
Auditing the Auditor: Secure Delegation of Auditing
Operation over Cloud Storage

Jia Xu
National University of Singapore

xujia@comp.nus.edu.sg

ABSTRACT
In cloud storage service, users upload their data together
with authentication information to cloud storage server. To
ensure the availability and integrity of users’ data stored
in the cloud storage, users need to verify the cloud storage
remotely and periodically, with the help of the pre-stored
authentication information and without storing a local copy
of the data or retrieving back the data during verification.
Public verification enables a third party auditor (TPA), on
the behalf of the data owner, to verify the integrity of cloud
storage with the data owner’s public key. In this paper, we
propose a method that allows the data owner to delegate the
auditing task to a potentially untrusted third party auditor
in a secure manner: (1) The data owner can verify whether
the TPA has indeed performed the specified audit task; (2)
The data owner can verify whether the TPA did the audit
task at the right time specified by the data owner; (3) The
confidentiality of the data is protected against the TPA. Our
method also enables a TPA to re-outsource the audit task.

Keywords
Authentication, Proof of Retrievability, Secure Cloud Stor-
age, Secure Delegation of Auditing

1. INTRODUCTION
Recently, cloud computing is receiving more and more

attentions, from both industrial and academic community.
Cloud computing separates usage of IT resources from their
management and maintenance, so that users (e.g. individ-
uals, small companies and non-IT companies) can focus on
their core business and leave the expensive maintenance of
IT services to cloud service provider which has the expertise
and knowledge to provide and maintain huge amount of IT
resource. Just like a double-bladed sword, cloud computing
also brings in many new security challenges on protecting
the integrity and privacy of users’ data in the cloud.

Since Ateniese [1] and Juels [4], several works aim to pro-
vide a method to efficiently verify the integrity of user’s data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

stored in could storage server remotely, without retrieving
users’ data back and without keeping a local copy of user’s
data. Various settings are studied, including public verifica-
tion [1], support of dynamic operation [3], multiple server [2],
multiple clients [], and so on.

Public verifiable remote integrity check relaxes users from
the computation and online burden for periodical integrity
check, especially desirable when the user is equipped with a
low end computation device (e.g. smart phone) or is not al-
ways connected to the Internet. Furthermore, several meth-
ods even support to verify multiple users’ data together in
batch.

However, without proper enforcement, public verifiability
would give users a false impressions that their data were
safe in the cloud storage. There are many ways that public
verifications can be misused, for example:

• Too many volunteers help to verify a CSP’s storage
remotely, bringing in too much unnecessary burden on
the CSP and possibly resulting in Denail of Service
attack to the CSP;

• In contrast to the above case, many volunteers give up
in verification, wishfully thinking that someone else
will do the verifications;

• The distribution of verification time is uneven, too
many verifications for some periods and too few veri-
fications for other periods;

• Even worse, a dishonest CSP may create a lot of sybil
identities, who are announcing that they are volun-
teered to check the cloud storage periodically.

In this paper, we attempt to provide a solution which
enables the data owner to securely delegate the auditing
task to a potentially untrusted third party auditor (TPA).
In other words, our method allows the data owner to audit
the auditors of a cloud storage. Our solution also allows the
TPA to re-outsource the auditing task.

Contribution
1. Our work is among the first few (if not the first one)

that formulate the security requirements with time in
concern in delegation of audit tasks over cloud storage
service. In our formulation, a delegation of audit is
“secure”, if

• the data owner can verify whether TPA has in-
deed performed the audit task specified by the
data owner;

1

• the data owner can verify whether TPA did per-
form the audit task at the right time specified by
the data owner;

• the confidentiality of the data is protected against
the TPA and/or the CSP.

2. We provide a solution that fulfills the security require-
ments in the formulation.

3. We analyze that our assumption is almost minimum
and the performance is efficient.

4. We prove that our solution is secure.

2. PRELIMINARY AND BACKGROUND
We restate the POR [4, 5] model as below, with slight

modifications on notations. We adopt the 1-round verify-
prove version in Juels [4] for simplicity.

Definition 1 (POR [4, 5]). A Proof Of Retrievability
(POR) scheme consists of four algorithms KeyGen, DEnc,
Prove, Verify:

• (pk, sk) ← KeyGen(1κ). Given security parameter κ,
the randomized key generating algorithm outputs a public-
private key pair (pk, sk)

• M̂ ← DEnc(M, sk). Given a data file M and the pri-
vate key sk, the encoding algorithm DEnc produces the
encoded file M̂ .

• r ← Prove(M̂, c, pk): Given an encoded file M̂ , a chal-
lenge c and the public key pk, the prover algorithm
Prove produce a response/proof r.

• {accept, reject} ← Verify(c, r, pk): Given a challenge
c, a response/proof r and the public key, the verifying
algorithm Verify will output either accept or reject.

2.1 Shacham and Waters’s Scheme
We describe Shacham and Waters’s public verifiable POR

scheme [5] as below.

KeyGen(1κ) : Choose a bilinear map e : G × G → GT ,
where both G and GT are cyclic multiplicative group
of prime order p. Choose two random generators g, u
of the group G. Choose a private key x at random
from Zp. Set the public key as (u, v = gx) ∈ G2.

DEnc(M, sk) : The fileM is divided into blocksm1,m2, . . . ,m`,
mi ∈ Zp, and for each block mi, generate an authenti-
cation tag σi as below

σi = Tag(mi, i) = (h(i)umi)x ∈ G.

Alice sends the encoded file M̂ = {(mi, σi)} to Bob.

Prove(M̂, c, pk) : Upon receiving a challenge c = {(i, νi) ∈
[`]× Zp} from the verifier, the prover (i.e. Bob) com-
putes and sends back the response (σ, µ):

σ ←
Y

(i,νi)∈c

σνii , µ←
X

(i,νi)∈c

νimi mod p. (1)

Verify(c, r = (σ, µ), pk) : Verifier outputs accept if

e(σ, g)
?
= e(uµ

Y
(i,νi)∈c

h(i)νi , v) (2)

Otherwise, the verifier outputs reject.

2.2 Blind Technique
Wang et al. [7, 6] proposed a blind technique in addition

to Shacham and Water’s scheme [5], attempting to achieve
privacy-preserving third party auditing. With their blind
technique, the prover masks the proof for a challenge with
some randomness and the verifier is still able to verify the
validity of the masked proof.

The key generation and data encoding algorithms of [7,6]
are the same as Shacham and Water’s scheme. We describe
their prove-verify algorithms as below:

BlindProve : Upon receiving a challenge c = {(i, νi) ∈
[`] × Zp} from the verifier, Bob computes (σ, µ) as in
equation (1). Next, Bob blind1 µ to generate µ′ in
this way: Choose r at random from Zp and compute
R = e(u, v)r and γ = h(R) ∈ Zp where h : GT → Zp
is some secure hash function:

µ′ = r + γµ mod p (3)

Bob sends (σ, µ′, R) to the verifier.

BlindVerify : Verifier performs the following equality check:

R · e(σγ , g)
?
= e(uµ

′
·

0@ Y
(i,νi)∈c

h(i)νi

1Aγ

, v) (4)

2.2.1 Exclude-Attack
We found that a curious TPA can verify whether the hid-

den linear combination µ of file blocks mi is equal to any
particular value, using only information ((µ′, R) and public
key) that he/she is allowed to access.

TPA has (µ′, R, p). Given a guess µ̂, TPA computes γ =
h(R) and finds a value r̂ ∈ Zp by solving the equation

µ′ = r̂ + γµ̂ mod p.

TPA can confirm that µ̂ = µ, if and only if e(u, v)r̂ = R.
If the selected file blocks mi’s have low entropy, then TPA
could be able to find the values of mi by brute-force search.
This violates the authors’ claim that their scheme does not
assume additional property on the data file.

3. FORMULATION

3.1 Motivations and Observations

Integrity verification and data accessing cannot be com-
pletely separated.. Before accessing data, the user has to
verify the downloaded data locally, even if he/she has per-
formed the auditing task periodically or delegated the audit
task to a third party. This is in contrast with the claim in
[TPA, infocom 10]. Without local checking, a malicious CSP
can inevitably cheat and provide the user altered data with
non-negligible probability, no matter what remote integrity
check schemes are deployed. Suppose the data owner/verifier
will initial poly(κ) number of interactions with the CSP, and
each interaction is either for verification or data retrieval. A

1Note that the newer eprint paper [6] gives an improved
version of blind technique than the INFOCOM conference
paper [7]. Here we presents the eprint version. In the con-
ference paper version, in equation (3), the positions of r and
µ are swapped and thus the verification is different accord-
ingly.

2

malicious CSP may cheat in this way: Choose a random
i from interval [1, poly(κ)], forge a wrong response in i-th
interaction and follow the protocol honestly in all other ses-
sions. Such CSP will always win by feeding data owner
with wrong data, with non-negligible probability N/poly(κ)
where N is the number of retrievals. Furthermore, if CSP
is able to distinguish verification from retrival, he/she will
win with even higher probability.

Timing is essential in remote integrity check of cloud
storage. If data are corrupt and no longer “retrievialbe“ in
the cloud server, the data owner should know this at soon
as possible. So that he/she can take counter-measure in
time, to minimize the loss. Without timing concern, users
can always download the (partial) data from CSP, verify the
integrity of data locally, before using the data. If data owner
eventually does not retrieval the data, it does not matter
whether the data in the cloud is intact or not. A dishonest
TPA may have incentive to perform all audit tasks specified
by the data owner within a short period, to decrease his/her
Internet connection time.

Auditors themselves should be audited. Auditors may
have incentive to execute a partial audit task specified by
the data owner, or execute the audit task at time which
fit their own interests. Furthermore, the CSP may collude
with the auditors or just create some sybil identites, who
are vulunteer to be the auditors. In order to ensure they
faithfully accomplish their promise on auditing the cloud
storage at right time, auditors themselves should be audited.

Scope. : DOS (Denial of Service) attack is out of range of
this paper (1) If the DOS attack is launched by the Cloud
Storage Server or the designated third party auditor, there
is no technical way to resolve it. In real world applications,
this could be handled by law system. (2) If the DOS attack
is launched by outside attackers, besides plenty of existing
solutions against DOS attack, our system may have a simple
solution: the Cloud Storage Server only responds to auditors
who are authorized by the data owner.

Frame attack between Cloud Storage Server and Third
Party Auditor: We will deal with it.

Frame attack by data owner can be dealed with.

3.2 Limitation of Previous work
Wang et al. [7] proposed to a method to protect data con-

fidentiality against the TPA. However, their security model
is weak:

• In their model, both CSP and TPA are semi-trusted.
Precisely, they trust TPA in auditing and trust CSP
in data confidentiality; they do not trust TPA in data
confidentiality and do not trust CSP in maintaining
data integrity.

• Their privacy protection is also weak. Although they
showed that their blind technique prevents TPA from
recovering the original data through auditing process
(Theorem 2 of their paper), they did not analyze whether
their blind technique reveals any partial information
about the original data. We found that, in their scheme,
the TPA is able to verify that whether the original
data equal to any particular value, with only infor-
mation that he/she is allowed to access. Such ability

to evaluate equality predicate over blinded data could
be a serious vulnerability when the entropy of some
data blocks is very low. Although this issue can be
mitigated by compressing the whole data file before
outsourcing, this potential weakness may suggest that
a stronger privacy requirement is desired in such ap-
plications.

3.3 Definitions

System Model. Our system consists of three parties: data
owner Alice who has a large amount of data to backup, cloud
service provider (CSP) Bob who provides cloud storage ser-
vice, third party auditor Charlie who promises to help Alice
to audit the integrity of Bob’s cloud storage periodically.
Typically, Alice is equipped with a low end computer device
(e.g. a smart phone), Bob and Charlie have more powerful
computation resource.

Trust mode and Security goal. We trust in Alice, and do
not trust in Bob or Charlie. We aim to verify whether Bob
and Charlie have provided specified services to Alice as they
promised, and provide privacy protection on the outsourced
data against TPA Charlie or/and CSP Bob.

We assume the communication channels are secure. As we
have discussed, both DOS attack and frame attack between
Bob and Charlie are out of our focus. We remark that, these
are just for simplicity of presentation, instead of limitation
of our solution.

Let T be the domain of timestamps w.r.t. a particular
minimum time unit (e.g. minute). We define an “audit”
plan as below.

Definition 2 (Audit Plan). An audit plan of size m
w.r.t. a POR scheme E is a pair of vectors {T,C} ∈ Tm ×
Cm, where C is the set of all possible chanllenges in E, T =
(t1, . . . , tm) ∈ Tm is a vector of time points ti’s, such that
t1 ≤ t2 . . . ≤ tm, and C = (c1, . . . , cm) ∈ Cm is a vector of
m E-challenges.

In addition to a POR scheme, we define an “audit proto-
col”. Let ∆ be a time interval aggreed by all of the three par-
ties, such that one audit task should be complished within
∆ time, including all computation time and network tran-
simission time and with reseasonable safe margin.

Definition 3 (Audit Protocol). An audit protocol
w.r.t. a POR scheme E consists of three phases (ReleasePlan,
ExecutePlan, ReviewPlan), and each phase is described as be-
low.

• ReleasePlan: The data owner Alice chooses an audit
plan P = {T = (t1, . . . , tm),C = (c1, . . . , cm)} ∈ Tm×
Cm of size m, and sends an encoded plan P̂ of the audit
plan P to TPA Charlie.

• ExecutePlan: At each time ti, TPA Charlie is able to
recover the corresponding E-challenge ci from P̂. TPA
Charlie sends ci to CSP Bob and Bob replys with re-
sponse ri ← Prove(M̂, ci, pk), where the encoded file

M̂ is generated by Alice and stored by Bob. Charlie
commits ri in the allowed time interval [ti, ti + ∆].

• ReviewPlan: After time tm+∆, Alice may verify whether
Charlie has indeed performed the i-th audit task in the

3

plan P during the specified time interval [ti, ti + ∆].
Possibly, Alice may interact with CSP Bob. If the ver-
ification succeeds, Alice outputs accept; otherwise out-
puts reject.

It is required that, the data owner Alice is only involved in
O(1) rounds of interactions during all of the three phases.

Definition 4 (Timed-Secure). Let P = (ReleasePlan,
ExecutePlan, ReviewPlan) be a audit protocol.

• P is Backward-Timed-Secure: If there exists some j ∈
[m], such that TPA Charlie performs the j-th audit
task (more precisely, TPA can obtain the challenge cj)
before time tj, then with overwhelming high probability,
Alice will reject in the ReviewPlan phase.

• P is Forward-Timed-Secure: If there exists some j ∈
[m], such that TPA Charlie performs the j-th audit
task (more precisely, TPA obtained the response rj for
challenge cj) after time tj + ∆, then with overwhelm-
ing high probability, Alice will reject in the ReviewPlan
phase.

Definition 5. Let E be a secure POR scheme. An audit
protocol (ReleasePlan, ExecutePlan, ReviewPlan) w.r.t. E is
verifiable, if the following conditions are satisfied:

• Correctness: If both Bob and Charlie follow the proto-
col exactly and Bob’s storage is intact, then Alice will
always accept in the ReviewPlan phase.

• Soundness:

– The audit protocol is both Backward-Timed-Secure
and Forward-Timed-Secure.

– If for some j ∈ [m], the response rj presented by
TPA for challenge cj is not valid (i.e. cannot pass
the POR verification), then with overwhelming
high probabiity, Alice will reject in the ReviewPlan
phase.

Definition 6 (Semantic-Secure). A POR scheme E =
(KeyGen,DEnc,Prove,Verify) is semantic secure against the
TPA, if: Alice runs the key generating algorithm KeyGen to
produce a public-private key pair (pk, sk). Given the pub-
lic key pk, adversary A chooses two equal length data files
M0,M1. Alice chooses a random bit b ∈ {0, 1} and encodes
Mb to obtain M∗ using the data encoding algorithm DEnc.
Alice sends the encoded data file M∗ to CSP Bob. The ad-
versary checks for integrity of Bob’s storage remotely, using
POR-verification. Eventually, adversary outputs a guess
b′ ∈ {0, 1}. We have Pr[b = b′] <= 1/2 + negl(κ).

4. OUR SCHEME
Background on Brent and Shacham Scheme ReleasePlan,

ExecutePlan, ReviewPlan
TimeServer,ReceiveServer

Time Server. A time-server is associated with a domain T
of timestamps and an IBE public-private key pair (tpk, tsk),
where tpk is publicly available and tsk is kept secret by
the time server. At each time point t ∈ T, the time server
broadcasts the decryption key w.r.t. the identity t. The
time server does nothing else.

Receive Server. A receive-server has a large storage. Once
receiving a message Msg designating for receiver Rev from a
sender Snd at time t, the receive-server will record (t, Rev, Snd, Msg)
in his/her storage. The receiver-server also allows the des-
ignated receiver to retrieve their message. In real world ap-
plication, we may adopt a reliable email server to play the
role of receive-server.

We remark that, both time-server and receive-server are
“independent” on our scheme, in the sense that: (1) both
servers are not set-uped by our scheme; (2) both servers
provide generic service and are not exclusive or dedicated
to our scheme; (3) both servers are always unaware of the
existence of our scheme.

Let E = (KeyGen,DEnc, 〈P,V〉
• Setup: Alice runs key generating algorithm E .KeyGen

to generate public-private key pair (pk, sk). Given a
data file, Alice preprocesses the data file in two steps:

– encode the data file using error-correcting code
(e.g. Reed Soloman Code)

– divide the data file into blocks and encrypt each
block using a semantic secure public key encryp-
tion scheme (or a symmetric encryption scheme,
e.g. AES).

Let X = (x1, x2, . . . , x`), xi ∈ Zp for each 1 ≤ i ≤ `,
be the resulting file. Then Alice runs data encoding
algorithm E .DEnc to generate authentication tags Φ =
{σi}. Alice sends {(i, xi, σi)} to Bob.

• ReleasePlan: Alice choose m time points t1 ≤ t2 . . . ≤
tm from T, and chooses m E-challenges (c1, . . . , cm) at
random. For each λ ∈ [m], Alice encrypts cλ using the
Timed-Release Encryption scheme:

Cλ ← TEnc(cλ, tλ)

Alice sends the coded audit plan {(tλ, Cλ) : 1 ≤ λ ≤
m} to TPA Charlie.

• ExecutePlan: At time tλ, 1 ≤ λ ≤ m, TPA Charlie
receives the decryption key Kλ for tλ, and decrypts
Cλ to obtain the challenge cλ:

cλ ← TDec(Cλ,Kλ)

TPA Charlie, who is taking the role of verifer, interacts
with the CSP Bob, who is taking the role of prover, to
execute the interactive algorithm 〈P(cλ),V(X, {σi})〉.
TPA Charlie obtains reply rλ = (Σλ, µλ) for the chal-
lenge ci from CSP Bob. TPA Charlie sends Msgλ =
(λ, rλ) to Receive Server.

An authorized verifier may interact with CSP Bob by
running algorithm P, V to audit the integrity of Alice’s
data in Bob’s storage.

• ReviewPlan:

– Alice retrieves {(Tλ, Rev = Alice, Snd = Charlie,
Msgλ = (λ, rλ)) : 1 ≤ λ ≤ m} from the Receive
Server.

– Alice chooses a vector w = (w1, . . . , wm) of size
m at random from (Zp)m. Construct a matrix
M = (mλ,j)m×`, such that mλ,j = νj if (j, νj) ∈
cλ, otherwise mλ,j = 0. Let the vector γ =
(γ1, . . . , γ`) = w×M be the multplication of vec-
tor w and matrix M .

4

– Let µ = (µ1, . . . , µm). Compute µ∗ = 〈w, µ〉
and Σ∗ =

Qm
λ=1 Σ

wλ
λ .

– Alice verifies (Σ∗, µ∗) with c∗ = {(i, γi) : 1 ≤ i ≤
`} as chanllenge, using E .Verify algorithm:

e(Σ∗, g)
?
= e(uµ

∗ Y
(i,γi)∈c∗

h(i)γi , v)

5. ANALYSIS

Claim 1. Timed-Released Encryption is necessary and suf-
ficient for [backward-security] After receiving the coded audit-
plan from data owner Alice, TPA Charlie must not obtain
the challenge ci before time ti. Otherwise, Charlie may send
ci to CSP Bob to perform the i-th audit task earlier than
specific time ti, which violates the [backward-security]. Af-
ter time ti, an honest Charlie should be able to obtain ci, so
that she can perform the i-th audit task as required by Alice.
Thus a timed-released encryption which allows a ciphertext
to be decrypted only after a time point which is specified dur-
ing encryption, is necessary. The other direction ...

Claim 2. Timed-Released Encryption is insufficient for
[forward-security] At the first glance, one may think [forward-
security] can be achieved similarly as [backward-security].
Time-Released Encryption can only control when TPA Char-
lie can access certain information. A dishonest TPA Charlie
could always obtain the required information (i.e. the chal-
lenge) at the right time. After obtaining the required infor-
mation, Charlie could perform the actual audit action at any
time.

5.1 Optimal:

Claim 3. The coded audit plan contains at least m ci-
phertexts encrypted using Time-Released Encryption scheme.

Claim 4. TPA Charlie has to commit at least m times.

5.2 Security

Theorem 1. Our audit protocol is veririable (as defined
in Definition 5) and semantic secure (as defined in Defini-
tion 6).

Due to the exclude-attack in Section 2.2.1, Wang et al. [7]
is not semantic secure.

6. CONCLUSION
We proposed a solution that allows the owner of data

stored in a cloud storage to delegate the auditing task to
a potentially untrusted third party verification in a secure
way. That is, the data owner can verify whether the TPA
did perform the audit task at the right time as specified by
the data owner. In another words, we provide a method
allowing the data owner to audit to the auditor.

7. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In CCS ’07: ACM
conference on Computer and communications security,
pages 598–609, 2007.

[2] R. Curtmola, O. Khan, R. Burns, and G. Ateniese.
MR-PDP: Multiple-Replica Provable Data Possession.
In ICDCS ’08: International Conference on Distributed
Computing Systems, pages 411–420, 2008.

[3] C. Erway, A. Küpçü, C. Papamanthou, and
R. Tamassia. Dynamic provable data possession. In
CCS ’09: ACM conference on Computer and
communications security, pages 213–222, 2009.

[4] A. Juels and B. S. Kaliski, Jr. Pors: proofs of
retrievability for large files. In CCS ’07: ACM
conference on Computer and communications security,
pages 584–597, 2007.

[5] H. Shacham and B. Waters. Compact Proofs of
Retrievability. In ASIACRYPT, pages 90–107, 2008.

[6] C. Wang, S. S.-M. Chow, Q. Wang, K. Ren, and
W. Lou. Privacy-preserving public auditing for secure
cloud storage. Cryptology ePrint Archive, Report
2009/579, 2009. http://eprint.iacr.org/.

[7] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-Preserving Public Auditing for Data Storage
Security in Cloud Computing. In IEEE INFOCOM,
pages 525–533, 2010.

5

http://eprint.iacr.org/

	Introduction
	Preliminary and Background
	Shacham and Waters's Scheme
	Blind Technique
	Exclude-Attack

	Formulation
	Motivations and Observations
	Limitation of Previous work
	Definitions

	Our Scheme
	Analysis
	Optimal:
	Security

	Conclusion
	References

