter to e.g. the last three nibbles. We apply
this change and use the modified cipher when working with the full 48-round cipher in Sections
6.2–6.4.

In our attacks we extensively use another notion defined for bit-permutations in SP-networks.
This is the notion of a low diffusion trail. The effect of a low diffusion trail was observed already
for PRESENT and was used as a tool for statistical saturation attacks [12]. An observation on
low diffusion trails is also made by the authors of [1] in Section 4.4. One fixes certain S-Box
positions and computes how many bits stay within the fixed S-Boxes after the application of the
bit permutation layer. Low diffusion trails correspond to those S-Box positions with the highest
count. For example, looking at Figure 1 one sees that if we fix S-Boxes 0,1 and 5, then 5 out of
9 output bits at round i are input bits to these three S-Boxes at round i + 1. In fact positions
{0, 1, 5} provide a low diffusion trail for 3 S-Box positions. We cite now Table 1 from [1] which
provides examples of low diffusion trails and append it with some other trails that we used for
the number of positions 2, 9 and 10, see Table 1. We used these trails in our experiments, see in
particular Section 5.3 and 6.1.

Table 1. Low diffusion trails for PRINTCipher-48

# of S-Boxes in trail Example trail # bits in the trail Ratio

2 {0, 1} 2 2/6

3 {0, 1, 5} 5 5/9

4 {0, 1, 5, 15} 7 7/12

5 {4, 10, 12, 14, 15} 9 9/15

6 {0, 1, 2, 5, 6, 7} 12 12/18

7 {3, 8, 9, 10, 11, 13, 15} 14 14/21

8 {0, 1, 4, 5, 10, 12, 14, 15} 18 18/24

9 {0, 1, 2, 3, 5, 10, 11, 14, 15} 20 20/27

10 {0, 1, 3, 4, 5, 10, 11, 12, 14, 15} 24 24/30

3 Algebraic description

In this section we give an algebraic description of the PRINTCipher-48. As usual in algebraic
cryptanalysis, the most interesting part is to describe non-linear transformations, the S-Boxes. In
the case of PRINTCipher we have key dependent S-Boxes, so we have to treat this situation. We
show which alternatives exist for algebraic descriptions of an S-Box.

First of all, let us describe the system of equations for r rounds of PRINTCipher-48. We are
working in the Boolean ring with variables

- Xi := (Xi,j), 0 ≤ i ≤ r, 0 ≤ j ≤ 47 input variables

- Yi := (Yi,j), 1 ≤ i ≤ r, 0 ≤ j ≤ 47 output variables

- K1 := (K1,j), 0 ≤ j ≤ 47 key-xor variables

- K2 := (K2,j), 0 ≤ j ≤ 31 key-permutation variables

Now schematically the system of equations Sys(p, c) is as follows⎧⎨⎩
X0 = p,
Xi = Yi−1 ⊕K1, 1 ≤ i ≤ r,
Yi = SBOX(Perm(Xi)⊕RCi,K2), 1 ≤ i ≤ r,
Yr = c.



Variables X0 and Yr do not actually appear, since they are replaced by the values of the corre-
sponding plaintext/ciphertext pair (p, c). Our task is to find solutions for the variables K1 and
K2 which then give us the key k that encrypts p to c. The variables Ki represent the subkey ski
for i = 1, 2. Some remarks on notation. It is clear that in the second line we simply do bitwise
XOR of the variables. The second line assumes that the variables are grouped by three and two
corresponding key-permutation variables. So SBOX is the concatenation of 16 non-linear maps.
The map Perm is a bit permutation, see Algorithm 1 and Figure 1. For example for the first
S-Box we have equations:

Yi,j = SBOXj(Xi,0, Xi,16, Xi,32,K2,0,K2,1), 0 ≤ j ≤ 2,

since RCi is always zero at those positions. Another important observation is that since the key
length of PRINTCipher-48 is larger than its block length, we actually need two plaintext/ciphertext
pairs to uniquely determine the key. So actually we need two systems Sys(p1, c1) and Sys(p2, c2).
This is not necessary if we assume that the key-permutation variables are known or guessed: then
one pair suffices to determine sk1, at least for r large enough.

Our next goal is to look closely at the SBOX map. This map is a concatenation of 16 smaller
maps sbox(sk2), which depend in the key sk2. As we have seen from the previous section, each
sbox can be considered via two equivalent definitions:

1. A composition of the key-dependent permutation SP : F3
2 × F2

2 → F3
2 and the fixed S-Box V0.

2. As a key-dependent S-Box Vi, where i is determined by the two bits of the key sk2.

Let us first consider the definition (1). We need to find equations that describe the map SP .
Introducing local notation, let X = (X0, X1, X2) be the input variables A = (A0, A1) be the key-
permutation variables and W = (W0,W1,W2) be the output variables. Then SP can be described
as

W = SP (X,A) = (fij(A)) ⋅XT ,

where for each assigned value for A = (A0, A1), the matrix F := (fij(A)) is a permutation matrix
according to the table in Section 2. By using interpolation techniques, we find that fij ’s are
polynomials in A-variables of degree at most 2. The matrix is as follows:

F =

⎛⎝ A0 + 1 A0A1 + A0 A0A1

A0A1 + A0 A0 + A1 + 1 A0A1 + A1

A0A1 A0A1 + A1 A1 + 1

⎞⎠ .

Therefore, we obtain cubic equations for the map SP : quadratic in key-permutation variables and
linear in the input variables. Appendix A.1 contains the equations describing this map.

Now the S-Box V0 is a “classical” S-Box and standard techniques may be used to describe
it. Let Y = (Y0, Y1, Y2) be the output variables of the S-Box, so that Y = V0(W ). Since V0 is a
F3
2 → F3

2 S-Box, we may obtain explicit quadratic equations for the output variables in terms of
the input variables:

Y0 = W1W2 + W0,
Y1 = W0W2 + W0 + W1,
Y2 = W0W1 + W0 + W1 + W2.

Likewise one may obtain explicit equations of W -variables in terms of Y -variables:

W0 = Y1Y2 + Y0 + Y1,
W1 = Y0Y2 + Y1,
W2 = Y0Y1 + Y0 + Y1 + Y2.

In total there are 14 linearly independent quadratic equations that describe V0.
Of course we may write equations for the sbox in terms of X-, A-, and Y -variables only,

eliminating the W -variables. Therewith, we obtain quartic equations for sbox: quadratic in the



key-permutation and the input variables. We list these equations in Appendix A.2. If we assume
that values of the key-permutation variables are known (sk2 is known) or guessed, the approach
(2) is be useful. One can obtain equations for the S-Boxes Vi, i = 1, 2, 3 analogously to the V0

S-Box.
Interestingly enough, it is possible to describe the map SP by equations of degree at most

2. One needs 6 quadratic equations and 1 linear equation for this. See Appendix A.3. This fact
means that in principle it is possible to describe the key dependent S-Box by equations of degree
at most 2 having three additional W -variables per S-Box.

We do not see immediate implications of the following fact, still we find it interesting to be
noted. There exist 10 polynomials from the ideal describing the key dependent S-Box, each being
a product of two linear polynomials. We list these in Appendix A.4.

4 SAT techniques for algebraic system solving

Using SAT-solvers in cryptanalysis is a quite recent trend. The idea is to translate an algebraic
representation of a cryptographic primitive, such as block or stream cipher, into a satisfiability
problem. Therewith, the problem of solving an algebraic system of equations in a Boolean ring is
replaced with finding a satisfiability assignment of variables in a logical formula (or proving that
such an assignment does not exist). Whereas equations from an algebraic representation are in
the algebraic normal form (ANF), the resulting satisfiability problem is usually in the conjunctive
normal form (CNF). In block cipher cryptanalysis there are examples of using SAT-solving in
analyzing KeeLoq [8] and DES [9], whereas for stream ciphers an example target is Grain [7].
Although the problem of finding a satisfiability assignment of variables, as well as solving non-
linear systems, is NP-hard in general, highly tuned SAT-solvers can solve particular instances
occurring in practice amazingly fast. Two most commonly used SAT-solvers in the cryptographic
context are MiniSAT2 [13] and recently proposed CryptoMiniSAT2 [14]. The latter uses ideas
of MiniSAT adding a lot of new heuristics and the possibility to handle long XOR chains more
efficiently.

As we said, applying SAT-solving techniques assumes translation of the algberaic representaion
of a cipher into a logical formula. There exist several methods for doing so. In our experiments
we rely on the two methods: the one due to Courtois, Bard, Jefferson [15] and another one that is
based on the truth tables [16,7].

We would like to make a remark about estimating complexity of SAT-solving. Whereas memory
consumption of SAT-solvers is very modest (at least compared to algebraic solvers that compute
Gröbner bases), estimating time complexity is really an issue. The problem is that due to highly
heuristic and randomized nature of SAT solvers (at least those based on the DPLL algorithm, such
as MiniSAT and CryptoMiniSAT) the execution time varies very significantly for each trial run
and also for runs of similar problems. Sometimes one observes a difference of factor 1000. Since
variance for time measurements is so high, it is hard to make estimates even after many runs. Still,
in this paper we apply the method of averaging running times of 100 trials for each experiment in
question. This is similar to approaches of other authors in the field, e.g. [10,17]. Our experiments
with some 1000-trial instances suggest that 100 is quite accurate in terms of the average time. A
more advanced way of estimating time complexity would be statistical hypothesis testing. We set
using such an estimation tool as a future work.

4.1 Conversion techniques

Conversion due to Bard, Courtois, Jefferson
ANF to CNF conversion of Bard, Courtois, Jefferson first represents separate monomials occur-

ring in an algebraic system as a conjunction of clauses, which in turn are disjunctions of variables
or their negations. Then one adds new variables corresponding to these monomials, so that all
equations become linear in these new variables. The next task is to represent these linear poly-
nomials as conjunctions of clauses. The problem here is that representing a linear relation (a



XOR-chain) needs exponentially many clauses in the number of variables. Therefore, one “cuts”
a linear relation in several ones by introducing new variables. Representing one cut XOR-chain
then needs relatively few clauses.

As an example, consider an equation

xyz + xy + yz + xz = 0.

We introduce new variables a := xyz, b := xy, c := yz, d := xz. Then a term a = xyz is described
by a logical formula

(x ∨ ā) ∧ (y ∨ ā) ∧ (z ∨ ā) ∧ (a ∨ x̄ ∨ ȳ ∨ z̄).

Similarly one can write the terms b, c and d. Resulting linear relation a + b + c + d = 0 may be
written as

(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c̄ ∨ d̄) ∧ (a ∨ b̄ ∨ c ∨ d̄) ∧ (a ∨ b̄ ∨ c̄ ∨ d)∧
∧(ā ∨ b ∨ c ∨ d̄) ∧ (ā ∨ b ∨ c̄ ∨ d) ∧ (ā ∨ b̄ ∨ c ∨ d) ∧ (ā ∨ b̄ ∨ c̄ ∨ d̄).

As we see, the latter formula contains 1 + 6 + 1 = 8 clauses. Similarly, describing a XOR-chain
with n variables (n is even) needs(

n

0

)
+

(
n

2

)
+ ⋅ ⋅ ⋅+

(
n

n

)
= 2n−1

clauses. Therefore, the concept of cutting makes sense. We could cut the number of variables
XORed in our formula above as e+a+b = 0, f +c+e = 0, g+d+f = 0 introducing new variables
e, f, and g. So one needs 4 clauses for each of the three equations. The cutting number [15] defines,
how many variables are in one XOR-chain. In the example given, it is 3. Usually cutting numbers
4–7 are used.

In our experiments we call this conversion technique BCJ. More details on this technique may
be found in [15]. The convertor is implemented in SAGE computer algebra system [18] by Martin
Albrecht and Mate Soos [19].

Conversion based on the truth table
Whereas in the BCJ method the number of variables in a logical formula is usually quite large

compared to the initial number of variables in the ANF of a polynomial, the following method
preserves this number. The method, which we call TruthTable in this paper, is based on writing
a CNF for the given Boolean function by examining the evaluation (truth) table of the function.
We work with a specific implementation of the method described in [16] and implemented by
Michael Brickenstein [20]. The core of the method dates back to Karnaugh [21] and is also used
in cryptographic context in [7]. Note that the problem of long XOR chains also appears here. So
one might want to apply the cutting technique first and then the truth table method for resulting
shorter polynomials.

As an example, the polynomial f = xyz + xy + yz + xz from above with the method of [16]
has the CNF

(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z).

So contains only 3 clauses and 3 variables.

5 Optimal tools and strategies for the attacks

5.1 Agenda

In this section we prepare for algebraic attacks on PRINTCipher-48. We use SAT techniques as
a solving tool. Since algebraic cryptanalysis is a lot about trying out certain heuristics, we would
like to cover as many of them to find the best one. In order to understand what we are going to
do, we formulate some questions, which we answer in order to get an optimal representation and
solving strategy. The first block of questions concerns the algebraic representation and the ANF
to CNF conversion. First, assume that the key sk2 is known or guessed.



– Assuming we know sk2, is there a difference whether sk2 = 0 or sk2 ∈R F32
2 ?

– Is there a difference in solving Sys(p, c) for the correct value of sk2 and a wrong one?
– Assuming sk2 is given, is it better to use explicit equations for the S-Boxes (Y = SBOX(X)

or X = SBOX−1(Y )) or all the quadratic equations that describe an S-Box?
– Which ANF-to-CNF conversion method yields better results: TruthTable or BCJ?

This questions are addressed in Section 5.2.
It is known that in order to be able to solve a large system of equations coming from a block

cipher, it is a good practice to first guess some key bits and then try to solve easier systems. In
particular, we solve one easier system if we assume that we are given the correct key bits. In the
cryptanalytic context this means that we need to make sure that if we are given (or guessed) g out
of k key bits, the resulting system solving is faster than the brute force of the remaining key space
of size 2k−g. See Section 6.1 for more details. Since PRINTCipher does not have a key schedule, i.e.
the same key is used in all rounds of the cipher, it is particularly plausible to apply this approach.
Moreover, by guessing enough key bits, we are able to bring our timings to some feasible figures.
This in turn will give us an opportunity to make estimations of the attack complexity. So, guessing
key bits is important. But now we have to answer certain questions in order to understand where
and how to guess bits optimally.

– Since the bits in a round are grouped in groups of three bits before applying the S-Box
transformations, does it make a difference to guess the key bits in such groups of three or
random positions are as good?

– Does it make a difference which groups/positions do we choose for guessing?
– Is it better to first guess the key sk2 and then some parts of the key sk1 or one should guess

parts of these keys?
– Related to the question above, latter part: should guessing in the keys sk1 and sk2 be syn-

chronized (that is, for example, locations of chosen groups of three for sk1 match guessing the
corresponding key-permutation bits of sk2) or the guesses may be done independently?

These questions are treated in Section 5.3.
We would like to investigate the effect of using more plaintext/ciphertext pairs, e.g. 4 or 8, see

Section 5.4.
Finally, in Section 5.5 we address the question, which solver is better for our purposes: Min-

iSAT2 or CryptoMiniSAT2.
Computing environment: We do our computations on a server with 4 AMD processors each hav-

ing 4 cores working at 2.3 GHz. The computations are run using one core. The server has 128 GB
of RAM and is running under Debian Linux version 4.3.5-4 Linux kernel version 2.6.32-5-amd64.
For our computations we use SAGE version 4.3.3, MiniSAT version 2.0 beta and CryptoMiniSAT
version 2.9.0.

Experimental setting: For estimating time we compute the average time for 100 trial runs.
The time in tables is given in seconds, unless is indicated otherwise. In Sections 5.2–5.4 we use
MiniSAT.

5.2 Determining optimal representation and conversion

Now we want to answer the first block of questions from the previous subsection. Namely, which
algebraic representation is better and which ANF-to-CNF conversion technique yields better re-
sults. Since finding an 80-bit key K = (sk1, sk2) is out of reach for our methods, we have to assume
that certain parts of the key are given or guessed. We prefer to first fix/guess the subkey sk2, since
then we turn out to be in the “classical” situation of algebraic cryptanalysis where the S-Boxes
are fixed. We consider different guessing scenarios in the follow-up Section 5.3.

First we assume sk2 = 0, i.e. all S-Boxes are fixed to V0. We investigate which S-Box equations
are better to take for solving and also how the two conversion techniques perform. In these experi-
ments we attack 5 rounds of PRINTCipher-48 with sk2 = 0. We set the cutting number of BCJ (see
Section 4.1) to be equal to 4, since the describing equations are quite short anyway. The timings in



this and all the following experiments are in seconds. Table 2 summarizes our experiments. From
this table we may conclude that at least taking all quadratic equations that describe the S-Box
V0 is not a good idea. Especially the BCJ method has a problem with that. The other two choices
do not differ significantly. Also both conversion techniques behave pretty much the same for these
choices.

Table 2. Attacking 5 rounds with sk2 = 0.

Conversion Eqs. Time

TruthTable Y = SBOX(X) 175

TruthTable X = SBOX−1(Y ) 227

TruthTable All 368

BCJ Y = SBOX(X) 182

BCJ X = SBOX−1(Y ) 174

BCJ All 734

Next we try to see whether some specific choice of sk2, e.g. sk2 = 0 as above, is any different
from a random choice. For a good cipher this should not be the case. Table 3 shows the results. In
the experiments a random and correct values of sk2 are used for each experiment. We work only
with the explicit equations for the S-Boxes as suggested by the previous experiment. The table
suggests no significant difference in attacking sk = 0 and sk2 random. Moreover using equations
Y = SBOX(X) and X = SBOX−1(Y ) is not significantly different.

Table 3. Attacking 5 rounds with sk2 randomly chosen.

Conversion Eqs. Time, s.

TruthTable Y = SBOX(X) 165

TruthTable X = SBOX−1(Y ) 174

BCJ Y = SBOX(X) 150

BCJ X = SBOX−1(Y ) 166

In the previous experiments we assumed correct values for sk2. For an efficient attack it is
important to know what is the behavior for wrong guesses, since they constitute the majority of
guesses (in fact we expect only one guess to be the correct one). Table 4 shows the experimental
results. For each experiment trial we took a random incorrect guess for sk2. This means that we
take wrong S-Box equations. Again we consider both conversion techniques and explicit equations
for the S-Boxes. Comparing these results with the results from Table 3 or Table 2 we see that a

Table 4. Attacking 5 rounds with sk2 wrongly guessed.

Conversion Eqs. Time, s.

TruthTable Y = SBOX(X) 354

TruthTable X = SBOX−1(Y ) 379

BCJ Y = SBOX(X) 370

BCJ X = SBOX−1(Y ) 411

wrong guess results in a slow-down approximately by a factor of 2. We will see further that such
a behavior is quite typical in out setting.



Remark 1. It is interesting to note that equations of the type X = SBOX−1(Y ) do not yield
better results. This is despite the fact that by having sk2 fixed we essentially eliminate the last
round and moreover the equations X = SBOX−1(Y ) give immediately values of the variables of
the last round.

As a result of this subsection we have only eliminated the usage of all the S-Box equations. All
other experimental differences are not significant enough. We continue using the two conversion
techniques in further subsections.

5.3 Determining optimal guessing strategy

Now we try to increase the number of rounds we can attack in a reasonable time. For this we
need to guess more than 32 bits of the key. We first proceed with the approach of the previous
section, where sk2 is fixed and try to guess some bits from sk1. As has been noted in Section 5.1
there are several ways how one can guess the bits of sk1. First we consider guessing at random
positions from {0, . . . , 47}. Then we consider guessing at random groups of positions, where the
groups are the groups of 3, which corresponds to the S-Box size. So we guess at S-Box positions
{0, . . . , 15}. Finally we guess at specific positions that correspond to the low diffusion trails, see
Table 1. Table 5 summarizes the experimental results. Here we attack r = 7 rounds by guessing
correctly g = 12 bits in the key sk1. We take equations Y = SBOX(X). The results indicate that
it is a good choice to guess in groups of 3 bits, moreover, at those positions suggested by the low
diffusion trail. Note that for g = 12 we use the trail {0, 1, 5, 15}, see Table 1.

Table 5. Attacking 7 rounds with 12 bits of sk1 guessed.

Conversion Guess Time, s.

TruthTable RandomPos 147

TruthTable RandomGroup 86

TruthTable Trail 46

BCJ RandomPos 119

BCJ RandomGroup 91

BCJ Trail 56

To shed more light on using the trail strategy we provide another experiment that attacks
r = 8 by guessing g = 15 variables at the trail {4, 10, 12, 14, 15}. This time we also take equations
X = SBOX−1(Y ). Results are in Table 6. The experiment suggests a slight advantage of using
TruthTable with equations of the type Y = SBOX(X).

Table 6. Attacking 8 rounds with 15 bits of sk1 guessed.

Conversion Eqs. Time, s.

TruthTable Y = SBOX(X) 114

TruthTable X = SBOX−1(Y ) 141

BCJ Y = SBOX(X) 151

BCJ X = SBOX−1(Y ) 148

It is time now to look at the situation when we do not guess the entire sk2, but rather use the
full algebraic representation from Section 3 to guess parts of both sk1 and sk2. We use explicit
equations with W−variables to describe S-Boxes. Other possibilities, e.g. eliminating W−variables
(Appendix A.2) or using implicit equations of degree at most 2 (Appendix A.3) did not yield any



significant improvement. First, similarly to the above, we may try to guess independently at
positions of sk1 and sk2 or at the grouped positions. The question is how many bits do we want to
guess in each key part. In our experiments we guess 3x and 2x in sk1 and sk2 resp., where x is a
guessing parameter. Therewith the guessed parts are proportional to the sizes of sk1 and sk2. We
have then that g = 5x. Recall that for the full representation we need two plaintext/ciphertext
pairs to uniquely determine the key. In the experiments we take two pairs coming from two random
plaintexts. So we are in the known plaintext scenario. Table 7 gives the results. In the experiment
we attack 5 rounds with x = 6, i.e. we guess overall g = 30 bits: 18 in sk1 and 12 in sk2. The
guesses are correct guesses. The results do not suggest the difference in the two approaches (as
opposed to the case when the entire sk2 is fixed, see Table 5). Nevertheless now they suggest that
using TruthTable is better than using BCJ with the cutting number 4. This makes sense, since
equations in the full algebraic representation are longer than those with sk2 fixed. We come back
to this issue a bit later.

Table 7. Attacking 5 rounds with overall 30 bits guessed in sk1 and sk2.

Conversion Grouping Time, s.

TruthTable RandomPos 8

TruthTable RandomGroup 5

BCJ RandomPos 27

BCJ RandomGroup 28

In the previous experiment when guessing in groups, the groups were not “agreed”. That is,
the three bits from the sk1-part do not necessarily match the guess of the two bits in sk2 that are
responsible for a corresponding S-Box. Our next experiment implements the agreeing strategy and
compares it with the one that does not use agreeing. In the experiment we use r = 6 and x = 7.
Table 8 presents the results. Now we clearly see that the agreeing strategy yields better results for
both conversion methods. We again see that the TruthTable is superior.

Table 8. Attacking 6 rounds with 35 bits guessed in sk1 and sk2.

Conversion Grouping Time, s.

TruthTable RandomGroup 74

TruthTable RandomAgree 25

BCJ RandomGroup 490

BCJ RandomAgree 144

As we have mentioned above, the choice of the cutting number being equal to 4 may not be
the optimal one. Taking the same setting of r = 6 and x = 7 and the strategy used being the
one with agreeing, we investigate the effect of using different cutting numbers. The results of this
experiment are in Table 9. As we see the experiment suggests a slight advantage for the choice of
cutting number being equal to 6.

Next, again similarly to the experiments with sk2 fixed, we try the strategy that not only uses
agreed guessing, but also guessing in accordance with the low diffusion trails. We compare the
result for TruthTable from the previous experiment with the one using the trail strategy. The
used trail is {3, 8, 9, 10, 11, 13, 15}. Table 10 shows the results. The experiment clearly indicates
the superiority of the trail strategy.

Now we would like to get back to the question of correct vs. incorrect guessing. We apply the
trail strategy and investigate what is the effect of a guess being incorrect. Note that now we guess
incorrectly both at the bits of sk1 and also at the S-Boxes used, i.e. bits of sk2. In the experiment



Table 9. Trying different cutting numbers for the BCJ method.

cut_num Time, s.

4 144

5 143

6 118

7 146

Table 10. Guessing at grouped positions from the trail.

Grouping Time, s.

RandomAgree 25

Trail 2

we guess incorrectly randomly at each trial. For this we consider a slightly harder instance of r = 6
and x = 6. We consider both conversion techniques with BCJ using the cutting number 6. Table
11 illustrates the experiment. The table suggests two things we have already seen before: a wrong
guess takes approximately twice as much time to be detected and TruthTable is better than BCJ

for the full algebraic representation.

Table 11. Wrong guesses of bits in sk1 and sk2.

Conversion Guess Time, s.

TruthTable Correct 37

TruthTable Wrong 71

BCJ Correct 368

BCJ Wrong 654

Table 12 illustrates parameters of the systems solved that are important for understanding
performance of SAT-solving. In this table we list the number of variables and the number of
clauses for one system using different conversion techniques from Section 4.1. For the TruthTable

conversion we had to average the number of clauses, since it varies slightly, depending on the guess
at key-permutation variables. A number after BCJ indicates the cutting number used. The table
suggests that TruthTable conversion yields smaller SAT-problems both in terms of the number of
variables and the number of clauses, which reflects accordingly on the performance, see Table 11.

As a result of this subsection we identified that it is a good strategy to guess key bits in groups,
moreover the guessing should be done according to a low-diffusion trail. Then we identified that
TruthTable is superior to BCJ for the full algebraic representation, whereas for the case of sk2
fixed we did not observe a significant difference.

5.4 Effect of using more pairs

Until now we used one plaintext/ciphertext pair for the case of fixed sk2 and two pairs otherwise
(to uniquely determine the key K = (sk1, sk2)). In cryptanalysis having more pairs of plain-
text/ciphertext usually helps to speed up an attack and/or reduce its complexity. In algebraic
cryptanalysis having more pairs leads to more overdetermined systems that are usually easier to
solve. On the other hand, one of the advantages of algebraic cryptanalysis over statistical crypt-
analysis (e.g. differential, linear etc.) is the ability to work, at least theoretically, already with just
a few pairs. Moreover, having too many pairs makes systems in question too large to be processed



Table 12. Sizes of SAT-problems with different conversion techniques.

Conversion # vars # clauses

TruthTable 1778 8627

BCJ-4 4303 18581

BCJ-6 3263 23341

BCJ-7 3195 26189

with modern algebraic solvers. Having this in mind, we want to see what is the effect of adding
more plaintext/ciphertext pairs, but limiting the number of pairs to just a few.

In this subsection we use the TruthTable conversion, since as suggested by the previous sub-
sections, it is always not worse that the BCJ and is often superior. For the first experiment we
choose to attack 9 rounds and sk2 is not fixed. Key bits from sk1 and sk2 are always guessed in
agreed groups according to a low diffusion trail. In Table 13 we present results of the experiment.
We guess g = 50 bits of the key: x = 10. We compare using 2 pairs against using 4 pairs. Moreover
we investigate an effect of incorrect bit guessing. The table suggest that using more pairs does not
really help in this situation.

Table 13. Working with more pairs: 2 vs. 4.

# Pairs Guess Time, s.

2 Correct 19

4 Correct 37

2 Wrong 54

4 Wrong 63

Next we consider the situation, when the key sk2 is fixed/guessed. We attack 8 rounds, guess
15 bits of sk1 in groups according to low diffusion trail, use 2,4, and 8 pairs, and consider wrong
guesses as well. Table 14 presents the results. As the table suggests, we now have an advantage of
using more pairs. The situation with wrong guesses is the same as before: we are approximately
factor 2 slower.

Table 14. Working with more pairs: 2,4,8 and sk2 is fixed.

# Pairs Guess Time, s.

2 Correct 105

4 Correct 84

8 Correct 67

2 Wrong 221

4 Wrong 182

8 Wrong 128

5.5 MiniSAT2 vs. CryptoMiniSAT2

Until now we have done our computations with the help of MiniSAT2 solver. Another solver,
CryptoMiniSAT2, has been proposed [14] to tackle problems more specific to cryptography. In
particular, this solver is supposed to handle long XOR chains better, which, as we know from



Section 4.1, pose a problem for SAT solvers. In our experiments we do not have too long XOR
chains. Still it is worthwhile to investigate performance of this solver in our context, to see an
effect of heuristics employed there. For the comparison we took partially our targets from the
previous subsection. Namely we consider first the case, when sk2 is not fixed. There we take
2 and 4 plaintext/ciphertext pairs: both known and chosen. We do both correct and incorrect
guessing. Using notation as before we attack r = 9, x = 10. Table 15 contains the results. For
convenience we also put there corresponding results for MiniSAT2. In the table “CMS” stands for
CryptoMiniSAT2 and “MS” for MiniSAT2. From the table we observe that CryptoMiniSAT2 has
the same tendency to solve instances with wrong guesses slower. Still CryptoMiniSAT2 seems to
be somewhat better at this than MiniSAT2. Other than that, performance of both solvers appears
to be comparable.

Table 15. CryptoMiniSAT2 vs. MiniSAT2.

# Pairs Guess Plaintexts Time for CMS, s. Time for MS, s.

2 Correct Known 20 19

4 Correct Known 21 37
2 Wrong Known 46 54

4 Wrong Known 39 63

Next we analyze the situation, when sk2 is fixed. We take 8 rounds, 8 pairs, 15 bits are guessed,
and both correct and wrong guesses are done. We use S-Box equations of the type Y = SBOX(X).
Table 16 summarizes our computations and compares them with those of MiniSAT2 from the
previous subsection, see Table 14. From the table we see that in this case CryptoMiniSAT2 quite
significantly outperforms MiniSAT2.

Table 16. CryptoMiniSAT2 vs. MiniSAT2. sk2 is fixed.

Guess Plaintexts Time for CMS, s. Time for MS, s.

Correct Known 27 67

Wrong Known 59 128

6 Algebraic analysis of PRINTCipher-48

In this section we apply strategies developed in Section 5 for specific attacks on PRINTCipher-48.
We consider attacking round-reduced versions of the cipher, as well as simulation side channel
attack on the full cipher. Now we specify our heuristic for the algebraic attacks.

– We always guess (or assume given) key bits at positions grouped in groups of three, according
to S-Box positions. See Section 5.2.

– In the case that sk2 is not fixed, guessing bits in sk2 is agreed with guessing in sk1. See Section
5.3.

– Grouped positions correspond to low diffusion trails. See Sections 5.2 and 5.3.
– In the case sk2 is fixed, we use equations Y = SBOX(X) for the S-Boxes.
– We use both MiniSAT2 and CryptoMiniSAT2 when sk2 is not fixed and CryptoMiniSAT2

when it is.
– TruthTable conversion is used.
– We use 100 samples to measure the average time.



6.1 Attack on round-reduced PRINTCipher-48

In this subsection, basing on our experiences from Section 5, we attack round-reduced instances
of PRINTCipher-48. First of all, we have to define what do we mean by an attack here and when
such an attack succeeds. In all our attacks a certain amount of key bits will be fixed of guessed. We
want to compare our method with the brute force attack. Similarly to previous works in the field
of algebraic cryptanalysis of block ciphers, e.g. [10,17], we employ the following way of comparing
the methods. First, let us assume that g bits out of 80 are given to an attacker, i.e. he/she knows
correct values of those bits. Let Tcorrect be an average time an attacker needs to solve a True-
instance using methodologies from Section 5. Now let Tenc,r be the time that one needs to check
with a trial encryption one key from the remaining 280−g in a reduced cipher with r rounds. We
assume that for such an encryption one needs 2 CPU cycles per round. To translate this figure
to seconds, we observe that our experiments are done on a machine with the CPU frequency 2.3
GHz. So we may assume that 1 CPU cycle is done in 1

2.3 ⋅ 10−9 ≈ 0.4 ⋅ 10−9 seconds. We have then
Tenc,r = 2 ⋅ 0.4 ⋅ r. Note that this is a rather optimistic estimate.1 The time complexity for a brute
force attacker is therefore

Tbf,r = 280−gTenc,r/2 = 280−g ⋅ 0.4r ⋅ 10−9

seconds. We divide over 2, since on average an attacker has to search only through a half of the
remaining key space. 2 For a successful algebraic attack we require that

Tcorrect < 280−g ⋅ 0.4r ⋅ 10−9. (1)

Now assume that bits of the key are not given. So we have to guess some g key bits. As we have
seen, the time needed to solve a False-instance, i.e. the one with an incorrect key guess, is higher
than the one for a correct guess. Therefore, in this case our time complexity is determined by
the average time needed to solve a False-instance: Twrong. Assuming that all False-instances are
approximately the same in difficulty, we have that the attack is successful if

Twrong < 2Tbf,r = 280−g ⋅ 0.8r ⋅ 10−9. (2)

Since both methods run into a correct solution on average two times faster than the full search,
we put back the factor 2, taken away in (1). For both algebraic and the brute force method, the
memory complexity is quite low, although being higher for the former one. Still, memory is not a
bottle neck for SAT-solving, so we ignore it in our analysis.

In the case when sk2 is given or guessed the formulas above stay the same, except that we
change 280−g to 248−g, since a brute force attacker has to search only through the key space of
sk1, which is 48 bits. For instance, (2) becomes

T sk2
wrong < 248−g ⋅ 0.8r ⋅ 10−9. (3)

Our first result: we are able to attack 8 rounds of PRINTCipher-48 with 2 known
plaintext/ciphertext pairs faster than the brute force. We achieve this by applying our
algebraic attack for the case when sk2 is not fixed. We guess at g = 45 bits of the key, i.e. we use
x = 9. We take 2 random plaintexts for each of the 100 trials. Table 17 summarizes the results.

In order to see that we are really faster than the brute force, in Table 18 we provide the
figures of LHS and RHS of (2) for g = 45. Here timings for (Crypto)MiniSAT2 correspond to
False-instances. As we noted, it is necessary to assess time complexity of the attack. Both solvers
are doing the job.

1 We do not take into account other possibilities to speed up the brute force attacks, such as using FPGAs
or GPUs.

2 In fact for a portion of 2−32 keys one needs to do the second encryption, since 232 out of 280 keys are
expected to encrypt a given plaintext to a given ciphertext. Due to negligible probability of this event,
we do not take this into account.



Table 17. Attack on 8 rounds, 2 known plaintexts.

Guess Time for CMS Time for MS

Correct 24 30

Wrong 61 60

Table 18. Comparing to brute force.

Time for CMS Time for MS Time for brute force

s = 45 61 60 239

Now we are interested to see whether the method of fixing sk2 is better for attacking the same
target. Below we show that this is not the case. We take the best heuristics from the previous
subsections: CryptoMiniSAT2 as a solver, 8 known pairs, guessing 12,15, or 18 bits. As Table 19
suggests only when 15 bits are guessed we are slightly better than the brute force. Still taking 4
pairs results in the average time 118 sec. and that is worse than brute force. This means that we
cannot outperform the previous method.

Table 19. Attack on 8 rounds, 8 known plaintexts, sk2 is fixed.

# guessed bits Time for CMS Time for brute force

12 694 478

15 55 60

18 9.0 7.5

We could not entirely break the 9 rounds, but still we were very close and could achieve
partial success. When doing experiments for 9 rounds we took a look at several low diffusion
trails for x = 10. It turns out that some of them are better than the others. Table 20 sum-
marizes experimental results for 9 rounds made with CryptoMiniSAT2. So we see that the trail
{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} yields the best results. Still we are not able to get below the threshold
for both False- and True- instances.

Nevertheless, for True-instances we may ask a question, what is the portion of measurements
that fall below the brute force time. Table 21 shows these figures for all four trails. We see that
with probability around 3/4 we are able to solve a True-instance faster than the brute force. There-
with, having 2 known plaintext/ciphertext pairs and 50 key bits at nibble positions
{0, 1, 3, 4, 5, 10, 11, 12, 14, 15}, we may find remaining 30 bits faster than brute force with
probability around 75%.

Remark 2. In fact when using low diffusion trails, as we have seen, only looking at how many bits
stay within a trail is not enough. Actually, one should consider, how many bits one gets “for free”
when having key bits corresponding to the trail nibble positions, plaintext and ciphertext bits. Here
one can observe that, obviously, 3 known input/output bits to an S-Box yield 3 output/input bits
to the previous or next rounds. Less obviously it is possible to show that knowing 2 input/output
bits yields knowledge of on average 1 output/input bit.

Having these observation, one could improve the guessing strategy, e.g. as follows. Since know-
ing 2 bits yields 1 on average and knowing 3 yields 3, then if one knows e.g. 2 input bits to an
S-Box it may be worthwhile to guess at the remaining bit. Therewith, a 2-fold slow-down due to
guessing will be payed off by a 4-fold speed-up due to knowing 2 additional internal state bits.
This should result in a speed up of a factor of 2.



Table 20. Attack on 9 rounds, 2 known plaintexts, different trails

Trail Guess Time Time for brute force

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} Correct 19.5 4.2

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} Wrong 43.9 8.4

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} Correct 5.8 4.2

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} Wrong 16.3 8.4

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} Correct 14.3 4.2

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} Wrong 25.2 8.4

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} Correct 34.4 4.2

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} Wrong 56.3 8.4

Table 21. Attack on 9 rounds, 2 known plaintexts, percentage of runs faster than the brute force.

Trail %

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} 22

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} 78

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} 56

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} 30

All in all, one may investigate how known internal state bits propagate to yield more known
bits, maybe with some probability. We do not elaborate on this issue in this paper, although this
is something to consider and that may have impact for other methods, like statistical saturation
attacks.

6.2 Additional bits at round four

In the previous subsection we presented in detail our approach of attacking the PRINTCipher-48
based on SAT-solving. We could attack 8–9 rounds with it. In this subsection we show that it is
possible to attack the full 48 rounds of the cipher by just having moderate amount of additional
information. We are able to do so, after discovering quite an interesting property of the cipher.
Namely, by just knowing values of output bits at round 4 of several known plaintext/ciphertext
pairs and some key bits, it is possible to recover all remaining key bits fast. In this subsection
we proceed as follows. We first provide results on attacking the full 48 rounds of the cipher with
guessing bits at rounds 4 and 5. Then we try to explain, what makes round 4 so special by providing
additional data and observations.

In this section we use CryptoMiniSAT2 for our experiments. Note that for the analysis of the
full 48 rounds we adjusted the round counter of the cipher, so that the attack of [5] that works for
many weak keys, does not work anymore, cf. Section 2.3 of [5]. In fact, this adjustment does not
play any role for our attacks. It will become clear why, after we look deeply into the situation of
using the 4th round for guessing.

Table 22 summarizes the results. As before, we guess key bits and internal state state bits at
rounds 4 and 5 using low diffusion trails. Using the previous notation, we use parameter x, meaning
how many nibbles are fixed in a trail, so that we guess at 5x key bits and 3xp intermediate state
bits, where p is the number of known plaintext/ciphertext pairs.

One of the conclusions that may be drawn from the table is that assuming 6 output bits of
round 4 known for 10/12 pairs and knowing only 10 key bits, the remaining 70 key bits can be
recovered very fas3. The same is true for 21 bits at round 4 for only 2 pairs and knowing 35 key

3 Here the following trick turned out to be particularly useful. We used “forward” explicit equations
W = SP (X,A), Y = V0(W ) for the first 24 rounds and “reverse” equations X = SP−1(W,A),W =
V −1
0 (Y ) for the second half of the rounds. This trick does not seem to have a significant impact for

other instances we considered.



Table 22. Recovering key bits by having some output bits at round 4 and 5. Two S-Box positions are
fixed.

r p x Correct guess Time

4 10 2 True 116

4 10 2 Wrong 62

4 12 2 True 10

4 12 2 Wrong 8

4 2 7 True 1.7

4 2 7 Wrong 0.4

4 2 6 True 295

4 2 6 Wrong 75

5 2 7 True 10

5 2 7 Wrong 11

5 2 6 True 934

5 2 6 Wrong 1426

bits: remaining 45 key bits are recovered in a matter of a second. We are still able to solve quite
fast by having 18 bits at round 4 for 2 pairs. We could get some results also by inserting values at
round 5, but the performance appears to be inferior to what we can get from round 4.

Knowing internal key bits is a strong assumption. Still, it may be feasible if one thinks about
side channel security. See Section 6.3 for this. Some thoughts on using the idea of this section to a
potential attack on the full cipher are given in Section 6.4. Note also that Table 22 suggests that
False-instances are solved faster for r = 4, which is different from results of the previous sections.
However, variance of these computations is also larger than for the previous ones.

Now we want to shed some light on why guessing/fixing at round 4 is so effective; why cannot
we do the same for, e.g., rounds 3 or 5 with comparable efficiency. The main reason appears to be
the following. Let us consider the variety V (r, p, C) of keys that after r rounds encrypt p known
plaintexts to some ciphertexts that have given values at positions from C (C ⊂ {0, . . . , 47}). It
turns out that for r = 3 this variety is rather large due to incomplete diffusion (recall that “full”
diffusion for PRINTCipher-48 is attained at 4 rounds). On the other hand, from round 4 and on,
this variety drastically looses in size. This means that having enough pairs p we cut off many keys
starting already at round 4. The second issue is how easy is it to sample elements from V (r, p, C).
For r = 3 this is extremely easy (fast), for r = 4 is somewhat slower, but still quite fast. Starting
from round 5, it gets harder, at least in some cases of interest. Therefore, roughly speaking, round
4 yields an optimal trade-off between the number of elements in the variety V (r, p, C) and hardness
of computing its elements.

In principle, one may run the following attack for the case one knows internal state bits at
round r at positions C. Choose r < 48. Let t(r, p, C) be the (average) time needed to compute
one element from V (r, p, C). Then one may simply run an exhaustive search on V (r, p, C) and this
will have time complexity approximately

(t(r, p, C) + Tenc,48) ⋅ ∣V (r, p, C)∣,

where Tenc,48 ≪ t(r, p, C) is the time needed for one trial encryption to check the correctness of
the key guess for the full 48 rounds using p known plaintext/ciphertext pairs. Therefore, finding a
trade-off as explained above is important. The elements of V (r, p, C) may be sampled again using
SAT-solving techniques in assumption that one gets independent random solutions from V (r, p, C)
each time. Considering highly heuristic and randomized nature of SAT-solvers this assumption does
not appear unreasonable. Results from Table 22 are obtained by just assigning values at round
4 and running CryptoMiniSAT2 for the obtained systems having 48 rounds. Still we expect the
solver to take advantage of the above trade-off: inserted values at round 4 give an opportunity to
narrow down the search a SAT-solver takes.



We support the above reasoning with some experimental data. First we give some experimental
values for t(r, p, C) for different r, p and C. Table 23 summarizes the results. Abusing notation,
we use nibble positions and not the bit positions. Positions, as usual, correspond to low diffusion
trails. The table confirms the claims made before, concerning values of t(r, p, C). We observe quite
fast timings for r = 5, x = 6− 7, though.

Table 23. Time t(r, p, C).

r p C t(r, p, C)

3 8 {0, 1} 0.06

3 10 {0, 1} 0.09

3 12 {0, 1} 0.12

3 16 {0, 1} 0.15

4 8 {0, 1} 0.31

4 10 {0, 1} 1.84

4 12 {0, 1} 3.38

4 16 {0, 1} 1.22

5 8 {0, 1} 4813

3 2 {0, 1, 2, 5, 6, 7} < 0.02

4 2 {0, 1, 2, 5, 6, 7} 0.03

5 2 {0, 1, 2, 5, 6, 7} 0.25

3 2 {3, 8, 9, 10, 11, 13, 15} < 0.02

4 2 {3, 8, 9, 10, 11, 13, 15} 0.04

5 2 {3, 8, 9, 10, 11, 13, 15} 1.42

A more complicated task is to estimate the number of elements in V (r, p, C). One of the
techniques ([22,17]) is estimating size of a variety by adding random linear relations on variables.
The hope is that a random linear relation cuts approximately a half of the variety in question.
Therefore, if adding s random linear relations yields a solution (a satisfying assignment of variables)
and s+1 does not, then with certain probability we may claim that the variety size is 2s. We applied
this approach to estimate the values of V (r, p, C). We added random XOR-chains that contain
only key variables suggested by {0, . . . , 48} ∖ C (or {0, . . . , 15} ∖ C in the nibble notation), since
these determine the rest of the variables. Also, since adding long XOR chains obstructs a SAT-
solver from getting a solution in reasonable time, we have to work with chains of certain length.
We chose length 7 for our experiments. The results are summarized in Table 244. The numbers
are obtained after averaging over 100 trials. As the table suggests, we get a serious reduction in
the variety size when going from r = 3 to r = 4. We must note, however, that the method used
above is not very accurate. By trying out sampling solutions from V (r, p, C) as described earlier
in the subsection, we noticed that figures in Table 24 are underestimations of the actual values.
This is especially true for the case r = 3. This may be explained by observing that since we do
not yet have full diffusion after 3 rounds, the systems we consider are less random than those for
r ≥ 4. Therefore, the variety V (3, p, C) is not that “homogeneous” and XOR-relations may stop
the count too early. Still, we believe that these experimental results provide rough intuition and
the basis for our claims above.

We would like to make an interesting observation from the results of this section. It might not
be a good idea to attain full diffusion in a cipher early. As we have seen, is such a case by fixing
some internal state bits, we may cut off dramatically the searched key space. On the other hand,
the fact that full diffusion happened early, suggests that algebraic complexity of the reduced key
space is rather low, so that one may be able to sample elements of this space efficiently.

4 “N/A” means we were not able to get any results in a reasonable time.



Table 24. Variety size ∣V (r, p, C)∣.

r p C log2 ∣V (r, p, C)∣
3 10 {0, 1} 25

4 10 {0, 1} 11

5 10 {0, 1} N/A

3 2 {3, 8, 9, 10, 11, 13, 15} 16

4 2 {3, 8, 9, 10, 11, 13, 15} 8

5 2 {3, 8, 9, 10, 11, 13, 15} 4

6.3 Side channel analysis of the full PRINTCipher-48

Using results of the previous subsection, we can show that it is possible to break the full PRINTCipher-
48 with practical complexity by using side channel analysis. We first take a strong assumption of
knowing internal state bits at round 4, namely some output bits of round 4. Then we consider more
usual scenario in side channel analysis, when only Hamming weights of inputs and outputs of cer-
tain S-Boxes at round 4 are known. We show that due to properties of S-Boxes in PRINTCipher,
we are still able to do our attack with a moderate increase in complexity.

Assuming knowledge of some information about internal states of a cipher we end up in the side
channel scenario. That is, we assume that we can recover certain internal bits, which in principle
can be done by examining an implementation of cipher’s encryption function. Note that actual
recovering of bits may be a very challenging task. In this section we only consider a simulation
side channel attack, not an actual one, i.e. we simply assume some internal bits to be given.

From the point of view of side channel analysis, it seems reasonable to concentrate on the case,
when as few nibbles as possible are spotted for input/output values. In this respect, using x = 2
with C = {0, 1} seems appropriate. Note that in this case we are guessing at 5x = 10 bits of
the key: 6 at the key sk1 and 4 at the key sk2. In Table 22 we presented timings for recovering
remaining 70 key bits. We also considered the situation, when our key guess was wrong and how
much time does it take to realize this. As has been noted, solving False-instances, i.e. when key
guess and guess of internal state bits is wrong is actually somewhat faster than solving a True-
instance. Since wrong guesses constitute the majority in the search through 10 key bits, we take
the time of solving False-instances, Twrong, as a measurement. We multiply the values from Table
22 by 29 (i.e. the half of 210 on average) to get an estimated average time for the full key recovery
for the entire cipher with 48 rounds. The results are in Table 25.

Table 25. Side channel attack assuming knowledge of internal state bits at round 4: 6 bits for each of the
p pairs are known

p Twrong, sec. Total Time, hours

10 62 8.8

12 8 1.2

Therefore, by having values of 6 output bits at round 4 that correspond to the nibble
positions {0, 1}, we are able to recover the key on average in approximately 9 hours by
using 10 known pairs of plaintext/ciphertext and in less than 2 hours with 12 pairs.
Note that we need knowledge of 6 ⋅ 10 = 60 and 6 ⋅ 12 = 72 internal bits respectively.

A weaker assumption we take next is the knowledge of Hamming weights instead of exact
knowledge of values. For this, we assume knowledge of Hamming weights of inputs and outputs
to the S-Boxes at positions 0 and 1. Small size of the S-Boxes actually does not make our task
much more difficult than before. Examining the S-Boxes V0, . . . , V3 of PRINTCipher it may be
seen that input and output weights uniquely determine the values of inputs and outputs, except



for the case when both weights are equal to 2. In this case, for each S-Box, there are exactly two
pairs of input/output that yield weight 2. Therefore, such an ambiguity happens with probability
1/4 for each of the S-Boxes V0, . . . , V3. By guessing key bits at nibble positions {0, 1}, we fix the
two S-Boxes at these positions. If for an S-Box the input and output weight is equal to 2, we
have to choose one of the two potential values of inputs/outputs. In the case of other weights, we
uniquely determine the values, since S-Boxes are fixed now. Therefore, on average, we expect 1/4
of the guesses for nibble positions {0, 1} at round 4 to be wrong for a correct key guess. Therefore,
for one guess of the 10 key bits, we will have to run our attack with p pairs on average around

22⋅p/4−1 = 2p/2−1

times, since p/2 out of 2p outputs will have wrong values on average and we expect to attain
correct values after 2p/2−1 times. For estimating the total attack complexity, we use the formula

Tsc−attack = Twrong ⋅ 28+p/2.

This means multiplying the values in Table 25 by 2p/2−1. Table 26 shows the results.

Table 26. Side channel attack assuming knowledge of Hamming weights of input/output to S-Boxes 0
and 1 at round 4

p Twrong, sec. Tsc−attack, days

10 62 12

12 8 3

We are able to find the key by only knowing Hamming weights for input/output
to S-Boxes at positions 0 and 1 at round 4 on average in less than two weeks for p = 10
and in around 3 days for p = 12.

Note that although the number of bits or Hamming weights we require to be leaked is not so
small, the place to get these leaks is localized to only two nibbles at round 4, rather than smeared
all over the cipher’s encryption function. Therewith, it may be possible to better exploit these
leaks.

Remark 3. Unfortunately, we were not able to get any results for x = 1 in a reasonable time with
CryptoMiniSAT2. We were able, though, to run our “direct” attack described in Section 6.2. The
average time lies in 100–1000 region for p = 32. Note, however, that such an approach works only
if the 5 key bits and the 32 ⋅ 3 = 96 internal state bits are correct. If they are wrong, there is
no good way to show it with the “direct” attack, since we are not given the variety V (4, 32, {0}),
but are sampling elements from it. So one may only make some probabilistic statements about
absence of the solution (False-instance). This, however, would quite negatively reflect on the time
complexity.

6.4 Towards cryptanalysis of the full PRINTCipher-48

In this subsection we investigate the potential of the method described in Section 6.2 to break the
full cipher. Since the complexity of the method is not exponential in the number of rounds, but
rather in the number of pairs used (i.e. number of internal state bits to be guessed), this approach
appears to be worth investigating. Whereas in Section 6.2 and 6.3 we assumed information about
intermediate values been given to us, for the cryptanalysis we have to guess this information. Note
that if x nibbles are targeted for guessing and p known plaintext/ciphertext pairs are used, we
need to guess 5x key bits and 3px intermediate bits; this sums up to (3p + 5)x bits. We estimate
the attack complexity by the formula

Tattack = Twrong ⋅ 2(3p+5)x,



similarly to Section 6.3. Table 27 contains comparisons of the attack for different x and p and the
brute force attack. Namely, we compute the ratio of expected time for our attack and the brute
force. The table suggests that in the best case we are around 217 slower than the brute force.

Table 27. Comparing our attack with brute force

p x (3p + 5)x 3px log2(Tattack/Tbf,48)

10 2 70 60 20

12 2 82 72 29

2 7 77 42 21

2 6 66 36 17

The following observation gives a hope that the method may still be applicable. Note that in the
previous subsections we always assumed known plaintext/ciphertext pairs. Therewith intermediate
state bits at round 4 may be assumed to be independent. So we really have to guess at 3px bits. It
could be possible to apply chosen plaintext scenario with the goal to be able to compute certain
intermediate bits via others that have been guessed at already. Ideally, we would like to have a
possibility to compute intermediate bits at round 4 for p − 1 pairs from those bits for just one
plaintext/ciphertext. Clearly, plaintexts for the remaining p−1 pairs have to be chosen accordingly
to allow such a relation. Other possible scenarios could be applied. It may be possible to compute
intermediate bits for some p − s pairs having those from s pairs. We may even be satisfied with
computing values with some reasonably high probability. Alternatively, we could increase the
number of known or chosen pairs to somehow spot those pairs that yield prescribed values at
round 4.

Anyway, results of Table 27 suggest that if we were able e.g. to reduce the number of guessed
internal bits from 60 to 39 in the case of x = 2, p = 10 or from 36 to 18 for x = 6, p = 2 we would
have been better than the brute force. We set the problem of finding appropriate chosen plaintexts
as an open problem.

7 Conclusion and future work

In this paper we considered algebraic attacks on PRINTCipher-48 with SAT-solving as a tool. We
showed that it is possible to attack 8–9 rounds of the cipher using only 2 known plaintexts. Next,
we observed an interesting fact on high diffusion / low algebraic complexity at round 4, which
enabled us to give a simulation side channel attack on the full cipher with 48 rounds with practical
complexity.

As future work we may identify the following.

- Obtaining symbolically for between internal states for several plaintext/ciphertext pairs in line
with [23].

- Apply the above point to chosen plaintext scenario and also to ideas described in Section 6.4.
- Provide more accurate and statistically sound estimations for time complexity. This work is not

specific to PRINTCipher and is of great importance for the entire field of applying SAT-solvers
to cryptanalysis.

- More research should be put in studying the effect of using low diffusion trails as indicated in
Remark 2. Therewith more advanced guessing techniques could emerge.
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A Appendix: equations for different algebraic representation of a
PRINTCipher S-Box

A.1 Explicit cubic equations describing the key dependent permutation SP

W0 = A0A1X1 + A0A1X2 + A0X0 + A0X1 + X0,
W1 = A0A1X0 + A0A1X2 + A0X0 + A1X1 + A0X1 + A1X2 + X1,
W2 = A0A1X0 + A0A1X1 + A1X1 + A1X2 + X2.

A.2 Explicit quartic equations describing the key dependent S-Box

Y0 = A0A1X0X1 + A0A1X0X2 + A0A1X1 + A0A1X2 + A0X0X2 + A0X1X2+
+A0X0 + A0X1 + X1X2 + X0,
Y1 = A0A1X0X1 + A0A1X1X2 + A0A1X0 + A0A1X1 + A0X0X2 + A0X1X2+
+A1X0X1 + A1X0X2 + A1X1 + A1X2 + X0X2 + X0 + X1,
Y2 = A0A1X0X2 + A0A1X1X2 + A1X0X1 + A1X0X2 + X0X1 + X0 + X1 + X2.

A.3 Equations of degree at most 2 that describe the key dependent S-Box

(X0 + X1 + X2) + (W0 + W1 + W2) = 0,
(A0 + 1) ⋅ (X2 + W2) + A1 ⋅ (X1 + W1) = 0,
(X2 + W2) ⋅ (A1 + 1) = 0,
A0 ⋅ (X0 + X1) + A1 ⋅ (W1 + W2) + (X1 + W1) = 0,
Y0 = W1W2 + W0,
Y1 = W0W2 + W0 + W1,
Y2 = W0W1 + W0 + W1 + W2.

A.4 Equations from the key dependent S-Box that are products of linear
polynomials

(Y1 + X0 + X1 + X2) ⋅ (Y0 + Y1) = 0,
(Y1 + X0 + X1 + X2) ⋅ (Y2 + X0 + X1 + X2) = 0,
(Y1 + X0 + X1 + X2) ⋅ (Y0 + Y1 + Y2 + X0 + X1 + X2) = 0,
(Y2 + X0 + X1 + X2) ⋅ (Y0 + Y2) = 0,
(Y2 + X0 + X1 + X2) ⋅ (Y0 + Y1 + Y2 + X0 + X1 + X2) = 0,
(Y1 + Y2) ⋅ (Y0 + Y1 + Y2 + X0 + X1 + X2) = 0,
(Y0 + Y1 + Y2 + X0 + X1 + X2) ⋅ (A0 + A1 + X0 + X2) = 0,
(Y0 + Y1 + Y2 + X0 + X1 + X2) ⋅ (Y1 + A0 + A1 + X1) = 0,
(Y0 + Y1 + Y2 + X0 + X1 + X2) ⋅ (Y2 + A0 + A1 + X1) = 0,
(Y0 + Y1 + Y2 + X0 + X1 + X2) ⋅ (Y1 + Y2 + A0 + A1 + X0 + X2) = 0.


