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Abstract. Security of public key schemes in a post-quantum world is a challenging task�as both
RSA and ECC will be broken then. In this paper, we show how post-quantum signature systems
based on Multivariate Quadratic (MQ) polynomials can be improved up by about 9/10, and
3/4, respectively, in terms of public key size and veri�cation time. The exact �gures are 88%
and 73%. This is particularly important for small-scale devices with restricted energy, memory,
or computational power. In addition, we show that this reduction does not a�ect security and
that it is also optimal in terms of possible attacks. We do so by combining the priory unrelated
concepts of reduced and equivalent keys. Our new scheme is based on the so-called Unbalanced Oil

and Vinegar class of MQ-schemes. We have derived our results mathematically and veri�ed the
speed-ups through a C++ implementation.
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1 Introduction

When �nding an old sonnet of Shakespeare, we can usually determine its validity accurately by
checking the wording, the ink, the paper, and so on. Similar techniques apply in disputes over
last wills�or other documents of historical or �nancial interest. Even if they are several decades
old, we can fairly certainly determine if they have been written by the person in question and
sometimes even date them accurately.
For digital documents, this is a much more di�cult task. They are electronically signed with
the help of so-called digital signature schemes. The ones widely used today are Digital Signature
Algorithms (DSAs) based on RSA and elliptic curve cryptography (ECDSA). Unfortunately,
all these schemes are broken if large enough quantum computers will be built. The reason is
the algorithm of Shor which breaks all cryptographic algorithms based on the di�culty of fac-
toring and the discrete logarithm (DL) problem [Sho97]. This covers DL over numbers, RSA,
and ECDSA. Even if unlikely now, quantum computers may be available in the medium fu-
ture and are hence a concern for long-term-validity of authentication data. We must be sure
that a document signed today is not repudiated 50 years later. Likewise, we do not want a
signature that is generated today to be forged in the future. So to guard security even in the
presence of quantum computers, post-quantum cryptography is needed and has hence become a
vital research area [BBD09]. One possible solution in this context is the so-calledMultivariate

Quadratic cryptography. It is widely believed that it is secure against quantum computers.
In addition,Multivariate Quadratic (orMQ for short) signature schemes have nice properties
in terms of speed of signature generation and veri�cation which make them superior to DL,



RSA and ECDSA. Note that ECDSA is the most e�cient of the three. However, even when
comparing to signature generation in MQ and ECC, the �rst are a factor of 2�50 faster on
FPGA than the latter [BERW08]. Similar results have been demonstrated for comparison with
RSA and ECC in software [YCC04, YCCC06, CCC+08, CCC+09]. One of the main reasons
for this higher e�ciency is the comparably small �nite �elds, e.g. F28 which allows for e�cient
hardware and software implementations. The other operations usually boil down to vector-matrix
functions, which can be implemented e�ciently, too. As an immediate consequence, we can use
MQ schemes in restricted devices, i.e. with low energy or computational power.
Another point is the high �exibility ofMQ-schemes. This allows for the use of sparse polynomials
in the private key as done in the TTS schemes of Yang, Chen, and Chen [YCC04]. This leads
both to a signi�cant reduction of the time needed for signature generation, as well as for the size
of the private key. Another way to reduce the private key is by choosing the coe�cients of the
private maps from smaller �elds (e.g. F16 instead of F256)), [CCC

+08]. In addition, we want to
mention the so-called similar keys which exploit linear relations between public and private key
[HWCL05]. However, they are not applicable to UOV and hence, do not achieve such a drastic
reduction in size. Finally, one research direction deals with reducing the public key directly. In
[PBB10, PBB11] it is shown how to reduce the public key size of the UOV scheme by choosing
public coe�cients in a structured way, cf. sect. 3.

1.1 Outline of Multivariate Quadratic Schemes

The main idea behind Multivariate Quadratic cryptography is to choose a system F of m
quadratic polynomials in n variables which can be easily inverted. Here F is called the central
map. In addition, we need invertible a�ne maps S and T to hide the structure of the central
map F . The public key of the cryptosystem is now composed as P = T ◦ F ◦ S. For a secure
MQ-system, P must be di�cult to invert. The private key consists of (F , T, S) and therefore
allows e�cient inversion of P. More details onMQ-systems are given in sect. 2. A more detailed
overview onMultivariate Quadratic schemes can be found in [Wol05, WP05b].

Generation
x = (x1, . . . , xn)

6
private: S−1

u

6
private: F−1

y �

Veri�cation

public:

p(1), . . . , p(m)

Fig. 1. Graphical representation of the UOV trapdoor (F ,S) for signature generation and veri�cation.
Given is a hash value y ∈ Fm and a signature x ∈ Fn.

Note that some MQ-schemes, e.g. the Unbalanced Oil and Vinegar (UOV) signature scheme
considered in this paper, omit T and construct their public key as P := F ◦ S. See Fig. 1 for an
overall picture of signature generation and veri�cation for UOV.

1.2 Achievement

Combining two previously unrelated ideas, we deal with reducing the size of the public key. For
MQ schemes like Unbalanced Oil and Vinegar (UOV�see below), typical choices of parameters
lead to around 80 kByte for the public key. With our technique, we can bring this down to 9 kByte
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(88.6% reduction). A similar approach for Unbalanced Oil and Vinegar was previously exploited
in [PBB10, PBB11] but did not allow such drastic reductions. In addition, our modi�cation
also works for restricting the choice of the coe�cients. By choosing them partially to be 0 or 1
only, veri�cation time is reduced by up to 72%. This way,MQ veri�cation can be performed in
low-power, low-energy devices. For example for mobile devices, we can easily imagine a scenario
where a server signs data which needs to be veri�ed by a (comparably restricted) phone.
As further contribution, using Turán graphs we demonstrate that this reduction in size does
not a�ect security. This is due to an observation regarding equivalent keys of [WP05a, WP11].
Moreover, we show that our size reduction is tight in the sense that any further reduction would
reduce the security.

1.3 Organization

The structure of this paper is as follows: After giving some introduction in sect. 1, we continue
with the background on MQ-schemes and in particular UOV in sect. 2. In sect. 3, we review
the cyclic construction from [PBB10]. This is followed by a security proof regarding cyclic keys
in UOV in sect. 4. Using these results, we outline our new constructions, its implementation,
e�ciency, and security implications in sect. 5. The paper concludes with sect. 6. In app. A, we
give some background on Turán graphs, and in app. B, we show how this relates to our monomial
ordering in sect. 5.3.

2 Multivariate Quadratic Cryptography

2.1 Notation

Solving non-linear systems of m equations in n variables over a �nite �eld is a di�cult problem
in general. Restricting to the seemingly easy case of quadratic equations is still di�cult. Actually
this problem is also known as MQ-problem which is proven to be NP-hard in the worst-case
[GJ79], even over F2.

Let P be aMQ system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0

... (1)

p(m)(x1, . . . , xn) = 0,

with
p(k)(x1, . . . , xn) :=

∑
1≤i≤j≤n

γ
(k)
ij xixj +

∑
1≤i≤n

β
(k)
i xi + α(k). (2)

Let π(k) be the coe�cient vector of p(k)(x1, . . . , xn) w.r.t. lexicographic order of monomials, i.e.

π(k) = (γ
(k)
11 , γ

(k)
12 , . . . , γ

(k)
1n , γ

(k)
22 , γ

(k)
23 , . . . , γ

(k)
nn , β

(k)
1 , . . . , β(k)n , α(k)).

Let MP be the corresponding coe�cient matrix

MP :=

π(1)

...

π(m)

 .
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Denote with MQ(Fn,Fm) the class of Multivariate Quadratic polynomial systems in n input
variables and m polynomials each, as de�ned in (2). We now have the public key of multivariate
schemes as a vector P ∈ MQ(Fn,Fm). Each coe�cient is a quadratic polynomial p(i) from
F[x1, . . . , xn] and 1 ≤ i ≤ m

P :=

p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

 .

In the following we omit the constant and linear part of p(k) as it was shown as early as 1998
that it does not contribute to the security of UOV [KS98, KPG99].
Note that the ordering of monomials (and thus coe�cients) in the matrixMP does not necessarily
have to be lexicographic ordering. We may want to order monomials of the public key in a certain
way. Therewith, the ordering of coe�cients (columns of MP ) is then changed accordingly.

2.2 Unbalanced Oil and Vinegar

In this subsection we introduce the Oil and Vinegar Signature Scheme, which was proposed by
J. Patarin in [Pat97].

Let Fq be a �nite �eld. Denote the number of oil variables by o ∈ N, the number of vine-
gar variables by v ∈ N and set n := o+ v. Let V := {1, . . . , v} and O := {v + 1, . . . , n} denote
the sets of indices of vinegar and oil variables. The private key F := (f (1)(u), . . . , f (m)(u)) is
de�ned by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈O
γ̃
(k)
ij uiuj +

∑
i,j∈V,i≤j

γ̃
(k)
ij uiuj . (3)

It is important for �nding a pre-image that the variables in f (k) are not completely mixed, i.e. oil
variables are only multiplied by vinegar variables and never by oil variables. This construction
leads to an e�cient way to invert F . If we assign arbitrary values to the vinegar variables and
if we set m = o we obtain a system of o linear equations in o variables. With high probability
this system has a solution. If not we try again with a di�erent choice for the vinegar variables
x1, . . . , xv. In the public key P, the central map F is hidden by composing it with a linear map
S : Fnq → Fnq , i.e. P := F ◦ S.

Fnq Fmq

Fnq

P

S
F

Signature generation: To sign a document d, one uses a hash function H : F?q → Fmq to
compute the hash value h = H(d) ∈ Fmq . After that one computes �rst y := F−1(h) and then
z := S−1(y). The signature of the document d is z ∈ Fnq . In a slight abuse of notation we write
F−1(h) for �nding one (of possibly many) pre-image of h under F .
Signature veri�cation: To verify the authenticity of a signature, one computes the hash value
h of the corresponding document and the value h′ = P(z). If h = h′ holds, the signature is
accepted, otherwise rejected.
In his original paper [Pat97], Patarin suggested to use o = v (Balanced Oil and Vinegar�OV).
After this scheme was broken by Kipnis and Shamir in [KS98], it was proposed in [KPG99] to
use 2o ≤ v (Unbalanced Oil and Vinegar (UOV)). UOV parameters q = 256, (o, v) = (26, 52)
give 80-bit security against the most e�cient attacks currently known [BFP09].
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3 Reviewing Cyclic Keys

In this section we review the approach of [PBB10] to create a UOV-based scheme with a partially
cyclic public key.
Remember that, in the case of the Unbalanced Oil and Vinegar signature scheme [KPG99], the
public key P is given as the concatenation of the central UOV-map F and a linear invertible
map S, i.e.

P = F ◦ S. (4)

In [PBB10] it is observed, that this equation (after �xing the a�ne map S), leads to a linear
relation between the coe�cients of the quadratic monomials of P and F of the form

p
(k)
ij =

n∑
r=1

n∑
s=r

αrsij · f (k)rs , (5)

where p
(k)
ij and f

(k)
ij are the coe�cients of xixj in the k-th component of P and F respectively

and the αrsij are given as

αrsij =

{
sri · ssi (i = j)
sri · ssj + srj · ssi otherwise

. (6)

Here sij ∈ F denote the coe�cients of the linear map S. Let D := v·(v+1)
2 + ov be the number of

non-zero quadratic terms in any component of F and D′ := n·(n+1)
2 be the number of quadratic

terms in the public polynomials. Let MP and MF be the coe�cient matrices of P and F
respectively (w.r.t. graded lexicographical ordering of monomials). The matrices MP and MF

are divided into submatrices as shown in Figure 2. Note that, due to the absence of oil × oil
terms in the central polynomials, we have a block of zeros in the middle of MF .

Q

B

0

C

D D′

MP

MF

Fig. 2. Layout of the matrices MP and MF

Furthermore, the authors of [PBB10] de�ned the so called transformation matrix AUOV ∈ FD×Dq

containing the coe�cients αrsij of equation (5)

AUOV =
(
αrsij
)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ v, i ≤ j ≤ n for the columns), i.e.

AUOV =


α11
11 α

11
12 . . . α

11
vn

α12
11 α

12
12 . . . α

12
vn

...
...

αvn11 α
vn
12 . . . α

vn
vn

 . (7)

With this notation, equation (5) yields

B = Q ·AUOV (8)
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If matrix AUOV is invertible, this equation has a solution for Q. Experiments indicate that this
condition is ful�lled with high probability. By solving equation (8) for Q, the authors of [PBB10]
were able to insert a partially circulant matrix B into the UOV public key. By doing so, they
reduced the public key size of the scheme by a factor of 6. After choosing matrix B, we can use
alg. 1 to compute the corresponding key.
Note that by T := S−1 and

αrsij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise

(9)

we derive a map ÂUOV = (αrsij ) with 1 ≤ r, s ≤ n and 1 ≤ i, j ≤ v that maps the public to the
private coe�cients, i.e.

Q =MP · ÂUOV . (10)

Algorithm 1 summarizes key generation:

Algorithm 1 Key Generation for UOV schemes
1: Choose an o×D matrix B (e.g. partially circulant or generated by an LRS).
2: Choose randomly a linear map S (represented by an n× n-matrix S). If S is not invertible, choose again.
3: Compute for S the corresponding transformation matrix AUOV (using equations (6) and (7)). If AUOV is not

invertible, go back to step 2.
4: Solve the linear system given by equation (8) to get the matrix Q and there with the coe�cients of the central

polynomials.
5: Compute the public key as P = F ◦ S.

4 Security of UOV

Due to equivalent keys [WP05a, WP11] UOV contains a lot of redundancy. We show which part
of the public key is important for security and which part can be chosen such that the public
key gets as small as possible.

It is rather intuitive that the linear and constant part of the public key do not provide extra
security because we can easily separate them from the quadratic part. This was previously
exploited by Kipnis and Shamir in their cryptanalysis of (balanced) Oil and Vinegar [KS98].
But it is quite surprising that also a fraction of the quadratic part is not essential for security.
This is implied by the observation of equivalent keys by Wolf and Preneel [WP11]. Remember
p(k)(x) for 1 ≤ k ≤ o are the public polynomials and f (k)(u) are the private polynomials. The
private linear transformation was denoted by S, i.e. Sx = u. We call a polynomial f ′ equivalent
to the private polynomial f if it has the same structure, i.e. no quadratic terms in oil variables.
The following transformation Ω on the variables u preserves the structure of f .

Ω =

(
Ω

(1)
v×v 0

Ω
(2)
o×v Ω

(3)
o×o

)

Let u′ := Ωu and u′ᵀC ′u′ a private polynomial denoted in quadric form. This means that C ′ is
a matrix in Fn×n. The vinegar variables u′1, . . . , u

′
v are expressed as sums of vinegar variables

u1, . . . , uv by transformation Ω and thus no quadratic term in oil variables occurs in f(u) =
uᵀΩᵀC ′Ωu. By

xᵀC̃x = xᵀSᵀĈSx = xᵀSᵀΩᵀC ′ΩSx
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Ĉ and C ′ describe equivalent private maps of the public map C̃ and thus S and ΩS are equivalent
private keys. Let

S =

(
S(1) S(2)

S(3) S(4)

)
By choosing Ω for which Ω(1)S(1) = I, Ω(2)S(2) +Ω(3)S(4) = I and
Ω(2)S(1) +Ω(3)S(3) = 0 hold, we get a private key S̃ of following form

S̃ =

(
I S′

0 I

)
. (11)

For a key recovery attack it is su�cient to �nd any of the equivalent keys. Thus an attacker can
search for a private key of form (11).

Remark 1. If the private linear map S is of form (11), the following condition on the coe�cients
of the public and private map hold

γ
(k)
ij = γ̃

(k)
ij for all k and i, j ∈ V, i ≤ j

This means we can assume that the attacker actually knows or even chooses all coe�cients of

squared vinegar variables in the private map. This means that the γ
(k)
ij with i, j ∈ V in the

public map do not hide any secret and thus we can choose them in an arbitrary way, e.g. matrix
B cyclic or even �xed.

Proposition 1. The �rst
v(v+1)

2 coe�cients in the public key P do not provide any security in

the sense of key recovery attacks. Arbitrarily �xing these coe�cients does not leak information

about the private key.

By equation (8) we are even able to choose the �rst v(v+1)
2 + ov coe�cients of P of a special

shape and thus save memory. Proving the security of this construction is not as obvious as in the
latter construction. We have to show that additionally �xing ov coe�cients does not leak any
information about the private maps S or F , i.e. we have to show that the remaining non-zero

coe�cients γ̃
(k)
ij for i ∈ V and j ∈ O are not biased by the �xed choice of P, i.e. uniformly

distributed over the random choice of elements in S.
Usually, we �x values on the central polynomials F and then compute the public polynomials P
for a given linear transformation S. However, for this construction we turn things around by �rst
�xing the public polynomials and then computing the missing parts of the central polynomials.
Intuitively, this should be equally secure. We capture this in the following proposition and also
give a necessary condition on B for the security of F ,P, S.

Claim. The �rst v(v+1)
2 + ov coe�cients in the public key P do not provide any security in

the sense of key recovery attacks. Fixing these coe�cients at random does not leak information
about the private key.

We have to show that despite of �xing B we do not get systematic dependencies among the

coe�cients γ̃
(k)
ij , i.e. for every choice of S we get another private map F . In other words, we

could reach qn
2
choices of private coe�cients γ̃

(k)
ij (with i ∈ V, j ∈ O, 1 ≤ k ≤ o) by choosing

S. Due to equivalent keys the space of private maps F decomposes into equivalence classes.
As every attacker can choose a private key S according to (11) it is su�cient to show that we
could produce at least one element out of every class, i.e. that we can reach exactly qov choices

of private coe�cients. Restricting (10) to the ov columns which produce the coe�cients γ̃
(k)
ij

with i ∈ O, j ∈ V . Denote M ′F the coe�cients of vinegar × oil terms for all polynomials in F .
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We now use S according to (10) and now obtain the system BA′ = M ′F linear in the sij for
1 ≤ i ≤ v, v+1 ≤ j ≤ n, an (D×ov)-matrix A′, a �xed (o×D)-matrix B and an (ov×o)-matrix
M ′F . The question is, whether the map BA′ is injective, i.e. whether all possible choices for the

private coe�cients γ̃
(k)
ij can occur. Without loss of generality we restrict our argumentation to

the �rst column. There are exactly v non-zero entries (that are the variables sij for 1 ≤ i ≤ v
and j = v + 1) in the �rst column of matrix A′. The restricted map is injective, i.e. we can

produce all possible choices of coe�cients γ̃
(k)
ij in the �rst column of M ′F , i� the corresponding

v columns of B have full rank. This is the constraint we ful�ll by construction of B in section
5.2. Using more re�ned methods and in particular a heavier machinery, it should be possible to
formally prove the above claim. Because of the above claim the following scheme is as secure
as the standard UOV scheme. In comparison to the case of Algorithm 2 the (o × D) matrix
B is a �xed part of the algorithm. In the remainder of this paper, we refer to this scheme as
Compressed UOV.

Algorithm 2 Key Generation for Compressed UOV
1: Choose randomly a linear map S (represented by an n× n-matrix S). If S is not invertible, choose again.
2: Compute for S the corresponding transformation matrix AUOV (using equations (6) and (7)). If AUOV is not

invertible, go back to step 1.
3: Solve the linear system given by equation (8) to get the matrix Q and therewith the quadratic coe�cients of

the central polynomials.
4: Compute the public key as P = F ◦ S.

5 The New Construction

We are now investigating, how much additional structure we can hide in B in order to speed
up the veri�cation process. We choose elements of the matrix B uniformly at random from the
ground �eld F2. In order to make sure that message recovery attacks are still di�cult, we have
to choose the ordering of monomials appropriately, as explained in sect. 5.3.

5.1 Message Recovery Attacks

Let MP = (B|C) with B a (o × D) matrix. After we claimed that choosing B �xed does not
leak to an attacker information about the private key, we have to clarify how structured B can
be chosen without decreasing security against message recovery attacks. Obviously B = 0 is a
bad trail, as this would imply C = 0. We also have to assure that B has full rank, as otherwise
C would also not have full rank. In general our goal is that solving a system with the coe�cient
matrix MP over Fq using Gröbner bases should be as di�cult as solving a random instance over
Fq.
We now �rst introduce our choice of B. Afterwards we explain, why message recovery remains
hard and also why this is the smartest way to choose B, i.e. this is the shortest public key one
can hope for.

5.2 Choice of B

The �rst (o×o) block in B can be chosen to be the identity matrix I as every attacker is able to
reach this situation by Gaussian Elimination. Furthermore this ensures B to have full rank. The

8



remaining part B1 of B has to be chosen in such a way that there are no systematic dependen-
cies, i.e. every m columns with m ≥ o have a big chance to have full rank. Otherwise we could
produce large zero-blocks which would decrease the complexity of Gröbner Bases algorithms.

0

0
B1

Fig. 3. Structure of matrix B.

We suggest to choose every element of the matrix B1 uniformly at random from F2. Note that
for such B1 the rank property above is ful�lled with overwhelming probability. Note that B is
no longer part of the public key. Once B is constructed, it is �xed, and thus is a part of the key
generation algorithm.

5.3 Ordering of monomials

As opposed to the method described in [PBB10, PBB11], we need to choose a special monomial
ordering for our construction. In order to understand why and how this monomial ordering is
constructed, let us recall how direct (Gröbner) attacks on multivariate signature schemes work.
In the message recovery attack, the attacker is facing the problem of solving the public UOV
system P(x) = h directly. This system is de�ned over Fq and has o equations and n = o + v
variables. Such a system has on average qn−o = qv solutions. Consider the values of v usually
used (e.g. v = 52), such a system has a huge amount of solutions (for q = 28 and v = 52 it is
2416). Gröbner bases methods have a great di�culty in solving such a system in this case, since
they have to describe a huge variety. Since an attacker is interested in only one solution for the
signature forgery, recovering all solutions is unnecessary. By �xing values of any v variables in
the public system, an attacker obtains a quadratic system in o variables and o equations. On
average such a system has a unique solution. Solving the new system with Gröbner bases is
much easier.

Going back to the matrix MP we see that C contains coe�cients of monomials xixj with i, j ∈
{xv+1, . . . , xn}, since the ordering we chose in sect. 3 is the graded lexicographic ordering. Now if
the attacker �xes values for variables xv+1, . . . , xn, the monomials represented by C will become
constants. Therewith, the resulting quadratic system will have only quadratic terms over F2

coming from the matrix B1. Clearly, Gröbner bases computations will be much easier then,
since the attacker does not have to deal with F28 arithmetics that much. Thus we have to ensure
that an attacker is not able to remove many monomials with coe�cients in F28 by assigning v
variables to some values.

Note that we do not consider monomials of the form x2i . If such monomials remain after �xing
v variables they do not force us to calculate in F28 as they are linear due to the Frobenius ho-
momorphism. Note that for UOV over �elds with odd characteristic, it makes sense to consider
such monomials.

Denote by C the set of monomials whose coe�cients are contained in the matrix C. We can
represent this set as a graph G(V,E) with V := {x1, . . . , xn} being the vertices and E :=

{e(xi, xj) |xixj ∈ C} being the edges. By construction we have |E| = o(o+1)
2 . In the following

our goal is to construct the graph G in the way, such that the induced monomial ordering
precludes an attacker from removing too many F28-terms independent on the choice of variables
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to be �xed. Note also that by �monomial ordering� we do not mean a monomial well-ordering as
in the theory of Gröbner bases, but just some ordering of monomials w.r.t. which the columns
of the coe�cient matrix MP are ordered.
For the following we need two de�nitions.

De�nition 1. Let G(V,E) be a graph. A subset V ′ ⊆ V is called a k-independent set, if |V ′| = k
and {e(vi, vj) : vi, vj ∈ V ′} ∩ E = ∅.

De�nition 2. For a graph G(V,E) the set V ′ ⊆ V is called a k-clique, if |V ′| = k and all the

vertices vi ∈ V ′ are pairwise connected, i.e. {e(vi, vj) : vi, vj ∈ V ′} ⊆ E.

We observe the following. If G contains an o-independent set, an attacker is able to �x v variables
in such a way that all the monomials in C are removed.

So our task is to choose the edges of G in such a way, that G does not contain a k-independent
set (for minimal k). For �xed k, the problem of �nding a graph without k-independent set
and minimal number of edges is solved by the complementary Turán graph. Details about the
de�nition and basic properties of the Turán graph can be found in app. A.

So we start with k = 1 and construct the complementary Turán graph CT(n, 1). We then

increase k until the number of edges in CT(n, k) will be less or equal to o·(o+1)
2 . If the number

of edges in CT(n, k) is less than o·(o+1)
2 , we add arbitrarily edges until we reach the number of

monomials in C. By doing so we get a graph G with CT(n, k) ≤ G.

Example 1. In our case (o = 26, v = 52) we �nd a solution for k = 8 and thus it is assured that
at least 30 monomials over F28 remain after �xing v variables. The best attack on this parameter
set is called HybridF5 [BFP09] and uses �xing v and then guessing two variables before applying
Faugères F5 algorithm [Fau02] to compute Gröbner Bases. But even if we �x/guess v+2 variables,
there will remain at least 24 monomials over F28 . So an attacker can not hope to transfer the
system into a smaller �eld. More details to these experiments can be found in app. B.

Once we have constructed our graph G as above, it de�nes which monomials should be in C.
Therefore, we can now de�ne an induced ordering on quadratic monomials, such that monomials
from C are bigger than those that are not from this set. For the monomials not being in C we
de�ne real squares (i.e. x2i for i = 1, . . . , n) to be smaller than other monomials. Once we de�ned
an ordering of monomials, it is �xed and is a system parameter.

Let us investigate the e�ect of the new ordering on the construction of matrix AUOV . In sect. 3 the
columns of the matrix AUOV corresponded to the �rstD monomials w.r.t. graded lexicographical

ordering. Now we have to choose the columns of ÃUOV in such a way that they correspond to
the �rst D monomials in the monomial ordering de�ned above. With respect to the graph G,
if the i-th edge of complementary graph G (which is actually a subgraph of the Turán graph
T(n, k)) connects the vertices vi1 and vi2 , we have

ÃUOV =


α11
11 α

12
22 . . . α

11
nn α̃

11
1 α̃11

2 . . . α̃11
D−n

α12
11 α

12
22 . . . α

11
nn α̃

12
1 α̃12

2 . . . α̃12
D−n

...
...

αvn11 α
vn
22 . . . α

vn
nn α̃

vn
1 α̃vn2 . . . α̃vnD−n

 . (12)

Here, the coe�cients αrsii are given by (6) and the α̃rsi are given by

α̃rsi =

{
srvi1 · ssvi2 (vi1 = vi2)
srvi1 · ssvi2 + srvi2 · ssvi1 otherwise

. (13)
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With this notation we have (as in sect. 3)

B = Q · ÃUOV , (14)

where Q contains the coe�cients of the non-zero terms of F (in lexicographical order).
In Algorithm 3 the matrix B is chosen as shown in Figure 3 with a �xed matrix B1 ∈R Fo×µ2

(µ = D − o).

Algorithm 3 Key Generation for reduced UOV schemes
1: Choose randomly a linear map S (represented by an n× n-matrix S). If S is not invertible, choose again.

2: Compute for S the corresponding transformation matrix ÃUOV (using equations (6), (13) and ((12)). If ÃUOV

is not invertible, go back to step 1.
3: Solve the linear system given by equation (14) to get the matrix Q and therewith the quadratic coe�cients

of the central polynomials.
4: Compute the public key as P = F ◦ S.

5.4 E�ciency of the Veri�cation Process

During the veri�cation process one has to evaluate for each public polynomial the equations

Pi(z) = (z1, . . . , zn) · Pi · (z1, . . . , zn)T , 1 ≤ i ≤ o,

with z = (z1, . . . , zn) being the signature of the message and Pi being the (upper triangular)
matrix representing the i-th public polynomial.
To evaluate this equation for a randomly chosen Pi one needs

n·(n+1)
2 +n F256-multiplications for

each of the o polynomials, or o · n·(n+3)
2 F256-multiplications and the same number of additions

for the whole key.
For our reduced version we can do better. When evaluating Pi(z) we test for each element of Pi
if it is an element of F2. If this is the case, we further test if the element is 0 or 1. If it is 0, then
we do not have to do anything. If it is 1, then we have to carry out one addition. Only in the
case of the element being in F256 \F2, we have to carry out one multiplication.
By this strategy we are able to reduce the number of F256-multiplications needed during the

veri�cation process to o ·
(
o·(o+1)

2 + n
)
. Additionally we need o · n · (n + 1) if clauses and on

average o ·
(
n·(n+1)

4 + o·(o+1)
2 + n

)
additions.

5.5 Further Security Considerations

In this section we discuss the security of schemes generated by alg. 2 under known attacks against
UOV-like schemes [KS98, KPG99, WBP04, YC04b, YC04a, YCC04, BWP05, YC05, BFP09].
These include

(1) Direct attacks
(2) Rank attacks
(3) UOV-Reconciliation attack
(4) UOV attack

This seems redundant as we have shown the security against direct attacks already in the above
claim. However, our aim is to verify that theory is supported by practical evidence. In the
following, we therefore take a closer look at these attacks.

11



Direct attacks. The most straightforward way for an attacker to forge signatures is the so called
�direct� attack, i.e. the attacker tries to solve the public system P(x) = h by a dedicated solv-
ing algorithm like e.g. Gröbner Basis algorithms (Buchberger, F4, F5) or one of the XL-family
(Mutant-XL, FXL).
As before to reduce the complexity of the attack one �xes v variables before applying the algo-
rithm. For our experiments below we �rst created a determined system by �xing v of the vari-
ables and then solved the resulting system (in degree reversed lexicographical ordering) by the F4

[Fau99] algorithm. For doing so, we used MAGMA ver. 2-13 and the command GroebnerBasis.
Table 1 shows the results.

Scheme (q,o,v) (28,9,18) (28,10,20) (28,11,22) (28,12,24) (28,13,26)

Compressed UOV 7.5 54 387 3019 23667

0/1 UOV 7.4 54 385 3016 23652

UOV 7.5 54 387 3023 23672

random system 7.5 54 386 3025 23674

Table 1. Running time of direct attacks against UOV schemes (in sec)

As the table shows, the running time of direct attacks against our schemes is nearly the same
as for the standard UOV scheme and for random systems. So, for o ≥ 26 equations [BFP09] our
scheme appears to be secure against direct attacks.

UOV-Reconciliation.

De�nition 3. Let p(x) = p(x1, . . . , xn) be a quadratic multivariate polynomial and

dp(x, c) = p(x+ c)− p(x)− p(c) + p(0)

its discrete di�erential. We de�ne Hp to be the symmetric matrix such that

dp = xT ·Hp · c

For the matrix Hpi representing the quadratic part of the i-th public polynomial we write in short

Hi. Analogous, we denote the symmetric matrix representing the homogeneous quadratic part of

the i-th central polynomial by Qi (i = 1, . . . , o).

The goal of the UOV-Reconciliation attack is to �nd a change of variables which brings the
matrices Hi into UOV-form, which means that the lower right o× o submatrix is the zero ma-
trix. By doing so, the attacker creates an equivalent private key and therefore is able to forge
signatures for arbitrary messages.
To achieve this goal, the attacker has to solve several multivariate quadratic systems. The com-
plexity of the attack is mainly determined by the complexity of the �rst step which is the solving
of a quadratic system of o equations in v variables. Table 2 shows the time MAGMA needs for
solving this initial system for our schemes and the standard UOV scheme.

Since, for the parameters proposed in Subsection 2.2, the UOV scheme is believed to be secure
against the UOV-Reconciliation attack, we can assume the same for our schemes.

Rank attacks. In this paragraph we look at the behavior of rank attacks against the standard
UOV and our scheme. To do this, we carried out experiments with 10000 instances of our
scheme for di�erent parameters (28, o, v). We observed that, just as in the case of the standard

12



Scheme (q,o,v) (28,9,18) (28,10,20) (28,11,22) (28,12,24) (28,13,26)

Compressed UOV 7.4 54 386 3013 23658

0/1 UOV 7.3 55 384 3018 23654

UOV 7.5 54 388 3019 23665

Table 2. Running time of the UOV-Reconciliation attack (in sec)

UOV scheme, all the matrices Qi representing the homogeneous quadratic parts of the central
equations have full rank n. This prevents the MinRank attack. Furthermore, all the variables
x1, . . . , xn appear in every of the o central equations, which prevents HighRank attacks.
All in all, this is not very surprising as rank attacks usually only work against private keys of the
STS structure [WBP04]. Still, to be on the safe side, we also veri�ed that our new construction
does not fall to this previously known attack.

Original UOV Attack. The goal of the original UOV attack [KPG99] is to �nd the pre-image of
the oil subspace O = {x ∈ Fnq : x1 = · · · = xv = 0} under the a�ne invertible transformation S.
To achieve this, one forms a random linear combination P =

∑o
j=1 βjHj , multiplies it with the

inverse of one of the Hi and looks for invariant subspaces of this matrix. For each parameter set
(28, o, v) listed in the table we created 100 instances of our two schemes and the standard UOV.
Then we attacked these instances by the UOV-attack to �nd out the number of trials we need
to �nd a basis of S−1(O).

Scheme (q,o,v) (256,5,7) (256,8,11) (256,12, 15) (256,15, 18)

Compressed UOV 1728 532614 847362 1146382

0/1 UOV 1726 532682 847394 1157638

UOV 1734 531768 852738 1182621

Table 3. Average number of trials in the UOV-attack

Summary of Further Security Considerations. As the previous four subsections showed, known
attacks against the UOV signature scheme do not work signi�cantly better against our schemes,
which means that they can not use the special structure of our public key. So, in this sense our
scheme appears to be secure and we do not have to adapt our parameter sets.
It might also be possible that dedicated attacks against our scheme exist. Still, the security
considerations we presented above suggest that such attacks would be very di�cult to mount.

5.6 Parameters and Implementation

In this section, we give our choice of parameters and show how they transfer to a practical
C++ implementation. More concrete and based on the security considerations of sect. 5.5, we
propose for our scheme the same parameters as for the standard UOV scheme, namely �eld
size q = 256, (o, v) = (26, 52). Additionally, Table 4 gives one more conservative parameter set,
namely (q, o, v) = (256, 28, 56).
We implemented the veri�cation process of our scheme and the standard UOV in C++. Our
straightforward implementation shows that we get quite a signi�cant reduction in terms of
the time of the veri�cation process. We carried out 1,000,000 veri�cation processes for each
parameter set on an Intel Dual Core 2 with 2.53 GHz and an AMD Athlon XP 2400+ with 2.00
GHz. Table 5 shows the average running time of the veri�cation process.
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6 Conclusion

In this paper, we have shown thatMultivariate Quadratic public key schemes can bene�t from
much smaller public key sizes (cf. Table 4) without any degeneration of security. The overall
idea requires some �exibility in the private key. To our knowledge, only the two MQ-schemes
UOV and Rainbow have these. UOV was covered in this article. However, Rainbow has a more
di�cult internal structure, so we have to leave a concrete application of our improvement to
Rainbow as an open question, which we plan to address.

public key private key hash size signature reduction of
Scheme(q, o, v) size (kB) size (kB) (bit) size (bit) public key size (%)

UOV(256,26,52) 78.2 75.3 208 624 -

0/1 UOV(256,26,52) 8.9 75.3 208 624 88.6

UOV(256,28,56) 97.6 93.4 224 672 -

0/1 UOV(256,28,56) 11.1 93.4 224 672 88.6

Table 4. Proposed parameters for UOV schemes

The security proof made use of the idea of equivalent keys. Hereby, each public key can be
assigned many private keys. We have turned this idea around by considering transformations of
the public key P instead and showed that an attacker does not gain from this speci�c structure
as he can generate it himself and we will derive an equally useful private key (F ,S).

Intel Dual Core 2 2.53 GHz AMD Athlon XP 2400+ 2.00 GHz

(o, v) standard UOV 0/1 UOV reduction factor standard UOV 0/1 UOV reduction factor

(26,52) 0.49 ms 0.14 ms 71 % 0.68 ms 0.19 ms 72 %

(28,56) 0.54 ms 0.14 ms 72 % 0.74 ms 0.20 ms 73 %

(32,64) 0.75 ms 0.20 ms 72 % 1.03 ms 0.28 ms 73 %

Table 5. Running time of the veri�cation process

As we can enforce a speci�c form on the public key P, we can also use it to speed up public key
operations, namely veri�cation of signatures. As we see in Table 5, this reduces the overall time
by about 73% or a markable factor of 3.7.
As the construction is very general, it can be used on other platforms (e.g. GPU, FPGA) as
well. We actually expect similar gains in area reduction or speed there, too.
From a theoretical perspective, forcing a speci�c structure on the central polynomials F or the
public polynomials P are equivalent: We can do either. Hence, for speci�c application domains
it might be useful to �nd a certain trade-o�. For example, we could reduce the computational
workload on a server based on the maximal available memory on a smart card.
All in all, the usability gap between RSA and ECC on the one side and post-quantum cryptog-
raphy on the other side is shrinking again. For speci�c applications, the latter could actually be
of use in practice.
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A The Turán graph

The Turán graph T(n, k) (named after the Hungarian mathematician Pal Turán) is de�ned as
follows: The set V of n vertices is partitioned into k subsets A1, . . . , Ak, whose sizes are as equal
as possible, i.e.

⋃k
i=1Ai = V , Ai ∩Aj = ∅, ||Ai| − |Aj || ≤ 1 for i 6= j.

Two vertices are connected by an edge whenever they belong to di�erent subsets, i.e.
e(vi, vj) ∈ E ⇔ vi ∈ Ar, vj ∈ As with r 6= s.

The number of edges in T(n, k) is given by 1
2 ·
∑k

i=1 |Ai| · (n − |Ai|) and is upper bounded by(
1− 1

k

)
· n2

2 .
Since every set of (k+1) vertices contains at least two vertices in the same subset Ai, the Turán
graph does not contain a (k + 1) clique. According to Turán's theorem it is the graph with the
maximum possible number of edges with this property.
The complementary graph of the Turán graph T(n, k) is denoted by CT(n, k). Here, two vertices
are connected by an edge if they belong to the same subset, i.e. e(vi, vj) ∈ E ⇔ ∃r s.t. vi, vj ∈
Ar.
The number of edges is given by |E| =

∑k
i=1

(|Ai|
2

)
, which is bounded from below by n

2 ·
(
n
k − 1

)
.

Since every set of (k + 1) vertices contains at least two vertices from the same subset Ai, the
graph CT(n, k) does not contain a (k+1) independent set. From Turán's theorem it follows that
CT(n, k) is the graph with the minimal number of edges with this property. We have used this
property in sect. 5.3 to �nd an optimal monomial ordering.
Figure 4 shows for n = 8 and k = 3 the Turán and the complementary Turán graph.

Fig. 4. Turán graph T(8, 3) and complementery graph CT(8, 3)
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B Details of the Experiments from Example 1

The parameters we are working with are
(o, v) = (26, 52)
n = o+ v = 78
D = v·(v+1)

2 + o · v = 2730

D2 =
o·(o+1)

2 = 351

Finding the optimal k
In this step we want to �nd the minimal k ∈ N such that the number of edges in the comple-
mentary Turá graph CT(n, k) (see app. A) is less or equal to D2.

k 1 2 3 4 5 6 7 8

# edges in CT(78, k) 3003 1482 975 722 570 468 396 342
> D2 > D2 > D2 > D2 > D2 > D2 > D2 ≤ D2

To obtain the total number of 351 monomials in C, we add 9 arbitrarily chosen edges to
CT(78, 8). This yields graph G (see sect. 5.3).

Fixing of variables

In CT(78, 8), the 78 vertices are divided into 8 groups A1, . . . , A8 as follows

i 1 2 3 4 5 6 7 8

|Ai| 10 10 10 10 10 10 9 9

When attacking the scheme directly, an attacker �xes a certain number of variables before
applying a Gröbner basis method. Since the number of edges in the graph is given by

k∑
i=1

(
|Ai|
2

)
,

it is obvious, that the best strategy for the attacker is to remove from each group Ai approxi-
mately the same number of vertices. Note that by removing r vertices using the above strategy
the attacker creates the graph CT(n− r, k).

When �xing v out of the n variables, the attacker creates the graph CT(o, k). In our exam-
ple, we get the graph CT(26, 8) with 26 vertices divided into 8 groups A′i as follows:

i 1 2 3 4 5 6 7 8

|A′i| 4 4 3 3 3 3 3 3

The number of edges in this graph is
∑8

i=1

(|A′i|
2

)
= 30.

When �xing/guessing v + 2 = 28 variables, the attacker implicitly creates the graph CT(24, 8),
whose vertices are divided into 8 groups A′′i as follows:

i 1 2 3 4 5 6 7 8

|A′′i | 3 3 3 3 3 3 3 3
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The number of edges in this graph is
∑8

i=1

(|A′′i |
2

)
= 24.

The following table shows for some values of o the optimal number k, as well as the num-
ber of monomials in C and the minimal number of monomials remaining in C after guessing v
(denoted by |C|v) and v + 2 variables (|C|v+2).

o 10 18 26 28 30 32 36 40 44 48

k 7 8 8 8 8 8 9 9 9 9

|C| 55 171 351 406 465 528 666 820 990 1080

|C|v 3 12 30 36 42 48 54 70 86 105

|C|v+2 1 8 24 30 36 42 48 62 78 95
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